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Abstract

In learning-augmented algorithms, algorithms
are enhanced using information from a machine
learning algorithm. In turn, this suggests that
we should tailor our machine-learning approach
for the target algorithm. We here consider this
synergy in the context of the learned count-min
sketch from (Hsu et al., 2019). Learning here
is used to predict heavy hitters from a data
stream, which are counted explicitly outside the
sketch. We show that an approximately sufficient
statistic for the performance of the underlying
count-min sketch is given by the coverage of the
predictor, or the normalized L' norm of keys
that are filtered by the predictor to be explicitly
counted. We show that machine learning models
which are trained to optimize for coverage lead
to large improvements in performance over prior
approaches according to the average absolute
frequency error. Our source code can be found at
https://github.com/franklynwang/
putting-the-learning—-in-LAA.

1. Introduction

The nascent research area of algorithms with predictions,
also known as learning-augmented algorithms (see (Mitzen-
macher & Vassilvitskii, 2020) for a survey), focuses on
algorithms that can take advantage of predictions. In this
paper, we consider sketch algorithms designed to estimate
frequencies of keys in a data stream, where the predictor is a
machine-learning algorithm used to predict “heavy-hitters,”
which are the most frequent keys in the stream.

Abstractly, we view finding a learning-augmented algorithm
as an optimization problem over the predictor parameterized
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by 0 and an algorithm A

max M(6, A)
0c0,AcA

where M is some suitable performance metric. That is, we
seek to find the best combination of algorithm and predic-
tor. Most work so far in learning-augmented algorithms
has focused on choosing the best parametrization of the
algorithm, taking the predictor as a given. Ideally, learning-
augmented algorithms should provide feedback to designers
of predictors, by providing guidance as to what makes for
better predictions in the given context. The goal should be
to devise a method of optimizing 6 for A, and not just A for
6. To do this, we create a simple function g(8) ~ M (0, A)
(which we term an approximately sufficient statistic) for a
fixed A, and directly optimize g(#). Here, we apply this
framework to the learned frequency estimation problem of
(Hsu et al., 2019), but we believe this approach is quite
general and can be applied to many learning augmented
algorithms.

In (Hsu et al., 2019), the authors perform frequency estima-
tion by using a sketch, which is a data structure designed
to give approximate frequency counts for keys in a data
stream with small amounts of space, using much less than
one counter per key. However, to improve traditional sketch
performance, they take keys that are predicted to be the
most frequent and give them their own counter, and then
apply a sketch to the remaining keys. Removing heavy keys
greatly improves the sketch performance and thereby overall
performance.

We show that in the case of the count-min sketch, the cover-
age, or the L' norm of such screened keys, is a particularly
good predictor of its evaluation results. By using this metric,
we are able to evaluate our learned models more quickly, as
well as train against the coverage as a target to obtain better
performance. Given this, we then consider better ways of
parametrizing the sketch to maximize performance.

Summarized, our contributions are as follows:
* We formalize theoretically and show experimentally
that coverage aligns well with performance.

* We show, for suitable Zipfian distributions of keys and
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predictor accuracy, when optimizing the parameters of
the count-min sketch, it is best to use one hash function,
in contrast to most typical settings.

* We devise a differentiable batch objective that aligns
better with coverage than the objective used in (Hsu
et al., 2019), showing that this leads to consistent im-
provements with no other changes to architecture or
training.

* Inspired by the pattern of errors of our predictor, we
propose a model where more frequent keys are more
often filtered by the predictor even above the threshold,
in contrast to the uniform model of errors in (Hsu et al.,
2019). Error bounds proven with this model more
closely approximate real performance. Our bounds
capture the error of Zipfian input for all parameters at
greater than 0, improving bounds from (Aamand et al.,
2019) for the uniform model of errors.

All proofs can be found in Appendix A.

1.1. Related Work

Differentiable Algorithms Another way of combining
algorithms and machine learning is through differentiable
analogues of algorithms, which allows the systems to be
optimized end-to-end (see (Xie & Ermon, 2019) for an
example). However, many natural algorithms are not readily
expressible this way, which limits this method’s utility.

Learned Frequency Estimation The work of learned fre-
quency estimation was begun by (Hsu et al., 2019), which
pioneered the idea of using a machine learning model for
the classical task of frequency estimation with small space.
They show that by using a learned model to remove very
frequent keys and store those keys in a hash table, one can
greatly improve performance while using the same amount
of space.

Learning Augmented Algorithms In addition to fre-
quency estimation, learning has been used to improve algo-
rithms for a large number of problems, including computing
frequency moments (Jiang et al., 2020), scheduling (Mitzen-
macher, 2020), caching (Rohatgi, 2020; Wei, 2020), support
estimation (Eden et al., 2021), queuing (Lykouris & Vassil-
vitskii, 2018), and membership (Dai & Shrivastava, 2020;
Vaidya et al., 2021).

The paper (Wu et al., 2019) targets finding a static matrix
A that yields a strong recovery guarantee, so that the vector
x (if sparse) can be recovered from Ax. One way to view
the present paper through this lens is that, we are learning
a matrix A(z) that is a good recovery matrix for y = f(x),
where z represents the features and y represents the frequen-
cies.

Loss modelling In other applications where total differ-
entiability is not possible and a machine learning model
lies at the beginning of the pipeline, other works have also
considered the idea of using loss functions to better capture
downstream tasks. Particularly relevant is the work of (Guo
et al., 2020) which uses an anisotropic quantization loss
instead of a standard isotropic loss function for similarity
search, where this quantization is made to be more accurate
precisely when the key is particularly likely to be similar to
the query.

2. Preliminaries

For notational convenience, we assume our key set is
[n] = {1,2,...n}. Throughout the paper, we let f =
(f1, fa, ... fn) refer to the true frequency vector of all the
keys. Generally f’ refers to the frequency vector after re-
moving keys screened by a learned predictor (which are
given separate counters), so f’ agrees with f at all nonzero
entries, but may be zero at indices where f is nonzero.
We let F'® be a random variable supported on [n] so that
P(F* = 14) o« (f;)®. This represents a distribution that
samples each key according to some power of its frequency.

Count-Min Sketch The Count-Min Sketch is a data struc-
ture used to estimate the frequencies of keys in a data stream
(Cormode & Muthukrishnan, 2005a). The sketch is an £ x w
array C'M, where we refer to ¢ as the number of layers, or
the height of the array, and w as the width of the array. We
have ¢ independent hash functions

hi,ha, ... ke [n] = [w]

where n is the number of keys, and we let the keys be
integers in [n]. We initially have this array set to all Os.

Then, each time we get as input a key-value pair (¢, v), with
v > 0, we increment the counter of C'M [j, h;[i]] by v for
each j € [¢]. Finally, to estimate the frequency of a key i
(meaning the sum of the values associated with key ), we
take the minimum of C'M[j, h;[i]] over all j € [¢]. (One
can also allow negative increments under natural conditions;
we consider positive values for convenience.) This method
has low approximation error, and formalizations of its error
bound can be found in, e.g. (Cormode & Muthukrishnan,
2005a;b).

Count Sketch The Count Sketch (Cormode & Hadjieleft-
heriou, 2008) is a data structure very similar to the Count-
Min Sketch. We have an ¢ x w array C'S and 2¢ independent

hash functions
hi,ha, ... e [n] = [w]

and
51,82,...8¢: [n] — +1
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where w is the ”width” of the sketch, n is the number of
keys, and we let the keys be integers in [n]. We initially
have this array set to all Os, and each time we get as input a
key-value pair (i, v), we add s;[i] - v to C'S[j, h;[i]] for each
J € [£]. To estimate the frequency of a key 4, we take the
median of C'S[j, h;[i]] over all j € [¢], where if / is even
we take the average of the (¢)/2th and (¢/2) + 1th largest
numbers to find the median.

Learning-Based Frequency Estimation Notation We
reproduce the algorithm of (Hsu et al., 2019) below in Algo-
rithm 1. Recall their algorithm gives keys that the predictor
thinks are heavy hitters an explicit counter (if one is avail-
able), and places the other keys into the count-min sketch.
We also borrow their notation, so B is the total space used,
B, is the number of explicit counters (which exactly store
the counts of the heavy hitters), and HH refers to a heavy
hitter predictor, which predicts whether or not a given key
is a heavy hitter.

Algorithm 1 Learned Sketch

input: B, B,., Predictor HH
Initialize B, explicit counters
Initialize an empty Sketch S with space B — B,
for each key-value pair (i,v) do
if HH(¢) = 1 and explicit counter is available. then
if i is already in a explicit counter then
increment the count of the explicit counter con-
taining ¢ by v
else
Initialize the count of an empty explicit counter
to v and indicate that it contains ¢
end if
else
give ¢ as input to S
end if
end for

When the heavy hitter detector identifies a stream element
1 as a heavy hitter, we say that the element was screened.
Otherwise, we say that the element was accepted. We use
explicit counter to refer to counters for screened keys, and
cell to refer to a counter in a count-min sketch.

We define the coverage of f! with respect to f; as
il
Yo fi

representing the relative mass of the keys that are screened
by the predictor from f to f’.

1

Following (Hsu et al., 2019), for a Zipf distribution with
parameter p, the i*" most frequent element has frequency
proportional to i P.

3. A Nearly Sufficient Statistic for Count-Min
sketch performance

Intuitively, it is clear that given a set of keys, if we can
remove some keys from the stream (those we classify as
heavy hitters), we would get better performance from the
count-min sketch if we removed the keys with the highest
frequency, and further if we had a choice of two keys to
remove it would be better to remove the one with higher
frequency. (This is easily proven, for example by a simple
coupling argument). However, the idea that we need to
“choose the largest frequencies” is insufficient for training
a predictor. Instead, we need to have an objective function
we can optimize, and thus we aim to show that coverage is
the correct objective function for the Count-Min Sketch.

The error metric that is typically used for frequency esti-
mation (and which we use here) is the average absolute
frequency error (Hsu et al., 2019),

Zfi’ |fi = fil < Binpn[Ifi = £il] )

where f; is the predicted value by the algorithm, and f can
be any vector.

The error of one layer of a count-min sketch on key ¢ can be

written as
Ryi=> fiX;.
J#i
where f is a vector and X1, X5,... X, are independent
Bernoulli random variables that are each 1 with probability
1/w. We also define for convenience

Ry :ijxj.
J

The overall error of the sketch on key ¢ is the minimum
of £ independent copies of Rt ;, which we denote by R?i,
and similarly we let Rﬁc be the minimum of ¢ independent
copies of Rg.

In the particular case of f/, we can now write the expected
error of the learned sketch as

Elerr (f)] = > _ fiE[Rr,] .

The efficacy of the count-min sketch can be understood
from this perspective. Note that Ry . is a weighted sum of
Bernoulli variables that are usually zero, so when the input
is skewed, the expected value is largely dominated by rare
cases where a highly-weighted Bernoulli is equal to 1 (a
phenomenon we call Bernoulli skew). Using the count-min
sketch with ¢ > 1 alleviates this skew, because Bernoulli
skew must happen multiple times for the same key to give a
high error for that key. As a result, many times the optimal
value for ¢, given a fixed amount of space, is greater than 1.



Putting the “Learning” into Learning-Augmented Algorithms

However, when we introduce screening using our predictor,
we discover that the Bernoulli skew mostly vanishes (since
the more frequent keys are screened out), and often £ = 1 is
ideal. Further, it may also be the case that the distribution
of keys is unskewed to begin with (say, as a Gaussian) in
which case ¢ = 1 is likely to be ideal with or without the
presence of screening.

3.1. Performance with one and many layers

In the case where there is one layer in the sketch, analyz-
ing the error turns out to be straightforward; we show that
the expected error has expected value proportional to the
squared L' norm, provided that the squared L' norm is
much larger than the squared L? norm.

Theorem 3.1. If || f'l|, < ol f'|l,, the expected er-
ror of the count-min sketch (with one row) lies between

(1 —a?) |If1? /mand || f'|} /m.

In practical settings, « is generally very small, so this is
essentially equal to (|| f’||f /m), which is proportional to
(1 — coverage)?. Thus, for a single row, optimizing the
coverage yields an excellent approximation to optimizing
the estimation error.

For multiple rows, we use the following approximation:

Elerr(£')] = Y IR} ] ~ Y [ER)]

_ / 01 thz/ . 4
— 11 ElR = (&) (Zf> BIRY )
—_————

——_—— expected residual

constant

1—coverage

2

Note the approximation involves replacing Rﬁc,yi by R%,,
potentially (but with fairly low probability) including an
item’s frequency in its error.

Equation 2 shows that the performance is a combination of
two factors, namely the coverage and the expected residual.
This again argues for optimizing coverage in the learning
process. First, optimizing coverage does also aim to min-
imize the residual (albeit indirectly). Second, we show
that the expected residuals between “similar” frequency se-
quences, for a suitable definition of similar, are themselves
nearly equal when there is more than one hash function. In
particular, learning procedures that are aiming generally to
find heavy hitters will yield similar sets of keys that were not
screened, and thus close expected residuals. Both points sug-
gest optimizing for coverage is a suitable proxy for overall
error.

In order to precisely state our result, we define an appropri-
ate notion of similarity. For two decreasing sequences A =
(a1 2 a9 2 2 an) and B = (bl Z b2 Z Z bm),
we say the domination number d of A with respect to B is

the smallest number so that a; > b; 4 for all « < m — d.
That is, if we remove the largest d frequencies from B, then
the a sequence pointwise dominates the b sequence. We
consider sequences A and B to be similar when they have
low domination numbers with respect to each other.

Theorem 3.2. Let A and B have domination number at
most d with respect to each other, and let p = (1 — 1/w)%.

E[R}] — E[Rp] < (S ( (f) P’ 3)

(1 - p) (B[R] - E[R%])) a-p)

(E[RH + 1_(11_/15/10)@5(|Q|) - E[R%O)

where @ is the multiset of keys that should be removed from
A in order for B to pointwise dominate A and S(|Q)|) is the
sum of the elements of Q.

Since when d is small, (1 — p) is small as well, we see that
E[RY] and E[R{)] are similar for small d. Furthermore, for
even slightly large £, (1 — p)* will tend to be small, making
the second term small as well.

As the expected residuals are very close for similar se-
quences, most of the performance difference in the case
of multiple hash functions is determined by the coverage.

3.2. Optimizing the number of sketches

Now, we explore the optimal number of sketches, to see
if the case of 1 hash function or many hash functions has
better performance. Prevailing wisdom states that the opti-
mal number of hash functions to use in a count-min sketch
is usually some constant greater than 1. Yet we find that
when the most frequent keys are all screened from Zipfian
distributed input, having one layer is often optimal.' This
happens because removing the most frequent keys heavily
reduces the Bernoulli skew, so multiple layers are largely
unnecessary, as the variable Ry ; is concentrated around
its mean. Intuitively, we are better off using the space by
putting more cells in a single row (reducing collisions over-
all) rather than splitting cells into multiple rows (giving
multiple chances to avoid collisions with high-frequency
items).

Theorem 3.3. For each p,c > 0, given Zipfian input with
parameter p, and the largest n' = cn frequencies removed
(say, by an oracle), there exists a constant ¢’ > 0 such that
a Count-Min Sketch with total space at most ¢'n has larger
expected error with k rows than 1 row for all k > 2.

!This is a strengthening of a special case of the result found in
(Aamand et al., 2019), where they proved that the optimal number
of rows was O(1).
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3.3. Synthetic Experiments

We verify the theoretical results with synthetic experiments.
In what follows, there are n = 10° keys, and the frequency
of the kth key is [n/k]. We consider three different scenar-
ios:

* No Screening: No keys are screened.

e Perfect Screening: The top 1% most common keys are
screened.

* Imperfect Screening: a uniformly randomly chosen
80% of the top 1.25% most common keys are screened.

We use 20,000 total cells in the count-min sketch in each
experiment, so the memory is the same even if we vary the
number of rows. Tables 1, 2, 3 give the average residual,
average absolute frequency error, and root mean squared
error respectively, where we define root mean squared error
to be

The results shown are averaged over 1000 trials. We see
that, as suggested in Theorem 3.2, the average residuals with
two or more rows are very close with imperfect and perfect
screening. Also, as Theorem 3.3 suggests, one row yields
better performance when using screening, but not in the
absence of screening. Interestingly the root mean squared
error is not aligned with the average absolute frequency er-
ror, as we can see one row is ideal in the imperfect screening
case for average absolute frequency error but far from ideal
in the case of root mean squared error. However, this is not
unexpected as the root mean squared error is dominated by
collisions between any key and a key with high frequency.

#Rows | None Imperfect Perfect
1 592.16 29448  209.36
2 529.23 37320  364.22
3 731.38  538.45 530.13
4 952.03  711.55  701.01

Table 1. Average Residual.

#Rows | None Imperfect Perfect
1 592.16 129.55 62.75
2 529.23 164.18 109.17
3 731.38  236.88 158.90
4 952.03  313.03 210.12

Table 2. Absolute Average Frequency Error.

# Rows ‘ None Imperfect Perfect
1 9098.19  3936.37  219.29
2 686.32 391.19 369.31
3 769.70 543.00  533.03
4 983.48 713.76 702.36

Table 3. Average Root Mean Squared Error.

4. Choosing the Loss Function

Recall that in our notation, F° represents a distribution
that gives equal weight for each key, whereas F'! repre-
sents a distribution that weights keys proportional to their
frequency.

There are many loss functions we could use to optimize
the predictor. We denote the predictor by gs(i), where 6
represents the parameters of a neural network. Note that we
have not specified what gy(4) is approximating. The reason
for this is that choosing what gy () should approximate is a
crucial part of our design space.

(Hsu et al., 2019) chooses to minimize the loss function
given by

Einro[(ge(i) —In £:)?],
so the neural network predicts the log frequency of the
keys.”? We call this loss function the unweighted log loss.
Since the coverage can be expressed as

Eiwrt [Liin a5,

where H is the set of heavy-hitters, a potential alternative
loss function is

Eivri[(90(i) — In £:)%].

We call this the weighted log loss, because it accounts for
the weighting.

Another approach might be creating a predictor that directly
optimizes the absolute average frequency error (Equation 1)

Einp[le”@ — fi]].
For completeness we also consider its unweighted variant
EiNFoHegg(“ — fill.

We call the first of these the weighted L' loss and the second
the unweighted L' loss.

Finally, we select a loss function based on our observation
that the coverage is almost sufficient for the performance.
Note that we can write the coverage as

Eiwro[liin m fi]-

The logarithm is used because neural networks tend to have
poor performance when approximating large numbers.
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A seemingly compelling method is to have the function
go(2) predict 1, i, g directly, instead of predicting the log
frequency as it does with the above loss functions. Intu-
itively, this approach is helpful because our end goal is
select the heaviest hitters to remove rather than accurately
predict their frequency. This leads us to consider the loss
function E;. o [gs(7) fi].

However, optimizing using this loss function without any
global restrictions on gy (i) will simply encourage g¢(7) to
take on the maximum possible value. We are not aware of
any existing approach to enforce our desired constraint that
go(7) selects a given size subset. We thus suggest the fol-
lowing approach, which we call BatchRank, to approximate
this goal. To our knowledge, this approach has not appeared
previously.

We divide the dataset into randomly selected batches of size
B for each epoch, and the model updates on each batch. For
each batch of B keys, we split it into sub-batches of size K
randomly (with each key in exactly one sub-batch). Then
within the sub-batches we calculate a normalized value

(o
where 11 and o are the mean and standard deviation of gg
across the sub-batch. This idea is partially inspired by Batch-
Norm (loffe & Szegedy, 2015), although in our case it serves
to normalize outputs on batches as opposed to normalizing
the hidden layers.

Then our final loss function is
Eiro[gy (i) fil.

Intuitively, creating sub-batches performs better than simply
normalizing within each batch, because when we normalize
over larger sets of keys, our function gy degenerates into
choosing the maximum within each batch and thus loses
valuable signal in differentiating between less frequent keys.

5. Experiments
5.1. Experimental Details

Datasets and Architectures Following (Hsu et al., 2019),
we use the CAIDA dataset. We use the first 7 minutes of the
link for training, the 8th minute for validation, and the 9th,
30th, and 60th minutes for testing. The 9th minute is meant
to test how well the algorithms have learned the temporally
local distribution; the assumption is the 9th minute is rel-
atively similar to the first six. The 30th and 60th minutes
are used to see whether the algorithms have learned general
patterns of heavy flows. We use the 9th and 60th minutes
to demonstrate our coverage results and the 30th and 60th
minutes to show the full results of the count-min sketch.

We only include the table and graph for minute 60 in this
paper. The results for minutes 9 and 30 can be found in
Appendix C, but the results are fairly similar to those of
minute 60.

We use the same architecture as in (Hsu et al., 2019), an
LSTM (Gers et al., 2000), and run our algorithm on the
CAIDA dataset. We use 1 NVIDIA V100 for each run.
Each training run takes around 12 to 18 hours, and trains for
200 epochs with batch size equal to 1024. For the optimizer,
we use Adam with learning rate 10~3. When optimizing
over the distribution i ~ F°, we sample batches uniformly
from F{y, and when optimizing over the distribution ¢ ~ F’ L
we sample the keys proportionally when creating batches.

Sketches We explain how we perform our evaluation
given the predictions. In practice, when a key arrives we are
given its prediction, and we need to decide whether it should
have its own explicit counter. Therefore, we must select a
threshold and give the key an explicit counter if its predicted
value is above the threshold and there is a counter available;
we assume a fixed-size set of explicit counters. We select
the threshold by looking at validation data and choosing
a corresponding percentile threshold in the validation data.
For example, if we decide that we would like to have explicit
counters equal to 10% of the number of keys, we can set a
cutoff equal to the 90th percentile of the predictor on the
validation data. However, if we overestimate the threshold,
we run the risk of having explicit counters go unused, wast-
ing valuable space. On the other hand, if we underestimate
the threshold, while some frequent keys may not obtain an
explicit counter, the most common keys are still likely to
obtain an explicit counter as they are more likely to appear
earlier in the stream. (We assume that the distribution of
key arrival order is uniform.) Thus, we deliberately under-
estimate the cutoff to be the number which would include
1.1k of the validation keys if we have k explicit counters.

5.2. Results

We first show the coverage of each of our loss functions
(with one run each) in Table 4. The coverage size at i% is
the total frequency, or coverage, of 1% of the keys with the
highest value of fy, the estimated frequency. The ideal row
represents the coverage of the 1% of keys with the highest
true frequency. Unweighted Log Loss is the original loss
function used in (Hsu et al., 2019), and all of the others are
the new methods we proposed. BatchRank and Weighted
Log Loss consistently outperform the unweighted log loss
and both L losses.

Next, we examine whether our superior coverage results
translate into improvements in frequency estimation error
when using the count-min sketch.

In Figure 1, we plot the complementary coverage (i.e.
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Table 4. Coverage (%) on CAIDA dataset, 60th minute. The largest entry in each column is in bold.

COVERAGE SIZE
1% 2% 5% 10% 20% 30% 50% 75%

UNWEIGHTED LoG Loss  31.1% 37.1% 452% 55.7% 66.8% 78.6% 88.4% 96.7%
WEIGHTED L0OG LOSS 283% 382% 51.7% 61.6% 751% 82.2% 91.1% 97.8%
UNWEIGHTED L! Loss 18.1% 21.1% 27.6% 35.5% 46.4% 59.1% 75.7% 88.0%

METHOD

WEIGHTED L' LosS 16.2% 233% 35.1% 48.0% 62.3% 70.7% 82.7% 92.6%
BATCHRANK, K = 64 346% 41.1% 50.6% 61.5% 71.5% 77.9% 87.5% 96.1%
BATCHRANK, K = 8 33.1% 40.7% 52.4% 62.8% 74.2% 809% 89.7% 96.6%
IDEAL 62.3% 69.6% 78.5% 84.9% 90.5% 938% 97.3% 99.1%
Minute 60, BatchRank (K = 8), width 1000, Count-Min Minute 60, BatchRank (K = 8), width 10000, Count-Min Minute 60, BatchRank (K = 8), width 100000, Count-Min
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Figure 1. Plots of Error and Complementary Coverage (CC) ratios between learned count-min sketches and learned count-sketches using
the loss function from (Hsu et al., 2019) and BatchRank (KX = 8) where the sketch’s width is fixed. We only consider explicit counter
percentages of 20% or less, because in practical scenarios where sketching is useful we are unlikely to be able to store 20% of the counters

explicitly.

1 — coverage) and the absolute average frequency errors show only BatchRank with K = 8, but weighted log loss
of a model against the baseline (unweighted log loss) for ~ and BatchRank with K = 64 are similar.

cases with small (width 1,000), medium (width 10,000), and
large (width 100,000) sketches with varying number of hash
functions for both count-min sketches and count-sketches.
‘We ran 100 trials for the case of one hash function, and 20
trials for the cases of two or more hash functions, as the case
of one hash function has a particularly high variance, and Otherwise, the error ratios for the count-min sketch are
took the average. To visualize the results, we simply plot still above 1, but below the complementary coverage ratios.
the ratios between the average absolute frequency errors Recall that error is complementary coverage times expected
and the ratios between the complementary coverages. We residual, so the expected residual is higher for BatchRank

When we have only 1 hash function, our results for count-
min sketches follow our predicted behavior (Theorem 3.1),
and the error ratio is almost exactly the square of the com-
plementary coverage ratio.
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than unweighted log loss. In each of these cases, however,
our model’s higher coverage enables it to obtain lower errors
since the differences in expected residual is not large, as
predicted by Theorem 3.2. Overall, our methods outperform
unweighted log loss in all cases, as none of the error ratios
ever drop below 1. Furthermore, our improvements are
significant, with the method of (Hsu et al., 2019) resulting in
an average error of 121% of our method over all experiments
with a count-min sketch, with the ratio reaching over 160%
for the count-sketch.

Figure 1 shows similar results for the count-sketch, in that
optimizing learning for coverage improves performance,
although the issue of the correct number of hash functions
is more complicated.

5.3. Discussion

As we can see from Table 4, BatchRank tends to do quite
well, especially when predicting the top ¢% for small 4,
despite not formally estimating any frequencies. We see
that K should be tuned so that with relatively small amounts
of space it should be larger and with relatively large amounts
of space it should be smaller.

Furthermore, prediction L' coverages are consistently much
worse than BatchRank, showing that often making a predic-
tor that does well by itself (as the L' loss is exactly aligned
to the prediction task) does not suffice for the predictor to
perform well within a learning-augmented algorithm. This
provides some demonstration of our high-level idea that
optimizing for coverage can lead to better results; that is,
optimizing with the whole algorithm in mind rather than op-
timizing for the full downstream task (in this case frequency
estimation) can yield substantial improvements.

6. A Refined Model of Errors

We now consider modelling the predictor’s relationship to
the correct answer. Models for prediction errors in learning-
augmented algorithms are often quite simple. For example,
(Hsu et al., 2019) considers a model where a key is given an
explicit counter with probability 1 — § if the key is a heavy
hitter, and is placed in the count-min sketch otherwise.

However, a more natural model would take into account
that the higher the frequency of a heavy-hitter key, the more
likely it is to be screened and placed into an explicit counter.
(Similar concepts appear in the literature for learned Bloom
filters; see e.g. (Vaidya et al., 2021).) This model is em-
pirically justified; Figure 2 shows the screening rate of the
model that uses BatchRank with K = 8 and a 10% screen-
ing threshold. We see that, for the most frequent keys, the
probability of being screened increases with frequency. For
completeness, similar results for other predictors are given
in Appendix D.

Screened Rate

1.01

e o o
ES o ®

Screening Probability

o
)

T S

0 20 40 60 80 100
Frequency Percentile
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Figure 2. Screened Rate of BatchRank with K = 8 on Minute
60. The x-axis denotes the percentile of frequency, and the y-
axis represents the probability that it was screened (with a 10%
threshold). Note that the screening rate is essentially monotonically
increasing, and sharply so above the threshold.

This heterogeneity, whereby more frequent keys are more
likely to be screened, potentially allows for tighter theoreti-
cal analyses. Here we show we can obtain a slightly sharper
result than (Hsu et al., 2019) by using this improved model.

To obtain our theoretical results, we assume that the prob-
ability of a key being screened is polynomially related to
its frequency. That is, there is some constant ¢ > 0 such
that the probability that a key ¢ with frequency f; is not
screened is proportional to % until it reaches the maximum
value of 1. This model is sdfﬁciently general that one can
intuitively think of it as including all distributions where
the probability of being screened increases monotonically
with f; as further increasing the skew only improves the
performance of the sketch, and it matches the behavior in
Figure 2.

For this section, as is done in (Hsu et al., 2019), we addi-
tionally assume for the sake of simplicity that if the input
is Zipfian with parameter p, the frequency of the i most
frequent key is ¢ ~?. In the following theorem, one can think
of the exponent c as controlling the error rate of the ora-
cle, which approaches uniformly screening random keys as
¢ — 0 and approaches perfection as ¢ — co. The seem-
ingly strange choice of normalizing constant is justified in
Appendix A.5. Essentially, its purpose is to ensure that B,
slots are filled by predicted heavy hitters.

Theorem 6.1. For any constant ¢ > 0, if the input is Zipfian
with parameter 1 and the heavy hitter oracle screens key i
with probability p(f;) where for 1 <i < (1+1/¢)B,,

B, /c ¢
p(fi)=1- (W) [

7=1

and p(f;) = 0 otherwise, then the error for the Learned
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Count-Min Sketch is O (Wghiir‘é:?/m) .

Remark. If we keep this same probability distribution and
have an arbitrary parameter p > 0 so that p # ¢ + 1 for the
Zipf distribution, we can get the more general bound

B )(c—p+1)* n*7*/(1-p)?
O( 5 B + BB, ) 4)

which we prove in Appendix A.6. When p = ¢+ 1, we
instead get the bound

(et as )

This result may appear to be strange, but this is because as
p varies, so does ||f||; or the total frequency of the input.
When we take this into account and normalize the error
bounds, we get bounds which line up more nicely with
what one would expect. Detailed analysis of the normalized
versions of these bounds are given in Appendix A.7.

To compare our results with the bounds in (Hsu et al., 2019)
we state the following corollary.

Corollary 6.1.1. The error of the Learned Count-Min
Sketch under the oracle model from 6.1, with B, = ¢'B
Jor some 0 < ¢ < 1, and with Zipfian input with parameter

. In?(n/B)
1, IA) C"‘) (T)

We note that the error bound of Corollary 6.1.1 asymptot-
ically matches the error lower bound proved in Theorem
10.4 of (Hsu et al., 2019) with a perfect heavy hitters oracle
for the Zipfian input distribution with parameter 1.

Also, the bound of Corollary 6.1.1, when B, = ¢'B for
some 0 < ¢’ < 1, improves on the bound

o (52 In?(B,) + 1n2(n/B,))

B - B,

from Theorem 9.15 of (Hsu et al., 2019). Here in their
model, the oracle misclassifies heavy hitter keys with a
fixed probability 4.

This agrees with what we would expect as when the predic-
tor is incorrect about keys far from the cutoff, the situation
is much worse than when the predictor is incorrect about
keys close to the cutoff both intuitively and when looking at
the coverage and error.

7. Conclusion and Future Work

We have examined the frequency estimation problem, one
of the first problems studied under the paradigm of learning-
augmented algorithms, and have shown that by tailoring the
learning task to the algorithm we achieve reasonable and

consistent improvements in performance. We view this as
an important example that motivates co-design between the
algorithm and predictor for learning-augmenting algorithms.
Our consideration also led us to a new theoretical analysis
based on a more realistic model of predictor performance,
and we again think that improved results may similarly be
available for other problems when the predictor is more
accurately modelled.

For future work, we note the BatchRank approach used is
somewhat ad-hoc. BatchRank resembles BatchNorm, which
has proven successful in many deep learning application.
While even BatchNorm is still not well understood, we be-
lieve that batch normalization here helps force the learning
to determine whether items are included or not. We believe
that more theoretical analysis of batch normalization would
be useful.
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