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Abstract
We consider feature selection for applications in machine learning where the dimensionality of the
data is so large that it exceeds the working memory of the (local) computing machine. Unfortunately,
current large-scale sketching algorithms show poor memory-accuracy trade-off in selecting features
in high dimensions due to the irreversible collision and accumulation of the stochastic gradient
noise in the sketched domain. Here, we develop a second-order feature selection algorithm, called
BEAR, which avoids the extra collisions by efficiently storing the second-order stochastic gradients
of the celebrated Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithm in Count Sketch, using
a memory cost that grows sublinearly with the size of the feature vector. BEAR reveals an
unexplored advantage of second-order optimization for memory-constrained high-dimensional
gradient sketching. Our extensive experiments on several real-world data sets from genomics to
language processing demonstrate that BEAR requires up to three orders of magnitude less memory
space to achieve the same classification accuracy compared to the first-order sketching algorithms
with a comparable run time. Our theoretical analysis further proves the global convergence of BEAR
with O(1/t) rate in t iterations of the sketched algorithm.
Keywords: Feature selection, sketching, second-order optimization, sublinear memory.

1. Introduction

Consider a data set comprising n data points (θθθi)
n
i=1 = (xi, yi)

n
i=1, where xi ∈ Rp denotes the data

vectors representing p features and (yi)
n
i=1 denote the corresponding labels. Feature selection seeks

to select a small subset of the features of size k � p that best models the relationship between xi
and yi. In this paper, we consider the feature selection problem in ultra-high dimensional settings
where dense feature vectors in Rp cannot fit in the working memory of the computer because of
the sheer dimensionality of the problem (p). Such problems have become increasingly important in
biology, chemistry, networking, and streaming applications. In biology, it is common to represent a
DNA sequence comprised of four nucleotides A, T, C, G, as well as 11 wild-card characters in the
FASTQ format Deorowicz and Grabowski (2011), using the frequency of sub-sequences of length k,
called k-mers, with k ≥ 12 Vervier et al. (2016); Aghazadeh et al. (2016). A feature vector of size
15k=12 with floating-point numbers requires more than a petabyte of memory to store. This is simply
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larger than the memory capacity of the computers today. In streaming, the memory budget of the
local edge computing devices is extremely small compared to the dimension of the data streams Yu
et al. (2013). In both scenarios, it is critical to select a subset of the features that are most predictive
of the outputs with lowest memory cost in the dimensionality of the data.

Recently, first-order stochastic gradient descent (SGD) algorithms Aghazadeh et al. (2018); Tai
et al. (2018) have been developed which extend the ideas in feature hashing (FH) Weinberger et al.
(2009) to feature selection. Instead of explicitly storing the feature vectors, these algorithms store a
low-dimensional sketch of the features in a data structure called Count Sketch Charikar et al. (2002),
originated from the streaming literature. The key idea behind Count Sketch is in linearly binning
(colliding) a random subset of features into the same bucket (i.e., an entry of Count Sketch). As
long as the total number of features with high weight (i.e., the heavy hitters) is small, such collisions
won’t affect the weights of the heavy hitters. In particular, Count Sketch preserves the weights of the
top-k features with high probability using a memory cost that grows sublinearly with the size of the
feature vector (p). This high probability guarantee, however, depends on the energy of the non-top-k
coordinates in the SGD algorithm. In particular, the noise components of the gradients, which
normally average out in the regular stochastic optimization, accumulate in the non-top-k coordinates
of Count Sketch. This unwanted sketched noise increases the probability of deleterious collision
of heavy hitters in Count Sketch, deteriorates the quality of the recovered features, and results in
poor memory-accuracy trade-offs. This is a critical problem since the only class of optimization
algorithms that operates in such ultra-high dimensions does not select high-quality features when the
memory budget is small.

We propose a novel optimization scheme to solve this critical problem in sketching. We improve
the quality of the sketched gradients and correct for the unwanted collisions in the sketched domain
using the information from the second-derivative of the loss function. Second-order methods have
recently gained increasing attention in machine learning for their faster convergence Agarwal et al.
(2017), less reliance on the step size parameter Xu et al. (2020), and their superior communication-
computation trade-off in distributed processing Yao et al. (2019). Here, we uncover another key
advantage of second-order optimization in improving memory-accuracy trade-off in sketching models
trained on ultra-high dimensional data sets. We develop a second-order optimization algorithm with
a memory cost that grows sublinearly with the size of the feature vector (p). Our algorithm finds
high-quality features by limiting the probability of extra collisions due to the stochastic noise in
Count Sketch. The contributions of the paper are as follows:

Algorithm. We develop BEAR which, to the best of our knowledge, is the first quasi-Newton-
type algorithm that achieves a memory cost that grows sublinearly with the size of the feature vector
(p). We demonstrate that applying sublinear memory data structures such as Count Sketch in the
second-order optimization is challenging particularly because Hessian, unlike the gradient, cannot be
directly sketched. In response, BEAR stores the product of the inverse Hessian and the gradient in
the Broyden–Fletcher Goldfarb–Shannon (BFGS) algorithm using Count Sketch. BEAR updates
Count Sketch in time quadratic in the sparsity of the data by operating only on the features that are
active in each minibatch.

Theory. We theoretically demonstrate that BEAR maintains the O(1/t) global convergence rate
of the online version of limited-memory BFGS algorithm (oLBFGS) Mokhtari and Ribeiro (2015)
in t iterations. We show that the convergence rate is retained as we go from the ambient domain to
the sketched domain. The analysis employs the matrix Bernstein inequality to bound the non-zero
eigenvalues of the projection operator in Count Sketch. In practice, we demonstrate that BEAR
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converges faster than the first-order feature selection algorithms—although improving convergence
time is not the main focus of this work.

Experiments. In real-world, ultra-high dimensional data sets from genomics, natural language
processing, and networking, we demonstrate that BEAR requires 10− 1000× less memory space
to achieve the same classification accuracy as the first-order methods. Moreover, BEAR achieves
10− 20% higher classification accuracy given the same memory budget to store Count Sketch and
selects more interpretable features in ultra-high dimensions using a personal laptop-size machine.
Importantly, our results show an increase in the performance gap between the first- and second-
order methods as the memory budget to store the model parameters decrease, which highlights the
important advantages of second-order optimization in storing the sketched stochastic gradient vectors
with a lower collision rate.1

Simulations. We performed extensive controlled sparse recovery simulations with data points
drawn from the normal distribution. We demonstrate that, given a fixed memory budget to store the
weights, BEAR recovers the ground truth features with a large phase transition gap — an important
statistical performance metric from the compressive sensing literature. We show that BEAR’s
performance is highly consistent across a large range of values for the step size parameter because of
the second-order nature of the algorithm.

2. Review: Count Sketch

Count Sketch is a data structure which is originated from the streaming literature Charikar et al.
(2002). Its primary application is to approximately count the number of occurrences of a very
large number (p) of objects in sublinear memory when only the frequency of the most recurring
elements (i.e., the heavy hitters) are of interest. Instead of storing a counter for all the p objects,
Count Sketch linearly projects the count values using d independent random hash functions into
a m � p dimensional subspace. Count Sketch keeps a matrix of counters (or bins) S of size
c × d = m ∼ O(log p) and uses d random hash functions hj : ∀j ∈ {1, 2, ..., d} to map p-
dimensional vectors to c = m/d bins, that is, hj : {1, 2, ..., p} → {1, 2, ..., c}. For any row j of
sketch S, component i of the vector is hashed into bin S(j, hj(i)). In addition to hj , Count Sketch
uses d random sign functions to map the components of the vectors randomly to {+1, −1}, that is,
sj : {1, 2, ..., p} → {+1,−1}.

Count Sketch supports two operations: ADD(item i, increment ∆) and QUERY(item i). The
ADD operation updates the sketch with any observed increment. More formally, for an increment ∆
to an item i, the sketch is updated by adding sj(i)∆ to the cell S(j, hj(i)) ∀j ∈ {1, 2, ..., d}. The
QUERY operation returns an estimate for component i, the median of all the d different associated
counters. In this paper, the objects that we aim to “count” are the weights of the coordinates of the
gradient vector in the feature selection algorithm. Count Sketch provides the following bound in
recovering the top-k coordinates of the feature vector z ∈ Rp:

Theorem 1 Charikar et al. (2002) Count Sketch finds approximate top-k coordinates zi with±ε‖z‖2
error, with probability at least 1−δ, in spaceO(log(pδ )(k+

‖ztail‖22
(εζ)2

)), where ‖ztail‖22 =
∑

i 6∈top−k z
2
i

is the energy of the non-top-k coordinates and ζ is the kth largest value in z.

1. Codes are available at https://github.com/BEAR-algorithm/BEAR
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Count Sketch recovers the top-k coordinates with a memory cost that grows only logarithmic
with the dimension of the data p; and naturally, it requires the energy of the non-top-k coordinates to
be sufficiently small. This is the property that we leverage in this paper in order to improve feature
selection accuracy in ultra-high dimensions.

3. Stochastic Sketching for Feature Selection

We first elaborate on how can we perform feature selection using Count Sketch. Recall that feature
selection seeks to select a small subset of the features that best models the relationship between
xi and yi. This relationship is captured using a sparse feature vector βββ∗ ∈ Rp that minimizes a
given loss function f(βββ,θθθ) : Rp → R using the optimization problem minβββ Eθθθ[f(βββ,θθθ)], where
θθθ ∈ {θθθ1, θθθ2, · · · , θθθn} denotes a data point in a data set of size n. This problem is solved using the
empirical risk minimization

βββ∗ := arg min
βββ

n∑
i=1

f(βββ,θθθi), (1)

using the SGD algorithm which produces the updates βββt+1 := βββt − ηtg(βββt,ΘΘΘt) at iteration t, where
ηt is the step size, the minibatch ΘΘΘt = {θθθt1, θθθt2, . . . , θθθtb} contains b independent samples from
the data, and g(βββt,ΘΘΘt) =

∑b
i=1∇βββt

f(βββt, θθθti) is the stochastic gradient of the instantaneous loss
function f(βββ,ΘΘΘt). In this paper, we are interested in the setting where the dense feature vector βββt
of size p cannot be stored in the memory of a computer. The most common approach in machine
learning when dealing with such high dimensional problem is to project the data points (i.e., the
features) into a lower dimensional space. Feature hashing (FH) is one of the most popular algorithms
Weinberger et al. (2009) which uses a universal hash function to project the features. While FH is
ideal for prediction, it is not suited for feature selection; that is, the original important features cannot
be recovered from the hashed ones.

The reason to stay hopeful in recovering the important features using sublinear memory is that the
feature vector βββ∗ is typically sparse in ultra-high dimensions. However, while the final feature vector
is sparse, βββt becomes dense in the intermediate iterations of the algorithm. The workaround is to store
a sketch of the intermediate non-sparse βββt using a low dimensional sketched vector βββst ∈ Rm (with
m� p) such that the important features are still recoverable. This results in the following sketched
optimization steps βββst+1 := βββst − ηtgs(βββt,ΘΘΘt), where gs(βββt,ΘΘΘt) is the sketched gradient vector. To
enable the recovery of the important features from the sketched features the weights βββst ∈ Rm can be
stored in Count Sketch Charikar et al. (2002); Aghazadeh et al. (2018). Count Sketch preserves the
information of the top-k elements (i.e., the heavy hitters) with high probability as long as the energy
of the non-top-k coefficients is sufficiently small (see Theorem 1) . The noise term gs(βββt,ΘΘΘt) in the
SGD algorithm, however, contributes to the energy of the non-top-k coefficients. This is a critical
problem since, unlike SGD in the ambient dimension, this spurious sketched noise does not cancel
out until it becomes so large that it shows up in the top-k coordinates in Count Sketch. As a result,
a large fraction of the memory in Count Sketch will be wasted to store the sketched noise term in
the non-top-k coordinates, which results in poor memory-accuracy trade off in selecting features in
first-order methods.
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4. Challenges of Second-order Sketching in Ultra-High Dimension

Algorithm 1 Limited-memory BFGS

Input: g(β̂ββt,ΘΘΘt) and {si, ri}ti=t−τ+1

1. ρt = 1
rTt st

.

2. qt = g(β̂ββt,ΘΘΘt),
for i = t to t− τ + 1:

αi = ρis
T
i qi,

qi−1 = qi − αiri.
3. zt−τ =

rTt st
rTt rt

qt−τ ,
for i = t− τ + 1 to t:

γi = ρir
T
i zi.

zi = zi−1 + si(αi − γi).
Return: zt

In this paper, we propose a second-order opti-
mization algorithm for feature selection to re-
duce the effect of collisions while sketching
SGD into lower dimensions. Recall that the
stochastic second-order Newton’s method pro-
duces the updatesβββt+1 := βββt−ηtB−1

t g(βββt,ΘΘΘt),
where Bt = ∇2

βββt
f(βββt,ΘΘΘt) ∈ Rp×p is the instan-

taneous Hessian at iteration t computed over the
minibatch ΘΘΘt. However, there are critical chal-
lenges in sketching these updates for ultra-high
dimensional feature selection: First, comput-
ing the Hessian and finding the matrix inverse
is computationally hard as the matrix inverse
operation is going to have cubic computational
complexity in the problem dimension (i.e., O(p3)) in the worst case. Recent works have allowed for
efficient inversion of the Hessian matrix with a computational complexity which grows linearly with
p (i.e., O(pr2)) using a rank-r approximation of Hessian or grouping the eigenvalues of Hessian
into r clusters (see e.g., Bollapragada et al. (2019); O’Leary-Roseberry et al. (2019)). However,
the computational complexity of all these efficient algorithms grow in the best case linearly with p.
Second, even if we assume that the Hessian is approximately diagonal (e.g., in AdaHessian Yao et al.
(2020)), storing the diagonal elements will have linear memory cost in p, which we can not afford in
ultra-high dimension. Third, sketching the Hessian directly is not possible using Count Sketch since
the linear increments are happening over the gradients and not the Hessian in SGD.

Unfortunately, all the recent literature in fast second-order optimization also operates with at
least linear memory and time complexity. Namely, Quasi-Newton’s methods such as the BFGS
algorithm reduce the time complexity of Newton’s method using an iterative update of the Hessian
as a function of the variations in the gradients rt = g(βββt+1,ΘΘΘ)− g(βββt,ΘΘΘ) and the feature vectors
st = βββt+1 − βββt which ensures that the Hessian satisfies the so-called secant equation Bt+1st = rt.
While BFGS avoids the heavy computational cost involved in the matrix inversion, it still has a
quadratic memory requirement. The limited-memory BFGS (LBFGS) algorithm reduces the memory
requirement of the BFGS algorithm from quadratic to linear by estimating the product of the inverse
Hessian and the gradient vector zt = B−1

t g(βββt,ΘΘΘt) without explicitly storing the Hessian Nocedal
(1980). This makes use of the difference vectors rt and st from the last τ iteration of the algorithm
(Alg. 1). Recently, an online LBFGS algorithm (oLBFGS) Mokhtari and Ribeiro (2015) with global
linear convergence guarantee and an incremental greedy BFGS algorithm (IGS) Gao et al. (2020)
with non-asymptotic local superlinear convergence guarantee have been developed. However, both
the online limited-memory and incremental BFGS algorithms fail to run on ultra-high dimensional
data sets due to their linear memory requirement. This motivates the central question that we aim to
address: how can we enjoy the benefits of second-order optimization for feature selection in sublinear
memory?
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Algorithm 2 BEAR
Initialize: t = 0, Count Sketch βββst=0 = 0, top-k heap.
while stopping criteria not satisfied do

1. Sample b independent data points in a minibatch ΘΘΘt = {θθθt1, . . . , θθθtb}.
2. Find the active set At.
3. QUERY the feature weights in At ∩ top-k from Count Sketch βββt = query(βββst ).
4. Compute stochastic gradient g(βββt,ΘΘΘt).
5. Compute the descent direction with Alg. 1 zt = LBFGS(g(βββt,ΘΘΘt) , {si, ri}ti=t−τ+1).
6. ADD the sketch of zt at the active set ẑt = zt

At to Count Sketch βββst+1 := βββst − ηtẑst .
7. QUERY the features weights in At ∩ top-k from Count Sketch βββt+1 = query(βββst+1).
8. Compute stochastic gradient g(βββt+1,ΘΘΘt).
9. Set st+1 = βββt+1 − βββt, and rt+1 = g(βββt+1,ΘΘΘt)− g(βββt,ΘΘΘt).
10. Update the top-k heap.
11. t = t+ 1.

end while
Return: The top-k heavy-hitters in Count Sketch.

5. The BEAR Algorithm

Our feature selection algorithm, BEAR, estimates the second-derivative of the loss function from
sketched features. Instead of explicitly storing the product of the inverse Hessian and the gradient
(done in oLBFGS), BEAR maintains a Count Sketch S to store the feature weights in sublinear
memory and time quadratic in the sparsity of the input data. The key insight is to update the Count
Sketch by the sketch of the gradient corrected by the sketch of the difference vectors rt and st. As
detailed in Alg. 2, BEAR first initializes Count Sketch with zero weights and a top-k heap to store
the top-k features. In every iteration, it samples b independent data points ΘΘΘt and identifies the active
set At, that is, the features that are present in ΘΘΘt. It then queries Count Sketch to retrieve the feature
weights that are in the intersection of the active set At and the top-k heap and set the weights for the
rest of the features to zero. Next, it computes the stochastic gradient g(βββt,ΘΘΘt) and uses it along with
the difference vectors ri and si from the last τ iterations to find the descent direction zt using the
LBFGS algorithm detailed in Alg. 1. Then, it adds the sketch of the descent direction zt only at the
features in the active set ẑt = zt

At to Count Sketch. BEAR queries Count Sketch for the second
time in order to update the difference vector rt+1 = g(βββt+1,ΘΘΘt) − g(βββt,ΘΘΘt) and uses the sketch
vector ẑt to set st+1. The difference vector rt+1 captures the changes in the gradient vector as the
content of Count Sketch change over a fixed minibatch ΘΘΘt Mokhtari and Ribeiro (2015). Finally,
BEAR updates the top-k heap with the active set At and moves on to the next iteration until the
convergence criteria is met. To update the top-k heap, BEAR scans the features that have been
changed in Count Sketch over the past iteration. If those features are already in the heap, it updates
the values of those elements, and if the features are new, it inserts the new elements into the heap
with a worst-case time complexity that grows logarithmic with the number of features k. In the rare
scenario, where the intersection of the active set At and the top-k heap is empty the gradient can still
be non-zero and can change the feature weightings.

The most time-costly step of BEAR, which computes the descent direction (step 5), is quadratic
time in the sparsity of the data |At|. Table 1 summarizes the worst-case memory complexity of the
vectors involved in BEAR. The dominant term is Count Sketch βββst for which the memory complexity
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βββt st rt zt βββst g(βββt,ΘΘΘt)

k 2|At| 2|At| 2τ |At| |S| |At|

Table 1: Memory cost of the vectors in BEAR.

in terms of the top-k value are established in Theorem 1. The memory requirement to store the
auxiliary vector zt is only a constant τ times larger than the size of the active set which is negligible
in streaming data-sparse features compared to the size of Count Sketch (see section 7).

Convergence Analysis. We now analyze the convergence of the algorithm. Consider the follow-
ing standard assumptions Mokhtari and Ribeiro (2015) on the instantaneous functions f(βββ,ΘΘΘ) to
prove the convergence of the BEAR algorithm: 1) The instantaneous objective functions are twice
differentiable with the instantaneous Hessian being positive definite, that is, the eigenvalues of the
instantaneous Hessian satisfy M1I � ∇2

βββf(βββ,ΘΘΘ) �M2I, for some 0 < M1 < M2. 2) The norm of
the gradient of the instantaneous functions is bounded for all βββ, that is, EΘΘΘ[‖g(βββ,ΘΘΘ)‖2 | βββ] ≤ S2. 3)
The step sizes ηt are square-summable. More specifically,

∑∞
t=0 ηt = ∞ and

∑∞
t=0 η

2
t < ∞. We

prove the following theorem.

Theorem 2 Let f(·) and the step sizes ηt satisfy the assumptions above. Let the size of Count Sketch
be m = θ(ε−2 log 1/δ) with number of hashes d = θ(ε−1 log 1/δ) for ε, δ > 0. Then, the Euclidean
distance between updates βββst in the BEAR algorithm and the sketch of the solution of problem (1)
converges to zero with probability 1− δ, that is,

P( lim
t→∞
‖βββst − βββs

∗‖2 = 0) = 1− δ, (2)

where the probability is over the random realizations of random samples {ΘΘΘt}∞t=0. Furthermore,
for the specific step size ηt = η0/(t+ T0) for some constants η0 and T0, the model parameters at
iteration t satisfy

EΘΘΘ[f(βββst ,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)] ≤ C0

T0 + t
, (3)

with probability 1− δ. Here, C0 is a constant depending on the parameters of the sketching scheme,
the above assumptions, and the objective function.

The proof makes use of the matrix Bernstein inequality in projecting the second-order gradients
in Count Sketch Kane and Nelson (2014) which we defer to the Proofs section. For sufficiently
sparse solutions the convergence in the ambient domain follows from convergence in the sketched
domain (i.e., Theorem (2)) and the Count Sketch guarantee (i.e., Theorem (1)):

Corollary 3 Let π(·) be a permutation on {1, 2, · · · , p} such that β∗π(1) ≥ β
∗
π(2) ≥ · · ·β

∗
π(p), where

βββ∗ = [β∗1 , β
∗
2 , · · · , β∗p ] is the optimal solution to (1). Also, let

m = max

[
O

(
log(

2p

δ
)

(
k +
‖βββ∗tail‖22

(εζ)2

))
, θ

(
1

ε2
log

2

δ

)]
(4)

81



and number of hashes d = θ(ε−1 log 2/δ) where ε, δ > 0, ‖βββ∗tail‖22 =
∑p

i=k+1(β∗π(i))
2 and ζ =

β∗π(k). Then,

|β∗π(i) − βtπ(i)| ≤ ε‖βββ∗‖2 for all i ∈ {1, 2, · · · , k} with probability 1− δ, (5)

where βββt = [βt1, βt2, · · · , βtp] is the output of the BEAR algorithm.

This completes the convergence proof of BEAR in sublinear memory in the ambient space.

6. Simulations
We have conducted sparse recovery simulations to evaluate the performance BEAR compared to the
first-order feature selection algorithm in ultra-high dimension MISSION Aghazadeh et al. (2018).
MISSION is one of the only first-order optimization algorithms that enables feature selection in a
memory cost that grows sublinearly with the size of the feature vector and as a result runs in the
scale of problems that we are considering in this paper. In addition, comparing the accuracy of
BEAR with MISSION as a baseline shows the power of sketching the second-order gradients (done
in BEAR) against sketching first-order gradients (done in MISSION). The synthetic simulations
described in this section have ground truth features, so we can assess the algorithms in a more
controlled environment and compare the results using a variant of the phase transition plot from
the compressive sensing literature Maleki and Donoho (2010). We also show the results of the full
Newton’s method version of our BEAR algorithm where we compute the Hessian rather than its
oLBFGS approximation (this algorithm cannot operate in large-scale settings). The same hash table
(hash functions and random seeds) and step sizes are used for BEAR and MISSION. Hyperparameter
search is performed to select the value of the step sizes in both algorithms. The entries of the data
vectors xi are sampled from an i.i.d. Gaussian distribution with zero mean and unit variance. The
output labels yi are set using a linear forward model yi = xiβββ

∗, where βββ∗ is a k-sparse ground truth
feature vector. The indices of the support (i.e., the non-zero entries) and the weights of the non-zero
entries in βββ∗ are drawn uniformly at random respectively from the sets [1, p] and [0.8, 1.2] and MSE
is used as the loss function. The same experiment is repeated 200 times with different realization of
the data vectors x. Convergence at iteration t is reached when the norm of the gradient drops below
10−7 consistently in all the algorithms. The algorithms are compared in terms of the accuracy in
selecting the ground truth features as well as the sensitivity of the algorithms to the choice of the
value of the step size.

Feature Selection Accuracy. The task is to select k = 8 features in a data set with n = 900
rows (data points) and p = 1000 columns (features). The size of Count Sketch is varied from 10% to
60% of the total memory required to store a p = 1000 dimensional feature vector. This ratio, that is
the ratio of data dimension p to Count Sketch size, is called the compression factor. For each value of
the compression factor, the experiment is repeated 200 times. Fig. 1A shows the fraction of iterations
in which the algorithms find all the ground truth features correctly, that is, the probability of success.
Fig. 1B illustrates the same results in terms of the average `2-norm of the error of the recovered
feature vectors ‖βββt − βββ∗‖2. BEAR significantly outperforms MISSION in terms of the probability
of success and the average `2-norm error. The gap is more pronounced in higher compression factors;
given a compression factor of 3, MISSION has almost no power in predicting the correct features
while the BEAR and Newton’s methods achieve a 0.5 probability of success. Fig. 1A and B further
suggest that the performance gap between BEAR and it’s exact Hessian counterpart is small showing
that the oLBFGS makes a good approximation to the Hessian in terms of the selected features.
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A B C

Figure 1: Feature selection experiments on p = 1000-dimensional synthetic data sets with entries
drawn from normal distribution. A) Probability of success in recovering all features
correctly as a function of compression factor. B) Recovery error rate in terms of the
`2-norm. C) Probability of success as a function of the value of the step size (compression
factor = 2.22).

Sensitivity to Step Size. The experimental setup is similar to the previous section except the
Sketch size is fixed and step size varies. The experiment is repeated 200 times while varying the
values of the step size η ranging from 10−7 to 10−1 and the probability of success is reported. Count
Sketch of size 150× 3 is used for both MISSION and BEAR. Fig. 1C illustrates the probability of
success for BEAR and MISSION as a function of the step size. The plot shows that BEAR is fairly
agnostic and MISSION is dependent on the choice of the step size η. MISSION’s accuracy peaks
around η = 10−4 and sharply drops as η deviates from this value. BEAR’s lower-dependence on
step size is ideal for streaming settings where the statistics of the data might change over time and
there is not enough time and memory budget to do step size selection.

7. Experiments
We designed the experiment in a way to answer the following questions:

• Does BEAR outperform MISSION in terms of classification accuracy? In particular, how does
the performance gap between the algorithms change as a function of the memory allocated for
Count Sketch?

• How does BEAR perform on real-world large-scale data sets (p > 50 million)?

• How does BEAR perform in terms of classification accuracy compared to FH?

• How does changing the number of top-k features affect the accuracy of the feature selection
algorithms?

• What is the convergence behaviour of BEAR when the memory budget is small?

• What is the run time of BEAR compared to MISSION?

We compare the performance of these baseline algorithms with BEAR: 1) Stochastic Gradient
Descent (SGD): For data sets with sufficiently small dimension and size to be able to train a classifier
on our laptop machine, we perform the vanilla SGD algorithm (with O(p) memory). 2) oLBFGS:
Similar to SGD, for the data sets that the dimension and size allows to train a classifier on our laptop
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Data set Dim (p) #Train (n) #Test Size #Act.
RCV1 47,236 20,242 677,399 1.2GB 73

Webspam 16,609,143 280,000 70,000 25GB 3730
DNA 16,777,216 600,000 600,000 1.5GB 89

KDD 2012 54,686,452 119,705,032 29,934,073 22GB 12

Table 2: Summary of the real-world data sets.

machine, we perform the vanilla oLBFGS algorithm (neither SGD nor the oLBFGS techniques do
feature selection or model compression). 3) Feature Hashing (FH): FH Weinberger et al. (2009) is
a standard algorithm to do prediction (classification) in large-scale machine learning problems. FH
hashes the data features into a lower dimensional space before the training process and is not a feature
selection algorithm. 4) MISSION: As mentioned earlier, MISSION is a first-order optimization
algorithm for feature selection which sketches the noisy stochastic gradients into Count Sketch.

Performance Metrics. The algorithms are assessed in terms of the following performance metrics:
1) Classification accuracy: Once the algorithms converge, the performance of the algorithms in
terms of classification accuracy are compared, that is, the fraction of test samples that are classified to
correct classes. 2) Area under the ROC curve (AUC): For the data sets that the class distribution are
highly skewed the area under the ROC curve (AUC) is reported instead of the classification accuracy.
In these data sets, the class probabilities are taken as the output of the classifiers. 3) Compression
factor (CF): The compression factor is defined as the dimension of the data set p divided by the size
of Count Sketch m. For multi-class classification problems, m is the total memory of all the Count
Sketches used for all the classes. A higher compression factor means a smaller memory budget
is allocated to store the model parameters. SGD and oLBFGS have a compression factor of one.
4) Run time: The run time of the algorithms to converge in minutes.

Real-World Data sets. The key statistics of the data sets used in the paper are tabulated in Table 2
including the dimension of the data set (p), number of training data (n), number of test data, total
size of the data set, and the average number of active (non-zero) features per data point. All the data
is analyzed in the Vowpal Wabbit format.

1) RCV1: Reuters Corpus Volume I. RCV1 is an archive of manually categorized news wire
stories made available by Reuters, Ltd. for research purposes. The negative class label includes
Corporate/Industrial/Economics topics and positive class labels includes Government/Social/Markets
topics (see Lewis et al. (2004)). The data set is fairly balanced between the two classes.

2) Webspam: Web Spam Classification. Web spam refers to Web pages that are created to ma-
nipulate search engines and Web users. The data set is a large collection of annotated spam/nonspam
hosts labeled by a group of volunteers (see Webb et al. (2006)). It is slightly class-imbalanced with
60% samples from class 1.

3) DNA: Metagenomics. A data set that we dub “DNA” from metagenomics. Metagenomics
studies the composition of microbial samples collected from various environments (for example
human gut) by sequencing the DNA of the living organisms in the sample. The data set comprises
of short DNA sequences which are sampled from a set of 15 DNA sequences of bacterial genomes.
The task is to train a classifier to label the DNA sequences with their corresponding bacteria. DNA
sequences are encoded using their constituent sub-sequences calledK-mers (see Vervier et al. (2016)).
The training and test data have an equal number of samples for each class. A naive guessing strategy
achieves a classification accuracy of 0.06.
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Figure 2: Classification performance as a function of the compression factor in real-world data sets.

Figure 3: Classification performance as a function of the number of the top-k features.

4) KDD Cup 2012: Click-Through Rate Prediction. A key idea in search advertising is to
predict the click-through rate (pCTR) of ads, as the economic model behind search advertising
requires pCTR values to rank ads and to price clicks. The KDD Cup 2012 data set comprises training
instances derived from session logs of the Tencent proprietary search engine (see Juan et al. (2016)).
The data set is highly class-imbalanced with 96% samples from class 1 (click).

Multi-class Extension. For the multi-class classification problems stated above, we developed a
multi-class version of the BEAR algorithm. In the multi-class problem one natural assumption is
that there are separate subsets of features that are most predictive for each class. Our multi-class
BEAR algorithm accommodates for this by maintaining a separate Count Sketch and heap to store
the the top-k features associated with each class. The total memory complexity of the algorithm
grows linearly with the number of classes. For a fair comparison, we use the exact same multi-class
Count Sketch extension for MISSION. We have also implemented the single Count Sketch version of
BEAR, however, since the multi-class Count Sketch extension performs better for feature selection
we report the results of the former in our experiments.

Experimental Setup. MurmurHash3 with 32-bit hash values is used to implement the hash func-
tions in MISSION, BEAR, and FH. The algorithms are trained in a streaming fashion using the
cross entropy loss. The algorithms are run for a single epoch so that each algorithm sees a data
point once on average. The size of the minibatches and the step size are kept consistent across the
algorithms. The constant τ = 5 in BEAR however the results are consistent across a large range
of values for τ . Both in BEAR and MISSION a Count Sketch with 5 rows (hash functions) is
used. The lower dimensional embedding size of FH is set equal to the total size of Count Sketch
in BEAR. The experiments are performed on a single laptop machine - 2.4 GHz Quad-Core Intel
Core i5 with 16 GB of RAM. We chose an edge device as opposed to a computing server for our
real-world experiments to showcase the applicability of BEAR in a resource constrained environment.
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BEAR manage entrepreneur colombian decade oppress
MISSION peach week nora demand incomplete

Table 3: Examples of the features selected in RCV1.

data set (CF) RCV1 (95) Webs (332) DNA (22) KDD (103)
BEAR 0.1 5 26 25

MISSION 0.3 19 55 33

Table 4: Overall run time comparison (minutes).

Result I) Classification Performance vs. Compression Factor. We assess the classification perfor-
mance of BEAR compared to the baseline algorithms for different compression factors in Fig. 2.
All the active features in the test data are used at the inference step for a fair comparison with FH.
BEAR’s classification performance is consistently better than MISSION and FH across all the data
sets over a wide range of compression factors while showing a hysteresis behaviour: the performance
gap increases as the compression factor grows until Count Sketch is too small to yield any prediction
power. The classification performance of all algorithms degrades with larger compression factors,
which is expected since lower Count Sketch sizes increase the probability of collisions in both
BEAR and MISSION. The degradation, however, impacts MISSION significantly more that BEAR.
In particular, BEAR’s performance stays relatively robust for compression rates in the range of
1− 10 in RCV1, 1− 1000 in Webspam, and 10− 100 in KDD, while the classification performance
of MISSION drops rapidly. The increasing performance gap between BEAR and MISSON with
compression factor highlights the unique advantage of BEAR in storing the second-order steps
in Count Sketch and lowering the probability of collisions. Note that this performance gap is less
pronounced in the DNA data set while the general trend still follows the other data sets. This is
because the DNA data set has 15 balanced classes and its K-mer features have relatively more
distributed information content compared to the features in the other data sets, which poses a harder
feature selection task for the algorithms.

Result II) Classification Performance vs. Top-k Features. We assess the performance of BEAR in
terms of the classification accuracy against the number of selected top-k features. The compression
factors are fixed to 10, 330, 330, and 1100 respectively for the data sets in Fig. 3. SGD, oLBFGS,
and FH cannot select features, therefore, they are not included in this analysis. The plots shows that
BEAR selects features that are better in terms of prediction accuracy for a wide range of values
of k. The gap grows for larger k. We analyzed the selected features in RCV1 for which a proper
documentation of the features is publicly available (unlike the other data sets). Some of the selected
features are shared among the algorithms, for example, “shareholder”, “nigh”, and “company”, which
can be attributed to the Markets, Social, and Industrial subjects, respectively. Other terms, however,
are uniquely chosen by one of the algorithms as tabulated in Table 3. Compared to BEAR, the terms
selected by MISSION are less frequent (e.g., “peach”) and do not discriminate between the subject
classes (e.g., “incomplete”).

Result III) Run Time. We compare the overall run time of BEAR with MISSION in Table 4.
BEAR is significantly faster than MISSION consistently in all the data sets; BEAR makes a better
use of the data by estimating the curvature of the loss function and converges faster.
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8. Discussion and Conclusion
We have developed BEAR, which to the best of our knowledge is the first second-order optimization
algorithm for ultra-high dimensional feature selection in sublinear memory. Our results demonstrate
that BEAR has up to three orders of magnitude smaller memory footprint in feature selection
compared to the first-order sketching algorithms with comparable (and sometimes superior) run time.
We showed that the benefits of BEAR is far more pronounced while sketching into lower-dimensional
subspaces, which is due to the more accurate decent directions of second-order gradients resulting
in less collision-causing noise in Count Sketch. The implications of memory-accuracy advantage
of second-order methods goes beyond hashing and streaming and can be applied to improve the
communication-computation trade-off in distributed learning in communicating the sketch of the
stochastic gradients between nodes Ivkin et al. (2019); Gupta et al. (2019). Moreover, while we laid
out the algorithmic principles in sketching second-order gradient for training ultra-high dimensional
generalized linear classifiers with theoretical guarantees, similar algorithmic principles can be used
in sketching nonlinear models such as deep neural networks on lower-dimensional data sets Yao
et al. (2020). We believe that our work will open up new research directions towards understanding
the benefits of second-order optimization in training massive-scale machine learning models in
memory-constrained environments.

Proofs

Theorem 2. Before stating the proof, for more clarity, we will reiterate the problem setup and
our assumptions from the main paper here. We are interested in solving the following problem using
BEAR

βββ∗ := arg min
βββ∈Rp

f(βββ,ΘΘΘ) = arg min
βββ∈Rp

1

T

T∑
t=1

f(βββ,θθθt) = arg min
βββ∈Rp

1

T

T∑
t=1

f(Xtβββ,yt), (6)

where ΘΘΘ = {θθθ1, θθθ2, · · · , θθθT } and θθθt = (Xt,yt) ∀ t ∈ [1, T ]. We make the following standard
assumptions Mokhtari and Ribeiro (2015):

1. The instantaneous objective functions, f(·), in Eq. (6) are twice differentiable with the instan-
taneous Hessian being positive definite. That is, the eigenvalues of the instantaneous Hessian
satisfy

M1I � ∇2
βββf(βββ,ΘΘΘ) �M2I, (7)

for some 0 < M1 ≤M2.

2. The norm of the gradient of the instantaneous functions f(·) in Eq. 6 is bounded for all βββ, that
is

EΘΘΘ[‖g(βββ,ΘΘΘ)‖2 | βββ] ≤ S2. (8)

3. The step-sizes ηt are square-summable. More specifically,

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2
t <∞. (9)
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Lemma 4 The solution of problem in (6) using BEAR (or its first-order variant MISSION) is
equivalent to the solution of the following problem in the sketched domain,

βββs∗ := arg min
βββs∈Rm

1

T

T∑
t=1

f(XtSβββ
s,yt), (10)

where multiplication by S ∈ Rp×m is the linear projection operator in Count Sketch and βββs ∈ Rm is
the projected model parameters.

Proof Let the update for online gradient descent for the original problem in Eq. (6) be given by

βββt+1 = βββt − ηt∇f(Xβββt,yt) (11)

For BEAR/MISSION type algorithms, the model parameters are stored in a Count Sketch based hash
table. The compressed vector can be represented by an affine transformation as βββst = STβββt, where
S ∈ Rp×m is the Count Sketch matrix Kane and Nelson (2014). While updating the model, the
indices corresponding to the non-zero values in the gradient (the oLBFGS update in case of BEAR)
are updated by querying Count Sketch. For Count Sketch with mean query operator, the update for
MISSION can be written as

βββst+1 = βββst − ηtST∇f(XQ(βββst ),yt) (12)

where Q(·) is the query function and βββst = STβββt is the sketched model parameter vector. When the
query is the mean operator, the Q(·) is the affine transformation Q(x) = Sx for any x ∈ Rm Kane
and Nelson (2014); Woodruff et al. (2014). Thus, the MISSION update equation is given by

βββst+1 = βββst − ηtST∇f(XSβββst ,yt). (13)

The gradient for the problem in Eq. (10) is given by∇fβββs(·) = ST∇f(·). Hence, its online gradient
descent update is the same as MISSION’s update in Eq. (13). Since BEAR is a second-order variant
of MISSION, it attempts to solve the same problem as MISSION. Next, we show that it indeed solves
the problem with high probability at a linear convergence rate.

Now, to show that BEAR converges to βββs∗, we first need to show that the problem in Eq. (10)
also satisfies the assumptions in Eq. (7) and (8) (albeit with different constants). Then, we can invoke
the convergence guarantees for oLBFGS from Mokhtari and Ribeiro (2015) to show that BEAR
converges at a linear rate.

Lemma 5 Assume Count Sketch has a size m = Θ(ε−2 log 1/δ) with the number of hashes d =
Θ(ε−1 log 1/δ). If the instantaneous function f(βββ,ΘΘΘ) satisfy Assumptions 1 and 2 (Eq. (7) and (8),
respectively), then, the corresponding instantaneous function for the sketched problem f(Sβββs,ΘΘΘ)
also satisfy

p

m
(1− ε)M1I � ∇2

βββsf(Sβββs,ΘΘΘ) � p

m
M2(1 + ε)I, (14)

Eθθθ[‖∇βββsf(Sβββs,ΘΘΘ)‖2 | βββ] ≤ p

m
M2(1 + ε)S2, (15)

with probability 1− δ each.
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Proof The instantaneous Hessian for the sketched problem (say Hs) is given by

Hs = ∇2
βββsf(Sβββs,ΘΘΘ) = ST∇2f(Sβββs,ΘΘΘ)S = STHS, (16)

where H = ∇2f(Sβββs,ΘΘΘ) is the instantaneous Hessian for the original problem. Since commuting
matrices have the same set of non-zero eigenvalues, the eigenvalues of STHS are equal to the
eigenvalues of HSST . Hence,

λmax(Hs) = λmax(STHS) = λmax(HSST ) (17)

≤ λmax(H)λmax(SST ) (18)

≤M2 λmax(SST ) (19)

= M2 λmax(STS), (20)

where λmax(·) denotes the maximum eigenvalue and λmax(H) ≤ M2 by assumption. Also, Eq.
(18) uses the fact that the maximum eigenvalue of the product of two symmetric matrices is upper
bounded by the product of maximum eigenvalues of individual matrices.

For the count sketch matrix S ∈ Rp×m, we have E[STS] = p
mI. Moreover, by applying the

matrix Bernstein inequality (Tropp, 2015) on the matrix Z = STS− p
mI =

∑p
i=1

(
STi Si − 1

mI
)

=∑p
i=1 Zi, where Si is the i-th row in S and Zi =

(
STi Si − 1

mI
)
∀ i ∈ [1, p], we get the following

bound P
(
‖Z‖ ≥ ε pm

)
≤ 2m exp −ε2p2/(2m2)

v(Z)+Lεp/(3m) , where ‖Zi‖ ≤ L ∀ i and v(Z) = ‖
∑p

i=1 Z
T
i Zi‖.

For the count sketch matrix, we have L = 1 and v(Z) = d(k−1)
k2

. Thus, we get P
(
‖Z‖ ≥ ε pm

)
≤

2m exp −ε2p2/(2m2)
p(m−1)/m2+εp/(3m)

. Further, for any m = O(
√
p), the R.H.S. in the above inequality is

upper bounded by δ. Note that the sketch-size m is generally independent and (order-wise) much less
than the bigger dimension p, and hence m = O(

√
p) can be easily satisfied by choosing appropriate

constants ε > 0 and δ < 1. Thus, we get the following bound on the eigenvalues of STS (also the
non-zero eigenvalues in SST )

p

m
(1− ε) ≤ λi(STS) ≤ p

m
(1 + ε) for all i ∈ [1,m] (21)

with probability 1− δ. Using this in (18), we get

λmax(Hs) ≤ p

m
M2(1 + ε) (22)

with probability 1− δ.
Similarly, we can write the smallest eigenvalue of Hs as

λmin(Hs) =
1

λmax((Hs)−1)
=

1

λmax((STHS)−1)
=

1

λmax((HSST )†)
, (23)

where (·)† is the Moore-Penrose inverse and the last inequality again uses the fact that commuting ma-
trices have the same set of non-zero eigenvalues. Thus, STHS and HSST , and their corresponding
inverses, have the same set of non-zero eigenvalues. Let’s define the truncated eigenvalue decompo-
sition of SST as SST = UΛUT and note that (HSST )† = (HUΛUT )† = (UT )†Λ−1(U)†H−1.
Hence, we get

λmax((HSST )†) = λmax((UT )†Λ−1(U)†H−1)

≤ λmax(Λ−1)λmax((H)−1)

= λmax((SST )†)λmax((H)−1) (24)
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since Λ−1 contains the non-zero eigenvalues of (SST )†. Thus,

λmin(Hs) ≥ 1

λmax((SST )†)λmax((H)−1)

≥ λmin(SST )λmin(H)

≥ λmin(SST )M1

= λmin(STS)M1

≥ p

m
M1(1− ε), (25)

with probability 1− δ. where the last inequality follows from (21). This proves the desired result.
Similarly, to prove that the gradient of the sketched problem is bounded, observe that

‖∇βββsf(Sβββs,ΘΘΘ)‖2 = ‖ST∇f(Sβββs,ΘΘΘ)‖2 ≤ p
mM2(1 + ε)‖∇f(Sβββs,ΘΘΘ)‖2 with probability 1 − δ,

where the last inequality follows from (21). Hence,

Eθθθ[‖∇βββsf(Sβββs,ΘΘΘ)‖2 ≤ p

m
M2(1 + ε)Eθθθ[‖∇f(Sβββs,ΘΘΘ)‖2 ≤ p

m
M2(1 + ε)S2 (26)

with probability 1− δ, where the second inequality follows from assumption in (8).

Finally, to prove Theorem 2, we invoke the results from Mokhtari and Ribeiro (2015). According
to Theorem 6 in Mokhtari and Ribeiro (2015), oLBGS with instantaneous functions satisfying
assumptions in Eqs. (14) and (26) converges with probability one. Hence, for BEAR, we get

P( lim
t→∞
‖βββst − βββs

∗‖2 = 0) = 1− δ. (27)

Moreover, for the specific step-size ηt = η0/(t + T0), where η0 and T0 satisfy the inequality
2m1η0T0 > C for some constant C, BEAR satisfies the following rate of convergence (Theorem 7
in Mokhtari and Ribeiro (2015))

E[f(βββst ,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)] ≤ C0

T0 + t
, (28)

with probability 1− δ, where the constant C0 is given by

C0 = max

{
η2

0T
2
0CM2p

2S2(1 + ε)2

2c2m[M1pη0T0(1− ε)− Cm]
, T0(E[f(βββs,ΘΘΘ)− E[f(βββs∗,ΘΘΘ)])

}
.
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