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ABSTRACT

We describe a Mote Crb method fa solving influerce diagrams. This method is a cmbinatim of
stoc.hastic dynamic prcgramming and Gibbs sampling, an iterative Martov chain Monte Carlo
algsi6m.Onmethodiseqocidlyusefulwbenexactme6odsforsolvinginfluercediagramsfail

1. INTR,OIX'CTION

In this p4erwe describe solutbn dguithms fq inflrpnce diagrams (IDs) as elaborations of vaious forms of

tbe principle of optimality in stoc,hastic dpamic programming, whbh allows us to find the decision frmctions in

problems of fris type sequentially (Bellman and Dreyfrrs, 1!b2). In particular, we describe the standard version of

the pincipb of opimality in stocbastb dymmic trogrmming. However, since this version is mt quite adequate for

tbe case of influerrce diagrms, we inuoduce amodification tbat allows us 0o deEnnine an optimal decision function

for each decision variable sequentially.

In its sadrd form, the principb of optimality in stocbastic dynamic programming aplies wben we want to

maximize 66 minimiz€ the expecatiln of a real-valued vuiable V whose joint disribution with k+l other variables

Ig,I1,.--,Ik (whic,h may each rcurally be vectors of variables) depends in a st4gewise maDne( on k parameters

(which also may be singb numbers, vectrs or firnctims) 61 , . .. , 61 . More precisely, we assurte tbat we can factor

tbe jointprobability fu I9,I1,...,F1 ad V in the form

P61,...,61(16,...,f1,V) = ho(Io1tr5, Orllo)...h6r_r (trr-rlfo,...,F1-2)h5* (fk,V1f0,...,F1-1), (1)

where the factms are ooditional probabilities. We must also assume that it is computationaly feasible to compute

Et. (Vll'0,...,f.-r) fr,m h6r (f.,Vlfo,...,Ia-r) forerch valrc of 61 od each configuration of values of

Iqr.,l...r.,lF1-1, or at hast to find for each configuratim (T0,...,Ta-1) of Fgu...L/Ir-t the value of 61 tbat

openizrcs

rrr (vlro = T0,...,I1-r = Tr-r). a)
Finally, we must assume (this is cnrcial) that we can find a single value of 61 tnat optimizes (2) for all
(T0,...,Y*-1). Siroe the distibution of IsL/...uI1-1 dcs notdepend on 61, we have

E6,--6. (v) = E61,...,61-1 (nu. (vtro,-..,r.-r)).
Therefore, this orptimizing value of 69 will also opimize the unconditional expectation E6,,._6. (V) for any

c,hoice of (6,,...,6a-t). And therefore, it can be extended to a choice of (61,...,61) to optimize this

uncoaditional e:rpocatiou

t The author is currently Assistant Prrofessor of Management at the University of Tampa. He is finishing his
doctmal dissertatio at the University of lknsas rmder professor Glenn Shafer @utgers University and Princeton
University), and professm Prakash Shenoy (Ihe University of IGnsas).
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Srrypose we fix this optimal valrc of 6j e[minating it ftom our notation, and reducing (l) to

h6,,...0.-, (Is,...,Fi,V) = ho(Ioltr5, OrlIo)--.h6r-r (Ir-rlI'0,.-.,rk-2)h(f.,Vlle,-.-,Ir-r), (3)

Rm fris point we prcoeed in ei6er of two ways. We can sum u integrarc Ig out of the expecation. Or we can

incorprate I'1 as potof lt-r.
The first AtioNl, sunming a integating Fa out, meos reducing (3) o

h6,,..,51-1(Is,...,I'1-1,V) = ho(ro)hq Ollro)...h3.-, !FI-r,VlIo,-.-,r*-2), where

h!.-, (rr-r,vlro,...,rk-2) = h5.-, (r1-11r0,...,r.-z)Jh(rr,vlro,...,F*-,)dr.. once again, we

as$lIrrc that we can choose 61-1 so as to optinize simultaneously

E5k-r (Vlfg = To,Fr = T1,...,I1-z ='ly-z) (4)

fc all (T0,...,Ta-r). nen, as befqe, the choice of 61-1 can be extended ro a c,hoice ot (61,...,6a-r) to

oedndze the rmditi<:nal expectatim E6r,...,6*_, (V).

So we may also 1i1 rhis oedmal value of 61-1, and reduce the probtem firther. We can continue in this way,

choosing 6" 6i sequentially, pnovided thar the sucoessive simultaneous optimizations like those in (2), (4), etc. arc

possible.

Tbe second opion mears seuing I't-r = It-t U 13, and reducing (3) to

h6,,..,61_1(I's,...,I's-1,V) = ho(f0)hq Orlfo)...h3.-, (I'r-1,VlI'g,...,I.-z), where

h!.-, (Ii-r,Vlro,.--,rr-z) = h5.-, (Ir-rlFo,-..,f.-2)h(rk,vlro,--.,I.-r). Asain, if we can choose

6t-t b sprimize simultaneously (4) fm at (T0,...,Tk-2), and so on, we can proceed to choose the 6i

seqrmtially.

This standard versio of stochastic dpamic programming is not quite adequate for the case of influence

dirryrams. The reason is 6at ahough 6ase diragrams involve factrizations tbat can be written in the form (1), the

frttrs are mt necessarily cmditional probabilities.

The standard versfoin of socbastic dpamic p,rogramming can be modified to fit inlluence diagrams, but there

has be€n a considerable variety of orpinion about how to do this. The oldest sequential solution algorithm for

influence diagrams, tbe Olmsted-Shachter reduction algoritbm (Olmsted, 1983; Sbacht€r, 1986) goes considerably

bsyood stocbastic d)'n@ic programning, in od€r to maint in a rep@snhdon of the influence diagram form as the

algorithm proceeds. Mqe recent algaithms, including the valuation netwuk algorithm of Shenoy (19912 and 1993)

and tbe potential influence diagram algorithm of Ndilikilikesha (192), stay closer to stochastic dynamic

pogrmming.

The simulation algoritbm we describe in Seaion 2 does not fit exacfly ino either Shenoy's a Ndilikilikesha's

ftamewulq primarily because rbeir alguithms integrate 11 out, while ou algorirrrm follows the second option

described abovg tha of absorbing 11 ino ht._r. We ould elaborate one of their frameworks in order to make

ornalgaitbm fit, but it wiU be sinpler fa us to deal directly with the necessry modification in the stardard form of

stochastic dynmic pogrmming that we bave just described.

Here is the Eodificatim that we require. Irt us assume that the joint probability for Ig,I1,...,f 1 and V

is prqotioal o a farrsizatim of the following form
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Pq,.-,5. (ro,...,rr,v) * uo(16)uo,1.y(11lrr)...ue,-,(ro*,rr-2)(r.-rlro,...,rr-z)hq(r0,...r.-,1(r.,vlro,...'rr-r) (5)

Here we do lQl as$me that the frtss are mditimal proUatltites. But we dO assume that the 6i re fimcrions;

and we assume, as tbe notatio indicaEs, tha fc fixed values of fg,I1,...,Fk-l, t[e facttr h6.1r0,...,r._ry,

regarded as a ftrnctio of 11 and V, depends o 6t only through the value 61 assigus to those values of
Ig,I1,...,Fk-1. This assumptim" as we will see implies that tbe simultaneous optimizatios at each st€p are

possibb.

Noticefirsttharthefactaizatim(5)implies*, h'.(a0,...,rr_l)(fk,Vlf0,...,fr-r),forfixedvaluesof
Ig,I1,...,Ik-1, b at least proponimal to th cmditional probability disribution fu F1 and V given these

values of I'9,I'1,...,Ft-t. To see \is, recall that a conditional Fobability disributim is always proportional to

tte curespmding ioint Fobability distributim. Thus

p8,,..-5. (r*,vlro,...,r*-r) = p6,,.-,5. (r0,...r.,v), (6)

wherc ?r, is cmsant witb r€spect to 11 and V. CIb other vaiables re thugbt of as frxed.) We usrully crite (6)

witb aslmbol of prqutimality:

P61.-,61 (r., vlro,...,r.-, ) 
* p51,..,51 (r0,... r., v).

Since only tbe last &ctor of (5) invotrrcs I'5 m V, (6) implies that

P6,,--6. (r., vlro,.--, f*-, ) * ho. 
1r0,...r.-r ) 

(rk, vlro,.. -, r*-, ).
Again, this propctionality is to be int€ryreted by taking both sides as functions of 11 and V only, with the otter

vriables fixed; we are able to mit the o6er fac!trs only because tbey, as frmctions of the other variables, ue also

fxed and hence can be absorbed ino tte cmstmt of prqctionality.

Whenever a frmoion is proportimal to a probability distribution (or probability conditional), it contains all

tbe infcmation needed to find that conditional because the cmsunt of proportimality is simply what is needed to

make the frmaion sum (or integrae) to one. Thus

h61(T6,-.Tt-,)(rk'vlro = T0'""rk-1 = yt-r)
has,inpaticnlr,alltheinfumaionneededodeterminetheonditionalexpectationof Vgiven (T0,...,Ta-r),

Err(ro,-.rr-,)(r.'vlr0 = To'""rk-l = lt-r)' (7)

We cm chooce the value of 6t (To ,. .. , Tt-r ) to optimize this e:cpocation, and by doing this for each set of values

(Y0,...,Y*-1),wewilthavechmenafrmctim Q thatsinultaneoustyoptimizes(7)fcat (T0,...,Yr-r).
Once tbis choice of 6g Us been canied orrt, we can procee4 as before, absorbing h0.1f0,...,f._r) ioa

hO.-, 
1fo -..,It-z ), 

first integfiing fg out if we wish o do so.

In order to fit influence diagrans into this versim of stochastic dynamic Fogramning, we write Ft fo Ue

set of vaiables msisting of Ai rcge,rher with the chmce vaiables obserrrcd by the decision maker between Ai -d
Ai*I, fu i = l, -. k-1, we wrirc Io fc the cbance vuiables obserrred before Ar -d 11 fr the set of variables

cmsisting of A1 together with the charce variables (other than V) observed after Ag (or never), and we unite 6,

fm the decision fimctim fc Ai . Then we set tro (fo ) equal to the poduct of conditionals for the chance vriables

hIo.Fci=1,...,k-l,weset tru.(frlfo,...,Fr-r)equaltotheproduaofconditionalsforthechancevariabtes

h fi, dlDes the oonditimal ccresponding to the decision fimction 6, t&is conditional gives only probabilities of
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zero and one). And we similarly * hOr (fa,Vlfo,...,Ia-r) equal to the prodrrct of tbe conditionals for all

variables in 11u{V}. Since trt.(f.,Vlfr,...,Fa-r) depends on 6s only through its value

6k(f0,...,f k-l), 6is puts us in the ftmewort just described.

2. DERTVATION OF A GET{ER.AL SOLUTION ALGORITEM

In this sectim we show bow 3o use Gitfts sampling (Cr€man and Creman, 19M; and Gelfand and Smith,

1990), an iterative lv{artov chain Monte Crlo algmithm (flastings, ) o implenent stocbastic d]mamic programming

fa an influeoce dhgrm. Since ee stochastic dynmic Fogram is iterative, it suffices to explain how to implement

it rsing Gibbs sampliry fc a single step. We will explain how o implement it fo the first st€p.

Orn tash then, is to fmd the &cision function 61. This means finding, for each configuration

(Yo,Tr,...,Tr-r) of F9U...vI'1-1,6e value d1 of thedocision A1 thatoptimizes

Eo.(Vlfo = To,Fr = 71,...,I'g-r = yr-r). (s)

(Notice that we write d1 in the place of 51 as a subscript on the expectation operator; this is because the

expectation fs the configurarim (Yo,Tr,...,Tk-t) of the predecessors depends only on the value d* Oat 6j
assigns to this configuration.) To this en( we simply oompute (8) for rll dt and choose the d1 that gives the

oetimal (lagest r smallest depending m wbetber we are nadmizing or minimizing) resulr

To compute (8) for a particular d1, we recall that the conditional ioint distribution of Ir U{V} it
propctional t har (fa,Vlfo = To,...,lk-r = Tt-r), which is simply the product of tbe conditionals for

rs u{v}.
Leaving aside tbe variables Ag and V, which are deterministic ia rhis conditional joint distribution ( A1 is

estal b 6e mstant d1, md V is a ftmctim of tbe othr variables), we can say tbat the conditional distribution of

tbe other variables (aU cnance variables) is tbe prodrrct of thir original cmditionals. We are not interesteG

howeve(, in all 6ase variables; we are really interested only in V. Hence we can discard the conditionals fo,r any

vaiables tba ae independentof V in the curditional jointdistribution. Figure 1 grves an exmple whercrelevance

arows are shown, and informatimal arro\ps ae omiued (Clemens, 191).

1. AnID in which relevance

16u,..rf1-1
rr r-'{v}
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Here x7 and 4 are independe,nt of V in the coditimal disuibution of Ip u tV) because the distributim frctors

into pdts involving only x7 and xg and pdts involving mly tbe ober variables. So we may omit tbeir conditionals,

effeaively elimiDating th€m ftoNn 6e trSl€m, md redrrcing F1 to a smaller r"t fl.
The general ntle for this redrction of orn problem can be fumulated graphically as follows. Consider the

dir€cted graph of tbe ID without infcmatimal rfi)trrs (as in Figure 1). Form the mcal gr4h (Jensen et al., 1990).

And omit any nariables ftoNn fk &at are not cmneged with V in 6e urbgrph of this moral grryh determined by

f1 u {V}. A variahle x iD Ik is not onnected with v in this srbgraph if there is no path io Ir u {V} rhar

ooDn€cts X to V. Figur€s 2 afr 3 $ow how this pnocedue applies to the example of Figure 1.

2- Mtral withx and

3. Maal witout and

Next, notioe that only sorne of tbe naiables in lor.-L..t-,ll*-, wiU affect the expectation (8). Indee4 the

only ones to affect it wi[ be those involved in the factors that remain in the product. In our example, tbese factors

,e fi u {V}
t. f1(xu) = [x, = olx, =.,X4 = o,x14,A1 = ol

2. f 2(xlg,,xr+) = [*r+lxrr]

16u-.vI1-1
rlu{v)

fou-ufr-r riu{v}
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3. f3(x12) = [x12lxa - o]

4. f4(x11,xrz) = [xrrlxrz]
5. f5(xe,xro) = [*rol*s]
o. f6(xe) = [x6 = .lxel

z. f7(x6) = [xrs]
8. fs(xe) - [xs]

The variables involved in tbase frctors ue rl, x2,x4,x6 and A1. lUe other variables, A2, x3 and x5, 8rE not

involved. Sine the expectation (8) is not affected by tbe variaHes in Fg u... uIa-, tnat are not involved in these

factffs, we need mt make 61a'cboice of d1 depend o them- In o&er words, we can make Ak a function only of

the vriables involved in the frcton-x l,tz,x4,xo md A1 in our exmpb.

The general nrle for fioding the vaiables on which Ak will depend can be described in te,ms of the moral

graph we obtain€d previously: they ae tbe neighbors of 11 in this gr4h. In our example (Figure 3), we see that

xl,x1,x4,x6 and At retbereighbcsof Ip.
The factss that remain ca be e,lrvisioned in terms of the directed subgraph determined by the variables that

r€main, as in Figure 4. They are the fdtrs in which the variables rcmaining in the circle arc parcnB or children.

4. Directed determined tbe vriables that r€main

Now that tbe factms ae identified , we do Gibbs sampting with these factors tro simulate the joint disributio

of Fi t {Aa,V}. Fu the configuratim of tri t {4.,V} obained at each step of the Gibbs sampling, we

c<xnpute V. This gives a sequerce of values for V simulating a random sample ftom its conditional distribution,

fr,m whtrh we nay computeis mditiooal qw€ctation.

When we move on to the next step of tbe stocbastic dpmic program, we use the seoond of the two options

discussed in Seoion 1. In other words, we abso,rt F1 ino I'1-1, and we include the conditionals frm 11 in te
new fuaizatio of h6._, . In cder to avoid zero p,robabilities that would interferc with the Gibbs sarpling, we do

not include the conditional for A1 conesponding to the decision function we have just found for Ag. Instead, we

subsdftte this decisim frmction in all the cmditionals in which A1 appeaed as a parcnt, thus eliminating A1 from

ri\J{v}
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the gr@ md producing anos,s frm the vaiables m which A* OepenOs to the variables fc whictr it was a parcnt.

Figure 5 illusrarcs the Esult ftr on example.

5. DAGwit[ absortedino its dirpct sucessas
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