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Abstract

ID3's information gain heuristic [16] is well-known to be biased towards multi-valued at-
tributes. This bias is only partially compensated by the gain ratio used in C4.5 [20]. Several
alternatives have been proposed, notably orthogonality [9], and Beta [5]. Gain ratio and orthog-
onality are strongly correlated, and all of the metrics share a common bias towards splits with
one or more small expected values, under circumstances where the split likely ocurred by chance.

Both classical and Bayesian statistics lead to the multiple hypergeometric distribution as the
posterior probability of the null hypothesis. Both gain and the chi-squared significance test are

shown to arise in asymptotic approximations to the hypergeometric, revealing similar criteria
for admissibility and showing the nature of their biases. Previous failures to find admissible
stopping rules in CART [3, pp 59-66] and ID3 [20, pp 36-37] are traced to coupling these biased
approximations with one another or with arbitrary thresholds; problems which are overcome by
the hypergeometric. Empirical results show that pre-pruning should be done, as trees pruned in
this way are simpler, more efficient, and no less accurate than unpruned trees. Average training
time is reduced by up to 30%, and expensive post-pruning avoided.

1 Introduction

Variants of the inforrnation gain heuristic used for the ID3 algorithm [16] have become the de

facto standard metrics for attribute selection in top-down decision tree learning. This heuristic,
or various modifications of it, is used (for instance) in FOIL [19], FOCI [15], CART [3], CN2 [7],
GIDS(*) [8], and C4.5 [20]. Fayyad [9] terms these irnpurity measures, and cites several studies

13, 12,11] showing that the various mernbers of this class are interchangeable (i.e., they result in
very similar decision trees).

Information gain calculates the difference (decrease) between the entropy of the population and

the weighted average entropy of the subpopulations. The candidate split showing the largest gain

is selected.

sain = (=t (ff),*,(tr)l) (:(?) *t H*,(*)l) r,r
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where

C is the nurnber of categories
V is the nurnber of subsets in the split
rttl) is the no. of instances in subset tr

f",u is the no. of those which are in class c

If is the total no. in the population
nc is the total no. in class c

is distributed apprcaimately as l2 with (C- 1) x(V - 1) degrees of freedorn. The quantities e", are
the expected values of the frequencies /- under the null hypotltesis-e'.e., assuming that the class

distribution is independent of the split. This significance test is a good approximation when all of
the e- are greater than I and no more than 20% of the e- are less than 5 (Cochran's rule).

Buntine [5] derives a Beta splitting rule

The gain ratio function used in C4.5 [20] partially compensates for the bias of gain towards splits
having larger V.

gain rario = gain lf;[_ (#),.*,(#)] e)

Fayyad, et allgl give an orthogonality metric for binary splits

oRr =,- (* r",, r",,) I K*r;,) (* ,r,,))''' (a)

The Chi-squared statistic (see [2, pp. 452-462], [t0, pp. 320-323], [21, 572-5921)

CV/
x'=iiu": e*)2, 

wltere e"u = (n" m,lN) (4)
c=l a=l €cu

(5)

In which information gain appears as part of an asymptotic approximation to W(t,a). In this
regard, it should be noted (see [1, pp 9  -5]) that the incomplete Beta function also has a strong
relationship to X2, the hypergeometric, the binomial, Student's t, and the F (variance-ratio) distri-
butions. Which is to say that all sensible measures of attribute relevance asymptotically converge
(rank attributes in the same order). Hence the repeated empirical findings that the various measures
are largely interchangeable.

Any advantage that one metric might have over another is not to be found in the asymptotic
behavior, but rather in the results obtained frorn srnall samples and samples with non-uniform class
and attribute distributions. Such small or non-uniforrn samples are more likely to be found than
are samples for which the asyrnptotic conditions hold, since the divide-and-conquer tree building
(splitting) process itself tends to destroy the asyrnptotic conditions even when they do hold for
the entire sample data set. (In Equation 4, for instance, E("*) decreases exponentially with the
number of splits-Cochran's mle requires minirnally that E(e*) 2 5, which must fal for some
subsets after log2(.A//5) splits (where .A/ is the size of the entire data set).)

.w(t,a) - 
f(Ca)v
I(o)cv

# n9=, r(/", + a)gTI;;l{"-)-
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2 An Exact Significance Test

From a detailed Bayesian analysis, the posterior probability of the null hypothesis (Es) is the
multiple hypergeometric distribution

Po:Prob(.Es ldata) =(ry) "u,(#,) 
(6)

Note that the second term here is very sirnilar to Buntine's Beta function (inverted); and that, if
(Vc,o: f* #0 and e- ) 0), then

- 2ln(Po) x 2ln(2) trfl gain + (C - 1)(v - 1)ln(2zrl[)

- lC(v - t)ln(C) +v(C - t)ln(tz)l

-; lc2v21cv - 1) var(/-/n)

- C'(C - 1) Var(n" lN) - V'(V - i) Var(nz,lN)) Q)

alternatively,

- 21n(P6) = x'+ (C - lXY - l)ln(2zrN)

+ [C(Y - 1)ln(C) +v(C - t)ln(Iz)]

-(c - 
r)!v - t) 

[c2 vur1r,"/N) + v2 va{m"lN)]

-1 i i [, r,, - e"u)(f"u - 2e",) l e2*) (8)
2 3,=uoL"*

Thus, both cfiz-sguarcd and gain arise as terms in alternatioe approrimations to tlrc significance of
a split.In neither case should it be assumed that all the rernaining terms vanish, even as .l[ - oo.

The crucial condition in Equation 7 dictates that the interaction weighted sum-of-squares should

be small. In Equation 8 the similar condition is that the rnain sums-of-squares are small and e",
largely dominate I f -, - e- l. These terrns are negative, indicatin g a tendency for both measures to

olercstimate the significance of aery ,ton-uniform splits.

Values of each of the measures (gain, gain ratio, orthogonality, X2, Beta, and Ps) were calculated

for 1,067 (binary classes, binary attribute) cases. These data confirm the analyses above:

o When X2 is valid, X2 = -2.927 -2 ln(Ps). When X2 is not valid, it tends to be spuriously

high, overestimating the significanc.e of the split.

o A similar linear relation to ln(Ps) is found for the other measures when X2 is valid, with an

even stronger tenclency to overestimate the split's significance when X2 is not valid.

o Very high values of infomration gain and the other rneasures occur with high frequency when

the null hypothesis cannot be rejected (Po 2 0.5). Occurrence of these high values is very

strongly correlated with circumstances under which the X2 approximation is invalid.

o When X2 is valid, all of the rneasures converge (tend to rank splits in roughly the same order,

though differing in detail). When X2 is invalid, the split rankings can be quite divergent.
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Information gain, gain ratio, X2, Beta, and orthogonality all tend to downplay the contribution of
either the n" (priors of the classes) or rna terms (priors imposed by the split), or the contribution
due simply to the nurnber of partitions, or may downplay all three. By downplaying these priors the
calculations do not fully take into account the possibility that the data might have been predisposed
to be highly orthogonal (or of low averaged entropy, etc.) Por such ill-conditioned data, these metrics
entail a high likelihood of Type I error. The null hypothesis probability function Po appears to
be a measure which properly incorporates all these factors, and may be a more suitable attribute
selection metric than gain, gain ratio, X2,Beta, or orthogonality.

3 Stopping Criteria

A characteristic of these kinds of inductive algorithms is a tendency to overfit noisy data (noise
in the form of sampling variance, incorrect classifications, errors in the attribute values, or the
presence of irrelevant attributes). Quinlan [16] originally proposed that the X2 significance test
(Equation 4) be used to prevent this in ID3 by stopping the process of splitting a branch if the
split so produced were not statistically significant; and Breiman , et aI [3] initially searched for a
stopping rule in the form of a minimum gain threshold. Both of these approaches were abandoned
in favor of some form of post-pruning (either a cost-complexity [3, pp 65-81] or reduced-error [17]
approach). There have been a nurnber of stuclies in this area [4, 6,ll, t2,13,,14,227.

Section 2, above, proposes the Ps function for attribute selection. This same lneasure might be

used for pre-pruning (when it is deerned clesirable to do so), and is a valid statistic even in cases

when the 12 statistic is not. The previous negative results concerning pre-pruning appear to be due
to use of different inadmissable approximate statistics for attribute selection and stopping, rather
than to any inherent fault of pre-pruning. Use of the P6 function for both selection and stopping
might permit more efficient c.onstruction of decision trees without loss of predictive accuracy.

4 Empirical Comparisons of the Measures

Sixteen data sets were used, chosen to give a good variety of application domains, and a good mix
of attribute properties (nurneric us. norninal, many attributes u.s. few), sample sizes, hard ?rs. easy

classification problems, and balancecl o.s. unbalanced priors. None of the data sets chosen has any
missing values. Two issues arise with respect to handling the attributes:

o Numeric attributes must be nominalized (made discrete). Various procedures have been pro-
posed for this, and the particular rnethod used has important consequences for both efrciency
aud predictive accuracy, and can interact with selection and stopping criteria in unpredictable
ways.

o Orthogonality is defined (see Equation 3) strictly for binary splits, and each attribute having
V > 2 distinct values must be converted to V binary attributes for this rneasure.

The hypergeometric function (and the other measures, as well) applies only when the cut-points
are defined a priori (knowing only the attribute value). Defining the cut-points ec post, as in
C4.5 [20, pp. 25-26] and CARI [3, p. 108], directly contradicts the null hypothesis (that the class

distribution is a priori, independent of the subset membership). The modifications to the expression
for Po necessary to accomodate et pasf cut-points and full consideration of the efficacy of various
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Table t: Unpruned Trees, Binary Splits

Data Set Accuracy No. Leaves Wtd Avg Depth I Train/Val (sec

Garn Ort Po Ciain Ort Po Garn Ort Po Garn Ort Po

tsUPA
Fin 1

Fin 2

Flare C
Flare M
Flare X
Glass
Iris
Obesity
Pima
Servo
Soybean
Thyroid
WAIS
Wine
Word

63
72

86

87
86
97
72

91

47

68

95
98
93

61

93

64

58

77

9l
86

82
97
72
o,
5l
67

96
98
o,
bD

89

63

62
,D

92

86

85
97
70

90

42

bb

95
98
93
b5

89

64

52

13

8

64
57
27

64

15

74

200
14

4

23

20

13

233

53

13

8

69

82
25
69

l5
16

209
74

4
24
18

l9
226

116

13

8

67

58
,,
63

16

13

217
14

4

24
l9
l3

248

4.1

4.2
2.5

7.5

6.3
3.6
6.6

4.1

4.1

8.3
co
2.0
3.8

4.9
3.8

15.8

4.2
4.1

2.5
10.3
10.6
4.5
7.9
4.6
4.7
9.4
2.9
2.4
3.8
4.8
5.3

44.4

,.J

4.0
2.5

6.8

6.8
3.7
6.5

4.0
3.8

8.0
,.,
2.0
3.8
4.2
3.8

14.6

63
t2
6

101

93
42
95

l3
30

282
l9
l3
24

8

52

3570

52

9

5

94

97
42
80

t2
25

262
l3
l0
l9

7

60

5247

66

7

4

69

66
36
54

9

15

215
10

I

17
4

38

1666

75.3 74.0 75.0 1186 1233 1213 9.7 15.5 7.3 5658 7269 3028

strategies for handling numeric attributes are planned topics for a future paper. In order to avoid

bias in comparing the selection metrics, arbitrary cut-points at approximately the quartiles were

used (approximate because the cut-points are not allowed to separate instances with equal values).

To avoid confounding the present evaluation with questions of the relative efficacy of binary us.

multi-way splits, the data sets were all also converted to binary forms.

Only the three most different split metrics (gain, orthogonality, and Ps) were evaluated. In each

experiment, a tree was grown using all of the instances. The accuracy of this tree was then estimated
by l0-fold cross-validation. (Split the data set into 10 test sets. For each test set, build a tree using
the other 90%of the dataancl determine its accuracy on the test set. Average accuracy over all 10

test sets.)

The results for the unpruned trees are summarized in Table 1. None of the small differences in
accuracy between split metrics is significant. These data support the conjecture that fn euery case

trees grown using the null hypothesis probability Ps are more efficient, and no less accurate than
the gain and orthogonality trees.

For gain and orthogonality the 12 stopping rule neuerstoppecl splitting for any of the data sets, even

for p - 0.999. The effects of stopping based on Ps are sumrnarized in Table 2. The accuracy data
are mildly concave, peaking at arouncl the gI>% confidence level. Only a surnmary of the compleity
data is given, the results for individual data sets are entirely consistent with the overall results.
These results strongly support the conjecture that growing and stopping decision trees using P6 at
the 95% confidence level does no ltarwt and may, in fact, be rnildly beneficial to accuracy. Training
and validation time is reducecl by 25-:30% frour the unpruned trees, and by 60% from the unpruned
trees built using information gain (not including the tirne required to post-prune those trees).
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data set 0 50 90 95 99 99.5 99.9

Finance 1

Finance 2

Flare C
Flare M
Flare X
Glass
Iris
Obesity
Pima
Servo
Soybean
Thyroid
WAIS
Wine
Word Sense

75

92
86
85
97
70

90

5l
65

95
98

93

65
89

64

65

79

88

89
85
98

68

91

42

68

93

98

94

67

90
o5

57
79

97
88
90
98
70

92
49

73

89
96

92

63

88

66

59
79

97

88
89
98

67

92
49

73

91

98

93

65

89

66

64
7t
92

89
90
98
o.)

94

40
74

89
98

92

63
86

67

62 54

64 n44
97 94
89 89

90 90
98 98

61 63

94 92

2e tI36
74 75

so {et
98 98

9t 91

74 76
89 85

65 64

{

75.0 75.3 76.4 76-4 75.9 75.5 74.1

No. of Leaves
Wtd Avg Depth
Train/Val Time (sec)

1213
7.30

3028

895

6.71

2799

406

5.21

2387

295
4.78
2242

t92
3.83
1960

164

3.57
1889

125
2.96
r733

Table 2: Stopping Effects on Accuracy

e95 accuracy

5 Conclusions

1. Information gain, gain ratio, orthogonality, and Beta each downplay some part of the influence
of the number of partitions or the prior distributions. Whenever one or more of the expected
values in a split is small, these rneasures (in comlnon with 12) are prone to overestimate the
significance of the split. The divide-and-conquer strategy of building decision trees almost
inevitably leads to very srnall subtrees where these measures are inadmissible.

2. The Ps null hypothesis probability rneasure proposed here overcomes the difficulties encoun-
tered when the classes and attribute values are unevenly distributed or the nurnber of parti-
tions large. The unprunecl trees it builds are much more efficient, and no less accumte,, tharr
those built by the other measures.

3. The Ps measure should also be used to stop splitting subtrees. The resulting trees are simpler
and no less accurate than the unpruned trees. A stopping confidence level of 95 or 99% is
recommended. Training times are reduced by about 30%, and expensive post-pruning steps
avoided entirely.
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