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Abstract

Machine Learning or Artificial Intelligence algorithms have gained considerable scrutiny in
recent times owing to their propensity towards imitating and amplifying existing prejudices
in society. This has led to a niche but growing body of work that identifies and attempts to
fix these biases. A first step towards making these algorithms more fair is designing metrics
that measure unfairness. Most existing work in this field deals with either a binary view of
fairness (protected vs. unprotected groups) or politically defined categories (race or gender).
Such categorization misses the important nuance of intersectionality - biases can often be
amplified in subgroups that combine membership from different categories, especially if
such a subgroup is particularly underrepresented in historical platforms of opportunity.

In this paper, we discuss why fairness metrics need to be looked at under the lens of
intersectionality, identify existing work in intersectional fairness, suggest a simple worst case
comparison method to expand the definitions of existing group fairness metrics to incorporate
intersectionality, and finally conclude with the social, legal and political framework to handle
intersectional fairness in the modern context.

Keywords: intersectionality, fair machine learning, social justice, ethical artificial intelli-
gence

1. Introduction

The use of machine learning algorithms is ubiquitous in the developed world. It has become
an integral part of society, affecting the lives of millions of people. Algorithmic decisions
vary from low-stakes determinations, like product or film recommendations, to high-impact
like loan or credit approval Mukerjee et al. (2002), hiring recommendations Bogen and
Rieke (2018), facial recognition Vasilescu and Terzopoulos (2002) and prison recidivism
Corbett-Davies and Goel (2018). With this direct impact on people’s lives, the need for
fair and unbiased algorithms is paramount. It is critical that algorithms do not replicate
and enhance existing societal biases, including those rooted in differences of race, gender, or
sexual orientation.

To tackle these problems, both fairness and bias need to be clearly defined. Currently,
there does not exist a single universally agreed upon definition of fairness. Anti-discrimination
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legislation exists in various jurisdictions around the world. In the US, anti-discrimination
laws exist under the Civil Rights Act Berg (1964), and under specific areas like credit lending
1 and housing2. There have also been efforts to introduce legislation combating algorithmic
bias3. In the European Union, the General Data Protection Regulation (GDPR) provides for
regulations regarding digital profiling, data collection, and a “right to explanation” Goodman
and Flaxman (2017). Under Indian law, quotas for scheduled castes, scheduled tribes and
other backward classes are mandated in public education and government employment.4

We begin with the broad definition of fairness as “the absence of prejudice or preference
for an individual or group based on their characteristics”. Bias can also exist in a variety of
forms. Mehrabi et al. (2019) provides an excellent overview on the differing types of bias
and discrimination. In general, a fair machine learning algorithm is one that does not favor
or make prejudice towards an individual or a group.

While most early fairness research focused on binary fairness metrics (protected vs. un-
protected groups), newer methods to address fairness have begun to incorporate intersectional
frameworks. These frameworks are derived from the third wave of feminist thought, which
is rooted in the understanding of the interconnected nature of social categories, like race,
gender, sexual orientation, and class Crenshaw (1989). The intersection of these categories
creates differing levels of privilege or disadvantage for the various possible subgroups. There
exist legal precedents for discrimination under an intersectional lens : The Equal Employment
Opportunity Commission (EEOC) describes some Intersectional Discrimination/Harassment
examples5. Buolamwini and Gebru (2018) examined gender classification algorithms for
facial image data and found that they performed substantially better on male faces than
female faces. However, the largest performance drops came when both race and gender were
considered, with darker skinned women disproportionately affected having a misclassification
rate of ≈30%.

The example in Figure 1 describes the importance of intersectional fairness. In the
figure, we observe equal numbers of black and white people pass. Similarly, there is an equal
number of men and women passing. However, this classification is unfair because we don’t
have any black women and white men that passed, and all black men and white women
passed. We observe the bias only while looking at the subgroups when we take race and
gender as protected attributes. This phenomenon was called “Fairness Gerrymandering” by
Kearns et al. (2018).

Additionally, there are minorities that have historically faced discrimination around
the world, but due to their sparse population, empirical evidence of discrimination against
them is difficult to trace, for example, the indigenous population Paradies (2006); King
et al. (2009), or trans people Feldman et al. (2016); Reisner et al. (2016); Bockting et al.
(2016). This causes machine learning practitioners to either disinclude these groups from
their training datasets due to statistical insignificance, or worse, conflate them with other

1. https://www.justice.gov/crt/equal-credit-opportunity-act-3

2. https://www.justice.gov/crt/fair-housing-act-1

3. https://www.congress.gov/bill/116th-congress/house-bill/2231/all-info

4. http://www.legalservicesindia.com/article/1145/Reservations-In-India.html

5. https://www.eeoc.gov/initiatives/e-race/significant-eeoc-racecolor-casescovering-private

-and-federal-sectors#intersectional
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Figure 1: An example of “fairness gerrymandering”

minorities to create a general “protected” category, which leads to the same sort of neglected
bias as shown in figure 1.

In this paper, we discuss the notion of intersectional group fairness. After introducing
existing related work, we define a combinatorial approach giving subsets of the population.
With this definition of subgroups, we introduce a measure of the worst case disparity using
existing fairness metrics, to discover biases against underserved subgroups. We then show
how this method can be applied to classification models, ranking models, and models with
continuous output. We end the paper with a discussion about the limitations of our approach
and future work.

2. Related Work

2.1. Individual and Group Fairness

Fair machine learning differentiates group and individual fairness measures. While group
fairness metrics focus on treating two different groups equally, individual fairness metrics
focus on treating similar individuals similarly. Binns (2019) introduces those two notions
and discusses the motivations behind individual and group fairness. In this paper, we focus
on group fairness metrics.

2.2. Binary fairness metrics

A large majority of research in algorithmic fairness has covered fairness metrics for a single
protected attribute Corbett-Davies and Goel (2018). Hardt et al. (2016) introduces the
definitions of Equalized odds and equal opportunity, two measures for discrimination against
a binary sensitive attribute. Verma and Rubin (2018) collected some known binary fairness
metrics for classification models and demonstrated each metric with a unique example on
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the German credit dataset. In their example, the protected class is Gender, which has two
values female and male.

2.3. Intersectional Fairness

More recently, however, some work has begun to address the issue of intersectionality in
AI by providing statistical frameworks that control for bias within multiple subgroups.
Hébert-Johnson et al. (2018) introduces the idea of multi-calibration which gives meaningful
predictions for overlapping subgroups in a larger protected group. Kearns et al. (2018)
developed an analogous method named rich subgroup fairness for false positive and negative
constraints that hold over an infinitely large collection of subgroups. Kim et al. (2019) extend
these methods for classifiers to be equally accurate on a combinatorially large collection of all
subgroups. Mary et al. (2019) present the Renyi correlation coefficient as a fairness metric
for datasets with continuous protected attributes. Finally, Foulds et al. (2020) introduce
differential fairness (DF), as an intersectional fairness metric.

3. Intersectional group fairness metrics

In this section, we discuss our intersectional fairness metrics framework. We outline our
definition of a subgroup of the population, define a worst case disparity metric that we call
the min-max ratio and describe how we can operationalize the notion of min-max ratio to
encompass intersectionality in existing metrics of fairness.

3.1. Subgroup definition

For the purposes of this paper, similar to Kearns et al. (2018), we define a subgroup sga1....an
as a set containing the intersection of all members who belong to groups ga1 through gan ,
where a1, a2...an are marginal protected attributes, like race, gender, etc. Formally,

sga1×a2×...×an = ga1 ∩ ga2 ... ∩ gan (1)

Hence, for example, if g1(race) ∈ {black, white} and g2(gender) ∈ {man, woman}, then
sg ∈ {black women, black men, white women, white men} and N = |sg| = 2× 2 = 4.

This combinatorial, or cartesian product of attributes approach gives us subsets of the
original dataset, where in each subgroup, the members have all the protected attributes of
the groups they were composed of.

3.2. Worst Case Disparity

We introduce a simple concept to measure the worst case disparity using existing fairness
metrics to incorporate intersectionality - the min-max ratio. In the vein of Rawls (2001)
principle for distributive justice, the idea essentially is to measure the value of the given
fairness metric for every subgroup sgi then take the ratio of the minimum and maximum
values from this given list. The further this ratio is from 1, the greater the disparity is
between subgroups. This min-max ratio technique allows us to encompass the
entire breadth of possible subgroups in a dataset, by considering the worst case
scenario in terms of adverse impact. For fairness metrics that are already comparative
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ratios of two groups, we redefine it by calculating the said ratio for all possible permutations
of two subgroups and then simply take the minimum, also the worst possible case.

We discuss some of the most commonly used metrics in the literature below and show
how we use the worst possible case framing to incorporate intersectionality.

3.3. Fair Classification metrics

Several fair classification metrics exist in literature. We discuss four group fairness metrics
below from Mehrabi et al. (2019) and Gartner (2020).

3.3.1. Demographic parity

According to demographic parity, the proportion of each segment of a protected class should
receive positive outcomes at equal rates. Mathematically, demographic parity compares the
pass rate (rate of positive outcome) of two groups. Demographic parity is satisfied for a
predictor Ŷ and for a member A if:

P (Ŷ |A ∈ sgi) = P (Ŷ |A ∈ sgj);∀i, j ∈ N, i 6= j (2)

where N is the total number of subgroups. Demographic parity is also known as statistical
parity Dwork et al. (2012); Kusner et al. (2017).

Using our worst case, min-max ratio definition, Demographic parity ratio (DPR) would
be defined as:

DPR =
min{P (Ŷ |A ∈ sgi)∀i ∈ N}
max{P (Ŷ |A ∈ sgi)∀i ∈ N}

(3)

Disparate impact, as defined under the guideline by the Equal Employment Opportunity
Commission et al. (1979) is similar to the demographic parity metric. It is intended as
a way to measure indirect and unintentional discrimination in which certain decisions
disproportionately affect members of a protected group. Disparate impact compares the
pass rate of one group versus another. The Four-Fifths rule states that the ratio of the pass
rate of group 1 to the pass rate of group 2 has to be greater than 80% (groups 1 and 2
interchangeable). Using our worst case definition, intersectional disparate impact (DI) is
defined as the minimum disparate impact between all possible pairs of subgroups sg.

DI = min

{
P (Ŷ |A ∈ sgi)
P (Ŷ |A ∈ sgj)

;∀i, j ∈ N, i 6= j

}
(4)

3.3.2. Conditional statistical parity

Conditional statistical parity extends demographic parity by permitting a set of legitimate
attributes to affect the outcome Corbett-Davies et al. (2017). Conditional statistical parity
is satisfied for a predictor Ŷ , a member A with a set of legitimate attributes L if:

P (Ŷ |L = 1, A ∈ sgi) = P (Ŷ |L = 1, A ∈ sgj)∀i, j ∈ N, i 6= j (5)
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Using the worst case, min-max ratio definition, Conditional statistical parity ratio (CSPR)
would be defined just like equation 3.3.1:

CSPR =
min{P (Ŷ |L = 1, A ∈ sgi)∀i ∈ N}
max{P (Ŷ |L = 1, A ∈ sgi)∀i ∈ N}

(6)

3.3.3. Equal opportunity

Equal opportunity or True Positive Rate Parity states that all members should be treated
equally or similarly and not disadvantaged by prejudice or bias. Mathematically, it compares
True Positive Rate (TPR) of the classifier between the protected group and the unprotected
group6 Hardt et al. (2016). Equal opportunity for a binary predictor Ŷ and a member A, is
satisfied if:

P (Ŷ = 1|A ∈ sgi, Y = 1) = P (Ŷ = 1|A ∈ sgj , Y = 1)∀i, j ∈ N, i 6= j (7)

Using the worst case, min-max ratio definition, Equal opportunity ratio (EOppR) would
be defined as:

EOppR =
min{P (Ŷ = 1|A ∈ sgi, Y = 1)∀i ∈ N}
max{P (Ŷ = 1|A ∈ sgi, Y = 1)∀i ∈ N}

(8)

In a similar vein, there can exist True Negative Rate Parity, False Positive Rate Parity
and False Negative Rate Parity. Hardt et al. (2016) propose Equalized Odds as a method to
generalize the Equal Opportunity metric by comparing all these different parities.

3.3.4. Group Benefit Equality

Group Benefit Equality, introduced by Gartner (2020) aims to be useful in the domain of
healthcare. Group benefit equality measures the predicted rate of passing for a subgroup
compared to the actual rate of passing. Mathematically, this is defined as:

P (Ŷ |A ∈ sgi) = P (Y |A ∈ sgi)∀i ∈ N (9)

And, Group benefit ratio for a subgroup is defined as:

GBRsgi =
P (Ŷ |A ∈ sgi)
P (Y |A ∈ sgi)

; ∀i ∈ N (10)

Using the worst case, min-max ratio definition, Group benefit ratio (GBR INT) would
be defined intersectionally as:

GBR INT =
min{GBRsgi ,∀i ∈ N}
max{GBRsgi , ∀i ∈ N}

(11)

6. TPR is the probability that a ground truth positive observation is correctly classified as positive.
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3.4. Multi-class classification models

For multiclass classification models, we present a modified version of the Equalized Odds
metric, except instead of a binary positive or negative label, we measure the odds ratio for
each possible discrete output, and then take the worst odds ratio among all outputs.

For instance, if a multiclass classifier has five possible output classes, we calculate the
min-max ratio for each output class y, and then take the minimum of those five values as
our final metric, since it is the worst possible scenario. Formally, Multiclass Equalized Odds
Ratio (M-EOddR) is defined as:

M-EOddR = min

{
min{P (Ŷ = yk|A ∈ sgi),∀i ∈ N}
max{P (Ŷ = yk|A ∈ sgi), ∀i ∈ N}

}
∀k ∈ K (12)

where K is the set of all possible output classes. The closer the value of M-EOddR is to
1, the lower the disparity is of the classifier’s performance among the various subgroups for
all possible output classes.

Figure 2: KL divergence example between two distributions adapted from Veen et al.
(2018). In this example π1 is a standard normal distribution and π2 is a normal distribution
with a mean of 1 and a variance of 1. The value of the KL divergence is equal to the area
under the curve of the function (green line). The area under the green line above the x-axis

adds to the divergence, while the area under the x-axis subtracts from the divergence.

3.5. Models with continuous output

We can extend the worst possible case framing for models which produce a continuous
output, like regression models, or recommendation models that provide relevance scores.
The Kullback-Leibler (KL) divergence7 between two distributions q and p is defined as the
following:

DKL(π1||π2) =

∫ ∞
∞

π1(x)log(
π1(x)

π2(x)
)dx (13)

7. Here we use KL Divergence as our base metric, although this method would work for any distribution
comparison metric.
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Figure 3: The different values for the False Negative Rate Parity measurement for the
LSAC case study. Minority subgroups under intersectionality show a far greater range of

disparity than what the binary metrics would suggest.

In the context of intersectional fairness, we compute the KL divergence between the model
output distributions of all possible pairs of two subgroups, and we display the maximum KL
divergence value obtained, since it is the worst case scenario. If this value is close to 0, the
two subgroups have similar distributions, as well as the other subgroups.

Thus, Worst case KL Divergence (W-DKL) is formally defined as:

W-DKL = max

{∫ ∞
∞

πsgi(x)log(
πsgi(x)

πsgj (x)
dx

}
∀i, j ∈ N, i 6= j (14)

3.6. Ranking metrics

Existing fair ranking metrics in the literature can be divided broadly into two classes -
representation based Yang and Stoyanovich (2017) and exposure based Singh and Joachims
(2018); Sapiezynski et al. (2019). We pick one of each kind and redefine them under the
light of intersectionality.

3.6.1. Skew

The representation-based metric we discuss is skew@k Geyik et al. (2019). For a ranked list
τ , the Skew for subgroup sgi at the top k is defined as

Skewsgi@k(τ) =
pτk,sgi
pq,sgi

(15)

where pτk,sgi represents the fraction of members from subgroup sgi among the top k items in
τ , and pq,gi represents the fraction of members from to subgroup sgi in the overall population
q. Ideally, Skewgi@k should be close to one for each sgi and k, to show that people from sgi
are represented in τ proportionally relative to the overall population.

Using our worst case method, the skew ratio at K (SR@K) is defined as:

SR@K =
min{Skewsgi@k(τ),∀i ∈ N}
max{Skewsgi@k(τ), ∀i ∈ N}

(16)
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3.6.2. Attention

Attention is the exposure-based metric we discuss here. Ranking problems are unique from
classification problems in the sense that the position of a ranked item, even within the top
K results, can draw significantly different levels of visual attention. Previous research shows
that people’s attention sharply drops off after the first few items in a ranked list Mullick
et al. (2019). Different papers have modeled visual attention as a function of the position K
as a logarithmic distribution Singh and Joachims (2018), a geometric distribution, or other
sharply falling distributions with increasing rank Sapiezynski et al. (2019). Assuming the
attention distribution function of an item to be Att(k), the mean attention per subgroup is
defined as:

MAsgi =
1

|sgi|

|τ |∑
k=1

Att(k) where sgτk = sgi (17)

And, using our worst case method, the attention ratio (AR) is defined as:

AR =
min{MAsgi ,∀i ∈ N}
max{MAsgi , ∀i ∈ N}

(18)

4. Case Study and LSAC Dataset

As an example application of the framework described in this paper, we present a case
study on a trained tensorflow model8 outputs on the Law School Admissions Council
(LSAC) dataset9, where the classifier predicts whether a candidate passed the bar exam.
We calculated metrics for binary values where only race (Table 1) or only gender (Table 2)
is examined for the false negative rates (FNR) and also for an intersectional FNR metric,
where both race and gender are used (Table 3).

Race FNR

nonwhite 0.025829

white 0.010230

Table 1: False negative rates using race

Gender FNR

woman 0.006267

man 0.017384

Table 2: False negative rates using gender

8. https://github.com/tensorflow/fairness-indicators/blob/master/g3doc/tutorials/Fairness_

Indicators_Pandas_Case_Study.ipynb

9. https://eric.ed.gov/?id=ED469370
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Gender Race FNR

woman asian 0.002398

woman black 0.038700

woman hisp 0.007246

woman white 0.003802

man asian 0.019512

man black 0.065327

man hisp 0.026804

man white 0.014920

Table 3: False negative rates using intersectional race and gender subgroups.

The tables show clear examples of how viewing fairness metrics for only one group or
protected class can obscure inequality for combined subgroups. When using only the gender
lens, the FNR is lower for women, ≈ 0.006 when compared to men, ≈ 0.017 (Table 2).
However the trend reverses for certain subgroups when race is added. For example with
Black women having higher FNR at ≈ 0.039 when compared either to white men at ≈ 0.015
or asian men at ≈ 0.020 (Table 3). The min/max ratio is 0.002398/0.065327 = 0.036, which
is far from the ideal value of 1. The model therefore fails to achieve intersectional fairness
under FNR parity.

5. Discussion

5.1. Conclusion

In this paper, we introduce the worst-case comparison as a simple, easily comprehensible
method to surface hidden biases that commonly used fairness metrics may not be able
to show. We establish the importance of introducing such modifications to better serve
minorities with sparse populations and show how the method can be applied to a diverse
range of model metrics, thereby being easy for practitioners and researchers to adapt without
significantly changing their existing fairness monitoring systems.

5.2. Limitations and Future Work

The idea of creating combinatorial subgroups has a couple of caveats: It does not take into
account partial group membership (for instance, a person who identifies as multiracial), or
continuous variables (for example, instead of treating age as an integer, we would convert
the age attribute as discrete buckets). We encourage researchers to expand our method to
include partial group membership and continuous attributes.

Secondly, creating a combinatorially large number of subgroups inevitably leads to
subgroups which have a very small number of members, thereby demonstrating the effects
of Simpson’s Paradox Blyth (1972). A possible direction of research could be to introduce
statistical significance measures for such small subgroups, and suggest thumb rules for
subgroup creation via empirical measurements.
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