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Abstract

Decision making under uncertainty typically requires an iterative process of information
acquisition. At each stage, the decision maker chooses the next best test (or tests) to perform,
and reevaluates the possible decisions. Value-otinformation analyses provide a formal strategy
for selecting the next test(s). However, the complete decision-theoretic approach is impractical
and researchers have sought approximations.

In this paper, we present strategies for both myopic and limited non-myopic (working with
known test groups) test selection in the context of belief networks. We focus primarily on
utility-free test selection strategies. However, the methods have immediate application to the
decision-theoretic framework.

1 Introduction
Graphical belief network researchers have developed powerful algorithms to propagate the effects
of any piece of information to all the variables in the model in a manner analogous to forward
chaining in rule-based expert systems (see, for example, Dawid, 1992). Comparatively little work
has been done on the "backward chaining" problem: finding the most cost-efective information
sources which will best increase information about a target variable. This is tbe Test Selection
problem. There are two parts to the problem: choosing a metric for the value of information, and
searching for potential information sources which ma:<imize the metric. We consider both these

issues and present workable approaches
Many authors have recognized the importance of test selection in larger applications. Recent

proposed approaches for probabilistic belief networks include: Jensen and Liang (1994), Heckerman,
et al. (L993), and'Almond (1993). In this paper, we propose a semi-automated myopic strategy
which s5rnthesizes the critiquing approach of Miller (1983) and Good's idea of a quasi-utility (Good
and Card, 1971). We develop search strategies based on these ideas and demonstrate them in
the context of a simple imaging application. We also address a limited form of the nonmyopic
test selection problem, and propose and demonstrate a Markov chain Monte Carlo solution that
generalizes the recent work of Heckerman, et al. (1993).

Section 2 reviews basic test selection techniques without particular reference to belief networks.
In particular, it introduces ueights of euid,ence and some of their properties, and the concept of
"critiquing". Section 3 discusses weights of evidence and test selection in the context of beljef

'Address .tor conespondence: Department of Statistics, GN-22, University of Washington, Seattle, Washington
98195 (madigan@stat.washirgton.edu).
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networks. Section 4 addresses the nonmyopic test selection problem and provides a connection

with the decision theoretic approach to test seleciton.

2 Basic Test Selection

Two basic issues in test selection are independent of the graphical representation of our probability
model: the choice of metric for the rralue of a test, and the search strategy for selecting a test ac-

cording to that metric. Section 2.1 discusses our suggested metric, the expected weight of evidence,

and Section 2.2 discusses model-independent search strategy issues.

2.1 Expected Weight of Evidence

Before performing a test, we should assess the amount of information that the test will provide.

Generally, we should only pursue a test if the information gained from the test is worth the cost

of testing. If we have a full decision model (e.g., an influence diagram), then the preferred metric
is the aalue of infortnotion (Matheson, 1990, provides a review). For a purely probabilistic model,

Good and Card (1971) suggest using a quasi-utility-a measure of information. content which plays

the role of a utility.
When discriminating between a single hypothesis I/ and its negation, Good and Card (1971)

recommend the eapected weight of eaidence as a quasi-utility measure of the usefulness of a test, 7:

,L

EW(H :T) - Dw(u : t;)Pr(1 | fl)
j=l

where {ti, j = I,...,,n},represent the possible outcomes of the test, ?- W(II : t;) is the weight of
evidence for -I/ provided by the evidence T = ti. Specifically:

w(H:rt)=.*Hlffi
Informally, EW(H : ?) is the weight of evidence that will be obtained from ? "on the average",

when the I/ is true. Glasziou and Hilden (1989) provide a thorough review of the application of
quasi-utilities to test selection and justify the choice of the weight of evidence. Good (1985) notes

that expected weight of evidence is a generalization of entropy, and regards it as occupying "a
central position in human inference." The weight of evidence is closely related to the decision-

theoretic "value of perfect information" and Heckerman, Horvitz and Middleton (1993) (hereafter
HHM) show how to transform va.lue of information questions into questions involving weights of
evidence (see Section 4). See Ben-Basset (1978), Good and Card (1971), a4d Pearl (1988) for
discussion of alternative entropy-based quasi-utilities and multi-valued hypotheses.

It is clear that test selection strategies must account for test costs (and distinguish between

"asking someone's age and doing an exploratory laparotoily", Good and Card, 1971). Our test
selection strategy selects the test(s) that ma:<imizes the expected weight of evidence for the current
hypothesis per unit cost. The cost of a test is a summary quantity, expressed in quasi-utility units,
combining aII the undesirable aspects of testing. In the medical context, for instance, test costs

include the risk of morbidity and mortality, the discomfort of the procedure, the delay in definitive
treatment caused by waiting for the results, and the financial cost. For myopic or "greedy" test

selection (i.e., looking only one test ahead), simply maximizing the expected weight of evidence per

unit cost is effectively a miserly approach. This strategy continually shops around for bargains,
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when spending a little more freely may ultimately prove more cost effective (Glasziou and Hilden,
1989). We return to this issue in Section 4.2.

Not all mistakes are equal, and a sensible test selection strategy should also account for the
cost of misclassification. Breiman, et al. (L984) and Glasziou and l{ilden (1989) suggest a simple
weighting scheme. Each disease is assigned. a degree of importance which is then used to weight the
probabilities in the expected weight of evidence. Suppose that to incorrectly classify a uH' subject
* 

^ 
ttlfftt is u.r times as regrettable as classifyin| a ":8" subject a"s a " I[" . In a sense, r? is ul times

as important as E. One way to t^hink of this is to consider each case o-f H a"s w cases of -f,[', where
I// and d hru" equal standing. In the transformed problem, the probability of .[f' becomes:

Pr(rr')= =IL'i?,=)- wPr(It) + rrlE-1'

The quasi-utility based on expected weight of evidbnce now becomes:

Dw@' :r;)Pr(Tslrlt)
j=1

where

Pr(?r1 
| 
fl ') - Pt(TllII )ffi

and
W(H' : T) = W(H :f;).

This begs the question of how the diseases should be weighted. We refer.the interested reader to
Glasziou and Hilden (1989), who discuss this issue at some length.

2.2 Critiquing

In this paper, we focus prima,rily on test selection for binary-valued hypotheses. Other authors
have presented test selection metrics for multi-valued hypotheses (see, for example, Jensen and
Liang, 1994), and our methods can use such metrics. However, in practice we have found that
automated test selection strategies for multi-valued hypotheses (such as medical diagnoses) can
exhibit disquieting behavior. Speciflcally, their line of reasoning may bear no resemblance to typical
expert reasoning, moving from indicants relevant to one hypothesis, to indicants relevant to a
different hypothesis. The artificial intelligence literature has discussed this problem at length-see,
for example, Barr and Feigenbaum (1982, p.82).

To address this problem, vre adopt a "critiquing" approach (Miller, 1983). The essential idea
of critiquing is to elicit a suggested hypothesis from the user, say II = ho. The system then elicits
indicants which are chosen to maximize the probability of quickly accepting or rejecting hs. Thus,
once the user has suggested a hypothesis, the system only elicits indicants that are of direct and
usually apparent relevance to that hypothesis. If the hypothesis is rejected, i.e., its probability
falls below some defined threshold (Spiegelhalter and Knill-Jones, 1984), the user is prompted for
an alternative suggestion, and so on (Miller, 1983, McSherry, l-986). Our experience with this
approach in the medical context suggests that clinicians welcome the idea of interacting with the
system in this way and that critiquing enhances confidence in the system.
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3 Myopic Search

The previous section discussed test selection and weights of evidence without regard to the be-

lief network structure. The application to belief networks, while computationally challenging, is

straightforward in principle. First the user selects a hypothesit (fl) to critique. Next we calcu-

late the expected weight of evidence provided for If by oll uninstantiated tests. FortunatelS the

definition of the expected weight of evidence ensures that these calculations can be carried out in
an efficient manner. Exactly two propagations are required: first, I/ is temporarily instantiated
to "true" and Pr({ | fl) is calculated for all uninstantiated tests Ti,i = l,...,rn, with states

j = l,...,rlii r".ood, If is temporarily instantiated to "false" and Pr({ lE') it again calculated

for all i and i. A similar observation is made in Jensen and Liang (1994).

Unfortunately, in very large networks such as Pathfinder (Heckerman et a1.,1992), even these

calculations are prohibitively expensive. The problem can be framed as a classical search problem

looking for the most cost effective test. In the case of belief networks, the structure of the network

provides a convenient structure for the search space which can be exploited to find efrcient search

strategies. In particular, expected weight of evidence is rnonotonic over a class of graphs called

Berge Networksr-the farther you get from the hypothesis being critiqued, the lower the expected

weight of evidence (Section 3.i). This property forms the basis of some simple search strategies in

the belief network's "junction tree" and related Markov Tree models (Section 3.2).

3.1 Weight of evidence in Berge Networks and Markov Ilees

Myopic test selection strategies can take advantage of the special structure of Berge networks

(Madigan et a1.,1994). In a Berge network, the expected weight of evidence decreases in a monotone

fashion away from the hypothesis, .i?. Therefore, for these networks, the test selection strategy can

confine its attention to the immediate neighbors of I/. This convenient property derives from the

following basic result:

Theorem 1 (Monotonicity): In a belief network with three nodes (A, B and .I/), if B separates

A from Il (Figure L), EW(H , A) < EW(H : B).
Proof: See the appendix.

Figure L: A Simple Berge Network: The weight of eaidence A prorsi,des for H can be no more than

the weight of eaid,ence B proaides for H.

Berge networks have the property that for any pair of connected nodes, the network is collapsible

onto a unique "evidence chain" connecting the two nodes. A simple recursion argument extends

the above monotonicity property to these chains-see Madigan et al. (1994) for details.
For non-Berge networks, no similar property exists. Consider the example of Figure 2. Although

EW(H : B,C) > EW(H : C), it could be true that EW(H , A) > EW(H : B) and EW(H :

A) > EW(II : C). Simply searching all of the neighbors of the target hypothesis is not suftcient
for non-Berge networks.

1A Berge network is a belief network with the property that clique intersections in the a-ssociated undirected graph

(see Dawid, 1992) contain no more than one node.
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Figure 2: A Si,mple Non-Berge Network. In this network, the weight of eaidence provided by A for
H could, be greater than that proaiileil by ei,ther B or C si'ngly.

Figure 2 illustrates both the problem and a potential solution. If we cluster the variables B and
C , the graph reduces to a simple Berge network (like Figure 1). In a general non-Berge network we

can either cluster the variables to form a Berge network, or transform the network into a Markov
tree.2 Many popular algorithms for calculating probabilities in belief networks already build a
Markov tree (Lauritzen and Spiegethalter, 1988, Dawid, 1992, Almond, 1990). Since Markov trees
are always Berge networks, monotonicity holds in the Markov tree model. The next section explores
this approach.

3.2 Search Strategies in the Markov Tree

Ignoring costs, a simple branch and bound search using the Markoy tree structure can find the
best test. Almond (1990) recommends constructing the Markov tree by augmenting the tree of
cliques or junction tree (Jensen, 1988) with nodes representing the individual variables (see Figure
3(b) for an example). Then, starting from the target hypothesis, the algorithm puts all the nodes

connected to the hypothesis in the Markov tree on the "search boundary list". Next, it finds the
node in the search boundary with the lowest expected weight of evidence for the hypothesis (i.e.,
the joint weight of evidence of all the variables in the node-see Section 4.1), and expands the
node by placing its Markov tree-neighbors on the search boundary. When the node to be expanded
represents a single variable corresponding to a test, it follows from the Monotonicity theorem this
is the best test.

As an illustration, we show in Figure 3 a model for the task of classifying a group of lines as a

musical staff (Almond et a1.,,1994). The node {St} at the bottom of the Markov tree is the target
hypothesis. In this example, Iines which span the width of the page are rare, but stafflines are rarely
less than a full page wide. Thus, {S} will have high expected weight of evidence. The search might
start by looking.at the {St, St4, Sts} node which trivially has the highest weight of evidence since it
contains {St}. Next, the search considers {G5, G4, S,I{, P, Sts, St4} and then {G5, S, H, P, Sts}
if it has lower joint expected weight of evidence for {St} than {G4,S,I{,P,St4,E}. Next, the
search expands {G5,S,H,P,Sts}. If the single test variable, {S} has larger expected weight of
evidence for {St} than either {G5} or {H,P}, we decide to do that test.

2A Markot treeis a tree whose nodes represent groups of variables and fbr which all the nodes containing any
single variable forms a connected subtree. Both the tree of cliques and the junction tree are Markov trees. See Shenoy
and Shafer (1990) or Almond (1990).
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Figure 3: A model for determining if a group of lines is a musical staff and its corresponding Markov
tree

Known background variables play a big role in eliminating unnecessary tests. For example, four

line staffs are only releyant in early music. A pri,ori knowledge that the music was not early (E
false) would cause the node {G4, S, H, P, St4, E} to have zero weight of evidence; that branch of
the tree would never be searched.

Incorporating test costs requires a little extra care. Branch and bound search will still work

if we have a overestimate of the value of the intermediate nodes or an underestimate of the cost.

Therefore, we propagate minimum costs towards the target node. Por example, the cost associated

with the node {H,P} is the lower of the costs of tests {H} and {P}. Now when branch and bound

search reaches a node corresponding to a single test variable, there will be no test which yield more

expected evidence per unit cost.

4 Non-Myopic Search: accounting for feature groups

The test selection strategy described above is rnyopi,c-it only looks at the effect of extracting one

feature at a time. HHM criticize myopic test selection strategies as unrealistic: tests often come

bundled in groups. For example, a line detector will return a data structure containing the location,
direction, length and thickness of the candidate line; an EKG will typically provide values for a
slew of variables. Further, a single costly test (such as biopsy) can often be more cost effective

than a myriad of cheaper tests, yet a myopic strategy will choose the cheaper test (HMM provide

an example from Pathfinder).
Ther-e are two challenges in going from myopic to non-myopic search. First, we must be able

to calculate the joint expected weight of evidence of the test group, which gets computationally
expensive as the size of the group increases (Section 4.1). Second, in the case where the application
does not define the test groups, we must find, the sets of variables with the largest joint expected

weight of evidence; Section 4.3 discusses this problem.
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4.L Joint Expected Weight of Fvidence

lf Tt ,T2, . ...,Tp form such a group, we need to calculate their joint weight of evidence:

Ew@ : T1,T2,,...,TP) =lertrlr,T?r,...,7?rl fl)l"g'ffi (1)

where the summation is over T, all the possible values of the tests in the group. However, as

HMM and Jensen and Liang indicate, the number of terms in the summation above can lead to
computational dfficulties with even a modest group size.

Simulation based methods provide a workable solution to this problem. The key point is that
(1) above is precisely the expectation of:

rcrPffi e)Pr(71,72,...,TP1fl)

with respect to Pr(?l,72,...,7, I E). Both simple Monte Carlo in the Markovtree and Markov
chain Monte Carlo (Hastings, 1970, Kong, 1991, Neal, 1993, Buntine, L994) provide methods for
approximating this expectation, although we only describe the latter. We construct an irreducible
Markor ctrain {f(t) - Tr(t),T'(t), . . .,Tr(t)},
for t = L,2,... with state space 7 which has equilibrium distribution Pr(?l ,T',,...,T' I H).
Then for any well-behaved function gg(t)) defined ortT, if we simulate this Markov chain for
t = Lr.. ., N, the average:

(3)

converges with probability one to E(g(T)) as y'f goes to infinity. To compute (1) in this fashion we

sets(?(t))=rotffi.
To implement the Markov chain we define a neighborhood nbd(?) for each T e T which is the

set of elements of 7 which differ from ? in just one of Tt ,72, . . . ,P (larger neighborhoods are also

possible). Define a transition matrix g by setting q(T - T') = 0 for all Tt /. rfr,d(T) and q(? - T')
constant for all ?' e nbd(?). If the chain is currently in state T, we proceed by drawing ?' from
q(T - ?')- We accept it with probability:

pr(Tt | fl)
' pr("]fl) (4)

o = #fl0(r(t))

{
mtn 1

)
Otherwise the chain stays in state ?. Diagnostics exist for assessing how many cycles are needed

and how many should be discarded (Raftery and Lewis, 1992), for assessing convergence (Geyer,

1993), and for overcoming difrculties with multimodal discrete distributions (Lin, L992).

As an illustration, we consider the coronary artery disease study of Detrano, et al. (1989). The
study attempted to find clinical variables to predict the presence of coronary artery disease without
an intrusive angiograph, and measured a number of clinical and test variables for 303 patients
referred for to the Cleveland Clinic for coronary angiography. The data are available through the
Murphy and Aha (1992) repository. The variables are as follows (the number in parentheses is the
number of states for each variable):

Clinical Data: Ag" (3), Sea (2), Rest-Bp (3; Systolic blood pressure at rest), Chest-Pain (4).

Routine Test Data: Chol (4; Serum cholestoral in mg/dl), Fast-Bsug (2; Fasting Blood Sugar in
mg/dl), Rest-Ecg(3; Electrocardiographic results at rest).
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Exercise Data: Mos-HeordRote (3), Eaer-Angino (2; Exercise induced angina), Otd-Peok (3; ST

depression induced by exercise relative to rest), Slope-Peak (3; The slope of the peak exercise ST

segment ), Erer- Thol- D elects (3 ; Exercise thallium scintigraphic defects ).
Experimental Non-inrrasive Test: Colorcd-Floro (4; Number of blood vessels colored by flue'
roscopy).

Outcome Variablesz Health-Stote (5\, Heolthy? (2).

Figure 4: Belief network for the Heart model

Almond and Madigan (1993) selected a belief network model for these data and we show this
model in Figure 4. Treating Heolthy? as the target variable, we used the Markov chain Monte Carlo

(MCMC) algorithm to compute the expected weight of evidence (EW) for a number of test Sroups,
and we show the results in Table 1. This e:<ample is sufrciently small that we can also calculate the
exact expected weight of evidence for each group. The results show that within L,000 samples, the

MCMC algorithm provides a reasonable approximation to the exact expected weight of evidence.

Therefore, the MCMC approach will be useful in situations where the number of possible outcomes

of the test group is larger than 1,000. Frequently the rank order of the expected weights of evidence

for different test groups will be of primary importance. In that case, as few as 100 samples will
often prove adequate.

4.2 Relationship to Decision-Theoretic Test Selection

The simulation approach outlined above provides a general solution to the problem addressed

by HHM in the context of a specific class of graphs (graphs where the tests in the group are

conditionally independent given the diseases or form a Markov chain structure in the graph). They

show that the calculation of the yalue of perfect information for a test group, reduces to the

assessment of a number of inequalities like:

p, (tog P:9,'*"''T)l4) , w. (5)
Pr(?I, 72,- . - ,7' I H) )

where W* depends on the actual utilities. To compute this using the Markov chain, set:

g(r)=r(rogW, Iry-), (6)r\' 
\ "Pr(?l,T2,---,TPlH)' )'

where I is an indicator function. This approach does not require any constraints on the graph.
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Table 1: Markov chain Monte Carlo computation of the expected weight of evidence for test groups

in the coronary artery disease example

Indicant
Groap

Eaact
EW

EW at
500 somples'

EW at
1,000 samples

EW at
10,000 samples

Serum Cholesterol:
Chol

fast-bug 0.15 0.57 0.14 0.18

Tleadmill:
exer-anlina

exer-thal-defects
max-heart-rate

slope.peak 45.87 52.8r. 45.89 42.86

Initial Obsenrations:
a8e

sex
chest-pain 24.96 26.98 26.67 24.92

4.3 Searching for Groups

A general solution to the nonmyopic test selection problem requires that we find the groups of
rrariables which are most cost effective relative to some target hypothesis. Unfortunately, the
individual test variables might be widely scattered through the Markov tree model and we do not
have a fully satisfactory solution to the combinatorial problem that arises. HHM (Section VII)
provide some suggestions.

Appendix: Some Properties of Expected Weights of Evidence

Proposition 1: The expected weight of evidence, EW(E :7) is non-negative.

Proof: This proposition can be proven by use of the inequality (Gallager, 1968):

ln(z)! z-L; z)0,

with equality when z = L. We will show that -EW(H : ?) S 0:

-EW(H:T) i t,rr] | r?) ros
Pr(4 lE')
Pr(Q l//)i=l

,t

!rr14 lry
i=L

n

i=1

PrQt lE)
P{r1 | H)

1

-l\L (P'(r, I fl) - PrQi I I{))

0

We need the following extension of Proposition 1 in the proof of Theorem 1
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Proposition 2: The conditional expected weight of evidence, EW(fl : 
" 

| .9) is non-negative.

Proof: For notational simplicity we omit the subscripts in what follows.

-EW(H:"1.9) = !rr1S,rl fl)losffi
et,

1

S,T

D
S,T

! r'1a,.a | fl) log
A,B

Pr(" I E ^9)
Pr(? | II,5)

(',,,
Pr(^9 | //)

-

Pr(^9 | II)
,T IE) -Pr(,S,flH)

1

Pr(A,.BlIr)Pr(A l-Jr')

/_ _ \
(? r',r I r) !rr(r I s,E) 

)
0.

The joint expected weight of evidence can be decomposed into a marginal weight of evidence

and a conditional weight of evidence:

Proposition 3z EW(H : A,B) = EW(fl : A) * EW(H : B I A)

Proof: We have that:

EW(H:A)*Ew(E:B|A)=?',.olfl)loe;+11#+fer(a,BlH)"'ffi

= lrrlaln)rogffi-
A

Pr(A,B lF)Pr(A lIl)
Pr(A, B I II)= f,rr1a,B lfl)los Pr(A, B lT)A,B

= EW(H : A, B)

Proposition 4 (Independence): If ? is conditionally independent of I/ given .9, then EW(E :

7l^9) :s.
Proof: By independence, Pr(" lIf,S) = Pr(? 1.9). ThereforeW(H: f 1.9) = 0 and the result

follows.

Theorem L (Monotonicity): For a Berge network with three nodes where B separates A from
I/ (Figure 1), EW(H: A) < EW(H : B).

Proof: From Proposition 3,

EW(H : c) * EW(H : B I A) = EW(H : A,B) = EW(H : A) * EW(H : Al B)

By Proposition 2 we have that EW(H : B I A) 2 0. Because of the topology of the graph, A is

independent of II given I and hence by Proposition 4 EW(H : Al B) = 0. The result foilows.
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