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Abstract

Many statisticians are reluctant to deal with problems involving causal consider-
ations because we lack the mathematical notation for distinguishing causal influence
from statistica.l association. To address this problem, a notation is proposed that ad-

mits two conditioning operators: ordinary Bayes conditionin1, P(ylX = o), and causal
conditioning, P(ylset(X = r)), that is, conditioning P(y) on holding X constant (at
r) by external intervention. This distinction, which will be supported by three rules
of inference, will permit us to derive probability expressions for the combined efiect of
observations and interventions.

The resulting calculus yields simple solutions to a number of interesting problems in
causal inference and should allow rank-and-file researchers to tackle practical problems

that are generally considered too hard, or impossible. Examples a,re:

1. Deciding whether the information available in a given observational study is suf-

ficient for obtaining consistent estimates of causal effects.

2. Deriving algebraic expressions for causal effect estimands.

3. Selecting measurements that would render randomized experiments unnecessaJy.

4. Selecting a set of indirect (randomized) experiments to replace direct experiments
that are either infeasible or too expensive.

5. Predicting (or bounding) the efficacy of treatments from randomized trials with
imperfect compliance.

Starting with nonparametric specification of structural equations, the paper estab-
Iishes the semantics necessary for a theory of interventions, presents the three rules of
inference, demonstrates the use of the resulting calculus on a number of examples, and
establishes an operational definition of structural equations.

Key words: Causal inference, graph models, treatment effect, structural equations.
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1 Introduction
The calculus introduced in this paper is aimed at helping researchers communicate qualitative
assumptions about cause-effect relationships, elucidate the ramifications of such assumptions,
and derive causal inferences from a combination of assumptions, experiments, and data.

The basic philosophy of the proposed method can best be illustrated through the following
example [Cochran 1957]. Consider an experiment in which soil fumigants (X) are used to
increase oat crop yields (y) bV controlling the eelworm population (Z) but may also have

direct effects (both beneficial and adverse) on yields beside the control of eelworms. We wish

to assess the total effect of the fumigants on yields when this classical experimental setup

is complicated by several factors. First, controlled randomized experiments are infeasible

- farmers insist on deciding for themselves which plots are to be fumigated. Second, we

suspect that farmers' choice of treatment is predicated on last year's eelworm population
(Zs), an unknown quantity, and that last year's eelworm population is strongly correlated
with this year's population - thus we have a classical case of confounding bias, which
interferes with the assessment of treatment effects, regardless of sample size. Fortunately,
through laboratory analysis of soil samples, we can determine the eelworm populations before

and after the treatment and, furthermore, because the fumigants are known to be active for
a short period only, we can safely assume that they do not affect the growth of eelworms

surviving the treatment. However, the survival of eelworms past the application of the
fumigants depends on the population of birds (and other predators) which is correlated, in
turn, with last year's eelworm population and hence with the treatment itself.

The method proposed in this paper permits the investigator to translate complex con-

siderations of this sort into a formal language, thus facilitating the following tasks:

1. Explicate the assumptions underlying the model.

2. Decide whether the assumptions are sufficient for obtaining consistent estimates of the
target quantity: the total effect of the fumigants on yields.

3. If the answer to item 2 is afftrmative, the method provides a closed-form expression

for the target quantity, in terms of distributions of observed quantities.

4. If the answer to item 2 is negative, the method suggests a set of observations and

experiments which, if performed, would render a consistent estimate feasible.

The first step in this analysis is to construct a causal diagram such as the one given in
Figure 1 which represents the investigator's understanding of the major causal influences

among measurable quantities in the domain. For example, the quantities Zr, Zr,, and Zs

represent, respectively, the eelworm population (both size and type) before treatment, after
treatment, and at the end of the season. Zs represents last year's eelworm population;
because it is an unknown quantity, it is denoted by a hollow circle, as is the quantity
-8, the population of birds and other predators. Links in the diagram are of two kinds:
those that connect unmeasured quantities are designated by dashed arrows, those connecting
measured quantities by solid arrows. The substantive assumptions embodied in the diagram
are negative causal assertions which are conveyed through the links missingftom the diagram.
For example, the missing arrow between 21 and Y signifies the investigator's understanding
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Figure 1:

A causal iliagram representing the effect of fumigants (X) on yields (Y)

that pre-treatment eelworms can not affect oat plats directly; their entire influence on oat
yields is mediated by post-treatment conditions, namely 22 and 23.

The proposed method allows an investigator to inspect the diagram of Figure 1 and

conclude immediately that:

1. The total effect of X on Y can be estimated consistently from the observed distribution
of X, Zr, Zz, Zs, and, Y.

2. The total effect of X on Y (assuming discrete variables) is given by the formula

P(yli) - DDI P(ylrr, 4, x)P(z2lzr,, a)lP(zslzr, 22, xt)P(rr, *') (1)
ztz2z3O

where P(ylA) stands for the probability of achieving a yield level of Y = A given that
the treatment is sel to level X - r by external intervention.

3. A consistent estimation of the total effect of X on Y would not be feasible if Y were
confounded with Zs; however, confounding 22 and Y will not invalidate the formula
for P(yli).

These conclusions can be obtained either by analyzing the graphical properties of the dia-
gram or by performing a sequence of symbolic derivations, governed by the diagram, which
gives rise to causal effect formulas such as Eq. (1). This paper establishes a calculus that
systematizes these derivations.

Y
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2 Graphical Models and the Manipulative Account of
Causation

The usefulness of directed acyclic graphs (DAGs) as economical schemes for representing
conditional independence assumptions is well acknowledged in the literature [Pearl 1988].

This usefulness stems from the existence of a graphical criterion, called d-separation, which
identifies each and every conditional independency that is implied by the product decompo-
sition

P(*r,...,tn) - f[ P(r; I p"r) (2)

where pa, are realizations of the variables .o.rlrporrding to the direct predecessors (called
parents) of X; in a DAG G.

The use of DAGs as carriers of independence assumptions has also been instrumen-
tal in predicting the effect of interventions when DAGs are given a causal interpretation

[Spirtes et al. 1993, Pearl 1993]. In [Pearl 1993], for example, interventions were treated as

variables in an augmented probability space, and their effects were obtained by ordinary
conditioning.

In this paper we will pursue a different (though equivalent) causal interpretation of DAGs,
based on nonparametric structural equations, which owes its roots to early works in econo-

metrics [Frisch 1938, Haavelmo 1943, Simon 1953]. In this account, assertions about causal
influences, such as those specified by the links in Figure 1, stand for autonornous physical
mechanisms among the corresponding quantities, and these mechanisms can be represented

as functional relationships perturbed by random disturbances. In other words, each child-
parent family in a DAG G represents a deterministic function

X;:f;(pa;,e;), i:\,...,n (3)

where pai are the parents of variable X; in G, and e;, 0 ( i I n, are mutually independent,
arbitrarily distributed random disturbances [Pearl & Verma 1991]. These disturbance terms
represent independent exogenous factors that the investigator chooses not to include in the
analysis. If any of these factors is judged to be influencing two or more variables (thus
violating the independence assumption), then that factor must enter the analysis as an

unmeasured (or latent) variable, to be represented in the graph by a hollow node, such as 26

and B in Figure 1. For example, the causal assumptions conveyed by the model in Figure 1

correspond to the following set of equations:

Zz = fz(X, Zr,,ez)
Zz : fs(B, Zz,ea)
Y : fv(X,22, Zs,ey)

(4)

The equational model in (3) is the nonparametric analogue of the so-called structural
equations model in econometrics [Goldberger 1973], with one exception: the functional form
of the equations as well as the distribution of the disturbance terms will remain unspeci-

fied. In contrast to ordinary algebraic equations, the equality signs in structural equations
convey the asymmetrical relation of "is determined by', and should more accurately be
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represented by an assignment symbols, as in computer programs.l Because of this asym-
metry, structural equations communicate stable counterfactuol information, thus forming
a clear correspondence between causal diagrams and Rubin's model of potential response

[Rubin 1974, Holland 88]. For example, the equation for Y states that regardless of what
we currently observe about Y, and regardless of any changes that might occur in other
equations, if (X, Zz,Zs,,ey) were to assume the values (rrrr,zsrey), respectively, Y would
take on the value dictated by the function /y. Thus, the corresponding potential response

variable in Rubin's model Y1,1 (read: the value that Y would take if X were c) becomes

a deterministic function of Zz, Zt and ey and can be considered a random variable whose

distribution is determined by those of. 22, Zs and ey.
Characterizing each child-parent relationship as a deterministic function, instead of the

usual conditional probability P(r; I pa;), imposes equivalent independence constraints on
the resulting distributions and leads to the same recursive decomposition that characterizes
DAG models (see Bq. (Z)). This occurs because each e; is independent on all nondescendants

of Xi. However, the functional characterization X; = f;(pai, €i) also provides a convenient
languages for specifying how the resulting distribution would change in response to external
interventions. This is accomplished by encoding each intervention as an alteration on a
select subset of functions, while keeping the others intact. Once we know the identity of the
mechanisms altered by the intervention and the nature of the alteration, the overall effect
of the intervention can be predicted by modifying the corresponding equations in the model
and using the modified model to compute a new probability function.

The simplest type of external intervention is one in which a single variable, say X;, is

forced to take on some fixed value c;. Such an intervention, which we call atomic, amounts to
lifting X; from the influence of the old functional mechanism X; : /,(pa;, e;) and placing it
under the influence of a new mechanism that sets the value r; while keeping all other mech-
anisms unperturbed. Formally, this atomic intervention, which we denote by sei(X - x;),
or set(c;) for short, amounts to removing the equation X; : /,(pa;, e;) from the model and
substitutin g X; : c; in the remaining equations. The new model thus created represents the
system's behavior under the intervention set(X; - *r) and, when solved for the distribution
oI Xi., yields the causal effect of Xr on X;, denoted P(xili;).2 More generally, when an in-
tervention forces a subset X of variables to attain fixed values c, then a subset of equations
is to be pruned from the model given in Bq. (3), one for each member of X, thus defining
a new distribution over the remaining variables, which completely characterizes the efect of
the intervention. We therefore define:

Definition 2.1 (causal effect) Giaen two d,isjoint sets of aari,ables, X and, Y, the causal
effect of X on Y is a function from X to the space of probability d,istributions on Y. For
each realization r of X,,P(yli) gioes the probability of Y : y ind,uced by d,eleting from
the mod,el (8) all equations correspond,ing to aariables in X and, substituting X : x in the
remaining equations. D

1I have found that economists, by and large, are not aware of this distinction.
2An explicit translation of interventions to "wiping out" equations from the model was first proposed by

[Strotz & Wold 1960] and later used in [Fisher 1970] and [Sobel 1990]. Graphical ramificationsof this inter-
pretation were explicated first in [Spirtes et al. 1993] and later in [Pearl 1993]. An equivalent mathematical
model, using event trees has been introduced by [Robins 1986, pp. 1422-L425].
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Clearly the graph corresponding to the reduced set of equations is an edge subgraph of G
from which all arrows entering X have been pruned. We will denote this subgraph bV Gf.

Regardless of whether we represent interventions as a modification of an existing model or
as part of an augmented model, the result is a well-defined transformation between the pre-

intervention and the post-intervention distributions. In the case of an atomic intervention
set(X; = x';), this transformation can be expressed in a simple algebraic formula that follows
immediately from Eq. (3) and Definition 2.1:3

P(rrr...rxnli'r) -
P(st,...rxo)
P(c; I pa;) if. x; - x';

if. a; I a';0
(5)

This formula reflects the removal of the term P(c; I pa;) from the product decomposition of
Eq. (2), since pa, no longer influence X;. Graphically, the removal of this term is equivalent
to removing the links between par and X; while keeping the rest of the network intact.
Clearly, an intervention set(a;) can affect only the descendants of X; in G.

The immediate implication of Eq. (5) is that, given the structure of the causal diagram
G in which all variables are observable, one can infer post-intervention distributions from
pre-intervention distributions; hence, we can reliably estimate the effects of interventions
from passive (i.e., nonexperimental) observations. Of course, Eq. (S) does not imply that we

can always substitute observational studies for experimental studies, as this would require
estimation of P(x; I p";). The mere identification of pa, (i.e., the direct causal factors of X;)
requires substantive causal knowledge of the domain which is often unavailable. Moreover,
even when we have sufficient substantive knowledge to structure the causal diagram (as

in Figure 1) and identify pai, some members of par may be unobservable, or latent, thrs
preventing estimation of P(r;lpa;). Fortunately, there are conditions for which a consistent
estimate of. P(xil6;) can be obtained even when the par variables are latent and, moreover,
simple graphical tests can tell us when such conditions are satisfied.

3 Controlling Confounding Bias

3.1 The Back-Door Criterron
Assume we are given a causal diagram G together with nonexperimental data on a subset Xo
of observed variables in G and we wish to estimate what effect the intervention set(X; - ,r)
would have on some response variable Xi- In other words, we seek to estimate P(c;li;) from
a sample estimate of P(X,).

The variables in Xs are commonly known as concomitants [Cox 1958]. In experimental
studies, concomitants are used to reduce errors due to uncontrolled variations from sample

to sample. In observational studies, concomitants are used to reduce confounding bias due

to spurious correlations between treatment and response. The condition that qualifies a

set S of concomitants as sufficient for identifying causal effect has been given a variety

3Eq. (5) can also be obtained from the G-computation formula of [Robins 1986, p. i423] and the Manip-
ulation Theorem of [Spirtes et al. 1993]. According to this source, Eq. (5) was "independently conjectured
by Fienberg in a seminar in 1991".
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of formulations, all requiring conditional independence judgments involving counterfactual
variables [Rosenbaum & Rubin 1983, Pratt & Schlaifer 1988]. In [Pearl 1993] it was shown
that such judgments can be translated to a simple d-separation conditions in the diagram
G, which we name the back-d,oor criterion:

Definition 3.1 (back-door) A set of aariables S fs said to satisfy the back-door criterion
relatiae to an orderedpair of aariables (X;,X) in a DAG G i,f

1. no noile in S is a descendant of X;, anil

2. S blocks el)ery path between X; and. Xi which contains an arrou into X;.

Similarly, if X andY are two disjoint subsets of nodes in G, then S is said to satisfy the
back-d,oor cri.terion relatioe to (X,,Y) if it satisfies the criteri,on relatioe to any pair (a,,y)
suchthats€X and,y<Y.n

The name back-door echoes condition 2, which requires that only paths with arrows
pointing at X; be d-separated; these paths can be viewed as entering X; through the
back door. In Figure 2, for example, the sets Sr : {Xs,Xn} and 52 : {Xs,Xs} meet
the back-door criterion, but Se : {Xa} does not because & does not block the path
(Xr,,Xr,,Xr,Xa,X2,,X5,Xi). Thus, we have obtained a simple graphical criterion for se-

lecting a set of covariates which, if observed, would enable the identification of causal effects
from nonexperimental data. An equivalent, though more complicated, graphical criterion is

given in Theorem 7.1 oI [Spirtes et al. 1993]. W" summarize this finding in a theorem, after
formally defining "identifiability".

Definition 3.2 (id,entifiability) The causal effect of X on Y is said to be identifiable z/
the quantity P(yli) can be computeil uniquely from the joint d,istribution of the obseraed

aariables. Id,enti.fiability means that P(yli) can be estimateil consistently from an arbitrarily
large sample randomly drawn from the joi,nt distribution. D

Theorem 3.3 If a set of aariables Z satisfies the back-iloor criterion relatiae to (X,Y) and,

P(x,z) ) 0, then the causal effect of X onY is iilentif,able and. is giaen by the forrnula

P(yli): I P(yl*,2)P(z) (6)

tr

Reducing Rubin's ignorability conditions to the graphical criterion of Definition 3.1 re-
places judgments about counterfactual interactions with formal procedures that can be ap-
plied to causal diagrams of any size and shape. The reduction to a graphical criterion also
facilitates the search for an optimal set of concomitants, namely, a set Z that minimizes
measurement cost or sampling variability.
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Figure 2:
A DAG representing the back-door criterion; ailjusting for aariables

{X",Xn} (or {Xa,Xs}) yields an unbdased, estirnate of P@ili;).

3.2 Other Graphical Criteria
The control of confounding bias does not end with the back-door estimand of Definition 3.1;

an orthogonal estimand, worthy of the name "the front-door criterion", may complement the
Iatter in cases where we cannot find observed covariates S satisfying the back-door conditions.
Consider variable & in Figure 2, and assume that it is the only observed variable in the
graph, beside X; and X;. Clearly, X5 does not satisfy any of the back-door conditions because

(1) it is a descendant of X;, and (2) it does not block any of the back-door paths between X;
and X;. However, measurements of X6 can nevertheless facilitate a consistent estimation of
P(rili;). This can be shown either using the of the intervention calculus of Section 4 or by

reducing the expression for P(a1li;) to formulae computable from the observed distribution
function P(*r,ra,oj) [Pearl 1994c]. To that end, let us denote by U the compound variable
consisting of all confounding variables between X; and & (i."., U : {Xr,'.., Xr} in Figure
2), and further denote X; bV X and Xi by y. All together, we now have a structure depicted
in Figure 3 below, containing one unobserved variable, U , three observed variables X, Z , Y ,,

with Z mediating the interaction between X and Y. We will also assume that P(r, z) > 0

for all values of c and z.

(/ (LJnobserwed)

Figure 3:

From Eq. (a), the causal effect of X on Y is given by

P(yli): D P(yl*,u)P(u)

o
Y

o
Z

o
x

u
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Using the two conditional independence claims embodied in the graph of Figure 3, it is
possible to eliminate u from the rhs of (7) and obtain:

pfuli)-DP(zlQDp@lr',,2)P(/) (8)
zEt

We summarize this result by a theorem,

Theorem 3.4 A a variable Z satisfi.es the following conditions relatiue to an ord,ered pair
of oariables (X,,Y),

1. Z intercepts all direct paths from X to Y

2. There is no back-d,oor path between X anil Z, nor between Z and Y .

9. The relati,on between X an! Z is non-iletenninistic, i.e., P(a,z) > 0

then the causal effect of X on Y is identifiable and is giaen by the fonnula in Eq. (8)

The graphical criterion of Theorem 3.4 uncovers many new structures that permit the
identification of causal effects from nonexperimental observations. In contrast, most of the
literature on statistical experimentation considers the measurement of intermediate variables,
a,fiected by the action, to be useless, if not harmful, for causal inference [Cox 1958, Pratt & Schlaifer 198

The relevance of such structures in practical situations can be seen, for instance, if we iden-
tify X with smoking, Y with lung cancer, Z with the amount of tar deposited in a subject's
lungs, and U with an unobserved carcinogenic genotype that, according to the tobacco in-
dustry, also induces an inborn craving for nicotine. In this case, Eq. (8) would provide us

with the means to quantify, from nonexperimental data, the causal effect of smoking on

cancer. (Assuming, of course, that the data P(r,y,,z) is made available and that we believe
that smoking does not have any direct causal effect on iung cancer except that mediated by
tar deposits).

We should remark, though, that having obtained nonparametric estimands for causal
effects does not imply that one should refrain from using parametric forms in the estimation
phase of the study. Prior information about shapes of distributions and the nature of causal
interactions can be incorporated into the analysis by limiting the distributions in the esti-
mand formulas to specific parametric family of functions. For example, if the assumptions
of Gaussian, zero-mean disturbances and additive interactions are deemed reasonable, then
the estimand given in Eq. (8) can be converted to the product

E(Yli): R,,p,y.,n (9)

where 0,u., is the standardized regression coefficient [Pearl 1994a], and the estimation prob-
lem reduces to that of estimating regression coefficients (e.g., by least-squares). More so-

phisticated estimation techniques, tailored specifically for causal inference, can be found in

[Robins 1989, Sec. 17][Robins et al. 1992, pp. 331-333]. To handle more elaborate structures,
including multiple Z variables, nested combinations of back-door and front-door patterns,
and concurrent "set' operations, we now introduce a symbolic calculus of intervention.
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4 A Calculus of Intervention
This section establishes a set of inference rules by which probabilistic sentences involving
actions and observations can be transformed into other such sentences, thus providing a

syntactic method of deriving (or verifying) claims about interventions. We will assume that
we are given the structure of a causal diagram G in which some of the nodes are observable

while the others remain unobserved. Our main problem will be to facilitate the syntactic
derivation of causal effect expressions of the form P(yli), where X and Y stand for any

subsets of observed variables. By derivation we mean step-wise reduction of the expression

P@le') to an equivalent expression involving standard probabilities of observed quantities.
Whenever such reduction is feasible, the causal effect of X on Y is identifiable (see Definition
3.2).

4.L Preliminary Notation
Let X,Y, and Z be arbitrary disjoint sets of nodes in a DAG G. We denote by G7 the
graph obtained by deleting from G all arrows pointing to nodes in X. Likewise, we denote

by GX the graph obtained by deleting from G all arrows emerging from nodes in X. To

represent the deletion of both incoming and outgoing arrows, we use the notation G7s @ee

Figure 4 for illustration). Finally, the expression P(yli , r) ! P@, zli) I P(zlS) stands for the

probability of.Y : y given that Z = z is observed and X is held constant at z.

4.2 Inference Rules

Armed with this notation we are now able to formulate the three basic inference rules of the
proposed calculus. Proofs are provided in [Pearl 1994c].

Theorem 4.1 Let G be a DAG associated with a causal mod,el as defined in Eq. (3), and

let P stand, for the probability distribution of the oariables in the models. For any disjoint
subsets of aariables X,Y, Z, and, W we haae:

Rule L Insertion/deletion of obseruations

P(yli,z,u): P(ylt,w) if (Y -ll ZIX'W)cx (10)

Rule 2 Action/obseraation exchange

P(y1t.,2,.) - P(yli,z,w) d V _ll ZIX,W)cx, (11)

Rule 3 Insertion/d,eletion of actions

P(yli,2,*)- P(yli,w) if (Y -LZIX, W)cx,a*i (12)

where Z(W) is the set of Z-nodes that are not ancestors of anyW-node inG7.
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Each of the inference rules above follows from the basic interpretation of the "i" operator
as a replacement of the causal mechanism that connects X to its pre-action parents by a

new mechanism X = a introduced by the intervening force. The result is a submodel char-

acterized by the subgraph G7 (named "manipulated graph" in [Spirtes et al. 1993]) which
supports all three rules.

Rule 1 reaffirms d-separation as a valid test for conditional independence in the distribution
resulting from the intervention set(X - a), hence the graph 67'. This rule follows from the
fact that deleting equations from the system does not introduce any dependencies among

the remaining disturbance terms (see Eq. (3)).

Rule 2 provides a condition for an external intervention set(Z : z) to have the same effect

on Y as the passive observation Z : z. The condition amounts to {X U I,7} blocking all
back-door paths from Z to Y (in G!'), since G72 rclains all (and only) such paths.

Rule 3 provides conditions for introducing (or deleting) an external intervention set(Z : z)
without a,ffecting the probability of. Y : U. The validity of this rule stems, again, from
simulating the intervention set(Z : z) by the deletion of all equations corresponding to the
variables in Z (herce the graph Gfr).

Corollary 4.2 A causal effect Q: P(h,...,A*liy...,i*) is identifiable in a mod,el character-
ized, by a graph G if there edsts a finite sequence of transforrnations, each conform,ing to

one of the inference rules in Theorem /.1, which reduces q into a standard. (i.e., hat-free)
probability expression. D

Whether the three rules above are sufficient for deriving all identifiable causal effects

remains an open question. However, the task of finding a sequence of transformations (if such

exists) for reducing an arbitrary causal effect expression can be systematized and executed

by efficient algorithms [Galles 1994]. As the next subsection illustrates, symbolic derivations
using the hat notation are much more convenient than algebraic derivations that aim at
eliminating the latent variables from sta,ndard probability expressions (as in Section 3.2).

4.3 Symbolic Derivation of Causal Effects: An Example
We will now demonstrate how these inference rules can be used to derive causal effect es-

timands in the structure of Figure 3 above. We will see that this structure permits us to
quantify the effect of every atomic intervention, using much simpler computations than those

used in the derivation of the front-door formula (Section 3.2).
The applicability of the inference rules requires that the d-separation condition holds

in various subgraphs of. G; the structure of each subgraph varies with the expressions to
be manipulated. Figure 4 displays the graphs that will be needed for the derivations that
follow.
Task-l, compute P(zli)
This task can be accomplished in one step, since G satisfies the applicability condition for
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Subgraphs of G useil in the ileriaation of causal effects.

Rule2; namely,X ll ZinGx (becausethepath X +U -->Y <- Zis blockedbythe
collider at Y) and we can write

P(zli): P(zlx) (13)

Task-2, compute P(yl2)
Here we cannot apply Rule 2 to exchange 2 with z because G z contains a back-door path
ftom Z toY : Z,- X * U - Y. Naturally, we would like to block this path by conditioning
on variables (such as X) that reside on that path. Symbolically, this involves conditioning
and summing over all values of X,

P(yl2): 
T 

P(ylr,2)P(xl2) (14)

We now have to deal with two expressions invoiving 2, P(ylr,2) and P@12). The latter
can be readily computed by applying Rule 3 for action deletion:

P(rl2): P(r) if (z ll x)"2 (15)

noting that, indeed, X and, Z are d-separated io Gz. (This can also be verified in G;

manipulating Z will have no effect on X.) To reduce the former, P(ylx,2), we consult
Rule 2:

P(ylr,2) - P(ylx,z) it (Z ll YIX)cz (16)

noting that X d-separates Z fuom Y in Gz. This allows us to write Eq. (14) as

P(yl2): t P(yl*,2)P(r): E,P(ylx,z) (17)
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which is a special case of the back-door formula (Eq. (6)). The legitimizing condition,
(Z ll YIX)cz, offers yet another graphical test for the ignorability condition of [Rosenbaum & Rubin
Task-3, compute P@le)

Writing
P@!il: I P(ylr,i)P(zli) (18)

z

we see that the term P(zl6) was reduced in Eq. (13) but that no rule can be applied to
eliminate the "hat" symbol ^ from the term P(yl",,i). However, we can add a ^ symbol to
this term via Rule 2

P(slr,i) - P(yl2,i) (1e)

since the applicability conditio" (y ll ZIX)%2, holds true (see Figure 4). We can now

delete the action i from P(y12,,6) using Rule 3, since Y ll XIZ holds in GV. Thus, we

have
P(Yl,,i) = P(Yl2) (20)

which was calculated in Eq. (17). Substituting Eqs. (17), (20), and (13) back into Eq. (18)

finally yields
P(vli): , P(zla)D ,@lr' , z)P(t') (2i)

which is identical to the front-door formula of Eq. (8).

Task-4, compute P(y, zli)

P(y, zli) : P(ylz,, i)P(zli)
The two terms on the r.h.s. were derived before in Eqs. (13) and (20), from which we obtain

P(v'zti) 

=ilyl:\';')l'?,oo,,z)p(x,) 
ez)

Task-5, compute P(x,yl2)

P(x,yl2) : P(yl*, 2)P@12)

_ P(ylr, z)P(a) (23)

The first term on the r.h.s. is obtained by Rule 2 (licensed bV GZ) and the second term by
Rule 3 (as in Eq. (t5)).

Note that in all the derivations the graph G has provided both the license for applying
the inference rules and the guidance for choosing the right rule to apply.
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4.4 Causal Inference by Surrogate Experiments
Suppose we wish to learn the causal effect of X on Y when X and Y are confounded and,

for practical reasons of cost or ethics, we cannot control X by randomized experiment, nor
can we find observed covariates that, if adjusted for, would eliminate the confounding effect

between X and Y. The question arises whether P(ylt) can be identified by randomizing a

surrogate variable 2., which is easier to control than X. For example, if we are interested
in assessing the causal effect of cholesterol levels (X) on heart disease (Y), u reasonable

experiment to conduct would be to control subjects' diet (Z), rather than exercising direct
control over cholesterol levels in subjects' blood.

Formally, this problem amounts to transforming P(ylt) into expressions in which only
members of. Z obtain the hat symbol. Using Theorem 4.1 it can be shown [Pearl 1994c] that
the following conditions are sufficient for admitting a surrogate variable Z:

1. X intercepts all directed paths from Z to Y, and,

Z. P(sli) is identifiableinGT.

Translated to our cholesterol example, this condition requires that there be no direct effect

of diet on heart conditions and no confounding effect between cholesterol levels and heart
disease, unless we can measure an intermediate variable between the two.

5 Graphical Tests of Identifiability
In the example of Section 4.3, we were able to compute all expressions of the form P(r1.3)

where -B and S are subsets of observed variables. In general, this will not be the case. For

example, there is no general way of computing P(yli) from the observed distribution when-

ever the causal model contains the bow-pattern shown in Figure 5, in which X and Y are

connected by both a causal link and a confounding arc. A confounding arc represents the
existence in the diagram of a back-door path that contains only unobserved variables and has

no converging arrows. For example, the path X, Zo, B, 23 in Figure I can be represented as a

confounding arc between X and Zs. A bow-pattern represents an equation Y : fv(X,U,ey)
where U is unobserved and dependent on X. Such an equation does not permit the identifi-
cation of causal effects since any portion of the observed dependence between X and Y may
always be attributed to spurious dependencies mediated by t/.

The presence of a bow-pattern prevents the identification of P(ylt) even when it is found
in the context of a larger graph, as in Figure 5(b). This is in contrast to linear models,
where the addition of an arc to a bow-pattern can render P(yli) identifiable. For example,
ifYisrelatedtoXviaalinearrelationY:bX*U,whereUisazero-meandisturbance
possibly correlated with X, then 6 = tE(Yli) is not identifiable. However, adding an arc
Z -- X to the structure (that is, finding a variable Z that is correlated with X but not
with U) would facilitate the computation of E(Yli) via the instrumental-variable formula

[Angrist et al. 1993]:
E(Ylz
E(xlz)

Ru,

R,,
(24)u t 

fin1v1e1 
:
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In nonparametric models, adding an instrumental variable Z to a bow-pattern (Figure 5(b))
does not permit the identification of P(yle). This is a familiar problem in the analysis

of clinical trials in which treatment assignment (Z) is randomized (hence, no link enters

Z),, but compliance is imperfect. The confounding arc between X and Y in Figure 5(b)
represents unmeasurable factors which influence both subjects' choice of treatment (X) and

subjects' response to treatment (f). In such trials, it is not possible to obtain an unbiased

estimate of the treatment effect P(yli) without making additional assumptions on the nature
of the interactions between compliance and response. One can calculate bounds on P(yli)
[Robins 1989][Manski 1990, Sec. 1g] and the upper and lower bounds may even coincide
for certain types of distributions P(o, y, z) [Balke & Pearl 1993], but there is no way of
computing P@le) lor eoery distribution P(x,,y,,2).

A general feature of nonparametric models is that the addition of arcs to a causal diagram
can impede, but never assist, the identification of causal effects. This is because such addition
reduces the set of d-separation conditions carried by the diagram and, hence, if a causal

effect derivation fails in the original diagram, it is bound to fail in the augmented diagram
as well. Conversely, any causal effect derivation that succeeds in the augmented diagram (by
a sequence of symbolic transformations, as in Corollary 4.2) would succeed in the original
diagram.

ut

u2

z
2

XYXYY
(a) O) (c)

Figure 5:
(o) A bow-pattern: a confounding arc embracing a caasal link X -> Y,
thus preaenting the id,entification of P(yli) eaen in the presence of an

instrwnental r:ariable Z, as in (b). (c) A bow-less graph still prohibiting
the identification of P(yli).

Our ability to comput e P (yli) for pairs (, , A) of singleton variables does not ensure our
ability to compute joint distributions, such ffi P(yr, grli). Figure 5(c), for example, shows

a causal diagram where both P(z1li) and P(z2li) are computable, but P(21 ,rrli) is not.
Consequently, we cannot compute P@le). Interestingly, this diagram is the smallest graph
that does not contain a bow-pattern and still presents an uncomputable causal effect.

Another interesting feature demonstrated by Figure 5(c) is that computing the effect of
a joint action is often easier than computing the effects of its constituent singleton actions.a

aThis was brought to my attention by James Robins, who has worked out many of these computations
in the context of sequential treatment management. Eq. (25) for example, can be obtained from Robin's

xZ

Z
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Here, it is possible to compute P(yli, i2) and P(yli,i1),yet there is no way of computing
P(yli). For example, the former can be evaluated by invoking Rule 2 in G7, , giving

P(yli, iz) = D p@lrr,i,, i2)P(z1li, ir) : D P(ylrr,x,, z2)P(zlx) (25)
zt zl

However, Rule 2 cannot be used to convert P(zli,z2)into P(z1lt,z2) because, when con-
ditioned on 22, X and 21 are d-connected in Gx (through the dashed lines). We con-
jecture, however, that whenever P(yli;) is computable for every singleton variable X;,
then P(ylit,iz,...,i1) is computable as well, for any subset of variables {Xr,...Xt}. In

[Pearl 1994c], we provide a more complete road map for graphs that permits the identifica-
tion of causal effects.

6 The Operational Meaning of Structural Equations
Traditionally, statisticians have approved of only one method of combining subject-matter
considerations with statistical data: the Bayesian method of assigning subjective priors to
distributional parameters. To incorporate causal information within the Bayesian framework,
plain causal statements such as "Y is afected by X" must be converted into sentences capable
of receiving probability values, e.g., counterfactuals. Indeed, this is how Rubin's model has

achieved statistical legitimacy: causal judgments are expressed as constraints on probability
functions involving counterfactual variables.

Causal diagrams offer an alternative language for combining data with causal information.
This language simplifies the Bayesian route by accepting plain causal statements as its basic
primitives. These statements, which merely identify whether a causal connection between
two variables of interest exists, are commonly used in natural discourse and provide a natural
way for scientists to communicate experience and organize knowledge. It is hoped, therefore,
that the language of causal graphs will find applications in problems requiring substantial
use of subject-matter considerations.

The language is not new. The use of diagrams and structural equations models to convey
causal information has been quite popular in the social sciences and econometrics. Statisti-
cians, however, have generally found these models suspect, perhaps because social scientists
and econometricians have failed to provide an unambiguous definition of the empirical con-
tent of their models, that is, of the experimental conditions under which the outcomes are
constrained by a given structural equation. As a result, even such basic notions as "structural
coefficients" or *missing links" become the object of serious controversy [Freedman 1987] and

conflicting interpretations [Wermuth 1992, Whittaker 1990, Cox & Wermuth 1993].

To a large extent, this history of controversy and miscommunication stems from the
absence of an adequate mathematical notation for defining basic notions of causal modeling.
Indeed, standard probabilistic notation cannot express the empirical content of the coefficient
6 in the structural equation Y : bX f ey even if one is prepared to assume that ey (an

unobserved quantity) is uncorrelated with X. Nor can any probabilistic meaning be attached
to the analyst's excluding from the equation certain variables that are highly correlated with
X orY.
G-computation algorithm [Robins 1986, p. 1423]
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The notation developed in this paper gives these notions a clear empirical interpretation,
because it permits one to specify precisely what is being held constant in a controlled ex-
periment. The meaning of b is simply f;n1V!e1, namelS the rate of change (in c) of the
expectation of Y in an experiment where X is held at o by external control. This inter-
pretation holds regardless of whether ey and X are correlated and, moreover, the notion of
randomization need not be invoked. Similarly, the analyst's decision as to which variables
should be included in the equation for Y is based on a hypothetical controlled experiment
in which several variables are controlled independently. A variable Z is excluded from the
equation for Y if the analyst can identify some other variable (or a set of variables), say X,
which, if held fixed, would prevent Z from influencing Y, that is, P(yli,2) - P(yl6). In
other words, variables that are excluded from the equation are not conditionally indepen-
dent of Y given X, but rather conditionally independent of Y setting X. The operational
meaning of the so called "disturbance term', ey, is likewise demystified; ey is defined by the
difference between Y and the prediction of Y, based on setti,ng all other observed variables.

The distinctions provided by the "hat" notation clarifies the empirical basis of structural
equations and should make structural models more acceptable to statisticians. Moreover,
since most scientific knowledge is organized around the operation of "holding X fixed,"
rather than "conditioning on X," the notation and calculus developed in this paper should
provide a natural means for scientists to articulate subject-matter information, and to derive
its logical consequences.

7 Extensions
Several extensions of the methods proposed in this paper are noteworthy. First, the analysis
of atomic interventions can be generalized to complex policies in which a variable X is made
to respond in a specified way to some set Z of other variables, say through a functional
relationship X : g(Z) or through a stochastic relationship whereby X is set to r with
probability P-(rlz). In [Pearl 1994b] it is shown that computing the effect of such policies
is equivalent to computing the expression P(yli,z).

A second extension concerns the use of the intervention calculus (Theorem 4.1) in nonre-
cursive models, that is, in causal diagrams involving directed cycles or feedback loops. The
basic definition of causal effects in term of "wiping out" equations from the model (Definition
2.1) still carries over to nonrecursive systems [Strotz & Wold 1960, Sobel 1990], but then two
issues must be addressed. First, the analysis of identification must ensure the stability of
the remaining submodels [Fisher 1970]. Second, the d-separation criterion for DAGs must
be extended to cover cyclic graphs as well. The validity of d-separation has been established
for nonrecursive linear models and extended, using an augmented graph, to any arbitrary set
of stable equations [Spirtes 1994]. However, the computation of causal effect estimands will
be harder in cyclic networks, because symbolic reduction of P(yle) to hat-free expressions
may require the solution of nonlinear equations.
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