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Abstract
Inspired by the demands of real-time climate and
weather forecasting, we develop optimistic on-
line learning algorithms that require no parame-
ter tuning and have optimal regret guarantees un-
der delayed feedback. Our algorithms—DORM,
DORM+, and AdaHedgeD—arise from a novel
reduction of delayed online learning to optimistic
online learning that reveals how optimistic hints
can mitigate the regret penalty caused by delay.
We pair this delay-as-optimism perspective with
a new analysis of optimistic learning that exposes
its robustness to hinting errors and a new meta-
algorithm for learning effective hinting strategies
in the presence of delay. We conclude by bench-
marking our algorithms on four subseasonal cli-
mate forecasting tasks, demonstrating low regret
relative to state-of-the-art forecasting models.

1. Introduction
Online learning is a sequential decision-making paradigm in
which a learner is pitted against a potentially adversarial en-
vironment (Shalev-Shwartz, 2007; Orabona, 2019). At time
t, the learner must select a play wt from some set of possible
plays W. The environment then reveals the loss function `t
and the learner pays the cost `t(wt). The learner uses infor-
mation collected in previous rounds to improve its plays in
subsequent rounds. Optimistic online learners additionally
make use of side-information or “hints” about expected fu-
ture losses to improve their plays. Over a period of length T ,
the goal of the learner is to minimize regret, an objective that
quantifies the performance gap between the learner and the
best possible constant play in retrospect in some competitor
set U: RegretT = supu2U

PT
t=1 `t(wt)�`t(u). Adversar-
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ial online learning algorithms provide robust performance in
many complex real-world online prediction problems such
as climate or weather forecasting.

In traditional online learning paradigms, the loss for round
t is revealed to the learner immediately at the end of round
t. However, many real-world applications produce delayed
feedback, i.e., the loss for round t is not available until round
t + D for some delay period D.

1 Existing delayed online
learning algorithms achieve optimal worst-case regret rates
against adversarial loss sequences, but each has drawbacks
when deployed for real applications with short horizons
T . Some use only a small fraction of the data to train
each learner (Weinberger & Ordentlich, 2002; Joulani et al.,
2013); others tune their parameters using uniform bounds on
future gradients that are often challenging to obtain or overly
conservative in applications (McMahan & Streeter, 2014;
Quanrud & Khashabi, 2015; Joulani et al., 2016; Korotin
et al., 2020; Hsieh et al., 2020). Only the concurrent work
of Hsieh et al. (2020, Thm. 13) can make use of optimistic
hints and only for the special case of unconstrained online
gradient descent.

In this work, we aim to develop robust and practical algo-
rithms for real-world delayed online learning. To this end,
we introduce three novel algorithms—DORM, DORM+,
and AdaHedgeD—that use every observation to train the
learner, have no parameters to tune, exhibit optimal worst-
case regret rates under delay, and enjoy improved perfor-
mance when accurate hints for unobserved losses are avail-
able. We begin by formulating delayed online learning as
a special case of optimistic online learning and use this
“delay-as-optimism” perspective to develop:

1. A formal reduction of delayed online learning to opti-
mistic online learning (Lems. 1 and 2),

2. The first optimistic tuning-free and self-tuning algo-
rithms with optimal regret guarantees under delay
(DORM, DORM+, and AdaHedgeD),

3. A tightening of standard optimistic online learning
regret bounds that reveals the robustness of optimistic
algorithms to inaccurate hints (Thms. 3 and 4),

1Our initial presentation will assume constant delay D, but we
provide extensions to variable and unbounded delays in App. O.
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4. The first general analysis of follow-the-regularized-
leader (Thms. 5 and 10) and online mirror descent
algorithms (Thm. 6) with optimism and delay, and

5. The first meta-algorithm for learning a low-regret opti-
mism strategy under delay (Thm. 13).

We validate our algorithms on the problem of subseasonal
forecasting in Sec. 7. Subseasonal forecasting—predicting
precipitation and temperature 2-6 weeks in advance—is a
crucial task for allocating water resources and preparing
for weather extremes (White et al., 2017). Subseasonal
forecasting presents several challenges for online learning
algorithms. First, real-time subseasonal forecasting suffers
from delayed feedback: multiple forecasts are issued before
receiving feedback on the first. Second, the regret horizons
are short: a common evaluation period for semimonthly
forecasting is one year, resulting in 26 total forecasts. Third,
forecasters cannot have difficult-to-tune parameters in real-
time, practical deployments. We demonstrate that our al-
gorithms DORM, DORM+, and AdaHedgeD sucessfully
overcome these challenges and achieve consistently low
regret compared to the best forecasting models.

Our Python library for Optimistic Online Learning under
Delay (PoolD) and experiment code are available at
https://github.com/geflaspohler/poold.

Notation For integers a, b, we use the shorthand [b] ,
{1, . . . , b} and ga:b , Pb

i=a gi. We say a function f is
proper if it is somewhere finite and never �1. We let
@f(w) = {g 2 Rd : f(u) � f(w) + hg,u � wi, 8u 2

Rd
} denote the set of subgradients of f at w 2 Rd and say f

is µ-strongly convex over a convex set W ✓ int dom f with
respect to k·k with dual norm k·k⇤ if 8w,u 2 W and g 2

@f(w), we have f(u) � f(w)+ hg,u�wi+ µ
2 kw�uk

2.
For differentiable  , we define the Bregman divergence
B (w,u) ,  (w) �  (u) � hr (u),w � ui. We define
diam(W) = infw,w02W kw � w0

k, (r)+ , max(r, 0),
and min(r, s)+ , (min(r, s))+.

2. Preliminaries: Optimistic Online Learning
Standard online learning algorithms, such as follow the reg-
ularized leader (FTRL) and online mirror descent (OMD)
achieve optimal worst-case regret against adversarial loss
sequences (Orabona, 2019). However, many loss sequences
encountered in applications are not truly adversarial. Op-

timistic online learning algorithms aim to improve perfor-
mance when loss sequences are partially predictable, while
remaining robust to adversarial sequences (see, e.g., Azoury
& Warmuth, 2001; Chiang et al., 2012; Rakhlin & Sridha-
ran, 2013b; Steinhardt & Liang, 2014). In optimistic online
learning, the learner is provided with a “hint” in the form
of a pseudo-loss ˜̀

t at the start of round t that represents
a guess for the true unknown loss. The online learner can

incorporate this hint before making play wt.

In standard formulations of optimistic online learning, the
convex pseudo-loss ˜̀

t(wt) is added to the standard FTRL
or OMD regularized objective function and leads to op-
timistic variants of these algorithms: optimistic FTRL
(OFTRL, Rakhlin & Sridharan, 2013a) and single-step opti-
mistic OMD (SOOMD, Joulani et al., 2017, Sec. 7.2). Let
g̃t 2 @ ˜̀t(wt�1) and gt 2 @`t(wt) denote subgradients of
the pseudo-loss and true loss respectively. The inclusion of
an optimistic hint leads to the following linearized update
rules for play wt+1:

wt+1 = argmin
w2W

hg1:t + g̃t+1,wi + � (w), (OFTRL)

wt+1 = argmin
w2W

hgt + g̃t+1 � g̃t,wi + B� (w,wt)

with g̃0 = 0 and arbitrary w0 (SOOMD)

where g̃t+1 2 Rd is the hint subgradient, � � 0 is a regular-
ization parameter, and  is proper regularization function
that is 1-strongly convex with respect to a norm k·k. The op-
timistic learner enjoys reduced regret whenever the hinting
error kgt+1 � g̃t+1k⇤ is small (Rakhlin & Sridharan, 2013a;
Joulani et al., 2017). Common choices of optimistic hints
include the last observed subgradient or average of previ-
ously observed subgradients (Rakhlin & Sridharan, 2013a).
We note that the standard FTRL and OMD updates can be
recovered by setting the optimistic hints to zero.

3. Online Learning with Optimism and Delay
In the delayed feedback setting with constant delay of length
D, the learner only observes (`i)

t�D
i=1 before making play

wt+1. In this setting, we propose counterparts of the OFTRL
and SOOMD online learning algorithms, which we call
optimistic delayed FTRL (ODFTRL) and delayed optimistic

online mirror descent (DOOMD) respectively:

wt+1 = argmin
w2W

hg1:t�D + ht+1,wi + � (w)

(ODFTRL)

wt+1 = argmin
w2W

hgt�D + ht+1 � ht,wi + B� (w,wt)

with h0 , 0 and arbitrary w0, (DOOMD)

for hint vector ht+1. Our use of the notation ht+1 instead
of g̃t+1 for the optimistic hint here is suggestive. Our regret
analysis in Thms. 5 and 6 reveals that, instead of hinting only
for the “future“ missing loss gt+1, delayed online learners
should uses hints ht that guess at the summed subgradients
of all delayed and future losses: ht =

Pt
s=t�D g̃s.

3.1. Delay as Optimism

To analyze the regret of the ODFTRL and DOOMD algo-
rithms, we make use of the first key insight of this paper:

https://github.com/geflaspohler/poold
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Learning with delay is a special case of learning

with optimism.

In particular, ODFTRL and DOOMD are instances of
OFTRL and SOOMD respectively with a particularly “bad”
choice of optimistic hint g̃t+1 that deletes the unobserved
loss subgradients gt�D+1:t.

Lemma 1 (ODFTRL is OFTRL with a bad hint). ODFTRL
is OFTRL with g̃t+1 = ht+1 �

Pt
s=t�D+1 gs.

Lemma 2 (DOOMD is SOOMD with a bad hint). DOOMD
is SOOMD with g̃t+1 = g̃t + gt�D � gt + ht+1 � ht =
ht+1 �

Pt
s=t�D+1 gs.

The implication of this reduction of delayed online learning
to optimistic online learning is that any regret bound shown
for undelayed OFTRL or SOOMD immediately yields a
regret bound for ODFTRL and DOOMD under delay. As
we demonstrate in the remainder of the paper, this novel
connection between delayed and optimistic online learning
allows us to bound the regret of optimistic, self-tuning, and
tuning-free algorithms for the first time under delay.

Finally, it is worth reflecting on the key property of OFTRL
and SOOMD that enables the delay-to-optimism reduction:
each algorithm depends on gt and g̃t+1 only through the
sum g1:t + g̃t+1.2 For the “bad” hints of Lems. 1 and 2,
these sums are observable even though gt and g̃t+1 are not
separately observable at time t due to delay. A number of
alternatives to SOOMD have been proposed for optimistic
OMD (Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b;
Kamalaruban, 2016). Unlike SOOMD, these procedures all
incorporate optimism in two steps, as in the updates

wt+1/2 = argminw2W hgt,wi + B� (w,wt�1/2) and
wt+1 = argminw2W hg̃t+1,wi + B� (w,wt+1/2) (1)

described in Rakhlin & Sridharan (2013a, Sec. 2.2). It is
unclear how to reduce delayed OMD to an instance of one of
these two-step procedures, as knowledge of the unobserved
gt is needed to carry out the first step.

3.2. Delayed and Optimistc Regret Bounds

To demonstrate the utility of our delay-as-optimism perspec-
tive, we first present the following new regret bounds for
OFTRL and SOOMD, proved in Apps. B and C respectively.

Theorem 3 (OFTRL regret). If  is nonnegative, then, for

all u 2 W, the OFTRL iterates wt satisfy

RegretT (u)  � (u) + 1
�

PT
t=1 huber(kgt � g̃tk⇤, kgtk⇤).

Theorem 4 (SOOMD regret). If  is differentiable and

2For SOOMD, gt+ g̃t+1� g̃t = g1:t+ g̃t+1�(g1:t�1+ g̃t).

g̃T+1 , 0, then, 8u 2 W, the SOOMD iterates wt satisfy

RegretT (u)  B� (u,w0)+

1
�

PT
t=1 huber(kgt � g̃tk⇤, kgt + g̃t+1 � g̃tk⇤).

Both results feature the robust Huber penalty (Huber, 1964)

huber(x, y) , 1
2x

2
�

1
2 (|x| � |y|)2+  min( 12x

2
, |y||x|)

in place of the more common squared error term
1
2kgt � g̃tk

2
⇤. As a result, Thms. 3 and 4 strictly improve the

rate-optimal OFTRL and SOOMD regret bounds of Rakhlin
& Sridharan (2013a); Mohri & Yang (2016); Orabona (2019,
Thm. 7.28) and Joulani et al. (2017, Sec. 7.2) by revealing a
previously undocumented robustness to inaccurate hints g̃t.
We will use this robustness to large hint error kgt � g̃tk⇤ to
establish optimal regret bounds under delay.

As an immediate consequence of this regret analysis and our
delay-as-optimism perspective, we obtain the first general
analyses of FTRL and OMD with optimism and delay.

Theorem 5 (ODFTRL regret). If  is nonnegative, then,

for all u 2 W, the ODFTRL iterates wt satisfy

RegretT (u)  � (u) + 1
�

PT
t=1 bt,F for

bt,F , huber(kht �
Pt

s=t�D gsk⇤, kgtk⇤).

Theorem 6 (DOOMD regret). If  is differentiable and

hT+1 , gT�D+1:T , then, for all u 2 W, the DOOMD
iterates wt satisfy

RegretT (u)  B� (u,w0) +
1
�

PT
t=1 bt,O for

bt,O , huber(kht �
Pt

s=t�D gsk⇤, kgt�D + ht+1 � htk⇤).

Our results show a compounding of regret due to delay:
the bt,F term of Thm. 5 is of size O(D + 1) whenever
khtk⇤ = O(D + 1), and the same holds for bt,O of Thm. 6
if kht+1 � htk⇤ = O(1). An optimal setting of � therefore
delivers O(

p
(D + 1)T ) regret, yielding the minimax opti-

mal rate for adversarial learning under delay (Weinberger
& Ordentlich, 2002). Thms. 5 and 6 also reveal the height-
ened value of optimism in the presence of delay: in addition
to providing an effective guess of the future subgradient
gt, an optimistic hint can approximate the missing delayed
feedback (

Pt�1
s=t�D gs) and thereby significantly reduce the

penalty of delay. If, on the other hand, the hints are a poor
proxy for the missing loss subgradients, the novel huber
term ensures that we still only pay the minimax optimal
p

D + 1 penalty for delayed feedback.

Related work A classical approach to delayed feedback
in online learning is the so-called “replication” strategy
in which D + 1 distinct learners take turns observing and
responding to feedback (Weinberger & Ordentlich, 2002;
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Joulani et al., 2013; Agarwal & Duchi, 2011; Mesterharm,
2005). While minimax optimal in adversarial settings, this
strategy has the disadvantage that each learner only sees
T

D+1 losses and is completely isolated from the other repli-
cates, exacerbating the problem of short prediction horizons.
In contrast, we develop and analyze non-replicated delayed
online learning strategies that use a combination of opti-
mistic hinting and self-tuned regularization to mitigate the
effects of delay while retaining optimal worst-case behavior.

To our knowledge, Thm. 5 and its adaptive generalization
Thm. 10 provide the first general analysis of delayed FTRL
with optimism, apart from the concurrent work of Hsieh
et al. (2020, Thm. 1). Hsieh et al. (2020, Thm. 13) and
Quanrud & Khashabi (2015, Thm. 2.1) focus only on de-
layed gradient descent, Korotin et al. (2020) study Gen-
eral Hedging, and Joulani et al. (2016, Thm. 4) and Quan-
rud & Khashabi (2015, Thm. A.5) study non-optimistic
OMD under delay. Thms. 5, 6, and 10 strengthen these
results from the literature which feature a sum of sub-
gradient norms (

Pt�1
s=t�D kgsk⇤ or Dkgtk⇤) in place of

kht �
Pt�1

s=t�D gsk⇤. Even in the absence of optimism,
the latter can be significantly smaller: e.g., if the gradients
gs are i.i.d. mean-zero vectors, the former has size ⌦(D)
while the latter has expectation O(

p
D). In the absence of

optimism, McMahan & Streeter (2014) obtain a bound com-
parable to Thm. 5 for the special case of one-dimensional
unconstrained online gradient descent.

In the absence of delay, Cutkosky (2019) introduces meta-
algorithms for imbuing learning procedures with optimism
while remaining robust to inaccurate hints; however, unlike
OFTRL and SOOMD, the procedures of Cutkosky require
separate observation of g̃t+1 and each gt, making them
unsuitable for our delay-to-optimism reduction.

3.3. Tuning Regularizers with Optimism and Delay

The online learning algorithms introduced so far all include
a regularization parameter �. In theory and in practice,
these algorithms only achieve low regret if the regulariza-
tion parameter � is chosen appropriately. In standard FTRL,
for example, one such setting that achieves optimal regret

is � =

r PT
t=1 kgtk2

⇤
supu2U  (u) . This choice, however, cannot be

used in practice as it relies on knowledge of all future un-
observed loss subgradients. To make use of online learning
algorithms, the tuning parameter � is often set using coarse
upper bounds on, e.g., the maximum possible subgradient
norm. However, these bounds are often very conservative
and lead to poor real-world performance.

In the following sections, we introduce two strategies for
tuning regularization with optimism and delay. Sec. 4 in-
troduces the DORM and DORM+ algorithms, variants of
ODFTRL and DOOMD that are entirely tuning-free. Sec. 5

introduces the AdaHedgeD algorithm, an adaptive variant
of ODFTRL that is self-tuning; a sequence of regulariza-
tion parameters �t are set automatically using new, tighter
bounds on algorithm regret. All three algorithms achieve the
minimax optimal regret rate under delay, support optimism,
and have strong real-world performance as shown in Sec. 7.

4. Tuning-free Learning with Optimism
and Delay

Regret matching (RM) (Blackwell, 1956; Hart & Mas-
Colell, 2000) and regret matching+ (RM+) (Tammelin et al.,
2015) are online learning algorithms that have strong em-
pirical performance. RM was developed to find correlated
equilibria in two-player games and is commonly used to
minimize regret over the simplex. RM+ is a modification
of RM designed to accelerate convergence and used to ef-
fectively solve the game of Heads-up Limit Texas Hold’em
poker (Bowling et al., 2015). RM and RM+ support neither
optimistic hints nor delayed feedback, and known regret
bounds have a suboptimal scaling with respect to the prob-
lem dimension d (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). To extend these algorithms to the delayed
and optimistic setting and recover the optimal regret rate,
we introduce our generalizations, delayed optimistic regret

matching (DORM)

wt+1 = w̃t+1/h1, w̃t+1i for (DORM)

w̃t+1 , max(0, (r1:t�D + ht+1)/�)q�1

and delayed optimistic regret matching+ (DORM+)

wt+1 = w̃t+1/h1, w̃t+1i for h0 = w̃0 , 0, (DORM+)

w̃t+1 , max
�
0, w̃p�1

t + (rt�D + ht+1 � ht)/�
�q�1

,

Each algorithm makes use of an instantaneous regret vector
rt , 1hgt,wti�gt that quantifies the relative performance
of each expert with respect to the play wt and the linearized
loss subgradient gt. The updates also include a parameter
q � 2 and its conjugate exponent p = q/(q � 1) that is
set to recover the minimax optimal scaling of regret with
the number of experts (see Cor. 9). We note that DORM
and DORM+ recover the standard RM and RM+ algorithms
when D = 0, � = 1, q = 2, and ht = 0, 8t.

4.1. Tuning-free Regret Bounds

To bound the regret of the DORM and DORM+ plays, we
prove that DORM is an instance of ODFTRL and DORM+
is an instance of DOOMD. This connection enables us
to immediately provide regret guarantees for these regret-
matching algorithms under delayed feedback and with opti-
mism. We first highlight a remarkable property of DORM
and DORM+ that is the basis of their tuning-free nature.
Under mild conditions:
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The normalized DORM and DORM+ iterates wt

are independent of the choice of regularization
parameter �.

Lemma 7 (DORM and DORM+ are independent of �). If

the subgradient gt and hint ht+1 only depend on � through

(ws,�
q�1w̃s,gs�1,hs)st and (ws,�

q�1w̃s,gs,hs)st

respectively, then the DORM and DORM+ iterates (wt)t�1

are independent of the choice of � > 0.

Lem. 7, proved in App. E, implies that DORM and DORM+
are automatically optimally tuned with respect to �, even
when run with a default value of � = 1. Hence, these
algorithms are tuning-free, a very appealing property for
real-world deployments of online learning.

To show that DORM and DORM+ also achieve optimal
regret scaling under delay, we connect them to ODFTRL
and DOOMD operating on the nonnegative orthant with a
special surrogate loss ˆ̀

t (see App. D for our proof):

Lemma 8 (DORM is ODFTRL and DORM+ is DOOMD).
The DORM and DORM+ iterates are proportional to

ODFTRL and DOOMD iterates respectively with W , Rd
+,

 (w̃) = 1
2kw̃k

2
p, and loss ˆ̀

t(w̃) = hw̃, �rti.

Lem. 8 enables the following optimally-tuned regret bounds
for DORM and DORM+ run with any choice of �:

Corollary 9 (DORM and DORM+ regret). Under the as-

sumptions of Lem. 7, for all u 2 4d�1 and any choice of

� > 0, the DORM and DORM+ iterates wt satisfy

RegretT (u)  inf
�>0

�
2 kuk

2
p +

1
�(p�1)

PT
t=1 bt,q

=
q

kuk2
p

2(p�1)

PT
t=1 bt,q 

q
d2/q(q�1)

2

PT
t=1 bt,1

where hT+1 , rT�D+1:T and, for each c 2 [2, 1],

bt,c
(DORM)
= huber(kht �

Pt
s=t�D rskc, krtkc) and

bt,c
(DORM+)

= huber(kht �
Pt

s=t�D rsk2c ,

krt�D + ht+1 � htkc).

If, in addition, q = argminq0�2 d
2/q0(q0 � 1), then

RegretT (u) 

q
(2 log2(d) � 1)

PT
t=1 bt,1.

Cor. 9, proved in App. F, suggests a natural hinting strategy
for reducing the regret of DORM and DORM+: predict the
sum of unobserved instantaneous regrets

Pt
s=t�D rs. We

explore this strategy empirically in Sec. 7. Cor. 9 also high-
lights the value of the q parameter in DORM and DORM+:
using the easily computed value q = argminq0�2 d

2/q0(q0�

1) yields the minimax optimal
p
log2(d) dependence of re-

gret on dimension (Cesa-Bianchi & Lugosi, 2006; Orabona
& Pál, 2015). By Lem. 8, setting q in this way is equivalent

to selecting a robust 1
2k·k

2
p regularizer (Gentile, 2003) for

the underlying ODFTRL and DOOMD problems.

Related work Without delay, Farina et al. (2021) inde-
pendently developed optimistic versions of RM and RM+
by reducing them to OFTRL and a two-step variant of opti-
mistic OMD (1). Unlike SOOMD, this two-step optimistic
OMD requires separate observation of g̃t+1 and gt, mak-
ing it unsuitable for our delay-as-optimism reduction and
resulting in a different algorithm from DORM+ even when
D = 0. In addition, their regret bounds and prior bounds
for RM and RM+ (special cases of DORM and DORM+
with q = 2) have suboptimal regret when the dimension d

is large (Bowling et al., 2015; Zinkevich et al., 2007).

5. Self-tuned Learning with Optimism
and Delay

In this section, we analyze an adaptive version of ODFTRL
with time-varying regularization �t and develop strategies
for setting �t appropriately in the presence of optimism
and delay. We begin with a new general regret analysis of
optimistic delayed adaptive FTRL (ODAFTRL)

wt+1 = argmin
w2W

hg1:t�D + ht+1,wi + �t+1 (w)

(ODAFTRL)

where ht+1 2 Rd is an arbitrary hint vector revealed before
wt+1 is generated,  is 1-strongly convex with respect to a
norm k·k, and �t � 0 is a regularization parameter.
Theorem 10 (ODAFTRL regret). If  is nonnegative and

�t is non-decreasing in t, then, 8u 2 W, the ODAFTRL
iterates wt satisfy

RegretT (u)  �T (u) +
PT

t=1 min(bt,F

�t
,at,F ) with

bt,F , huber(kht �
Pt

s=t�D gsk⇤, kgtk⇤) and (2)

at,F , diam(W)min
�
kht �

Pt
s=t�D gsk⇤, kgtk⇤

�
.

The proof of this result in App. G builds on a new regret
bound for undelayed optimistic adaptive FTRL (OAFTRL).
In the absence of delay (D = 0), Thm. 10 strictly im-
proves existing regret bounds (Rakhlin & Sridharan, 2013a;
Mohri & Yang, 2016; Joulani et al., 2017) for OAFTRL
by providing tighter guarantees whenever the hinting error
kht �

Pt
s=t�D gtk⇤ is larger than the subgradient magni-

tude kgtk⇤. In the presence of delay, Thm. 10 benefits
both from robustness to hinting error in the worst case
and the ability to exploit accurate hints in the best case.
The bounded-domain factors at,F strengthen both standard
OAFTRL regret bounds and the concurrent bound of Hsieh
et al. (2020, Thm. 1) when diam(W) is small and will en-
able us to design practical �t-tuning strategies under delay
without any prior knowledge of unobserved subgradients.
We now turn to these self-tuning protocols.
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5.1. Conservative Tuning with Delayed Upper Bound

Setting aside the at,F bounded-domain factors in Thm. 10

for now, the adaptive sequence �t =
q Pt

s=1 bs,F

supu2U  (u) is
known to be a near-optimal minimizer of the ODAFTRL
regret bound (McMahan, 2017, Lemma 1). However, this
value is unobservable at time t. A common strategy is to

play the conservative value �t =
r

(D+1)B0+
Pt�D�1

s=1 bs,F

supu2U  (u) ,

where B0 is a uniform upper bound on the unobserved bs,F

terms (Joulani et al., 2016; McMahan & Streeter, 2014). In
practice, this requires computing an a priori upper bound
on any subgradient norm that could possibly arise and often
leads to extreme over-regularization (see Sec. 7).

As a preliminary step towards fully adaptive settings of �t,
we analyze in App. H a new delayed upper bound (DUB)
tuning strategy which relies only on observed bs,F terms
and does not require upper bounds for future losses.

Theorem 11 (DUB regret). Fix ↵ > 0, and, for at,F ,bt,F

as in (2), consider the delayed upper bound (DUB) sequence

�t+1 = 2
↵ maxjt�D�1 aj�D+1:j,F (DUB)

+ 1
↵

qPt�D
i=1 a2i,F + 2↵bi,F .

If  is nonnegative, then, for all u 2 W, the ODAFTRL
iterates wt satisfy

RegretT (u) 
� (u)

↵ + 1
�

�
2maxt2[T ] at�D:t�1,F +

qPT
t=1 a

2
t,F + 2↵bt,F

�
.

As desired, the DUB setting of �t depends only on previ-
ously observed at,F and bt,F terms and achieves optimal
regret scaling with the delay period D. However, the terms
at,F , bt,F are themselves potentially loose upper bounds for
the instantaneous regret at time t. In the following section,
we show how the DUB regularization setting can be refined
further to produce AdaHedgeD adaptive regularization.

5.2. Refined Tuning with AdaHedgeD

As noted by Erven et al. (2011); de Rooij et al. (2014);
Orabona (2019), the effectiveness of an adaptive regular-
ization setting �t that uses an upper bound on regret (such
as bt,F ) relies heavily on the tightness of that bound. In
practice, we want to set �t using as tight a bound as possi-
ble. Our next result introduces a new tuning sequence that
can be used with delayed feedback and is inspired by the
popular AdaHedge algorithm (Erven et al., 2011). It makes
use of the tightened regret analysis underlying Thm. 10 to
enable tighter settings of �t compared to DUB, while still
controlling algorithm regret (see proof in App. I).

Theorem 12 (AdaHedgeD regret). Fix ↵ > 0, and consider

the delayed AdaHedge-style (AdaHedgeD) sequence

�t+1 = 1
↵

Pt�D
s=1 �s for (AdaHedgeD)

�t , min(Ft+1(wt,�t) � Ft+1(w̄t,�t), hgt,wt � w̄ti,

Ft+1(ŵt,�t) � Ft+1(w̄t,�t) + hgt,wt � ŵti)+

with w̄t , argminw2W Ft+1(w,�t), (3)

ŵt , argminw2W Ft+1(w,�t) +

min( kgtk⇤
kht�gt�D:tk⇤

, 1)hht � gt�D:t,wi,

and Ft+1(w,�t) , �t (w) + hg1:t,wi.

If  is nonnegative, then, for all u 2 W, the ODAFTRL
iterates satisfy

RegretT (u) 
� (u)

↵ + 1
�

�
2maxt2[T ] at�D:t�1,F +

qPT
t=1 a

2
t,F + 2↵bt,F

�
.

Remarkably, Thm. 12 yields a minimax optimal
O(

p
(D + 1)T + D) dependence on the delay parameter

and nearly matches the Thm. 5 regret of the optimal constant
� tuning. Although this regret bound is identical to that in
Thm. 11, in practice the �t values produced by AdaHedgeD
can be orders of magnitude smaller than those of DUB,
granting additional adaptivity. We evaluate the practical
implications of these �t settings in Sec. 7.

As a final note, when  is bounded on U, we recommend
choosing ↵ = supu2U  (u) so that  (u)↵  1. For negative
entropy regularization  (u) =

Pd
j=1 uj ln(uj) + ln(d) on

the simplex U = W = 4d�1, this yields ↵ = ln(d) and a
regret bound with minimax optimal

p
ln(d) dependence on

d (Cesa-Bianchi & Lugosi, 2006; Orabona & Pál, 2015).

Related work Our AdaHedgeD �t terms differ from
standard AdaHedge increments (see, e.g., Orabona, 2019,
Sec. 7.6) due to the accommodation of delay, the incorpora-
tion of optimism, and the inclusion of the final two terms in
the min. These non-standard terms are central to reducing
the impact of delay on our regret bounds. Prior and con-
current approaches to adaptive tuning under delay do not
incorporate optimism and require an explicit upper bound
on all future subgradient norms, a quantity which is often
difficult to obtain or very loose (McMahan & Streeter, 2014;
Joulani et al., 2016; Hsieh et al., 2020). Our optimistic al-
gorithms, DUB and AdaHedgeD, admit comparable regret
guarantees (Thms. 11 and 12) but require no prior knowl-
edge of future subgradients.

6. Learning to Hint with Delay
As we have seen, optimistic hints play an important role in
online learning under delay: effective hinting can counteract
the increase in regret under delay. In this section, we con-
sider the problem of choosing amongst several competing
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hinting strategies. We show that this problem can again be
treated as a delayed online learning problem. In the fol-
lowing, we will call the original online learning problem
the “base problem” and the learning-to-hint problem the
“hinting problem.”

Suppose that, at time t, we observe the hints g̃t of m differ-
ent hinters arranged into a d ⇥ m matrix Ht. Each column
of Ht is one hinter’s best estimate of the sum of missing
loss subgradients gt�D:t. Our aim is to output a sequence
of combined hints ht(!t) , Ht!t with low regret relative
to the best constant combination strategy ! 2 ⌦ , 4m�1

in hindsight. To achieve this using delayed online learning,
we make use of a convex loss function lt(!) for the hint
learner that upper bounds the base learner regret.
Assumption 1 (Convex regret bound). For any hint se-

quence (ht)Tt=1 and u 2 ⌦, the base problem admits the

regret bound RegretT (u)  C0(u)+C1(u)
qPT

t=1 ft(ht)

for C1(u) � 0 and convex functions ft independent of u.

As we detail in App. K, Assump. 1 holds for all of the
learning algorithms introduced in this paper. For example,
by Cor. 9, if the base learner is DORM, we may choose

C0(u) = 0, C1(u) =
q

kuk2
p

2(p�1) , and the O(D) convex
function ft(ht) = krtkqkht �

Pt
s=t�D rskq � bt,q .3

For any base learner satisfying Assump. 1, we choose
lt(!) = ft(Ht!) as our hinting loss, use the tuning-free
DORM+ algorithm to output the combination weights !t

on each round, and provide the hint ht(!t) = Ht!t to the
base learner. The following result, proved in App. J, shows
that this learning to hint strategy performs nearly as well as
the best constant hint combination strategy in restrospect.
Theorem 13 (Learning to hint regret). Suppose the base

problem satisfies Assump. 1 and the hinting problem is

solved with DORM+ hint iterates !t, hinting losses lt(!) =
ft(Ht!), no meta-hints for the hinting problem, and q =
argminq0�2 m

2/q0(q0 � 1). Then the base problem with

hints ht(!t) = Ht!t satisfies

RegretT (u)  C0(u) + C1(u)
q
inf!2⌦

PT
t=1 ft(ht(!))

+ C1(u)
�
(2 log2(m) � 1)( 12⇠T +

PT�1
t=1 huber(⇠t, ⇣t))

�1/4

for ⇠t , 4(D + 1)
Pt

s=t�D k�sk
2
1, �t 2 @lt(!t),

and ⇣t , 4k�t�Dk1
Pt

s=t�D k�sk1.

To quantify the size of this regret bound, con-
sider again the DORM base learner with ft(ht) =
krtkqkht �

Pt
s=t�D rskq. By Lem. 26 in App. K,

k�tk1  d
1/q

kHtk1krtkq for kHtk1 the maximum ab-
solute entry of Ht. Each column of Ht is a sum D + 1

3The alternative choice ft(ht) = 1
2kht �

Pt
s=t�D gsk

2
q also

bounds regret but may have size ⇥(D2) rather than O(D).

subgradient hints, so kHtk1 is O(D + 1). Thus, for this
choice of hinter loss, the huber(⇠t, ⇣t) term is O((D+1)3),
and the hint learner suffers only O(T 1/4(D + 1)3/4) ad-
ditional regret from learning to hint. Notably, this addi-
tive regret penalty is O(

p
(D + 1)T ) if D = O(T ) (and

o(
p
(D + 1)T ) when D = o(T )), so the learning to hint

strategy of Thm. 13 preserves minimax optimal regret rates.

Related work Rakhlin & Sridharan (2013a, Sec. 4.1)
propose and analyze a method to learn optimism strategies
for a two-step OMD base learner. Unlike Thm. 13, the
approach does not accommodate delay, and the analyzed
regret is only with respect to single hinting strategies ! 2

{ej}j2[m] rather than combination strategies, ! 2 4m�1.

7. Experiments
We now apply the online learning techniques developed
in this paper to the problem of adaptive ensembling for
subseasonal forecasting. Our experiments are based on
the subseasonal forecasting data of Flaspohler et al. (2021)
that provides the forecasts of d = 6 machine learning and
physics-based models for both temperature and precipita-
tion at two forecast horizons: 3-4 weeks and 5-6 weeks. In
operational subseasonal forecasting, feedback is delayed;
models make D = 2 or 3 forecasts (depending on the fore-
cast horizon) before receiving feedback. We use delayed,
optimistic online learning to play a time-varying convex
combination of input models and compete with the best
input model over a year-long prediction period (T = 26
semimonthly dates). The loss function is the geographic
root-mean squared error (RMSE) across 514 locations in
the Western United States.

We evaluate the relative merits of the delayed online learning
techniques presented by computing yearly regret and mean
RMSE for the ensemble plays made by the online leaner
in each year from 2011-2020. Unless otherwise specified,
all online learning algorithms use the recent g hint g̃s,
which approximates each unobserved subgradient at time
t with the most recent observed subgradient gt�D�1. See
App. L for full experimental details, App. N for algorithmic
details, and App. M for extended experimental results.

Competing with the best input model The primary ben-
efit of online learning in this setting is its ability to achieve
small average regret, i.e., to perform nearly as well as the
best input model in the competitor set U without knowing
which is best in advance. We run our three delayed online
learners—DORM, DORM+, and AdaHedgeD—on all four
subseasonal prediction tasks and measure their average loss.

The average yearly RMSE for the three online learning al-
gorithms and the six input models is shown in Table 1. The
DORM+ algorithm tracks the performance of the best input
model for all tasks except Temp. 5-6w. All online learning
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Table 1: Average RMSE of the 2011-2020 semimonthly forecasts: The average RMSE for online learning algorithms (left) and input
models (right) over a 10-year evaluation period with the top-performing learners and input models bolded and blue. In each task, the
online learners compare favorably with the best input model and learn to downweight the lower-performing candidates, like the worst
models italicized in red.

ADAHEDGED DORM DORM+ MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6

PRECIP. 3-4W 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.344

PRECIP. 5-6W 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257

TEMP. 3-4W 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508

TEMP. 5-6W 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2.569

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�20

�10

0

10

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 21.726)

DORM (RMSE: 21.731)

DORM+ (RMSE: 21.675)

Figure 1: Overall performance: Yearly cumulative regret under
RMSE loss for the the Precip. 3-4w task. The zero line corresponds
to the performance of the best input model in a given year.

algorithms achieve negative regret for both precipitation
tasks. Fig. 1 shows the yearly cumulative regret (in terms
of the RMSE loss) of the online learning algorithms over
the 10-year evaluation period. There are several years (e.g.,
2012, 2014, 2020) in which all online learning algorithms
substantially outperform the best input forecasting model.
The consistently low regret year-to-year of DORM+ com-
pared to DORM and AdaHedgeD makes it a promising
candidate for real-world delayed subseasonal forecasting.
Notably, RM+ (a special case of DORM+) is known to have
small tracking regret, i.e., it competes well even with strate-
gies that switch between input models a bounded number
of times (Tammelin et al., 2015, Thm. 2). We suspect that
this is one source of DORM+’s superior performance. We
also note that the self-tuned AdaHedgeD performs compa-
rably to the the optimally-tuned DORM, demonstrating the
effectiveness of our self-tuning strategy.

Impact of regularization We evaluate the impact of the
three regularization strategies developed in this paper: 1)
the upper bound DUB strategy, 2) the tighter AdaHedgeD
strategy, and 3) the DORM+ algorithm that is tuning-free.
This tuning-free property has evident practical benefits, as
this section demonstrates.

Fig. 2 shows the yearly regret of the DUB, AdaHedgeD,
and DORM+ algorithms. A consistent pattern appears in
the yearly regret: DUB has moderate positive regret, Ada-
HedgeD has both the largest positive and negative regret
values, and DORM+ sits between these two extremes. If we
examine the weights played by each algorithm (Fig. 3), the

weights of DUB and AdaHedgeD appear respectively over-
and under-regularized compared to DORM+ (the top model
for this task). DUB’s use of the upper bound bt,F results
in a very large regularization setting (�T = 142.881) and
a virtually uniform weight setting. AdaHedgeD’s tighter
bound �t produces a value for �T = 3.005 that is two or-
ders of magnitude smaller. However, in this short-horizon
forecasting setting, AdaHedgeD’s aggressive plays result
in higher average RMSE. By nature of it’s �t-free updates,
DORM+ produces more moderately regularized plays wt

and negative regret.

To replicate or not to replicate In this section, we com-
pare the performance of replicated and non-replicated vari-
ants of our DORM+ algorithm. Both algorithms perform
well (see App. M.3), but in all tasks, DORM+ outperforms
replicated DORM+ (in which D + 1 independent copies
of DORM+ make staggered predictions). Fig. 4 provides
an example of the weight plots produced by the replication
strategy in the Temp. 5-6w task with D = 3. The sepa-
rate nature of the replicated learner’s plays is evident in the
weight plots and leads to an average RMSE of 2.315, versus
2.303 for DORM+ in the Temp. 5-6w task.

Learning to hint Finally, we examine the effect of op-
timism on the DORM+ algorithms and the ability of our
“learning to hint” strategy to recover the performance of
the best optimism strategy in retrospect. Following the
hint construction protocol in App. N.2, we run the DORM+
base algorithm with m = 4 subgradient hinting strategies:
g̃s = gt�D�1 (recent g), g̃s = gs�D�1 (prev g),

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

�4

�2

0

2

4

Cumulative regret (RMSE loss)

AdaHedgeD (RMSE: 2.273)

DORM+ (RMSE: 2.247)

DUB (RMSE: 2.258)

Figure 2: Regret of regularizers: Yearly cumulative regret (in
terms of the RMSE loss) for the three regularization strategies for
the Temp. 3-4w task.
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Regularization �t

AdaHedgeD (�T = 3.005)

DUB (�T = 142.881)

Figure 3: Impact of regularization: The plays wt of online learning algorithms used to combine the input models for the Temp. 3-4w
task in the 2020 evaluation year. The weights of DUB and AdaHedgeD appear respectively over and under regularized compared to
DORM+ (the top model for this task) due to their selection of regularization strength �t (right).
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Replicated DORM+ weights wt

Figure 4: To replicate or not to replicate: The plays wt of stan-
dard DORM+ and replicated DORM+ algorithms for the Temp. 5-
6w task in the final evaluation year.
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learned (RMSE: 21.745)

mean g (RMSE: 21.830)

none (RMSE: 21.796)

prev g (RMSE: 21.727)

recent g (RMSE: 21.675)

Figure 5: Learning to hint: Yearly cumulative regret (in terms of
the RMSE loss) for the adaptive hinting and four constant hinting
strategies for the Precip. 3-4w task.

g̃s = D+1
t�D�1g1:t�D�1 (mean g), or g̃s = 0 (none). We

also use DORM+ as the meta-algorithm for hint learning
to produce the learned optimism strategy that plays a
convex combination of the four hinters. In Fig. 5, we first
note that several optimism strategies outperform the none
hinter, confirming the value of optimism in reducing regret.
The learned variant of DORM+ avoids the worst-case
performance of the individual hinters in any given year (e.g.,
2015), while staying competitive with the best strategy (al-
though it does not outperform the dominant recent g

strategy overall). We believe the performance of the online
hinter could be further improved by developing tighter con-
vex bounds on the regret of the base problem in the spirit of
Assump. 1.

8. Conclusion
In this work, we confronted the challenges of delayed feed-
back and short regret horizons in online learning with opti-
mism, developing practical non-replicated, self-tuned and
tuning-free algorithms with optimal regret guarantees. Our
“delay as optimism” reduction and our refined analysis of
optimistic learning produced novel regret bounds for both
optimistic and delayed online learning and elucidated the
connections between these two problems. Within the sub-
seasonal forecasting domain, we demonstrated that delayed
online learning methods can produce zero-regret forecast en-
sembles that perform robustly from year-to-year. Our results
highlighted DORM+ as a particularly promising candidate
due to its tuning-free nature and small tracking regret.

In future work, we are excited to further develop optimism
strategies under delay by 1) employing tighter convex loss
bounds on the regret of the base algorithm to improve the
learning to hint algorithm, 2) exploring the relative impact of
hinting for “past” (gt�D:t�1) versus “future” (gt) missing
subgradients (see App. M.5 for an initial exploration), and
3) developing adaptive self-tuning variants of the DOOMD
algorithm. Within the subseasonal domain, we plan to lever-
age the flexibility of our optimism formulation to explore
hinting strategies that use meteorological expertise to im-
prove beyond the generic mean and past subgradient hints
and to deploy our open-source subseasonal forecasting al-
gorithms operationally.
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tian Kroer for discussions on RM and RM+.



Online Learning with Optimism and Delay

References
Agarwal, A. and Duchi, J. C. Distributed delayed stochastic opti-

mization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
and Weinberger, K. Q. (eds.), Advances in Neural Information

Processing Systems, volume 24. Curran Associates, Inc., 2011.

Azoury, K. S. and Warmuth, M. K. Relative loss bounds for on-line
density estimation with the exponential family of distributions.
Machine Learning, 43(3):211–246, 2001.

Blackwell, D. An analog of the minimax theorem for vector
payoffs. Pacific Journal of Mathematics, 6(1):1–8, 1956.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. Heads-
up limit hold’em poker is solved. Science, 347(6218):145–149,
2015. ISSN 0036-8075. doi: 10.1126/science.1259433.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and games.
Cambridge university press, 2006.

Chiang, C.-K., Yang, T., Lee, C.-J., Mahdavi, M., Lu, C.-J., Jin,
R., and Zhu, S. Online optimization with gradual variations.
In Mannor, S., Srebro, N., and Williamson, R. C. (eds.), Pro-

ceedings of the 25th Annual Conference on Learning Theory,
volume 23, pp. 6.1–6.20, Edinburgh, Scotland, 25–27 Jun 2012.

Cutkosky, A. Combining online learning guarantees. In Beygelz-
imer, A. and Hsu, D. (eds.), Proceedings of the Thirty-Second

Conference on Learning Theory, volume 99 of Proceedings

of Machine Learning Research, pp. 895–913, Phoenix, USA,
25–28 Jun 2019. PMLR.

Danskin, J. M. The theory of max-min and its application to

weapons allocation problems, volume 5. Springer Science &
Business Media, 2012.

de Rooij, S., van Erven, T., Grünwald, P. D., and Koolen, W. M.
Follow the leader if you can, hedge if you must. Journal of

Machine Learning Research, 15(37):1281–1316, 2014.

Erven, T., Koolen, W. M., Rooij, S., and Grünwald, P. Adaptive
hedge. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., and Weinberger, K. Q. (eds.), Advances in Neural Informa-

tion Processing Systems, volume 24, pp. 1656–1664. Curran
Associates, Inc., 2011.

Farina, G., Kroer, C., and Sandholm, T. Faster game solving via
predictive blackwell approachability: Connecting regret match-
ing and mirror descent. Proceedings of the AAAI Conference

on Artificial Intelligence, 35(6):5363–5371, May 2021.

Flaspohler, G., Orabona, F., Cohen, J., Mouatadid, S., Oprescu,
M., Orenstein, P., and Mackey, L. Replication Data for: Online
Learning with Optimism and Delay, 2021. URL https://doi.org/
10.7910/DVN/IOCFCY.

Gentile, C. The robustness of the p-norm algorithms. Machine

Learning, 53(3):265–299, 2003.

Hart, S. and Mas-Colell, A. A simple adaptive procedure leading to
correlated equilibrium. Econometrica, 68(5):1127–1150, 2000.

Hsieh, Y.-G., Iutzeler, F., Malick, J., and Mertikopoulos, P. Multi-
agent online optimization with delays: Asynchronicity, adaptiv-
ity, and optimism. arXiv preprint arXiv:2012.11579, 2020.

Huber, P. J. Robust Estimation of a Location Parameter. The

Annals of Mathematical Statistics, 35(1):73 – 101, 1964. doi:
10.1214/aoms/1177703732. URL https://doi.org/10.1214/aoms/
1177703732.

Hwang, J., Orenstein, P., Cohen, J., Pfeiffer, K., and Mackey, L.
Improving subseasonal forecasting in the western U.S. with
machine learning. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data

Mining, pp. 2325–2335, 2019.

Joulani, P., Gyorgy, A., and Szepesvári, C. Online learning under
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