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Abstract

Images offer a two-dimensional (2D) representation of a three-dimensional (3D) environ-
ment. However, in many biomedical tasks, a 3D view is crucial for diagnosis. Projecting
structured light, such as a regular laser grid, onto the surface of interest allows to recon-
struct its 3D structure. For reconstruction, it is crucial to correctly identify and assign
each laser ray to its respective position in the laser grid. Current methods for this task use
semi-automatic, yet highly manual annotations. Hence, a fully automatic, reliable method
is desired. Here, we show that this assignment can be approached as an image registra-
tion. After separating the laser rays from the background, we found that registration of
the extracted laser rays directly to the fixed laser grid image fails, when we use state-of-
the-art intensity-based image registration techniques, such as the Advanced Normalization
Tools (ANTs). Using our feature-based custom loss and a deep neural network, we are
able to use a U-Net-like architecture to compute deformation fields to successfully register
the laser rays onto the fixed image accompanied with a custom post-processing assignment
step. Using synthetic data, we show that the network is in general able to learn affine and
non-linear transformations. Our method is also robust to missing or occluded rays. Using
an ex vivo dataset, we achieved a registration accuracy of 91%. In summary, we provide
a new platform to perform feature-based registration and showcase this on a biomedical
dataset. In the future, we will evaluate different architectural designs and more complex
datasets.
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1. Introduction

A three-dimensional (3D) view is highly important for an accurate biomedical diagnosis
and treatment in many areas, such as MRI for strokes and CT for bone fractures. However,
multiple professions still rely on imaging procedures that use conventional cameras, such as
laryngeal endoscopy. Here, only a 2D view onto the larynx is available (Andrade-Miranda
et al., 2020; Deliyski and Hillman, 2010). However, laryngeal endoscopy is the gold standard
to assess the health state of a subject’s voice (Mehta and Hillman, 2012). A healthy voice
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Figure 1: Structured light endoscopy. (a) An endoscope consisting of a camera and a laser
projection unit. Laser rays produce a point grid that is directed onto the surface
of interest and visible in the camera image. (b) The extracted laser rays have
to be assigned to a unique grid position in the plane laser grid for valid 3D
reconstruction. nc and nr describe the number of columns and rows, respectively.
(c) 3D reconstruction by inferring the depth information z by determining the
distance in x (and y, not shown for clarity) compared to the reference given a
fixed camera to laser angle α.

features a symmetric, homogeneous movement of the vocal folds in three dimensions (Titze
and Martin, 1998), however, with the aforementioned technique, the examiner has only
limited access to this information. Therefore, there is a drive to develop 3D endoscopic
techniques (Luegmair et al., 2010; Ghasemzadeh et al., 2020; Semmler et al., 2016; Schmalz
et al., 2012).

Recently, we and others showed that laryngeal endoscopy using structured light (Geng,
2011) is feasible for 3D reconstruction of the vocal folds (Ghasemzadeh et al., 2020; Semmler
et al., 2016; Luegmair et al., 2010, 2015). By using laser rays in a fixed angle α in relation
to the endoscope (Figure 1(a,c)), we can use triangulation for each laser ray to reconstruct
the 3D surface. Briefly, in a calibrated laser grid, the depth is computed by the relative
distance of each laser ray to its reference position (Figure 1(c)). The key issue here is the
laser ray extraction and correct individual assignment, which remains very challenging and
requires a significant amount of manual effort (Semmler et al., 2017). Only recently, there
are first reports using deep learning in structured light endoscopy (Li et al., 2019; Ma et al.,
2019).

In general, we hypothesized that this task can be approached as an image registration
procedure (Hill et al., 2001) between a fixed (the ideal grid) and a moving image, i.e. the
laser rays extracted from an endoscopic image (Figure 1(b)). There exist multiple registra-
tion platforms, such as the Computational Morphometric Toolkit (CMTK, Rohlfing 2011)
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and the Advanced Normalization Tools (ANTs, Avants et al. 2009) to register biomedical
image data, such as individual MRI brain scans to a brain atlas. In general, deformable
medical image registration is a complex, fast forward moving field with many strategies
and applications to achieve a good registration (Sotiras et al., 2013), for example the use
of phantoms to align different image modalities (Rodŕıguez-Ruano et al., 2008). Recently,
a large body of deep neural networks have been used for (biomedical) image registration
(Fan et al., 2019; Jaderberg et al., 2015; Yang et al., 2017; Krebs et al., 2019), which have
been recently summarized (Haskins et al., 2020). Recent advances utilize the prediction of
deformation fields using U-Net-like architectures (Balakrishnan et al., 2018), which can be
combined with general adversarial networks (Mahapatra et al., 2018). Most of the architec-
tures mentioned, however, were evaluated on tomographic images that contain a high-level
structure that is non-repetitive. Further, these methods align images typically by mini-
mizing an intensity-based metric. Although recent point-registration deep neural networks
exist, they were only evaluated on point clouds that contain special features (Aoki et al.,
2019) or find only rigid transformations (Wang and Solomon, 2019). In contrast, the laser
grids are highly regular and repetitive, and are potentially hard to align only based on
intensity and contain likely non-rigid transformations.

In this work, we are investigating if laser grid maps are able to be registered onto
an ideal grid using well-established tools (ANTs) and deep neural networks. We test if
intensity-based registration is able to accurately map individual laser rays and if a feature-
based approach is more suitable. We develop therefore a custom loss function and test
the registration ability on a synthetic dataset. We show the general applicability and
performance on ex vivo data of oscillating vocal folds.

2. Methods

We provide the code for this study on GitHub https://github.com/julzil/endolas.

2.1. Synthetic dataset

We generated an evenly spaced laser grid containing 25 keypoints organized in five columns
and five rows (5×5). The image size was 224×224 px for initial experiments to test what
the network is capable to learn and for optimization strategies (as shown in Figure 3).
We generated three sets containing each 4800 synthetic images plus one fixed image (no
perturbations). For each set, we randomly applied a different set of perturbations (as
shown in Figure B.1): The first set used affine transformations only (i.e. translation,
rotation, shear, and scaling), the second one used affine and non-linear transformations (i.e.
applying a sine), and the third one also included random keypoint dropout to mimick hidden,
occluded or not extracted keypoints with a probability of 0.2. The sets were randomly split
into 70% training, 15% validation and 15% test set. For ex vivo experiments, we adjusted
the synthetic dataset accordingly: We changed the resolution to 768×768 px and used 324
keypoints arranged in an 18×18 grid.
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2.2. Ex vivo dataset

Calf larynges were obtained from the local slaughter house and prepared as previously
described (reviewed in Döllinger et al. 2011). All footage was recorded using a Photron
Highspeed Camera at 4,000 fps at a resolution of 768×768 px. A 532 nm Nd:YAG laser
was used for laser grid generation. The collimated laser light was focused via an 18×18
micro-lens array to yield a focal plane at around 80 mm below the light outlet. The laser
grid was calibrated using a custom calibration script in MATLAB (Semmler et al., 2016).
We analyzed twelve videos in total, each recorded on a unique calf larynx. Out of the twelve
videos, eight videos belonged to the training, two to the validation and two to the test set.
Each video contained twenty fully annotated frames. Therefore, the training set contained
160, the validation 40 and the test set 40 frames. In each frame, all visible keypoints were
annotated manually and assigned to a unique grid position (Figure 1(b)) for evaluation.
These annotations were used as ground truth.

2.3. Image generation

Keypoints and their (x, y) location were either known by creation (synthetic dataset, see
2.1) or manually annotated (ex vivo dataset). The latter is typically retrieved automatically
in a working environment using semantic segmentation of the laser rays, e.g. using a U-Net,
with subsequent 2D peak finding. For each keypoint, we drew a small circle with a certain
radius using the keypoint coordinates as centroid onto an initially black image with the
same dimensions as the original image. We further added a Gaussian blur version of the
image to incorporate a low-level structure to the image. This approach resulted in images
as shown in Figure 1, Moving image.

2.4. Neural network architecture

We trained a modified U-Net architecture (Ronneberger et al., 2015) using k = 32 base filters
implemented in TensorFlow/Keras (implementation from Gómez et al. 2020) in v.2.2.0 and
2.3.0, respectively. An overview is given in Figure 2. Each block contained a Conv2D layer
with a 3×3 kernel, followed by a BatchNorm-Layer and a ReLU activation (similar to Çiçek
et al. 2016). The final layer contained a 1×1 Conv2D layer with linear activation with
two filters, resulting in two maps ux(x) and uy(x), for x and y translation, respectively.
As input we used either only the moving image, the fixed and the moving image, or the
moving image, the gradient and the difference image, as suggested by (Fan et al., 2019), see
also Table 1. The input image size was 224×224 px and 768×768 px for synthetic and ex
vivo data set, respectively. The fixed image contained an evenly spaced 5×5 (synthetic) or
18×18 (ex vivo) grid (see example in Figure 1(b)). For the ex vivo dataset, we applied in
some experiments several augmentations for each epoch using the albumentations package
(Buslaev et al., 2020): Images were randomly varied in brightness, contrast, gamma and
blur. Additionally, images were flipped and rotated. In all experiments, we trained the
architecture for 100 epochs using the Adam optimizer together with a constant learning
rate of 10−3. The training and inference was performed on a machine equipped with an
NVIDIA RTX 2080 Ti (11 GB) graphics card.
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Figure 2: Example neural network architecture for feature-based image registration predict-
ing displacement maps ux and uy using a fixed f(x) image and a moving m(x)
image (configuration I2 from Table 1)

2.5. Displacement maps and feature-based loss function

For each pixel k, warped coordinates xkw and ykw are computed as a function of the displace-
ment maps ux and uy and the coordinates of the input image xkm and ykm:

xkw = xkm + ux(xk), (1)

ykw = ykm + uy(xk). (2)

As no ground-truth deformation maps are available, we use a feature-based metric em-
phasizing the correspondence of warped and fixed laser rays (keypoints). We therefore
minimize the distances between warped and fixed keypoints by knowing the exact location
in the grid xkf and ykf . We first compute the Euclidean distance dk for each keypoint k (Equa-
tion (3), in px), compute the mean squared Euclidean distance (MSED) for each image for
n keypoints (Equation (4), px2) and for each batch consisting of N images (Equation (5)).

dk =
√

(xkw − xkf )2 + (ykw + ykf )2 (3)

MSED =
1

n

n∑
k

(dk)2 (4)

εMSED =
1

N

N∑
i

MSEDi (5)

Taken together, we minimize the MSED across the batch to train the network to predict
highly accurate, feature-based displacement maps.

2.6. Grid classification and evaluation metric

After the image registration, the points were assigned a grid position using a heuristic
similar to a nearest neighbour search. As our task is bijective, i.e. one keypoint can only be
assigned to one grid position, we assign the keypoint to that position in the grid where it is
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globally the closest. This iterative search results in a unique assignment map. We provide
a structogram in the Appendix C.1. After we observed that in some cases the points were
not assigned in order, we used prior knowledge, e.g. that 3 follows 2 and that 2 does not
follow 3, to implement a custom bubble sort algorithm to ensure that points are sorted
logically in the grid. For evaluation, we investigate how close the registered points are to
their respective, ideal grid location using the mean Euclidean distance in px. We further
determine the assignment accuracy, i.e. the fraction of points that were assigned correctly
in the grid.

3. Experiments and Results

Using the generated images, we first investigated if intensity-based algorithms, such as
ANTs, were able to closely register any frame to the plane laser grid image. We found
that the results were very insufficient (see Appendix A.1 for exemplary image). We there-
fore asked if a deep neural network-based approach is suitable for a feature-based image
registration.

3.1. An encoder-decoder network is able to learn feature registration using
displacement maps

We next investigated which transformations could be learned using a synthetic dataset of
25 keypoints arranged in five rows and five columns (see also 2.1). The network should be
especially robust to highly non-linear, i.e. non-rigid, transformations and missing keypoints,
as this is common in endoscopic footage. We therefore tested a series of transformations
(Table 1, T1-T3).

Id Deformation Input Images Figure

T1 Affine Moving 3(c)
T2 Affine + Non-linear Moving 3(c)
T3 Affine + Non-linear + Dropout Moving 3(c) 3(d)
I2 Affine + Non-linear + Dropout Moving + Fixed 3(d)
I3 Affine + Non-linear + Dropout Moving + Difference + Gradient 3(d)

Table 1: Overview of different training settings for training the synthetic dataset.

As shown in Figure 3(a), all tested transformations can be learned by our network
architecture. We observe after roughly 50 epochs a steady state where the loss marginally
decreases in the training and validation dataset. As the fixed image is constant across
experiments and individual images, we found that only feeding the moving image is sufficient
for network convergence. Intruiged by previous studies (Fan et al., 2019; Jaderberg et al.,
2015), we tested different input strategies to improve the network performance. We found
that feeding more information is in general beneficial for network performance (Figure 3(b)).
The median of the mean Euclidean distance (MED) in the laser grid for each keypoint was
1.41 px, 0.46 px and 0.68 px (T3, I2 and I3, respectively), where condition I2 yielded the
best results and the narrower distribution (Figure 3(c)). We also tested in our studies the
loss (MSED vs. MED) and found equal convergence behavior. Regularization (L1 or L2)
impaired the network convergence and yielded worse results. In summary, we found that
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the assignment accuracy was across multiple settings at around 97-99%. In Appendix D.1,
we provide an overview of the registration accuracy across images.
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Figure 3: Feature-based registration on a synthetic dataset. (a) MSED loss of training
(solid line) and validation (dashed line) set across training epochs for different
transformation settings (T1-T3). (b) MSED loss of training (solid line) and val-
idation (dashed line) set across training epochs for different inputs (T3, I2, I3).
Same y-axis as in panel (a). (c) Distribution of mean Euclidean distances (MEDs)
for different inputs on the validation set (T3, I2, I3).

3.2. Feature-based registration performs well on real, highly non-linear
deformations

We next investigated if larger image sizes, more keypoints and under real circumstances,
the network still performs equally well compared to the synthetic dataset. We used ex vivo
recordings of calf larynges where an 18×18 laser grid was projected onto and extracted
the keypoints manually (see Methods and Figure 1(b)). Similarly, we applied the same
architecture as described for the synthetic dataset and trained for 100 epochs (Figure 4(a)).
We found that training only on the ground-truth data revealed a high median MED on the
validation set and a low assignment accuracy (see 2.6) of 51% on the validation dataset
(Figure 4(b,c)). We further evaluated the network’s performance on the validation set if
purely trainined with adequate synthetic data (same resolution and grid dimensions, see
2.1). Here, we also yielded high median MEDs and a low accuracy of 46% (Figure 4(b,c)).
Interestingly, when combining the ground-truth and the synthetic data, we leveraged the
performance and gained lower median MEDs of 9.8 px and an accuracy of 72%. We found
the largest boost when applying intense augmentations (see 2.4) and increasing the variety
20-fold. In this case, the MED variance was very low (Figure 4(b)) and the MED value at
5.13 px. As the grid spacing is 16 px, this suggests an accurate nearest neighbour sorting.
Indeed, the accuracy is around 91% on the validation set (Figure 4(c)). Noteworthy, the
highest uncertainty in prediction is where keypoints are missing close to the glottis (see
Figure 1(b) and Appendix E.1).
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Figure 4: Feature-based registration on an ex vivo dataset. (a) MSED loss of training (solid
line) and validation (dashed line) set across training epochs for different input
data. (b) Distribution of mean Euclidean distances (MEDs) on the validation set
for different input data. (c) Mean accuracy on validation dataset.

4. Discussion and Conclusion

In this study we suggest a U-Net-like architecture that uses a moving and a fixed image
of laser points in rectangular grid, respectively, to compute a deformation field to register
keypoints based on their identity. We show that the network is able to learn affine and
highly non-linear transformations, and is capable of coping with a large fraction of missing
keypoints. However, we have not systematically addressed yet how many missing keypoints
can be tolerated by our approach. We found that a larger gap of keypoints result in higher
assignment variation, whereas we still found high assignment accuracies of over 91%, which
is only slightly lower compared to our toy dataset (97-99%).

We also found that training solely on synthetic data is almost as good as training
on only ground-truth data, and a blend of synthetic and ground-truth data enhances the
registration and thus, the assignment accuracy (Figure 4). Still, we believe that the non-
linear transformations in the ex vivo data are not fully represented in our synthetic dataset.
Further investigations about the non-linear transformations may help in developing better
strategies to generate more realisitc synthetic data.

The data used in this study was manually annotated to evaluate the core idea of using
feature-based registration in structured light endoscopy. The extraction accuracy may also
have an impact on the registration, as one could potentially miss and/or identify additional
keypoints at wrong locations impacting the registration and the assignment. In the future,
we will address the complete workflow to uncover sources of error propagation.

In summary, our results suggest that our presented feature-based registration method is
highly valuable in structured light endoscopy, such as 3D laryngeal endoscopy, and together
with keypoint extraction a potentially fully automatic data analysis technique.
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dimensional optical reconstruction of vocal fold kinematics using high-speed video with a
laser projection system. IEEE transactions on medical imaging, 34(12):2572–2582, 2015.

Shujie Ma, Yunbo Song, Na Cheng, Yun Hao, Zhengyu Chen, and Xianping Fu. Structured
light detection algorithm based on deep learning. In IOP Conference Series: Earth and
Environmental Science, volume 252, page 042050. IOP Publishing, 2019.

Dwarikanath Mahapatra, Bhavna Antony, Suman Sedai, and Rahil Garnavi. Deformable
medical image registration using generative adversarial networks. In 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), pages 1449–1453. IEEE,
2018.

Daryush D Mehta and Robert E Hillman. Current role of stroboscopy in laryngeal imaging.
Current opinion in otolaryngology & head and neck surgery, 20(6):429, 2012.
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Appendix A. Intensity-based image registration

We used ANTs with various settings to register the extracted keypoints to the fixed image
(regular laser grid). However, no settings resulted in satisfying results (see Figure A.1).

(a) (b)

Figure A.1: Failed registration using ANTs. (a) morphed image, (b) deformation field.

Appendix B. Synthetic data generation - example images

Affine Affine + Non-Linear
Fixed image

Moving image
Affine + Non-Linear + Dropout

T1 T2 T3, I2, I3 Configuration

Figure B.1: Synthetic dataset. Fixed image and examples of images with affine transforma-
tion (used in configuration T1), with affine and non-linear transformation (T2),
and with affine and non-linear transformations with random dropout (T3, I2,
I3).
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Appendix C. Bijective nearest neighbour search

Define map warped_2_fixed = empty

Define bool finished = false

While not finished

Define list fixed_sets = empty

For warped in warped_keypoints

Define keypoint closest_fixed = none

For fixed in fixed_keypoints

Define float distance = get_distance(warped, fixed)

distance < closest_fixed.distance

Assign warped to Si from closest_fixed and append Si to fixed_sets

For Si in fixed_sets

Assign warped_2_fixed[closest_warped] = fixed

Define keypoint closest_warped = pop_closest_out _warped_keypoints(Si)

Define keypoint fixed = pop_out _fixed_keypoints(Si)

is_warped_keypoints_empty()
true

true

false

false

Do nothing

Do nothingAssign finished = true

Assign closest_fixed = fixed

Return warped_2_fixed 

Figure C.1: Structogram of bijective nearest neighbour search
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Feature-based image registration

Appendix D. Registration accuracy in the synthetic test dataset

Moving
Warped

(a) (b) (c)

Test

Validation

Figure D.1: Registration accuracy in the synthetic test dataset. (a) MED distribution of
validation (gray) and test (red) dataset. (b) Registration accuracy across im-
ages, color-coded for each keypoint. (c) Example registration of moving image
(red dots) to fixed image (white grid). Warped keypoints in green.
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Feature-based image registration

Appendix E. Registration accuracy in the ex vivo test dataset

(a) (b) Warped Moving

x [px]

glottis

moving warped

x [px]
y 

[p
x]

y 
[p

x]
Figure E.1: Registration accuracy in the ex vivo test dataset. (a) Registration accuracy

across images, color-coded for each keypoint. Note the uncertainty in the cen-
ter. There, the moving glottis is located and many keypoints are (at least
partly) missing. (b) Example registration of moving image (reds dots) to fixed
image (white grid). Warped keypoints in green.
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