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Abstract
Recent research advances have made it possible to consider using observational data to infer causal
relationships among measured variables. Selection bias results from the observation of entities that
are not representative of the entities that are generated by a causal process of interest. This paper
shows that we can sometimes detect the presence of selection bias in observational data. The paper
also demonstrates how selection bias can hinder the discovery of causal relationships from
observational data. As we will describe, the use of experimental data (e.g., daa from randomized,
controlled trials) to discover causal relationships can be susceptible as well to problems involving
selection bias. We offer suggestions for how to proceed with causal discovery in the face of selection
bias.

Introduction

The discovery and characterization of causal relationships among variables is a primary focus of
much of xience. Randomized, controlled experiments are the gold standard by which science
establishes the presence of causal relationships. Such experiments, however, are oftten expensive and
sometimes are not possible. In contrast, there is a relative bounty of observational data, which is
growing rapidly in the form of computer-stored databases. Ideally, we would like to be able use
observational data to infer causal relationships.

Researchers recently have developed methods for determining the presence or absence of causal
relationships from statistical independence and dependence relationships extracted from
observational data 116, 17, 20, 21, 221. These elegant methods have the pbtential to provide
scientists and others with powerful new tools for causal discovery. They complement experimental
science by using observational data to (1) corroborate experimental results and (2) suggest new causal
relationships that can be tested experimentally.

There are a number of known biases that can hinder the use of observational data for causal
discovery 17, l9l. Selection bias is one such bias, and it is the focus of this paper. To define selection
bias, let Eq be a set of entities that are generated by a process Q. For example, Eg might be a
population-of patients in the community. Let Es be the set of sampled entities that we measure.
More specifically, we measurie particular properties of each member of E5. kt Zbe a set of variables
that we use to express the properties of the entities in Es. Assume we have a database containing
the values of Z for each member of Es. Continuing the example, Es might be a set of patients who
come to the emergency room of a cornrnunity hospihl, and Z might be a set of symptoms for which
we gather information on each patient in order to create our database. We use Ps(Z) to denote the
joint probability distribution over Z for the entities h Er; Ps(Z) is constructed from our database by
applylng some asymptotically convergent probability estimation procedure, which here we leave
implicit. We will assume that process Q generates an entity with values Z with probability P7(D,
where Z denotes an arbitrary instantiation of the variables in Z. Let PaG) be the joint probability
distribution for process Q. We will say that our database on Es exhibits selection bias it and only if
Ps(Z)*PoQ).

As we have defined it, selection bias may exist due simply to sampling errors, particularly if
the sample size (i.e, lEs l) is small. This paper does not, however, focus on sample size as a source
of selection bias. We focus instead on selection bias that persists even when the sample size becomes
arbitrarily large. ln medicine, selection bias has been termed reforal bias by some researchers lZl. n,
well known version of referral bias is called Berkson's paradox (also known as Berkson's fallary or
Berkson's bias) [1]. Berkson's paradox and related forms of referral bias have been demonstrated
empirically in several areas of medicine [3,9, 13, 18].

We will first assume that the observational data D available to us consists of the values of the
variables in Z from unbiased sampling of the entities in E9. Our goal is to use data D to discover
causal relationships among the variables in Z for the entities in Eg. Later we will consider causal

140



discovery from biased samples of E9. We also will describe how selection bias can interfere with
causal discovery from experimental data.

Causal Probabilistic Networks

In this section we briefly describe causal probabilistic networks. For a more formal introductiory see

[15, 21]. Before introducing a causal probabilistic network, we first define a Bayesian belief network,
which we call a Bayesian network for short. A Bayesian network is a directed acyclic graph Br1, in
which nodes represent model variablet and for each variable (node) :; a probability distribution
P(x; I n;') is specified, where a;are the variables in the model corresponding to the parents of x; in
Bsr. The representation of conditional dependence and independence among variables is the essential
function of Bayesian networks. In particular, a Bayesian network B incorporates the following
Markov assumption: For each variable a;inB, if we condition on any set of values for the variables
in 4, then the probability distribution of 4 is independmt of all the variables corresponding to non-
descendants of node q in Bsr. A node y is a descendant of 4 if there is a directed path from x;to y.

A criterion called il-sqaration captures exactly the conditional independence and dependence
relationships that follow from the Markov assumption above [8, 15]. The following definition of d-
separation is taken from [16]. LetT, U, and y be disioint subsets of the nodes in 4rr. Let p be any path
between a node in T and a node in U, where a path is any succession of arcs, regardless of their
directions. We say a node ar has converging arrows along a path if two arcs on the path point to ur.
V is said b block p if there is a node w onp satisfying one of the following two conditions: (1) a has
converging arrows (along p) and neither a, nor any of its descendants are in V, or (2) ar does not have
converging arrows (along p) and ar is in V. V is said to d-separate T from U in Bst, if and only if V
blocks every path from a node in I to a node in U.

In this paper, we consider causal processes that can be modeled as Bayesian networks. A causal
probabilistic network is a Bayesian network in which arcs in Br1, denote direct causal dependence
relative to the variables in Z. Informally, the notion that r directly causes y is as follows. There is
.rn .rrc from r b y rt and only if there is some manipulation of the value of r that would change our
probability distribution over the value of y, conditioned on some state of the model variables other
ftran r urdy. For additional discussion of tfte notion of causal manipulation, see U6,271.

Discovery of Causal Probabilistic Networks from Observational Data

Suppose we are interested in knowing about a set of causal proc€sses Q in nature. We will assume we
can adequately model Q as a causal probabilistic network C. Let Crs, denote the causal-network
structurg of C. The game we play is this. We assume that Q is equal to C. Our goal therefore is to
reconsbrrct Csr from D.1 From knowing Cs, we hope to gain some insight regarding Q. We denote the
set of variables in C as Z.lf T, U, and V are mutually exclusive subsets of the nodes in C and if V d-
separates T from U, then we will write Ic(T, U I y). If I/ is empty, we will write Ic(T, U).lf T, U, or
V contains iust a single variable, for simplicig we use that variable's name in 16(.), rather than use
set notation.

Recent research has investigated methods for deriving Crr, from D based on statistical tests of
independenceanddeperrdence [16, 17,20,21,221. More specifically, a statistical test f ii applied to D
in oider to derive relationships of conditional dependence and independence among the variables in
Z. For example, for discrete data, I might be a chi-square test with a particular, fixed significance
level. We use Ip;(T, U I y) to indicate that for test f applied to data D, each subset of the variables
in T is independent of each subset of the variables in U given any values of the variables in V. The
key assumption that allows us to derive (or partially derive) Crp from D is this:

For any I, U, and V that are muhrally exclusive subsets of Z,it is thecase thatlc(T, U I V) is
true if and only rt 1e/7, U I n is true.

Furthermore, suppose the variables captured in D are only a subset Z' of the variables Z in C. That
is, Z\Z' are hidden variables in C. In this case, the key assumption above is modified by
substihrting Z' lor Z, and we would likewise replace each corresponding instance of Z in this paper

1 A related goal is to find the parameterization of C, although in this paper that is not our focus.
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by Z'. For a detailed discussion of the assumptions underlying causal discovery from observational
data, see [21].

The network structures in Table 1 represent the type of causal relationships which are the
primary focus of this paper. While they are not exhaustive in scopg they do represent fundamental
causal relationships. Note, we assume that (1) there is a known cause u, of x, (21a known cause z of
y, a^d (3) w an{ z are connected (if at all) onl_y by causal pathg that go through both r and y. These
causal relationships could be known a yiori Gased for example on randomized, controlled tids) or
they could be learned from observational data (which would require measuring additional variables
not shown). An important point worth emphasizing is that the iausal discovery methods discussed
here (that use observational data) depend on our considering a web of r-elationships among
variables.

Table 1 contains the- d-sepalation_ relationships in C,1, that we assume correspond to the
independence and dependence relationshipg lound whm applying test f to data D. A plu-s sign means
the independence relationship holds, while a blank means it does not. Note [hat tf,e set of
relationships in each row is unique relative to the relationships in the other rows. Thu+ lve can
distinguish among these four structures. We note that d-separafron implies additional independence
r-elationsl_tips not listed in Table 1; we will not need to consider them until later in this paper. For
the causal-network structures in Table 1, we have the following theorem.

Theorem 1. The seven relationships listed in Table 1 are sufficient to distinguish the four causal
structures shown there. Thus, if we assume we can infer these relationships by applying test f to
dataD, then observational data is sufficient to distinguish among these four causal Stnictures.
Proof The distinguishing relationships in Table 1 were derived by applying the d-separation
criterion to the respective structures shown. It is straighfforward to verify the validity bf these
relationships. Since the pattern of the seven distinguishing relationships is unique for ehch of the
four network structures in Table 1, these relationships are sufficient to distinguish among the
structures. tr
Note that the seven,relationships listed in Table 1 are sufficient, but not altogether nuesilry to
distinguish among the four neiwork structures in that table. In particular, Ri and R3 are 

-also

sufficieng no smaller set of such binary relationships could distinguish among the four stnrctures. We
include in Table 1 all seven relationships because they will be useful in other sections of the paper.

Table l. Variable t represents a hidden variable. In a given row, relationship R;has a plus sign
if, and if, the network in that row exhibits the condition associated with R;.

!), R2:lc(x,z ly), Rs:lc(w,y lr), R4:Ic(w,z I x), Rs:Ic(ar, z I y),
z),R7:lc(w, y)

R1: 16(x,
R5: Ic(x,

Key:

Selection Bias in Causal Discovery

We have been assuming that D is generated from an unbiased stochastic sampling of points in the
sample spage defined by causal network C. ln medicine, for o<ample, D might iepresent a set of
symptoms for each person in a random sampling of people in a particular community. W" often may
not have access to information about the unselected population Eg as represented by D, but rathei,
access only to information about a subset Es ol Egthat is selected by a process unknown to us; we will

NO Stmcture ot a causal network C Distinguishing relationships
Rz Rr Ra Rc Rr RzRr

1
wlv y?z + + + + + + +

2
wlr---*y+z + + +

3
w4, ?y4-z + + +

4 w4x
y'xv+z

+ +++
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use D5 to denote the information we have about the members of Es. Thus, Ds is the data that we
actually observe. In this paper, Ds contains data about the values of variables t), a,A, and z. D5 also
contains a new variable s, which we introduce into Z in order to represent the sample selection
process. If an entity e is in Es then s has the value selected in the record in Ds that represents
information about e; otherwise, s has the value unselecteil. Yanable s therefore is present and has
the value selected for each record in Ds. Note that s is a variable that is implicit in any
observational database; we are making it explicit in order to be able to reason about itd influence oir
the discovery of C from D5.

Wermuth, et al. [23] contains a general dixussion of the tlpes of independence and dependence
relationships captured by Bayesian networks such as those in Tables 7, 2, and, 3. In the current
paper, we investigate the extent to which these relationships permit us to distinguish among causal
networks from observational data in the presence of selection bias.

The concept ol an unobsm)ed cofimut r*ryse oariable is described in [23], and it is suggested
that we can represent selection bias using such variables. firus, according to this line of reasoning
we should classify s as an unobserved common response variable.In fact, however, in D5 the
variable s is observed, because for each enfity recorded in Ds we know that the value of s is selected.
What generally is unobserved and unknown is the probability distribution of s (for the total
population of interest) conditioned on other variables in Z.z ln this paper, we explore the
implications for causal discoveryfrom observational data of explicitly modeling the variable s.

Section 9.3 of Spirtes, et al. [21] contains a general discussion of qualitative and quantitative
causal discovery from observational data when a population is sampled according to some particulal
criteria (e.g., all patients above a certain weight). In the current paper, we assume the sampling
criteria is equal to whatever criteria defines the acquisition of the database we .ue using, which
often is implicit and may even be unknown. Thus, we consider criteria ttrat are less specific than one
based on particular properties of the sampled entities and that apply without further qualification
to all observational databases. We discuss some specific causal scenarios in which such sampling
does (and does not) interfere with qualiative and quantitative causal discovery. In [21] random
sampling of the population of interest is taken as a general technique for avoiding selection bias
when using observational data (at least asymptotically, as the database grows in size); we show
cases where this is not so.

Examole

-

Suppose r and y are two rare symptoms (represented as binary variables) that a patient may
have, which are caused by two causally independent disease processes.s If a patient has either r
or y alone, tlren he is very likely to go his family physician. If, however, the patient has both r
atfr y, then he is much more likely to go to the emergency room (ER) for fear he is seriously ill.
Suppose that we collect observational data D5 only from patients who visit the ER. Ds \ ritl be
subject to a selection bias. In particulir, s = selecteil (i.e., the patient went to the ER, and
therefore, was observed) for a each patient represented in Ds. For the patient records in Ds, the
statistical dependency between r and y will be high; in particular, if r is present then it is likely
that y will be present, and vice versa. For the entire population of patients in the community,
however, r and y are marginally independent, because they result from causally independent
disease processes. If we use Ds to suggest causal relationships between x andy, we may be misled
by tte statistical dependency betr,rreen the two variables that results from selection bias.

There are many possible reasons why selection bias might occur. In the domain of medicine these
include (1) a patienfs decision about where b be seen, based on symptoms, (2) a physician's decision
about where to refer a patient for additional medical care, (3) a clinic's acceptance criteria (e.g.,
some clinics may only see patients with particular medical conditions), and (4) patient death or

2 We conjecture (but wilt not pursue here) that each real-world use of an "unobserved" common
response variable, involves not an unobserved variable, but rather, an implicit variable s that has a
fixed value (selected) in the observational database. What we are missing is data with which to
estimate probabilities of the form P(s = unselected I M), where M is an instantiation of a subset of
the model variables. It is these probabilities that are in some sense unobserved.
3Byuusatlyindepenilmtais*se@^er^nthatrandysharenocommonancestorsinC,noris
either the ancestor of the other.
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infirmary, which may prevent our ever seeing them. Analogous selection biases can occur in non-
medical domains as well, where the mtities bei.g observed are not patients.

Table 2 introduces selection variable s into the causal-netr roik stmctures taken from Table 1.
Note that the key at the bottom of Table 2 shows that the relationships in that table are
conditioned on the value of s being known (as indicated by s being underlined), which is
apprgpri-a1e, since it is from the observed da-ta D5 lhat 1ve inf-er thg independence and dependence
relationships in the table, and s is known to have the value seluteil irr Ds.

Key: R1: b@,y I g), R2: Ig(x,z I lg,yD, R3: IC(ar, y I ll,t)), Rl: l:(w,z I Ig,r)),
Rs: Ic(ar, z I lp.y)), Ro: lg(t,z I g), R7:lc(w,y I s)

The following result shows that we can detect the type of selection bias represented by the networks
in Table 2.

Iheoren 2. For i from 1 through 4, using observational data Ds it is possible to distinguish causal-
network structure i in Table 2 from the remaining causal-network structtrres in Tables 1 and 2.
Proof The pattern of distinguishing relationships is unique for each causal-network structure in
Table 2, relative the other structures in Tables 1 and 2. firus, if these relationships can be correc$r
inferred, the structures can be distinguished. U
Theorern 2 implies that we can sometimes detect the presence of selection bias, and furthennore,
such a bias does not interfere with our learning qualitatively the causal relationships between : and
y. In the presence of such selection bias, however, the following theorem shows that we do not
a!ryays know hoyv to use Ds to quantify the relationship between r and y. Thus, for example,
althotgh we may be able to infer that r causally influences y in some way, we cannot learn from -iust

Ds the likely values of y that would result from a gven manipulation of x.

Theorem 3. For causal-network struchrre 2 in Table 2, the data in D5 is insufficient to develop an
estimate of the population probability P(y I x) that converges to that probability as the numb6r of
samples in Ds increases. An analogous sittration holds for stmcture 3 in Table 2.
Proof For causal-network stmcture 2 in Table 2 we can express the probabilistic relationship
between r and y asP(y I :), which we can write as follows:

P(y I x) = P(y I x,s=selatdP(s=seletedl x)
+ P(y I x.,s=ttn*kctdP(s=utt*latedl x).

Database D5 only contains information relevant to estimating the first term on the right side of the
above equation, namely P(y I x, s = selected'). The remaining three terrns concern information that is
outside of database Ds. Thus, in general, Ds will not contain sufficient information to derive an

Table 2. The value of variable s indicates whether
s is underlined as shorthand for "s

an entity is selected for observation. In the
= selecled".

No. Structure ot a causal network C Distinguishing relationships
R2 R: Ra Rs ReR1 Rz

1
w4x

\
s
//

?z + +++

2
wl)t+J?z

\//
s

+ +

3
w41+!?z\s

s

+ +

4 \u+,
//

,hE
s

\
wlx
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estimate of P(y I r) that in the limit converges to P(y I x). An analogous result holds for struchue 3
in Table 2. - tr
Thus far, we have seen some sitnations in which qualitative causal relationships can be learned in
the presence of selection bias, even though the discovery of the corresponding quantitative causal
relationships is problematic. In some instances, it is possible for selection bias to interfere with the
discovery of both qualitative and quantitative causal relationships, as we now show.

Table 3 illustrates three problematic causal networks (there are others as well), which contain
a selection variable s and one or more hidden variables.

TableS. Nodes h,h1,h2 represent hidden variables. In the lcey, s is underlined as shorthand for
"s = selected".
No. Structure of a causal network C DistinguisNng relationships

Rz R: Ra Rs ReRr R7

1
h\t
s

\w1> y?z
+ + +

2 fi
s

w1 y?zr'
+ + +

3

{\,/'-w+ L

+ + + +

y I O, R2: Ic(r, z I ll,yl), Rg: lc(w,y
,z I ls,yl), Ro: lc(x,z I g), R7: Ic(w,y

lgxl\, Rl: Ic(ar, z I lp,xD,

Network 1 in Table 3 might, for example, represent an unmeasured genetic condition h that both
influences the likelihood of appearance of symptom y in patients and influences whether patients
are observed (as indicated by variable s). For instance, patients may be unlikely to be observed,
because the presence of ft increases the likelihood of early patient death. In the extreme, in utro
death might occur very early during gestation (e.g., at the one cell stage, just after conception), so
that there is no possibility of our ever observing an unselected population of people, because they do
not exist. In network 1, variable x also influences whether patients are observed; for example, r
might be a disease that is not causally related to lr. Unfortunately, network 1 in Table 3 has the
same distinguishing relationships as network 2 in Table 1. More generally, we have the following
result.

Theorem 4. For i from 1 through 3, by using just d-separation relationships derived from
observational data Ds, it is not possible to distinguish causal-network struchrre i in Table 3 from
causal-network sructure i+l in Table 1.
Proof For network structure i in Table 3 the pattern of its seven distinguishing relationships is
identical to the the pattern for network structure i+l in Table 1. Thus, these seven relationships are
clearly not adequate to distinguish between these network-structure pairs. For each of the six
stnrctures under consideration in Tables 1 and 3, there are a total of 255 d-separation relationships
(conditions) on the four measured variables in each structure. Thus, it is possible that structure i in
Table 3 could be distinguished from structure i+1 in Table 1 based on some subset of these 256
relationships that go beyond the seven relationships listed in Tables 1 and 3. A computer program
was written that checked all 256 d-separation relationships for each pair of network structures
described in the theorem. The results are that all2l$ relationships are identical for each pair. tr
According to Theorem 4, there is no way to use just the d-separation relationships that follow from
observational data Ds to uniquely determine the qualitative causal relationships that hold between

e)

R1: 16(x,
RS: Ic(ur

Key:
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r and y. This sihration is not specific to biological systems; in astronomy, for er<ample, an analogous
hypothetical scenario could be developed for the death of a star. More broadly, it is possible that
our universe itself has been selected from among many possible universes. The parallel universe
theory proposed by Everett in 1957 states that each quantum transition splits a universe into
parallel (yet muttrally inaccessible) universes [5]. Thus, everything that can happen, does happen,
in some universe. While at first mention the theory may appear far-fetdred, it does explain certain
quanfirm phenomena in a way that seelns at least as plausible as other explanations U2]. We can
imagine these splitting universes forming a tree, where each branch point in the tree corresponds to
a split. According to one line of reasoning (called the anthropic principle) our universe was selecteil
because it has properties (e.g- its laws and univeral constants) that permit the formation of a place
where conscious life can edst [21. The parallel universe theory suggests that this selection process is
happening continually. If correct, these ideas sugget the possibility that selection bias could occur
at the level of the universe. Since we do not have access to parallel universes, it would not be
possible to avoid such a bias. The implications of such bias, if indeed it exists, have not (as far as
we know) been worked out, but ftey do seem worth pursuing.

Note that Theorem 4 does not exclude the possibility that by measuring additional variables
(beyond those shown in Tables 1 and 3) we could distinguish the parrs of structtrres descriH in the
theorem. We coniecture, however, that it is not possible to ever use observational data to distinguish
shucture 3 in Table 3 from stmcture 4 in Table 1, regardless of how many additional observational
variables are recorded. If this conjecture is correct, then d-separation information can not be used to
distinguish a common hidden cause (struchrre 4 in Table 1) from separate hidden causes with
selection (structure 3 in Table 3). Moreover, experimental shrdie involving the manipulation of r (or
alternatively the manipulation of y) and the measurement of outcome y (or alternatively the
measurement of outcome r) cannot distinguistr betn'een these two stmctures, because for both structures
the outcome will be statistically independent of the intervention. (See the next section for more
discussion of experimental studies.) firese limitations suggest the possibility that the only way to
establish the presence of a hidden corunon cause is to obserrze it, in which case of course it would no
longer be hidden.

Selection Bias in Experimental Studies

Causal discovery from experimental data also can be subject to selection bias. For example, suppose
we perform a randomized, controlled trial (RCT) on a set of subjects Es. Let x = y6 denote the
orperimental intenvention (e.g., a drug) that is applied to the ocperimental group; the control group
gets a placebo as the intervention, which we represent as r = no, I,et variable y denote the outcome
of interest (e.g., the patient has a common cold), which has a value of ya ot no. We measure the
value of y in both the experimental and the control groups. Note first that there may have been
some process that selecteil the subjece available for participation in the experiment (i.e, group Es)
from Ihe population of patients about whidr we want to discover causal ielationships (i.e- Soup
Ep, ils previously defined). Iet us assume, however, that zuctr selection bias did not take place. It is
still possible that selection bias may exist. In particular, if outcome y is not measured in all the
subjects in Es, and is not measured in a uniform fashion (e9., at the same time and place following
the intenrention), then selection bias may occur.

For instance, consider network 1 in Table 2. Suppose that the value of x and the value of y both
determine whether a patient is likely to return tb the clinic to have the value of outcome y
measured. In terms of the previous example, suppose that giving the drug (i.e., r = yes) often causes
headaches as a side effect. In a patient the combination of a drug induced headache and a common
cold may make it much less likely that the patimt will return to the clinic to have the value of y
assessed, than if only one of the two conditions was present. In this case, selection bias would exist,
and the statistical dependency between r and y might be erroneously taken to mean that x causally
influences y. We want to make clear that the implications of such "losses to follow" are well
recognized and described in the dinical trial literature [14, Chapter 91. Our purpose is merely to
emphasize in the crrrrent context that experimental studies are not immune to selection bias.

In situations like the previous ercample, observational data may allow us to recognize that the
dependency between r and y is due to selection bias rather than to causation. In particular, if we
assunre the conditions associated with Tables 1 and 2 hol{ then the distinction is possible because
network 1 in Table 2 (which indicates selection bias) has distinguishing relationships that are
different from network 2 in Table 1 (which indicates causation). Spirtes, et d. [21, Section 9.1]
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contains a discussion of other cases in which observational studies can uncover causal relationships
that can not be discovered by experimental studies.

In graphical terms, an RCT eliminates the arcs into the intervention node(s), because (ideally)
randomization eliminates the possibility that any hidden process is controlling the intervention
variable(s) [21, Section 3.7.21. This removes the possibility of a hidden common cause between the
intervention and the outcome. Randomization does not, however, eliminate arcs out of the
intervention node, which is the situation that exists when there is selection bias. Thus,
experimental studies are vulnerable to many of the same types of selection biases as are
observational shrdies.

As a practical matter, however, it may be easier to avoid selection bias when using an
experimental design. Suppose we have enrolled a random sample of a population of patients (call
them E) about whom we want to discover causal relationships. To avoid selection bias, an
experimental study need only make sure that all enrolled subjects are randomly assigned an
intervention and that all subjects have their outcomes measured.a On the other hand, with
observational data it also may be important to know whether some selection process influenced the
creation of the subjects in E - that is, we may need to know something about the history of those
subjects. Such historical influences uray be totally inaccessible to us. Table 3 illustrates potential
selection processes of this type. tn particular, recall the in utro example (associated with network 1

in Table 3) wherein it is infeasible tb observe the selection process that occurs soon after conception.
An observational study would encounter selection bias here. An experimental study could in principle
avoid selection bias through randomization and complete follow up on the population of subiects of
interest. In this example, however, using an experimental study would be unethical, because the
intervention (as represented by variable x) would require inducing a disease in some subjects. In other
situations, experimental studies may be infeasible due to costs or logistical difficulties. Thus
observational and experimental studies each have their strengths and weaknesses. Since both types
of studies, however, are potmtially subiect to selection bias, the next section discusses some ways to
reduce the influence of such bias on causal infermce.

Approaches to Handling Selection Bias

The results in this paper indicate that in certain circumstances selection bias can hinder our using
data to discover causal relationships with any confidence. In this sectiory we focus on methods for
handling selection bias when using observational data for causal discovery.

One approach to addressing this problem is simply to assume that selection bias is
nonexistent or sufficiently weak, such that methods using observational data will usually only
suggest true causal relationships. Often, however, lrre may not know the extent to which selection
bias exists. Another approach around this problem is to take steps to make sure that we can assrune
with confidence that selection bias does not exist. For example, we might make our observations
from a random sample of the unselected population of interest. In general, however, this may not be
practical, due to the effort and expense required to sample from that population. In the worst case,
we nray not have access to such an unselecd population, as the previous example about in utero
death illustrates. Another way to address the problem would be to perform careful experimental
and observational studies on samples of the same entity population, and then empirically determine
the o<tmt to which causal discoveries from the observational data predict causal discoveries from
the experiments. The better the predictions, the greater our confidence in successfully applying the
observational discovery methods to other data about this population.

orre other approach to handling selection bias is to try to model it. In some cases, we might,
for example, be able to perform limited random sampling of the population of interest in order to
model selection bias. Such samples have in fact been taken [181. It is likely that these samples
would influence our subiective prior probabilities regarding selection bias; we could combine these
prior probabilities with a (hopefully large) set of observational data (which is subject to the
selection bias being modeled) in order to draw conclusions about causal relationships.

In the next section we describe a Bayesian approach to causal discovery that models
selection bias explicitly and is based on extensions to the Bayesian causal discovery methods

4 We note that interventions need to be given and outcomes need to be measured in a uniform,
consistent fashion across subjects. If not, then selection bias can occur, even if outcome measurements
are made for all the subjects.
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introduced in I5]. While this approach is not a panacea for all the problems due to selection bias, it
does provide us with flexibility in trying to cope with these problems.

A Bayesian Method for Handling Selection Bias

In this section we sketch a Bayesian method for computing the probability of a causal-network
struchrre that contains a selection variable s. Key advantages of the Bayesian approach are that
(1) it allows us to incorportate prior knowledge about the selection process (e.9., expert opinions),
and (2) given prior beliefs anil data, we cah derive a posterior probability of causal-network
struchrre+ in contrast to making a categorical staternent about which strucfirre is most likely. The
latter point is particularly important when we do not have a large amount of data.- We will focus on the probability of causal-network stnrcttrre 1 in Table 2. By extmsion, it is
possible to derive methods to colmpute the probability of the other network structures in Tables 2
and 3, but we will not do so here.5

Suppose for the moment that we have a method for calorlatingP(Brt i, D) for some causal belief-
network stnrcture B6,and database D. Let Q be the set of all those belief-network structures that
have a non-zero prior probability. We can derive the posterior probability of Ba,rgiven D asP(4r,, I

D)=P(BrrrrD)/E;g*c*eP(B*,D). Sometimes all we want to know is the ratio of the posterior
probabilities of two belief-network sructures. To cdculate such a ratio for belief-network structures
B16,, and Brgri, we can use the equivalence that P(Bstril D)/P(B#i I D) = P(BsEitD>/P(Bst i, D).

Our focus in this section will be on computing the term P(Brt,t D), which we can derive using the
equivalence that P(4ry D) = P(D I Brtr;)P(Brt,). The term P(Bsrri) represents a user's prior probability
that a process with belief-network struchrre B"p,generated data D. We will assume that the user
has explicitly specified p(Bs,;), and it is available. The likelihood term P(D I 4r,;) remains for us
to determine. The following theorem provides a method for computing P(D I 8",r,). A proof of the

theorem follows from work reported in Heckerman, et al. [101.

Theorem 5. I.et Z be a set of r variables. Let D be a databax ol m cases, where each case (i.e.,

record) contains a value assignment for each variable in Z. Let B,1, denote a belief-network struchrre
containing iust the variables-in Z. Each variable r; in Bs, has a set of parents, which we represent
with a list of variables a;. We use freq(x; I a) to denote the long run frequency distribution of r;
conditioned on fi;. Let our belief about that long run frequency be represented by a probability
distribution over all functions of the form freq(r; I xi). kt OB(ri) represent our beliefs about
freq(ri I x) for all r; sudr ttut r; * r,. Suppose the following assumptions hold:

1. The variables in Z are discrete.
2. Cases occur independmtly, given a belief-network model.
3. There are no cases that have variables with missing values.
4. For each ri in Z, our belief about freq(r; I a) is not influencd by our other beliefs

as given by OB(r).
5. For each x; in Z, we represent our belief about freq(ri I zi) using a Dirichlet distribution. In

particular, we have a prior belief represented as a Dirichlet distribution (which holds before
bUserving any data) an-d a posterior Selief repreented as a Dirichlet distribution (which results
from updating our prior using the observed data).

Next, let D; designate the first i cases in D and let C;*r denote case i+l in D. Consider a belief
network B; lhat has structure 4a.. The probabilities that parameterize belief network Biare derived
by taking ior each r; the expechtion of freq(r; I z) relative to both (1) our prior beliefs about that
frequency and (2) the data ih Dr. (See I10l 

-for details regarding how to compute this expectation.)

5 Some of the belief-network structures in Tables 2 and 3 contain hidden variables. To compute the
probability of these structures requires the combination of the methods descriH in this section with
methods for handling hidden variables, such as those described [4]. This synthesis is beyond the
scope of the current paper, as is the related problem of handling missing data.
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Let Ps,(C;*r) represent the probability of the variable instantiations in case Cy+r as computed by
belief iretwork B;. (See tlll for an overview of algorithms for computing such inferences.)

From the five numbered assumptions above, it follows that

P(D I 4,,) = IFr, ^4Psi(Ci*) 
(1)

tr
I-et B"r, denote network struchrre 1 in Table 2. Our goal is to derive P(D I B"t). Note that B"r, is a
causal model for the total population of entities of interest, and not just those selected for
measurement. The problem with using Equation 1 to compute P(D I Brp) is that asssumption 5 in
Thmrem 5 is violated, because it requires that freq(s I os) be revised by calculating a posterior
Dirichlet distribution that results from updating a prior distribution with the measureil daa. But,
freq(s Lr) is intended to represent the frequmcy in the total populatiorU which in general contains
some entities that are measured and others that are not.

We can address this problem by first dividing the belief network into two submodels.
Submodel 1 contains nodes ro, x, U, and z, the arcs among them in Brr, and the associated
parameterizations. Let Ml; denote this belief network when it is parameterized (as described in
Theorem 5) based on a user'i prior distsibution and the data in cases 1 to i. Submodel 2 contains nodes
x, y, and s. Submodel 2 estimates P(x, ! I s = selecteil). Let M2i denote such a submodel, which is
constmcted from the user's prior distribution6 and the data in Lases 1 to i. We do not restrict the
method used to derive this estimate, and thus, there are many possibilities. A key point is that we
can use measured data to appropriately update our estimate of P(r, ! I s = selecteil), whereas
measured data gives us no iilormation with which to update our estimate of P(s = selected I x, y)
beyond our prior for that probability.

Notice that x and y d-separate a and z from s, and thus, zr and z are conditionally
independent of s given x and, y. We therefore have

Py,(C'i*t I sy*r = selected) =Py1,(wi*t,zi+r I xi*vAi*r,si*t=selecteil)Py2,(xi*t,!i*t I spt=selected)

= Py1,(uia, zi*r I xi*t, Aii Puz,@i+u ! j+t I sy+r = selected), Q)

where C'i*1= lui*1,xi*t,!1*r,zi*t), and Py,(C ;*, I s,+I = selecteil) designates the probability estimate
of case C';*1 under selection, as computbd by the hybrid model. We can apply Ml; and M2i to
compute the probability estimates on the right side of Equation 2. By substituting Equdtion 2 into a
modified version of Equation 1, we obtain the following final result:

P(D I B"t,s = selecteil) = EFr, --1Py1,(wi*1,2i*11 xi*t,!i*r)Py2,(xiruai*r I si*t=selecteill.
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theorem.

149



References
1. Belkson, I., Limitations of the application of fourfold table analysis to hospital data, Biometria

2 0946\ 47-53.

2. Carr, BJ. and Rees. M.|., The anthropic principle and the structure of the physical world,
Naturez7$ (1979D @5.

3. Conn, H.O., Snydet,__N;_114 4.tl"91ry, C.E., The Berkson bias in action, The Yale lournal of
Biology and Medicine52 (797, l4l-147.-

4. 9goPgt, 9:F., A T"thS for learnin_g belief networks that contain hidden variables, lournal of
lntelligmt Infontution Systmts 4 (195) t-18.

5. 9*P"I, G.{._a$ Herskovits, E., A Bayesian method for the induction of probabilistic networks
from data, Ivlachine knrningg (792) g$-y7.

6, DeWiu, B.S. and *Graham, N., 71e Many-Worlds lnterpretation of Quantum Mechanics (Princeton
University Press, Princeton, NJ, 1973).

7. Feinstein, A.R., Cliniul Epiilntiology: The Architecture of Clinical Research (W.8. Saunders,
Philadelphia, 1985).

8. 99igS3_-O_._Verma, T. and Pearl, |., Identifying indepedence in Bayesian networks, Networb2}
(190) 507-5v.

9. Gerber, L.M., Wolf, A.M., Braham, R.L. and Alderman, M.H, Effects of sample selection on the
coincidence of hypertension and diabetes, lournal of the Amdcan Meilical Aisciation 247 (1982)
4H6.

10. Heckerman, D., Ggiger, D. and Chickering, D.M., I-earning Bayesian networks: The combination
of.knowledgLlnd statistical data In: Pioceeilings of the-Confrance on Llncertainty in Artificial
lntelligmce, O9 $ 293-301.

11. Henrioo M., An inhoduction to algorithms for inference in belief nets. In: Henrion M., Shachter
R.D., Kanal L.N. and lrmmer f.F. (eds.), lJncertainty in Artificitl Intelligmce 5 (North-Holland,
Amsterdam, 1990) 129-138.

12. Herbert, N., Quantum Reality (Anchor Prest Garden City, NY, 1985).

13. Mainland, D., The risk of fallacious conclusions from autopsy data on the incidence of diseases
with applications to heart disease, Amrican Hurt ,*scUtiUi ES (1953) Mil.

14. Meinert C.L. and lgnascia,5., Cliniul Trials: Desigtt, Conduct, and Analysb (Oxford University
Press, New York, 1985).

15. Pearl, 1., Probabilistic Rwsoning in lntelligent Systans (Morgan IGufmann, San Mateo, CA, 1988).

15. Pearl, J., Causal diagrams for empirical research, Report R-21&L, Computer Science Departrnent,
vcLA,7994.

77. Pearl, I. and Verma, T.S., A theory of inferred causality, ln: Proceedings of the Second
lntqnatiotul Conf*mce on the Principla of Knouiledge Rqraeitation and Reasining) Boston, MA
(1991) 4J:t4s2.

18. Roberts, 8.9., S_pitzer, W.9., Delmore, T. and Sackett, D.L., An empirical demonstration of
Berkson's bias,lournal of Chrmic Disease3l (1928) 1-lg-l?:g.

19. Sackeft, D.L., Bias in analytic research, Iounut of Chronic Disuseg2 (7979) 51-53.
20. Spirtes, l;, Glt*our, C. and Scheines, R., Causality from probability. In: McKee G. (ed.),

Eoolaing lGtouleilge in Natural and Artificial Intetligmce'(Pitnan'london, 1990.
Zt. .Syirtqs, P., 9lymour, C. and Scheines, R., Causatiott, Prediction, and Surch (Springer-Verlag,

New York, 199il.
22. Verma, T.S. and Pea1l, I. Eguiyalg::::::::::::::::nce and synthesis of causal models, ln: Proceedings of the

Confaance on Utrcqtainty in Aitfuial lntelligmcb, (tggO) Z2UZ27.

23. Wermuth, N., Cox, D.R. and Pearl, J., Erplanations for multivariate structures derived from
univariate recursive regressions, Report 94-1, University of Mainz,1994.

150


