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Abstract

Supervised learning is constrained by the availability of labeled data, which are especially
expensive to acquire in the field of digital pathology. Making use of open-source data for
pre-training or using domain adaptation can be a way to overcome this issue. However,
pre-trained networks often fail to generalize to new test domains that are not distributed
identically due to variations in tissue stainings, types, and textures. Additionally, current
domain adaptation methods mainly rely on fully-labeled source datasets. In this work,
we propose Self-Rule to Adapt (SRA) which takes advantage of self-supervised learning
to perform domain adaptation and removes the necessity of a fully-labeled source dataset.
SRA can effectively transfer the discriminative knowledge obtained from a few labeled
source domain to a new target domain without requiring additional tissue annotations.
Our method harnesses both domains’ structures by capturing visual similarity with intra-
domain and cross-domain self-supervision. We show that our proposed method outperforms
baselines for domain adaptation of colorectal tissue types and further validate our approach
on our in-house clinical cohort.

Keywords: Computational pathology, self-supervised learning, few labeled data, unsu-
pervised domain adaptation, colorectal cancer

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide and its understand-
ing through computational pathology techniques can significantly improve the chances of
effective treatment (Smit and Mesker, 2020) by refining disease prognosis and assisting
pathologists in their daily routine. The data used in computational pathology most often
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consists of Hematoxylin and Eosin (H&E) stained whole slide images (WSIs) (Hegde et al.,
2019; Lu et al., 2020) and tissue microarrays (TMAs) (Nguyen et al., 2021)

Although fully supervised deep learning models have been widely used for a variety of
tasks, including tissue classification (Kather et al., 2019) and semantic segmentation (Qaiser
et al., 2019), in practice it is time-consuming and expensive to obtain fully-labeled data as
it involves expert pathologists. This hinders the applicability of supervised machine learn-
ing models to real-world scenarios. Self-supervised learning was proposed to address these
limitations. It involves a two-step training scheme, where ”data creates its own super-
vision”(Pieter et al., 2020) to learn rich features from structured unlabeled data and to
create supervision from itself. Applications of this approach in computational pathology
include survival analysis (Abbet et al., 2020) and WSIs classification (Li et al., 2020).

In addition, different techniques such as stain normalization (Macenko et al., 2009) algo-
rithms and unsupervised domain adaptation (UDA) methods have been developed with the
aim of improving the classification of heterogeneous WSIs. UDA methods address this issue
by learning from a rich source domain together with the label-free target domain to have
a well-performing model on the target domain at inference time. DANN (Ganin and Lem-
pitsky, 2015) for example uses gradient reversal layers, to learn domain-invariant features.
Self-Path (Koohbanani et al., 2020) combines the DANN approach and self-supervised aux-
iliary tasks such as the hematoxylin prediction to improve stability.

Another example is CycleGAN (Zhu et al., 2017), which takes advantage of adversar-
ial learning to cyclically map images between the source and target domain. However,
adversarial approaches can fall short, because they do not consider task-specific decision
boundaries, and only try to distinguish the features as either coming from the source or
target domain (Saito et al., 2018a).

A further issue is that most methods treat the domain adaptation as a closed-set sce-
nario, which assumes that all target samples belong to a class present in the source domain,
even though this is often not the case. To overcome this OSDA (Saito et al., 2018b) pro-
poses an adversarial open-set domain adaptation approach, where the feature generator
has the option to reject mistrusted target samples as an additional class. Another recent
work SSDA (Xu et al., 2019) uses self-supervised domain adaptation methods that combine
auxiliary tasks such as image rotation or jigsaw puzzle-solving, adversarial loss, and batch
normalization calibration across source and target domains.

In this work, we propose a label-efficient framework called Self-Rule to Adapt (SRA) for
tissue type recognition in histological images and attempt to overcome the above-mentioned
issues by combining self-supervised learning approaches with UDA. We present an entropy-
based approach that progressively learns domain invariant features thus making our model
more robust to class definition inconsistencies as well as the presence of unseen tissue classes
when performing domain adaptation. SRA is able to accurately classify and segment tissue
types in H&E stained images, which is an important step for many downstream tasks. Our
proposed method achieves this by making use of few labeled open-source datasets as well
as unlabeled data, that are abundant in digital pathology, reducing the annotation work-
load for pathologists. We show that our method outperforms previous domain adaptations
approaches in a few-label setting and its potential for clinical application in the diagnostics
of CRC.
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Figure 1: The proposed Self-Rule to Adapt (SRA) architecture for a given input image x.
The LIND and LCRD represent the in-domain and cross-domain loss respectively.

2. Methods

In our unsupervised domain adaptation setting, we have access to a small set of labeled
source data, sampled from a source domain distribution and a set of unlabeled target data
from a target distribution. The goal is to learn a hypothesis function (e.g., classifier here)
on the source domain that provides a good generalization in the target domain. To this
end, we propose a novel self-supervised cross-domain adaptation setting, which is described
in more detail below. Figure 1 gives an overview of the proposed network architecture.

Our model builds upon two networks fΦ, fΨ that compute the query z and key z′

embedding from the input representations x̂, x̂′, respectively. Each branch consists of
a residual encoder and two fully connected layers based on the state-of-the-art (SOTA)
architecture proposed in Chen et al. (2020b). To generate x̂, x̂′, a random image x is drawn
from either the source Ds or the target Dt domain and is then transformed with two random
data augmentations selected from Tx to create a matching pair. The key embeddings z′ are

used to maintain a queue Q of negative samples {qi}|Q|i=1 ∈ Q in a first-in, first-out fashion.
The queue provides a large number of examples which alleviates the need for a large batch
(Chen et al., 2020a) or the use of memory banks (Kim et al., 2020). Moreover, fΨ is updated
using a momentum approach, combining its weights to those of fΦ. This approach ensures
that fΨ generates a slowly-shifting embedding. Motivated by Ge et al. (2020); Kim et al.
(2020), we extend the domain adaptation learning procedure to our model definition and
task. Hence, we split the loss terms into two distinct tasks, namely in-domain LIND and
cross-domain LCRD representation learning. The objective loss LSRA = LIND +LCRD is the
summation of both terms, and are described in more detail below.

2.1. In-domain Loss

The first objective LIND aims at learning the individual distribution of each the source
and the target domain features. We want to keep the two domains independent as we will
optimize their alignment later. For each vector z, there is a paired embedding z′ that is
generated from the same tissue image and therefore is, by definition, similar. The contrastive
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loss, as expressed in Equations (1) and (2), is therefore used to constrain the representation
of the embedding space for each domain separately.

pIND
i (Q) =

exp(z>i z
′
i/τ)

exp(z>i z
′
i/τ) +

∑
l∈Q exp(z>i ql/τ)

. (1)

LIND =
−1

|Ds|+ |Dt|

(∑
i∈Ds

log
[
pIND
i (Qs)

]
+
∑
i∈Dt

log
[
pIND
i (Qt)

])
. (2)

We denote Qs,Qt ⊂ Q as the sets of indexed samples of the queue that are drawn
from the corresponding domain Ds,Dt, and τ ∈ R as the temperature. The temperature is
typically small (< 1) to help the model in making confident predictions. For all images of
each dataset Ds,Dt, we want to minimize the distance between z and z′ while maximizing
the distance to the previously generated negative samples from the corresponding setQs,Qt.
The queue samples are considered reliable negative candidates as they are generated by fΨ

whose weights slowly varies due to its momentum update procedure.

2.2. Cross-domain Loss

We can see the cross-domain matching task as the generation of features that are discrimi-
native for both sets. In other words, if we embed a random sample drawn from Ds we expect
to be able to find a limited number of candidates in Dt whose representations contain sim-
ilar information as our initial query. Based on this logic, we compute the similarities and
entropy of a query sample zi drawn from one set (for example Ds) and the stored queue
samples from the other set (for example Qt):

HCRD
i (Q) = −

∑
j∈Q

pCRD
i,j (Q) log

[
pCRD
i,j (Q)

]
and pCRD

i,j (Q) =
exp(z>i qj/τ)∑
l∈Q exp(z>i ql/τ)

. (3)

Low entropy means that the selected query from one domain matches with a limited number
of keys from another domain. The loss, therefore, aims to minimize the average entropy of
the similarity distributions, assisting the model in making confident predictions:

LCRD =
1

|Ds|+ |Dt|

[∑
i∈Ds

HCRD
i (Qt) +

∑
i∈Dt

HCRD
i (Qs)

]
. (4)

2.3. Easy-to-hard (E2H) Learning

At the start of the learning process, the correlation between samples and their entropy is
unclear as the model weights are initialized randomly, which does not guarantee proper
feature descriptors. Additionally, being able to find matching samples for all input queries
across datasets is a strong assumption. In clinical applications, we often rely on open-
source datasets with a limited number of classes to annotate complex tissue databases. For
example, tissues coming from specific cancer subtypes, such as mucinous CRC, might not
be present in a public dataset while being potentially frequent in daily diagnostics. In other
words, optimizing Equation (3) will result in a performance drop as the loss will try to find
cross-domain candidates even if there are none to be found.
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To tackle this issue, we introduce an easy-to-hard learning scheme. We start with
easy (low entropy) samples and progressively include harder (high entropy) samples as the
training progresses. We substitute the summation over Ds,Dt in Equation (4) with the
corresponding set of candidates Rs,Rt defined in Equation (5) where the ratio 0 ≤ r ≤ 1
is gradually updated during training using a step function. We denote sw, sh as the width
and height of the step respectively.

Rs/t = {i ∈ Ds/t |HCRD
i (Qt/s) is reverse top-r} and r =

⌊ epoch

Nepochs · sw

⌋
· sh, (5)

3. Results and Discussion

In this section, we present the results of the experiments. We validate our proposed self-
supervised domain adaptation approach on two publicly available datasets (Section 3.1) and
compare it to current SOTA methods for UDA in Section 3.2. To assess the performance of
our approach in a clinically-relevant use case, we further validate it on WSIs crops from our
in-house cohort in Section 3.3. To help future research, the implementation is open source1.
Further details on the experimental setup can be found in Appendix A.

3.1. Public Datasets

In this study, we use two publicly available datasets, Kather-19 (K19) (Kather et al., 2019)
and Kather-16 (K16) (Kather et al., 2016). The former is composed of 100, 000 image
patches sampled from 9 different CRC tissue types (tumor, stroma, muscle, lymphocytes,
debris, mucus, normal mucosa, adipose, and background) while the latter includes 5, 000
crops distributed over 8 tissue types (tumor, stroma, complex stroma, lymphocytes, debris,
normal mucosa, adipose, background). Following a discussion with expert pathologists, we
group stroma/muscle and debris/mucus as stroma and debris respectively to create a cor-
responding adaptation between K19 and K16. Complex stroma who is only present in K16
is kept for training but excluded from the evaluation process. With this problem definition,
we fall into an open set scenario where the class distribution of the two domains does not
rigorously match, as opposed to a closed set adaptation scheme. For more information
about the datasets and their discrepancies please refer to Appendix B.

3.2. Cross-Domain Patch Classification

In this task, we use the larger set K19 with 1% of the source labels available and adapt it to
K16 in order to simulate the clinical application where we usually rely on a large quantity
of unlabeled data and only have access to few labeled samples. The results of our proposed
SRA method are presented in Table 1, in comparison with the SOTA algorithms for domain
adaption. We first train our model in an unsupervised fashion (LSRA) and then fit a linear
classifier with few source labels on top of the frozen model weights. As the lower bound,
we consider direct transfer learning, where the model is trained in a supervised fashion
on the source data only. We use the same logic for the upper bound by training on the

1. Code available on https://github.com/christianabbet/SRA.
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Table 1: Results of the domain adaptation from Kather-19 (source) to Kather-16 (target).
1% of the source domain labels are known and the target domain labels are un-
known. The top results for the domain adaptation methods are highlighted in
bold. We report the F1 score for each class, as well as the overall F1 score.

Methods TUM STR LYM DEB NORM ADI BACK ALL

Source only‡ 74.0** 77.4** 75.3** 50.5** 66.9** 87.0** 93.1** 75.1**

Stain norm. (Macenko et al., 2009) 77.8** 75.9** 68.2** 42.1** 75.1** 77.4** 87.6** 72.2**

CylceGAN (Zhu et al., 2017) 70.7** 71.6** 62.3** 47.6** 75.5** 89.0** 88.2** 72.4**

DANN (Ganin and Lempitsky, 2015) 65.8** 60.8** 42.3** 47.8** 61.9** 64.1** 62.3** 57.8**

SelfPath (Koohbanani et al., 2020) 71.5** 68.8** 68.1** 57.6** 77.6** 82.3** 85.5** 73.1**

OSDA (Saito et al., 2018b) 82.0** 78.2* 83.6 63.8** 80.3** 90.8** 93.2* 81.7**

SSDA - Jigsaw (Xu et al., 2019) 90.0** 81.2 79.5** 64.4** 88.3** 94.2** 95.7* 84.9**

SRA (ours) 93.4 72.9** 82.7+ 67.9 96.5 97.0 97.2 86.9

Target only† 94.6+ 83.6** 92.6** 88.7** 95.4+ 97.8* 98.5* 93.0**

‡ Direct transfer learning: trained on the source domain only, no adaptation (lower bound).
† Fully supervised: trained knowing all labels of the target domain (upper bound).
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to the top result.

Figure 2: The t-SNE projection of the source (Kather-19) and target (Kather-16) domain
embeddings. The top row shows the alignment between the source and target do-
main, while the bottom row highlights the representations of the different classes.
We compare our approach (d) to other UDA methods (a-c).

target domain data (fully supervised approach). Figure 2 shows the t-SNE projection and
alignment of the domain adaptation for the source only, top-performing baselines (OSDA,
SSDA with jigsaw solving), and our method (SRA). Appendix C-E provides the results of
the ablation study as well as additional results.
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Figure 3: Examples of domain adaptations from K19 to our in-house dataset. (a-b) show the
original sections from the WSIs and their ground truth, respectively. We compare
the performance of our Self-Rule to Adapt (SRA) algorithm (f) to the lower
bound and the previous top methods (c-e). We report the pixel-wise accuracy,
the weighted intersection over union, and the pixel-wise Cohen’s kappa (κ) score.

Stain normalization slightly decreases the performance as it introduces color artifacts
that trick the network classifier. Our proposed SRA method shows an excellent alignment
between the same class clusters of the source and target distributions and outperforms other
approaches in terms of weighted F1 score. Notably, our approach is even able to match the
upper bound model for normal and tumor tissue identification. The embedding of complex
stroma, which only exists in the target domain, is represented as a single cluster with no
matching candidates, which shows that the model was not forced to find suitable matches.
Furthermore, the cluster representation is more compact compared to SSDA, where for
example normal mucosa tends to be aligned with complex stroma and tumor. SSDA and
OSDA misclassify debris as lymphocytes due to their similar texture and structure. Self-
Path suffers from DANN who’s loss is unstable leading to large performances gaps when
training. Heavier data augmentations partially solved this issue. Our approach suffers
a drop in performance for stroma detection, which can be explained by the presence of
lymphocytes in numerous stroma tissue examples, causing a higher rate of misclassification.

3.3. Use Case: Cross-Domain Segmentation of WSIs

To further validate our approach in a real case scenario, we perform domain adaptation
using our proposed model from K19 to our in-house slides and validate it on WSIs sections.
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We randomly extract patches from over 300 WSIs to train our model and then use a sliding
window approach to predict the class of each patch in the selected regions. The final
prediction map is smoothed using conditional random fields as in Chan et al. (2019). The
results are presented in Figure 3, alongside the original H&E crop, their corresponding
segmentation annotated by an expert pathologist according to the definitions used in the
K19 dataset, as well as comparative results of the introduced approaches. The three sections
were selected such that, overall, they represent all tissue types equally.

Our approach outperforms the domain adaptation methods in terms of pixel-wise ac-
curacy, weighed intersection over union (IoU) and pixel-wise Cohen’s kappa score. For all
models, stroma and muscle are poorly differentiated as both have similar visual features.
This phenomenon is even more apparent in the source only setting where muscle tissue
is almost systematically interpreted as stroma. SSDA tends to predict lymphocyte aggre-
gates as debris, which can be explained by its sensitivity to staining variations. OSDA on
the other side fails to adapt and generalize to new debris examples while trying to reject
mistrusted samples. Regions with mixtures of tissue types (e.g., lymphocytes + stroma or
stroma + isolated tumor cells) are challenging cases because the samples available in online
cohorts mainly contain ideal examples with homogeneous tissue textures for each patch,
and no mixed class examples. Subsequently, domain adaptations naturally struggle to align
features resulting in a biased classification. We also observe that thinner or torn stroma
regions, where the background behind is well visible, are often misclassified as adipose tissue
by SRA, which is most likely due to their similar appearance. However, our SRA model is
able to correctly distinguish between normal mucosa and tumor, which are tissue regions
with relevant information for survival analysis.

4. Conclusion and Future Work

In this work, we explore the notion of self-supervised learning and UDA for the identification
of histological tissue types. Given the difficulty of obtaining expert annotations, we explore
diverse UDA models in various label-scarce histopathology datasets. More importantly, we
present a new label transferring approach from a partially labeled source domain to an un-
labeled target domain. This is more practical than most previous UDA approaches tailored
to fully annotated source domain data and/or tied to additional network branches dedi-
cated to auxiliary tasks. Instead, we perform progressive entropy minimization based on
the similarity distribution among the unlabeled target and source domain samples yielding
discriminative and domain-agnostic features for domain adaptation. Through adaptation
experiments, we show that our Self-Rule to Adapt method can discover the relevant se-
mantic information even in the presence of few labeled source samples and yields a better
generalization on different target domain datasets.

A future extension of this work is defining a self-supervised learning approach that can
embed mixtures of tissues as publicly available datasets are solely composed of homogeneous
patches. Such patches are not characteristic of the heterogeneity of complex images present
in diagnosis routine and can lead to erroneous detections (e.g., background and stroma
interaction interpreted as adipose). Furthermore, the segmentation achieved by our method
can be used for clinically relevant applications, such as tumor-stroma ratio calculation,
disease-free survival prediction or the adjuvant treatment decision-making.

12



Self-Rule to Adapt (SRA)

Acknowledgments

This work was supported by the Personalized Health and Related Technologies grant number
2018-327, and the Rising Tide foundation with the grant number CCR-18-130. The authors
would like to thank Dr. Felix Müller for the annotation of WSI crops that greatly helped
the evaluation of our method.

References

Christian Abbet, Inti Zlobec, Behzad Bozorgtabar, and Jean-Philippe Thiran. Divide-
and-rule: Self-supervised learning for survival analysis in colorectal cancer. In Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 480–489. Springer, 2020.

Lyndon Chan, Mahdi S Hosseini, Corwyn Rowsell, Konstantinos N Plataniotis, and Savvas
Damaskinos. Histosegnet: Semantic segmentation of histological tissue type in whole
slide images. In Proceedings of the IEEE International Conference on Computer Vision,
pages 10662–10671, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709,
2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momen-
tum contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropaga-
tion. In International conference on machine learning, pages 1180–1189, 2015.

Yixiao Ge, Dapeng Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Self-paced con-
trastive learning with hybrid memory for domain adaptive object re-id. arXiv preprint
arXiv:2006.02713, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

Narayan Hegde, Jason D Hipp, Yun Liu, Michael Emmert-Buck, Emily Reif, Daniel Smilkov,
Michael Terry, Carrie J Cai, Mahul B Amin, Craig H Mermel, et al. Similar image search
for histopathology: Smily. NPJ digital medicine, 2(1):1–9, 2019.

Jakob Nikolas Kather, Cleo-Aron Weis, Francesco Bianconi, Susanne M Melchers, Lothar R
Schad, Timo Gaiser, Alexander Marx, and Frank Gerrit Zöllner. Multi-class texture
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Appendix A. Experimental Setup

In this section, we present the experimental setup. The architecture is first trained in an
unsupervised fashion, and then as a second step, a linear classifier is trained on top as in
Chen et al. (2020a). The architecture of the feature extractors, fΦ and fΨ, is composed of
a ResNet18 (He et al., 2016) followed by two fully connected layers (projection head) using
rectified linear activation units (ReLUs) and with an output dimension of DFC1 = 512
and DFC2 = 128, respectively. We update the weights of fΦ as θΦ and fΨ as θΨ using
standard backpropagation and momentum as described in Equation (6), respectively. We
use m = 0.999 as momentum to update weights as described in He et al. (2020).

θΨ ← mθΨ + (1−m)θΦ (6)

The model is trained from scratch for Nepochs = 200 epochs using the stochastic gradient
descent (SGD) optimizer (momentum = 0.9, weight decay = 10−4), a learning rate λ =
10−2 and a batch size of B = 128. For the similarity learning and easy-to-hard training,
we set τ = 0.2, sw = 0.25 and sh = 0.2. We apply random cropping, gray transform,
horizontal/vertical flipping, and color jittering as data augmentations Tx. Algorithm 1
presents the pseudo-code of our SRA method. For a fair comparison, we also use a ResNet18
backbone for the presented baselines. The classification performances are evaluated using
a linear layer placed on top of the frozen feature extractor for Nepochs = 100 epochs using
the SGD optimizer (momentum = 0.9, weight decay = 0), a batch size of B = 128, and a
learning rate of λ = 10.

At each epoch, we sample 50, 000 example with replacement from both the source and
target dataset to create a set D of N = 100, 000 samples. We use 70% of K16 to train
the unsupervised domain adaptation. The remaining 30% examples are used to test the
performance of the linear classifier trained on top of the self-supervised model. We repeat
this operation 10 times to obtain statistically relevant results.

Appendix B. Detailed Overview of the Datasets

In this study, we use two publicly available datasets as well as an in-house cohort that
contain patches of different tissue types found in the human gastrointestinal tract and that
are extracted from H&E-stained WSIs. Figure 4 shows the occurrence and relationship of
different tissue types across the datasets. Note that labels are not available for the in-house
dataset.
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Algorithm 1: Self-Rule to Adapt pseudo code

Initialize queue Q with normal distribution;
Normalize queue entries qi ∈ Q;
for epoch = 0 to Nepochs − 1 do

Create D by uniformly sampling from Ds and Dt;
Update easy-to-hard coefficient r using Equation (5);
for batch {xi}Bi=1 in D do

Get augmented samples x̂, x̂′ from Tx ;
Perform forward pass z = fφ(x̂), z′ = fψ(x̂′) ;
Normalize vectors z, z′ ;
Compute in-domain loss LIND using Equation (2);
Calculate cross-domain matching HCRD using Equation (3) ;
Determine easy-to-hard samples set Rs/t using Equation (5) ;

Compute cross-domain loss LCRD by replacing Ds/t with Rs/t in Equation (4);

Compute LSRA = LIND + LCRD;
Update Φ weights with backpropagation ;
Update Ψ weights with momentum using Equation (6);
Update queue Q by appending z′;

end

end

Kather-16 (K16) Dataset: The dataset (Kather et al., 2016) contains 5, 000 patches
(150 × 150 pixels, 74µm × 74µm) from multiple H&E WSIs. There are eight classes of
tissue phenotypes, namely tumor epithelium, simple stroma (homogeneous composition,
includes tumor stroma, extra-tumoral stroma, and smooth muscle), complex stroma (stroma
containing single tumor cells and/or few immune cells), immune cells (including immune cell
conglomerates and sub-mucosal lymphoid follicles), debris (including necrosis, erythrocytes,
and mucus), normal mucosal glands, adipose tissue, and background (no tissue). The
dataset is balanced with 625 patches per class.
Kather-19 (K19) Dataset: The dataset (Kather et al., 2019) consists of patches depicting
nine different tissue types: cancer-associated stroma, epithelium, normal colon mucosa,
adipose tissue, lymphocytes, mucus, smooth muscle, debris, and background. Each class is
roughly equally represented in the dataset. In total, there are 100, 000 patches (224 × 224
pixels) in the training set.
In-house Dataset: Our cohort is composed of 665 H&E-stained WSIs from our local CRC
patient cohort. The slides originated from 378 unique patients diagnosed with adenocar-
cinoma and were scanned at a resolution of 0.248 MMP (40x). The WSIs are sampled to
reduce the computational complexity of the proposed approach. From each WSI, we uni-
formly sample 300 (448× 448 pixels, 111µm× 111µm) regions from the foreground masks,
creating a dataset with a total of 199, 500 unique, unlabelled patches. We assume that these
randomly selected samples of our cohort are a good estimation of its tissue complexity and
heterogeneity.
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Figure 4: Examples images of the different tissue types present in the used datasets and
their association. We use the following abbreviations: TUM: tumor epithelium,
STR: simple stroma, COMP: complex stroma, LYM: lymphocytes, NORM: nor-
mal mucosal glands, DEB: debris/necrosis, MUS: muscle, MUC: mucus, ADI:
adipose tissue, BACK: background. Examples from the in-house dataset are
manually picked for comparison but are not labeled.

Inconsistencies between K16 and K19: An expert pathologist reviewed all three
datasets to identify any potential discrepancies between the class definitions. We have
identified the following issues:

• Complex stroma: The class is not represented in K19. However, few occurrences of
the complex stroma are present in both the tumor and stroma class. Other samples
are hard to distinguish and classify from regular stroma without context information.

• Stroma: In K16, the stroma class is a composition of stroma and smooth muscle.
When performing domain adaptation, we consider the classes stroma and smooth
muscle in K19 as a single stroma class to match the definition of K16.

• Debris: Similar to stroma in K16, the debris class is a mixture of multiple types of
tissues. We observe examples of mucin, debris/necrosis, and loose tissue. For domain
adaptation, we merge mucin into debris in K19. Note that collagenous tissue and
blood are not present in K19, which is an additional example of an open set domain
adaption.

Appendix C. Self-supervision and the Importance of the Queue

In this section, we compare the performances of different self-supervised methods to the
standard supervised learning approach when facing different levels of available data. The
results are presented in Table 2. We report the performance of single domain classification on
K16 and K19. The supervised approach uses ImageNet pre-trained weights. Self-supervised
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Table 2: Results of classification of different self-supervised approaches with the supervised
baseline on Kather-19 and Kather-16. We present the results for different percent-
ages of available data. The top results for the are highlighted in bold. We use
weighted F1 score.

Kather-16 Kather-19
Labels fraction Labels fraction

Methods 10% 20% 50% 1% 2% 5%

Supervised‡ 85.8** 86.5** 87.9** 89.2+ 89.9+ 90.5+

SimCLR (Chen et al., 2020a) 79.6** 78.9** 78.6** 76.9** 79.4** 80.7**

SupContrast (Khosla et al., 2020) 60.8** 73.2** 80.8** 78.7** 81.6** 85.0**

MoCoV2 (Chen et al., 2020b) 88.5 90.2 91.1 89.9 90.3 90.6

‡ Model initialized with ImageNet pre-trained weights.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to the top result.

baselines are trained from scratch. For the classification results, we freeze the weights and
add a linear classifier on top and train it until convergence. For SupContrast (Khosla et al.,
2020) we jointly train the representation and the classification as described in the original
paper.

We can observe that MoCoV2 (Chen et al., 2020b) outperforms the two other SOTA
approaches. On K16 the model to gain up to 10% in terms of F1-score with respect to
the other self-supervised baselines. In addition, MoCoV2 gives competitive results with
the supervised baseline that is initialized with ImageNet weights. It proves that MoCoV2
is able to efficiently learns from unlabeled data to create relevant feature spaces. This
mainly comes from the combination of the momentum encoder and the give access to a
large number of negative samples.

Appendix D. Ablation Study

We present the ablation study of our approach in Table 3. We denote LIND as the in-
domain loss, LCRD as the cross-domain loss, and easy-to-hard (E2H) as the easy-to-hard
learning scheme. For the baseline (no differentiation between in-domain and cross-domain),
we consider the model where the training set D is the merged source and target domain data
as in (He et al., 2020). Adding just the LCRD to the loss creates an unstable model, because
we do not impose domain representation and thus the model converges toward incorrect
solutions where random sets of samples are matched between the source and target datasets.
LIND achieves a relatively good performances but fails to generalize knowledge to classes
where texture differs (for example background). The introduction of the E2H procedure
greatly improves the classification performances on debris and tumor classification while
maintaining good performances on other classes.

The Figure 5 highlights the usefulness of the E2H scheme. Some tissue types might not
have relevant candidates in the other set (open-set scenario). The example shown the figure
is complex stroma (COMP), which is only present in K16 and not in K19. Without the
E2H learning, the model tries to find matching candidates at any cost even if no suitable
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Figure 5: Effect on similarity distribution with (bottom) and without (top) E2H. Without
E2H the model tries to optimize similarity for all queries at any cost and creates
out-of-distribution samples (red). With E2H, the unpaired examples are still
attached to the distribution (red).

Table 3: Ablation study for the proposed Self-Rule to Adapt (SRA) approach. We denote
LIND as the in-domain loss, LCRD as the cross-domain loss, and E2H as easy-
to-hard. We train the domain adaptation from Kather-19 to Kather-16. Only
1% of the source domain Kather-19 labels are used, and no labels for the target
domain Kather-16. We report F1 and weighted F1 score for classes and average
(all) respectively.

Model LIND LCRD E2H TUM STR LYM DEB NORM ADI BACK ALL

SRA† - - - 36.8** 45.4** 27.1** 30.8** 45.2** 43.1** 43.6** 38.9**

SRA - X - 14.1** 9.1** 0.2** 10.1** 4.9** 0.0** 61.5** 14.4**

SRA X - - 88.1** 72.8+ 78.0* 71.8* 89.9** 93.4* 86.0* 82.9**

SRA X X - 63.0** 69.9** 85.1 57.7** 98.2 97.9 90.0** 80.3**

SRA X X X 93.4 72.9 82.7* 67.9 96.5* 97.0** 97.2 86.9

† Model jointly trained. Both source and target dataset are merged assuming a similar distribution.
+ p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.001; unpaired t-test with respect to top result.

ones exist. This results in the occurrence of a subset of samples that have a near-perfect
similarity to the query sample (top-right distribution plot, marked in red). Keeping the
hyperparameter r (Equation (5)) at a low level prevents the model from learning degenerated
solutions (bottom-right distribution plot, marked in red). The same behavior is observed in
other such open-set tissue classes (e.g., the absence of blood vessels and collagen in debris).
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Figure 6: The t-SNE projections of the source (Kather-19) and target (Kather-16) domain
embeddings. We show the alignment of the embedding spaces between the source
and target domain for all presented models as well as the classes. The classes of
Kather-19 are merged and relabeled according to the Kather-16 definition. The
standard supervised approach is depicted in (a). We compared our approach (i)
to other domain adaptation methods (b-h). Our approach (i) qualitatively shows
the best alignment between the source and target domains.

Appendix E. t-SNE Projections

In this section, we display the complementary results to the ones presented in section 3.2.
The embedding for all baselines and the presented approach are displayed in Figure 6. We
show the alignment between the source (K19) and target (K16) embedding domain-wise as
well as classes-wise.
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