
Picking the Best Expert from a Sequence

Ruth Bergman*
Laboratory for Artificial Intelligence

Massachusetts Institute of Technology
Cambridge, MA 02139

Ronald L. Rivestt
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

October 31, 1994

Abstract
We exzmine the problem of finding a good expert from a sequence of experts. Each expert has

a,n "error rate"l we wish to find an expert with a low error rate. However, each expert's error rate is
unknown and can only be estimated by a sequence of experimental trials. Moreover, the distribution of
error rates is also unknown. Given a bound on the tota.I number of trials, there is thus a tradeoff between
the number of ocperts examined and the accuracy of estimating their error rates.

We present a new expert-finding algorithm and prove an upper bound on the expected error rate of
the expert found. A second approach, based on the sequential ratio test, gives a.nother expert-finding
algorithm that is not provably better but which performs better in our empirical studies.

1 Introduction

Suppose you a,re looking for an expert, such as a stock broker. You have limited resources and would like
to efrciently find an expert who has a low error rate. There are two issues to face. First, when you meet a
candidate expert you a,re not told his error rate, but ca.u only find this out experimentally. Secoud, you do
not know a priori how low aJr error rate to aim for. We give here an algorithm to find a good expert given
limited resources, and show that the algorithm is efrcient in the sense that it finds an expert that is almost
as good as the expert you could find if each expert's error rate was stamped on his forehead (given the sa^me

resources).

If each e:rpert's error rate were stamped on his forehead then finding a good expert would be easy. Simply
examine the experts one at a time and keep the one with the lowest error rate. If you may exa,mine at most
n experts you will find the best of these n experts, whose expected error rate we denote by b,. You cannot
do any better than this without examining more experts.

Since experts do not typically come marked with their error rates, you must test each expert to estimate
their error rates. We assume that we can generate or access a sequence of independent experimental trials
for each expert.

If the number of available experts is finite, you may retain dl of them while you test them. In this
case the interesting issues are determining which orpert to test next (if you cannot test all the experts
simultaneously), and determining the best expert given their test results. These issues have been studied
in reinforcement lea,rning literature and several interesting algorithms have been developed (see Watkins
(1989), Sutton (1990), Sutton (1991), aud Kaelbling (1990) for some exa,rnples).

Here we interested in the case where we may test only one expert at a time. The problems in this case
are: (1) what is the error rate of a "good" expert, and (2) how long do we need to test an expert until we
are convinced that he is good or bad?

*Supported by ARO grant N0001,1-89-J-1988, NSF grant 9217041-ASC (funded in part by the DARPA HPCC program),
NSF grant CCR-9310888, and the Siemeus Corporation. email address: ruthoai.Eit.edu

tSupported by ARO grant N0001,1-89-J-1988, NSF grant 9217041-ASC (fuDded in part by the DARPA HPCC program),
NSF grant CCR-9310888, and the Sierreas Corporation. email address: rivest0theory.lcs.Bit.edu

42

First consider the case that we have a predetermined threshold such that an error rate below this threshold
ma^kes the expert "good" (acceptable). This is a well-studied statistical problem. There are numelous
statistical tests available to determine if an expert is good; we use the ratio test which is the most powerful
among them. The ratio test is presented in section 3.1.

However, in our problem formulation we have no prior knowledge of the error rate distribution. We thus
do not have an error-rate threshold to define a good expert, and so cannot use the ratio test. The algorithm
in section 3.2 overcomes this limitation by setting lower and lower thresholds as it encounters better experts.
Section 3 coutains the main result of this paper: our algorithm finds an expert whose error rate is close to
the error rate of the best expert you carl expect to find given the same resources.

Section 4 presents a similar expert-finding algorithm that uses the sequential ratio test (Waid 1947)
rather than the ratio test. Wald (1947) shows empirically that the sequential ratio test is twice as efrcient
as the ratio test when the test objects are normally distributed. While the theoretical bound we grve for the
sequential-ratio expert-finding algorithm is weaker than the bound for the ratio-test expert-finding algorithm,
empirical results with specific distributions in section 5 indicate that the former algorithm performs better
in practice.

2 An AI Application: Learning World Models
Cousider the problem of learuing a world model where rules describe causal relatiouships of the environment.
A rule has the form

precondition -r action -+ postcondition

with the meaning that if the preconditions are true in the current state and the action is taken, then the
postcondition will be true in the next state. These are predictive rules as in (Drescher 1989), as opposed to
the prescriptive rules in reinforcement learning (Watkins 1989, Holland 1985) or operators in Soar (Laird,
Newell & Rosenbloom 1978).

An algorithm to learn rules uses triples of previous state, .9, action, ,4,, and current state to learn. It may
isolate a postcondition, P, in the current state, and generate preconditions that explain the postcondition
from the previous state and action. For any precondition PC that is true in state 5, the rule PC -+ A -+ P
has some probability p of predicting incorrectly. To learn a world model, the algorithm must find the rules
with low probability of prediction error, and discard rules with high probability of prediction error.

The problem of findiug a good rule to describe the environment is thus an expert finding problem. It
fits into the model discussed here since (1) each rule has an unknown error rate, (2) the distribution of
rules' error rates is unknown and depends both on the environment and the learning algorithm, and (3) the
Iearning algorithm can generate arbitrarily many rules.

3 Finding Good Experts from an Unknown Distribution
First, let us reformulate the expert-fiuding problem as a problem of finding low error-rate coins from a,n
infinite sequence cLtc2t.. . of coius, where coin c; has probability r; of 'failure" (heads) and probability 1-r;
of "success" (taiis). The r;'s are determined by independent draws from the iuterva,l [0, 1], according to some
unknown distribution. We want to find a "good" coin, i.e. a coin with small probability r; of failure (error).
We are not given the r;'s, but must estimate them using coin flips (trials).

The main result of this section is:

Theorem L There is an algorithm (algorithrn FindExpert,) such that when the enor rates ol drawn coins
are unlcnoun quant'ities ilrautn frorn an unknown distribution, after t trials, with probabilitg at least L - Llt,
we etpect to find a coin whose probability of error is at most bt/tn2 t + O(7fi;).

This theorem states that after^t trials, we expect the algorithm to find au expert that is almost as good
as the best expert in a set of.tll* t randomly drawn experts (who would have error ratebrl6zr). We uote
that our result depends in a natural marner on the unknown distribution.

43

Recall that in t trials if the experts' error rates are known we car find the best of f experts' error rates
(fu). Compared to this, our algorithm must examine fewer experts because it must spend time estimating
their error rates. For some distributions (such as for fair coins) b176zs and fu are equal, while for other
distribution they can be quite far apart.

The rest of this section gives the ratio test and our algorithm for finding a good expert.

3.1 The Ratio Test

Since we do not know the error rates of the coins when we draw them, we must estimate them by flipping
the coins. If we knew that "good" coins have error rate at most pr, w€ could use standard statistical tests
to determine if a coin's error rate is above or below this threshold. Because it is difrcult to test coins that
axe very close to a threshold, we instead use the ratio test, which tests one hypothesis against another. In
this case the hypotheses are that the coin has error rate at most ps, v€rsus that the coin has error rate at
least p1, where p6 is a fixed value less than p1.

The Problem Given a coin with unknown rate of failure p.
Test if p 1 po vs. p > p1. Accept iL p 1 ps. Reject if p 2 pt.

Requirements The probability of rejecting a coin does not exceed a if. p S po, and the probability of
accepting a coin does not exceed fr rfp> pt.1

The Test Let m be the number e1 samples, and .f- be the number of failures in rn samples. The ratio test
is

reject

accept

ir l^> @o + tE)*
otherwise

3.2 An Algorithm for Finding a Good Expert
We know how to test if a coin is good given a threshold defining a good error rate, but when we do not know
the error-rate distribution we can not estimate the lowest error rate fu that we ca.n expect to achieve in t
tria,ls. The following algorithm overcomes this handicap by finding better and better coins and successively
lowering the threshold for later coins.

The algorithm for finding a good coin is the following.

Algorithm 1 FindExpert
Input: t, an upper bound on the number of trials (coin flips) allowed

Pick a coin, and flip it ln3 t times to find f'.
Set p1 = f'.
Repeat until all t trials a,re used

Let p6 = pr - e(p1), where e(pr) : ,TtuA>
Draw a coin.
Test the coin using the ratio test:

Flip the coin rn :lt2 t times.
Accept if f^ < (p1 - e@1)12)m.

If the ratio test accepted then
Flip the coin an additional ln3, times to find an improved ff.
Set p1 - f.

Output the best coin seen.

lWe choose the ratio test since it has the most power, i.e., for a given o, i.e. it gives the least B (probability of arcepting
when the hypothesis .EIe is wrong (see (Rice 1988).)

44

The proof that FindExpert satisfies the statemeut of Theorem 1 is too lengthy for this paper. The
following is a high level summary of the proof.

Description of the proof: Since the error-rate distribution is unknown, we do not have any estimate of
bt, so the algorithm uses better and better estimates. It starts with a random coin and a good estimate
of its error rate. It prepaxes a test to determine if a new coin is better than the current coin (with high
probability). Upon finding such a coin it prepares a stricter test to find a better coiu, aud so ou. We show
that the time to test each coin is short, ar.d thus ue see rnany coizs. Since we almost always keep the better
coin we can find a coin whose error rate is at most the eryected, best en'or rate of the the algorithm saw (plus
a srnall correction).

4 A Faster (?) Test for Experts

A disadvantage of the ratio test in the previous section is that the length of each test is fixed. This length
is chosen so as to guarantee (with high probability) a good determination as to whether the tested coin has
error rate at least e better than the current best coin. For coins that are much better or much v/orse, it may
be possible to make this determination with many fewer trials.

The sequential ratio test given by Wald (1947) solves precisely this problem. After each coin toss it
assesses whether it is suftciently sure that the tested coin is better or worse than the current best coin. If
not, the test coutinues. The sequential ratio test thus uses a aariable number of flips to test a coin. One
can hope that for same probability of erroneous acceptances and rejections, the sequential ratio test will use
fewer coin flips than the ratio test. Although the worst case sample size is larger for the sequential ratio
test, Wald (L947) shows that in experiments with normally distributed error rates the sequential test is on
average twice as efrcient as the ratio test. Section 5 gives our experimental results comparing expert-finding
algorithms based on the ratio test and on the sequential ratio test.

The rest of this section gives the sequential ratio test and the corresponding expert-finding algorithm.

4.1 The Sequential Ratio Test

This section describes the sequential ratio test due to Wald (1947).

The Problem Giveu a coin with unknowu failure rate p.
Test if plpo vs. p)p1. Accept If p<po. Reject if p> pt.

Requirements The probability of rejecting a coin does not exceed a if p (ps, and the probability of
accepting a coiu does not exceed 0 if p> pt.

The Test I*t m be the uumber of samples, ar,.d f^ be the number of failures in rn samples.
Reject if

L> roe+- -- logi#-
"" - los H - tos #; ' "tos;i

- tos i*
Accept if

los t' los i#
'-

: G ap. - logffi - -roc.*o. - ro;g
Otherwise, draw anothel sample.

45

fm
reject

accept

The sequential ratio test defines two lines with different intercepts and the same slope. Above the upper
line is a reject region. Below the lower line is the accept region. The test generates a random walk starting
at the origin which terminates when it reaches one of the two lines.

4.2 Finding a Good Expert Using the Sequential Ratio Test

The algorithm for findiag a good coin using the sequential ratio test is as follows.

Algorithm 2 SeqFindExpert.'
Input t, a^rr upper bound on the number of trials allowed.

Pick a coin, and flip it logs t times to find f'.
Set p1 = 6'.
Repeat until all t trials a.re used:

Let po: pt - e(p1), where e(pr) :
Draw a coin.
Test the coin using the sequential ratio test with para,meters po, pt; and o = 0: llt2
If the sequential test accepts then

Flip the coin logs t more times to find an improved f'.
Set P1 = f-

Output the best coin.

Because the worst case number of coin flips for the sequeutial ratio test is larger than the (fixed) number
of coin flips for the ratio test, the bound we now prove for SeqFindExpert ratio test is not as strong as
the bound shown above for FindExpert.

Theorem 2 There is on algorithm (SeqFindExpert/ such that uhen the coins are d,raun, according to an
unknown error-rate distribution, afiert trials, with probability at leastl-11t, we etyect to find a coin whose
probability of error is at most bt/ ross , + O(fu).

Theorem 2 shows that algorithm SeqFindExpert, which uses the sequential ratio test to find a low
error-rate coin from coins drawn according to an unknown distribution, does almost as well as we can do
if coins were labeled with their error rates, but see only t/ log3 t coins. The proof of Theorem 2 is similar
to the proof of Theorem 1. The bound in Theorem 2 is not as tight as the bound for the FindExpert. In
practice, however, SeqFindExpert often performs better because the test lengths are much shorter than
the worst case test length used to prove Theorem 2.

For some distributions, such as the uniform distribution, the coins tested are typically much worse
than the current best. (After seeing a few coins the algorithm already has a fairly good coin and most
coins a,re much worse.) Thus, the sequential ratio tests will be short. When the error rates are uniformly
distributed we expect that the algorithm SeqFindExpert will see more coins and find a better coin than
FindExert. This argumetrt is confirmed by our empirical results below. Our results also show the superiority
of SeqFindExpert when the error rates are drawn from a (truncated) normal distribution.

m

.tM
V logt

46

Coins Tested Test Length Best Estimated
Error Rate

Best Actual
Error Rate

FindExpert 7.6 49 1 085 .1088
SeqFindExpert 21 M 0986 .0979

5 Empirical Comparison of FindExpert and SeqFindExpert

Uniform distribution; limit of t = 1000 trials

Coins Tested Test Length
Test Length

Best Estimated
Error R"ate

Best Actual
Error Rate

FindExpert 66 100 .0185 .0187

SeqFindExpert 230 33 01 .0101

(b) Uniform distribution; limit of t = 10000 trials.

Table 1: Empirical Comparison of FindExpert aud SeqFindExpert with the uniform distribution. The
numbers in the tables are averaged over 1000 runs.

To compare the performance of FindExpert and SeqFindExpert we ran experimeuts for uniform and
normally distributed error rates. (The normal distribution was truncated to lie within the interval [0,1].)
Table 1 gives results for both algorithms on the uniform distribution. AII results reported are an average
over 1000 repeated executions of the algorithm. Table 1(a) contains the average of 1000 ruus each with trial
limit t: 1000. Table 1(a) shows that the SeqFindExpert algorithm had shorter average test lengths and
therefore tested more experts. SeqFindExpert was able to find experts with lower actual error rate (.0979
on the average compared with .1088 for FindExpert). The table contains both the average actual error
rate of the best experts that the algorithm found and the average error rate from experimeuts for the same
experts. Table 1(b) shows that given more time (t = 10000 trials) to find a good expert SeqPindExpert
performs significantly better than FindExpert. The average test length is much shorter and the resulting
best error rate is .0101 compared with .0187.

Coins Tested Test Length Best Estimated
Error Rate

Best Actual
Error R:.te

FindExpert 13 49 .4361 .4395
SeqFindExpert ,o 61 .4rM .4204

(a) Normal distribution; limit of t = 1000 trials.

Coins Tested Test Length Best Estimated
Error Rate

Best Actual
Error R^a.te

FindDxpert 85 100 .3292 .3352
SeqFindExpert 470 31 .2670 .2741

(b) Normal distribution; limit of t : 10000 trials.

Table 2: Empirical Comparison of FindDxpert and SeqFindExpert with the Normal Distribution (mean
0.5, variance 0.3) truncated at 0 and 1. The numbers in the tables are averaged over 1000 runs.

Experiments with the normal distribution used a normal with mean 0.5 aud variance 0.3. These results
are reported in table 2. Note that for this distribution most coins have error rate close to .5. Table 2(a)
reports the average of 1000 executions with trial limit 1000. It is interesting that the SeqFindExpert both
tested more experts a.lrd had a longer average test length. The long average test is due to a few very long
tests (to compare close experts), but most tests are very short. As expected, the average error probabilities
of the best coin is lower for the SeqFindExpert algorithm. Table 2(b) shows that with a longer limit of

47

10000 trials the SeqFindExpert algorithm performs much better than FindExpert, giving an average
best error rate of .274L compated with .3352.

The experimental results in this section show that SeqPindExpert performs better than FindExpert
for two distributions with different characteristics. The experimenta.l results agree with the theoretical
analysis in that some sequential tests are quite long (louger than the ratio tests), but the experiments also
show that on the average the sequential test lengths are short especially when the trial limit is large. The
average test length is short when the time limit is large because the best expert is already much better than
the average population.

6 Conclusions

This paper presents two algorithms to find a low error expert from a sequence of experts with unknown
error-rate distribution, a problem that arises in many areas, such as the given exa"mple of lea^rning a world
model consisting of good rules. The two algorithms FindExpert and SeqFiudExpert are nearly identical,
but use the ratio test and sequential ratio test respectively to determine if an expert is good.

Theorem 1 shows that FindExpert finds a,u ocpert which is the best expert of.tllr2 t, given trial limit t.
This result is strong in the sense that it shows only a factor of ln2, loss from testing over the best expert
we could find in , trials ifwe knew the exact error rate ofeach expert. Theorem 2 gives a weaker bound for
SeqFindExpert. Empirical results in section 5, on the other hand, indicate that SeqPindExpert performs
better than FiudExpert in practice (at least for the uniform and normal distributions).

The obvious open question from this work is to prove that SeqPindExpert expects to find a lower
error-rate expert for general or specific distributious than FindExpert.

References

Drescher, G. L. (1989), Made-Up Minds: A Constructivist Approach to Artificial Intelligence, PhD thesis,
MIT.

Holland, J. H. (1985), Properties of the bucket brigade algorithm, fn 'First International Conference on
Genetic Algorithms and Their Applications', Pittsburg, PA, pp. 1-7.

Kaelbling, L. P. (1990), Learning in Embedded Systems, Technical Report TR-9G04, Teleos Research.

Laird, J. E., Newell, A. & Rosenbloom, P. S. (1978), 'SOAR: An Architecture for General Intelligence',
Artifi,cial Intelligence 33, 1-64.

Rice, J. A. (1988), Mathematiu,l Stotistics and Data Analysis, Wadsworth & Brooks/Cole, Pacific Grove,
CA.

Sutton, R. S. (1990), First Results with DYNA, an Integrated Architecture for Learning, Planniug, and
Reacting, in'Proceedings, AAAI-90', Cambridge, Massachusetts.

Sutton, R. S. (1991), Reinforcement Lea^rning Architectures for Anirnats, in 'First International Conference
on Simulation of Adaptive Behavior', The MIT Press, Ca"mbridge, MA.

Wald, A. (1947), Sequential Anolysis, John Wiley & Sons, Inc., Chapman & Hall, LTD., London.

Watkins, C. (1989), Learning from Delayed Rewards, PhD thesis, King's College.

48

