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Abstract

Relevant literature on Kolmogorov complexity measures and on trade-offs of classifier ac-
curacy for reduced complexity is reviewed, seeking a pragmatic methodology for the practising
applications analyst. Significant findings are that: (1) An accuracy/complexity trade-off is
desirable; (2) Combined measures of accuracy/complexity are not practical due to difficulties
encoding constraint satisfication, lack of sampling statistics and suitable tests of the null hy-
pothesis, and practical dificulties of encoding complex functions and encoding across families
of classifiers; (3) Therefore, a generalized version of the CART [5] l-SE rule is recommended;
(4) Kolmogorov complexity is not practically computable (see (2)); and, therefore, (6) Simply
measuring response times on a target environment is the recommended measure of complexity.

1 Introduction

Most classification and clustering tools are intended to induce from a sample an efficient and ac-
curate method for predicting class membership of future instances from the same distribution.
Comparing the perforrnance of the resulting classifiers can be quite probiematic. There is a sub-
stantial body of literature dealing with the philosophical, theoretical, and pragmatic issues behind
these questions. Among the most funclarnenta.l problems in this regard are:

1. Whether it is appropriate to rnake a trade-offof increased misclassification for reduced com-
plexity and, if so, how this is to be done.

2. How to combine storage requirements and execution time into a single measure of complefty.

2 Precision versus Simplicity

Where the sample is the entire population, in one sense, the sample is its own best description,
with two exceptions:

L. There is a computationa.l model giving the class values exactly as a function of the attribute
values, and this model is sirnpler (more tractable) than the set of instances.

2. The data are inconsistent (two or rnore instances with identical attribute values have different
classes).
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In the first case, certainly the model would be the preferred description. In the second case, if
there were a model which covered all of the consistent instances correctly, the model would again
be the preferred description. (Preferred in the sense of being equally informative and having lower

cognitive burden).

When the available sample is not the entire population, especially when the data probably contain
errors or when the population is potentially infinite, the model must be preferred even if it correctly
covers only, say, 90% of the sample instances. The model provides a significant and necessary

compression of both time and space. This implies some trade-off between apparent accuracy and
description complexity.

There is a deeper question, whether any trade-off can be justifiedl and, if so, how? A common
justification [4] invokes Occam's Razor, but Occam merely stated a principle to be applied when

other considerations are equal. There is no necessary notion of a trade-off in Occam's principle.

Another common justification cites the results of some statistical analyses (12, 4, 17 ,22)) as providing
a guarantee (or, at least, a high degree of certainty) that a simpler model will result in greater
accuracy in classifying as yet unseen cases. This simply reads too much into the results of these

analyses; often based on the misapprenhension that the sample itself, alone, can provide unequivocal

evidence for choosing among alternative models which fit the sample data about equally well.

Schaffer [20] has shown that it is easy to find large sets of counter-exarnplesl and, therefore, that
this preference for simpler rnodels is a forrn of bias, whose appropriateness cannot be decided

without reference to factors in addition to the particular data sample.

There is a another justification for this bias, rooted in the fundamenta.l purpose and nature of
categorization in hurnan cognition. (Jategorization arises biologically frorn the organisrn's needs to
impose order and sirnplicity on the infinite variety of situations and to tnatch inputs to appropriate
behaviors efficiently and in real-tirne. Rosch [19] rnakes sirnilar arguments, viewing basic categories

as those that strike an optimum balanc.e between informativeness and cognitive load. That is, that
the whole point of categorization is to achieve a proper trade-off of precision versus simplicity and

efficiency.

3 Description versus Prediction

For non-categorical data, there are established methods for making this trade-off, based on analysis
of variance, regression, anrl rnodel building (see Beck and Arnold [3, pp 380-387],for instance); but
what are the analogs of these methods for categorical data?

The basic idea is that the population variance can be partitioned into a part covered (predicted) by
the model and a residual variance. If two models have equivalent residual variances, the simpler of
the two is preferred; if the residuals are not equivalent, the model having the lower residual is pre-

ferred. The difference between resirluals is compared to an error variance using the F-distribution
([1, pp 436-441]). For categoric.al data, the rnisclassification frequencies are analogous to the resid-
uals, but the F-test is not applicable. The error rates are binomially distributed, and some test
of significance for binornial means is required. Student's t-test (though not always appropriate) is
typically used.

There have been several proposals (Wallace, et a|123,10,241, Muggleton et a/ [16]) for combining
precision, storage, and run tirne into a single rneasure and criteria, variously described as mini-
mum description length (MDL), or rninimurn message length (MML), or hypothesis proof (HP)
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compression, etc. All of these proposals share certain deficiencies:

1. How is a constraint satisfaction problem to be encoded? That is, if one model satisfies the
constraints on misclassification rates and the other does not, how do we weight the description
length to insure that the second, non-conforming, model loses?

2. How are misclassification costs to be incorporated? How many dollars per extra bit of model
complexity will achieve the right trade-ofl?

3. What are the sampling statistics of these measures? That is, Muggleton, et ol [16], for
instance, propose that even one bit of compression is grounds for including an additional
term in the model. Can that be right? (By their own theorem, random binary data can be

compressed by ,t bits as often as2-k of the time, f.e., this is a test at only the 50% confidence
level.) If another sample were drawn from the population and the procedures repeated, would
the same model win by this criterion (for that matter, would precisely the same models even

be inferred)?

4. How is complexity to be encoded, particularly across different species of classifiers? Muggle-
ton, et aI [16], give a rnethod for encoding Horn clause theories (models) and proofs on the
input tape of a reference Turing machine. In principle, any classifier can be translated into
a Horn clause representation, but this is not always a trivial task. And then it is not at all
clear how, for instance, the translation frorn inputs to an output cell of a backpropagation
network would be represented here; or that the resulting encoding would make sense.

If not by description length, then horv? Thefollowing is ageneralization of the CART (Breiman, et
ol [5, pp 78-80]) l-stanclard-emor (l-SE) rule, and Weiss'[25] reduced-complexity rule. Note that
the initial and final steps appeal to courrnon sense and knowledge of the problem domain; that is,
to sources outside the sarnple data.

1. If any of the models satisfies the cost constraints, reject all that don't. If none do, use common
sense and knowledge of the problern domain to decide whether to continue and choose among
any of the models (and, if so, which). Of the remaining models, find the one having the lowest
cost, and determine this cost's standard error.

2. Discard all models whose cost is rnore than t standard errors greater than the rninimum (where
, = 1 (CART [5]) or, preferably, Student's I statistic [], pp 314-321], typically t = 1.65, for
95% confidence).

3. Of the remaining rnodels, choose the one(s) having the lowest average complexity (see sec-

tion 4). If there is a near-tie, use conlmon sense and knowledge of the problem domain to
choose.

4 Complexity

The generalized t-SE rule eliminates a rnajor difficulty of the MML ancl cornpression techniques

- how to express cornplexity in the saure units as misclassification cost. The difficulty remains,
however, of exactly what complexity lneans, ancl how it is to be measured.

Li and Vit6nyi [1S] give an account of various proposed measures of complexity (Rissanen's mini-
mum description length (MDt) [18], Fisher's tnaxirnum likelihood principle [9], Jayne's maximum
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entropy principle [12], Gold's paradigm for inductive inference [11], and even Valiant's [22] PAC-
learning notion) in terms of Solomonoff's [21] ideas on inductive reasoning, viewing each of them
as a particular means of approdrnating the noncomputable Kolmogorov [14] notion of information
complexity which is the basis of Solornonoff's methods. Kolmogorov's notion is that the complex-
ity of a set of data is defined as the length of the shortest universal Turing machine program that
will generate the data. The notion is well-defined, but not practically computable. Chaitin [7]
has recognized the elusiveness of theoretical universal Turing machine programs, and has proposed
measuring the length of source prograrns in a special dialect of Lisp as a practical alternative.

The importance of the work of Kohnogorov, Solomonoff, Chaitin [6] and others tying together
information theory and probability theory, and linking the various philosophic principles into a

uniform idea of inductive reasoning cannot be overstated. (See Li and Vit6nyi [15] and Cover, et

ol [8] for reviews of this work.) While of great theoretical importance, and useful practically as a

way of thinking about these issues, these ideas are immensely difficult to apply to real problems.

Figure I shows several ways of representing the same simple categorization (the exclusive-or of
two binary inputs). This illustration plainly shows that the apparent complexity depends strongly
on the representation (or implementation) language (see also Schaffer [20] on this point). This
apparcnt complexity is deceiving:

o Ultimately, any classifier can be expressed as either a Boolean formula or a decision tree,
interchangeably (because categories are discrete and mutually exclusive).

o The Boolean formula (X xorY) appears simpler than (X n -l') V (-X A Y), but they might
actually have equal execution tiures, depending on the harclware or software elements used

for implementation.

o The neural network at the lower right of Figure 1 can also be represented as a decision tree
with only one decision point and two leaf nodes. The internal calculation of the decision
node would, however, be the nasty formula shown below the network. It is not only neural
networks that involve complex rnath. Linear and quadratic discrirninant classifiers aLso involve
such computations. In principal, the clecision nodes of a decision tree (or the conjuncts of a
Horn clause) can involve arbitrarily complex computations. That they commonly do not is a
design decision, not a necessity. In fact, limiting these to very simple tests, such as X ( c,

can seriously compromise their ability to express complex concepts.

A very apt metaphor for this situation is looking at an algorithm expressed as a flow chart, or
modular breakdown diagram, or the source code, versus the executable. The diagrams and source

code are abstractions, often deliberately obscuring cletails to gain (hurnan) c.ornprehensibility. What
finally matters is the size and speed of the executable implementation on the target machine. How
are time and space to be combined into a single measure? Should they be cornbined?

As noted earlier, there are several infonnation theoretic schemes for combining the space and time
complexity in a standardized manner. The reference Turing machine encoding of Prolog clause
models proposal of Muggleton, et al 116, appendix, pp 344-:1461 is typical. Fundamental to these
schemes is the assumption that the representation can be reduced to a set of prirnitive symbols,
all of which have the same complexity. It is not at all clear or unequivocal what the complexity
measures of transcendental functions (sin, exp, etc.) are relative to, say, polynornials of finite
degtee (much less to sirnple binary variables). Whatever they are, there is no reason to believe
that they are captured by a Huffrnan (inverse frequency of symbol occurrence) encoding, or that a
tabulation of the functions and bindings cocles captures the 'proof complexity' of execution. MDL
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Pigure 1: Representations of (XaorY\
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and related approaches have had success, however, in domains where the ground symbols do all
have similar complexity (involve only simple logical and integer operations.

Prgamatically, all of this effort to find a theoretic combination of space and time complexity ap-
plicable to all the various representation styles in Figure I seems hard to justify and may be

unnecessary:

1. The choice between a decision tree, a set of Horn clauses (rules), a set of discriminant func-
tions, aneural network, etc. (and even the choice ofwhich ofthese are even to be considered)
is likely to be made on other, more subjective, grounds at any rate. Besides personal preju-
dices, a common consideration is the perceiuedcomplexity or opaqueness of the representation.
Most users are extremely reluctant to rely on classifier systems whose representations they
cannot understand, regardless of reported theoretical advantages. This is particularly true
when the supposed advantages are expressed in terms as arcane (to most users) as the input
tape of a reference Turing machine.

2. An analyst choosing between alternative classifiers is concerned with the cost-performance of
actual implementations, not theoretical ones. If different platforms are involved, their cost,
physical size, and power requirements, etc. rnay be more important than the computational
complexity. Commonly, the platfomr has been previously specified based on those other
grounds, and then it is a rnatter of comparing complexity of the actual implementations on
that platform. In an age of cheap rnemory, 32-bit machines, and virtual memory, space is
a secondary consideration. The impact of excessive memory requirements is, at any rate,
reflected through the aclditional run-tirne requirernents attendant on paging.

Table L illustrates many of the points made above. Note that the file sizes bear no necessary
relationship to apparent cornplexity or to response time; using the primitive (hardware) XOR
operatorhasa5:lspeedadvantagel themoreefficientcompilerhasnearlya2:ladvantage,
increased to 3 : 1 using hardware floating point, and to 15 : 1 using hardware floating point for
the nonlinear neural net. Pragmatically, the choice among these competing implementations would
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Table 1: hnplementations of ror compared

Model

Source
File Sz

(bytes)

Object
File Sz

(bytes)

.exe/.com
File Sz

(bytes)

Elapsed Time
l0& x 4 Items

Classified (sec)

Pascal Compiler, t
(xvY)1-(XnY)

XxorY
Linear ANN

Nonlinear ANN

451

266
428
419

LL,443
11,303
ll,47l
11,529

.49

.11

1.99

102.42

C++ Compiler, Hardware Floating Point
(xvy)^-(x^y)

XxorY
Linear ANN

Nonlinear ANN

348

200
280

346

661

45t
830

1,068

6,531
6,340

13,794
16,042

.23

.05

.71

9.62

be made based solely on run-time, and the space requirernent would be considered only to break
a tie or in the unlikely event that an implementation exceeded the address space of the targeted
machine.

5 Summary

o Attempts to consolidate urisclassification cost or rate and model cornplexity founder on issues
of constra.int satisfaction, trading dollars for complexity bits, lack of sampling statistics and
suitable significance tests, ancl encoding complexity across different families of classifiers.
Therefore, a generalized version of CARI's l-SE rule [5] is recommended.

o Information-theoretic measures of complexity are not practically computable, except within
severly restricted families of classifiers. These measures are not useful for comparisons across

families (e.g., neural nets us. the usual CART-style decision trees). The pragmatic measure
of average response time on a target platform is recommended for expressing complexity.
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