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Abstract
This work presents a multilevel variant of Stein variational gradient descent to more efficiently
sample from target distributions. The key ingredient is a sequence of distributions with growing
fidelity and costs that converges to the target distribution of interest. For example, such a sequence
of distributions is given by a hierarchy of ever finer discretization levels of the forward model
in Bayesian inverse problems. The proposed multilevel Stein variational gradient descent moves
most of the iterations to lower, cheaper levels with the aim of requiring only a few iterations on
the higher, more expensive levels when compared to the traditional, single-level Stein variational
gradient descent variant that uses the highest-level distribution only. Under certain assumptions,
in the mean-field limit, the error of the proposed multilevel Stein method decays by a log factor
faster than the error of the single-level counterpart with respect to computational costs. Numerical
experiments with Bayesian inverse problems show speedups of more than one order of magnitude
of the proposed multilevel Stein method compared to the single-level variant that uses the highest
level only.
Keywords: Monte Carlo, multilevel and multifidelity, particle methods, Bayesian inference

1. Introduction

Sampling from a target distribution π is a common task in Bayesian inference. Typically, in ma-
chine learning, the (unnormalized) density of the target distribution can be evaluated to approxi-
mately sample from it with Monte Carlo, variational, and particle methods (Robert and Casella,
2004; Ranganath et al., 2014; Rezende and Mohamed, 2015; Zhang et al., 2019). We look at a setup
that is more common in scientific machine learning and scientific computing, where a sequence
of distributions (π(`)) is given that converges weakly to a computationally intractable target π for
increasing level ` → ∞. Here, intractable means that one cannot numerically evaluate the (unnor-
malized) density of π. For example, one finds such a setup in Bayesian inverse problems (Stuart,
2010; Kaipio and Somersalo, 2007; Martin et al., 2012), where the target π corresponds to a pos-
terior distribution that depends on a forward model through the likelihood. The forward model is
typically a system of partial differential equations (PDEs) for which only numerical solutions can be
computed; increasingly more accurate, more expensive discretizations (e.g., mesh width going to 0)
of the forward-model PDEs then give rise to a sequence of distributions (π(`)) that converges to π.
To approximately sample from the target π, one then selects a level L such that π(L) is a sufficiently
accurate approximation of π and then applies Monte Carlo or particle methods to π(L); see, e.g.,
(Stuart, 2010; Kaipio and Somersalo, 2007; Martin et al., 2012). One challenge of such an approach
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is that the density of π(L) can be computationally expensive to evaluate, because each evaluation of
the density entails at least one numerical solve of the PDEs underlying the forward model, which
can quickly make sampling from it prohibitively expensive.

Our contributions We propose to extend Stein variational gradient descent (SVGD) (Liu and
Wang, 2016) to a multilevel SVGD (MLSVGD) that leverages the distributions from all levels ` =
1, . . . , L to more efficiently approximately sample from π than traditional, single-level SVGD that
uses the distribution π(L) on the highest level L only; thus, the proposed MLSVGD builds on
the long history of exploiting hierarchies of discretizations in scientific computing (see below for
literature review). Our contributions are as follows: (1) an analysis that shows the cost complexity
of the proposed MLSVGD is lower than the cost complexity of single-level SVGD; (2) a numerical
algorithm that builds on an adaptive stopping criterion that can be applied in a black-box way; (3)
numerical experiments with Bayesian inverse problems involving nonlinear diffusion-reaction and
Euler-Bernoulli beam models that demonstrate that taking into account all levels ` = 1, . . . , L can
lead to more than one order of magnitude speedup compared to single-level SVGD.

Related work on multilevel methods in scientific computing Taking into account various dis-
cretizations and approximations of forward models to achieve computational speedups has a long
tradition in scientific computing, e.g., multigrid solvers (Hackbush, 1985; Briggs et al., 2000),
sparse grid approximations (Bungartz and Griebel, 2004), multilevel Monte Carlo for estimating
statistics (Heinrich, 2001; Giles, 2008; Cliffe et al., 2011); and multifidelity methods that lever-
age low-fidelity models without clear hierarchies (Peherstorfer et al., 2018b). In terms of sampling
from distributions, there is work on Markov chain Monte Carlo (MCMC) methods that exploit hi-
erarchies of distributions such as multistage MCMC methods (Christen and Fox, 2005; Fox and
Nicholls, 1997), multilevel Metropolis–Hastings (Dodwell et al., 2015); and MCMC methods with
importance sampling (Hoang et al., 2013). Then, there are multilevel/multifidelity variational meth-
ods, where a transport map (flow) is parametrized a priori; for example, (Alsup and Peherstorfer,
2020; Peherstorfer and Marzouk, 2019) build on (Moselhy and Marzouk, 2012; Parno and Mar-
zouk, 2018) and construct the transport maps from a distribution on a lower level and then use it as
proposal for Metropolis-Hastings or for importance sampling. There are multilevel particle filters
(Jasra et al., 2017) and multilevel sequential Monte Carlo (Beskos et al., 2017) methods, ensemble
Kalman filtering (Hoel et al., 2016), and extensions to nonlinear filtering using transport (Gregory
et al., 2016); these rely on telescoping sums of correlated differences between successive levels,
whereas our approach uses the successive levels as preconditioners for sampling. Probably clos-
est in style to our approach are the multilevel sequential Monte Carlo method (Latz et al., 2018;
Wagner et al., 2020) and the multilevel cross-entropy method (Peherstorfer et al., 2018a) that use
distributions obtained on lower levels as starting distributions on higher levels.

Related work on SVGD from machine learning The MLSVGD proposed in this work builds on
SVGD introduced by Liu and Wang (2016) and further theoretically analyzed in (Liu, 2017); ex-
tended to consider Newton directions (Detommaso et al., 2018); exploiting geometry (Chen et al.,
2019), and other acceleration techniques (Liu et al., 2019). A key building block for us will be recent
advances on understanding the convergence properties of SVGD in the infinite particle (mean-field)
regime. The work (Liu, 2017; Duncan et al., 2019) shows the mean-field limit. The work (Korba
et al., 2020) shows non-asymptotic results. Further, the work (Chewi et al., 2020) establishes ex-
ponential convergence under certain situations in the mean-field limit that motivates some of our
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assumptions. Another key building block is relating discretization error of the forward model at
level ` to divergence of the corresponding posterior distributions π(`) with respect to the intractable
target π, where we build on results by Stuart (2010) and an inequality involving the Kullback-Leibler
(KL) divergence introduced by Marzouk and Xiu (2009).

2. Preliminaries: Approximating measures with SVGD

Let Θ ⊂ Rd and (Θ,B(Θ)) be a measurable space with B(Θ) denoting the Borel σ-algebra of Θ.
Consider approximating some target measure η on Θ via an empirical measure, i.e., an ensemble
of samples (particles); in the following, the distribution η, and all other distributions that will be
considered, admit a density with respect to the Lebesgue measure over Θ. Moreover, the target
distribution has the form η ∝ e−V with the potential V .

2.1. Approximating measures with SVGD

The SVGD method (Liu and Wang, 2016) iteratively moves forward an empirical distribution given
by an ensemble {θ[i]

t }Ni=1 from time t to time t+ δ via a map φt(θ) = θ− δgt(θ), where δ is a step
size and gt : Θ→ Rd is a vector field. SVGD chooses gt from a vector-valued reproducing kernel
Hilbert space (RKHS) Hd with kernel K : Rd × Rd → R via a functional gradient descent step on
the KL divergence (cf. (47) in Appendix A). Denote the distribution of the particles at time t as µt
and define the functional Jt(g) = KL((I − g)#µt||η), where (I − g)#µt denotes the pushfoward
measure. Then, SVGD chooses the gradient by setting gt = ∇Jt(0), where 0 is the zero function.
Using the RKHS formulation, there is a closed form expression for ∇Jt(0), so that during the
gradient descent the particles evolve according to the ordinary differential equation (ODE)

θ̇
[i]
t = −∇Jt(0)

(
θ

[i]
t

)
= Eθ′∼µt

[
K(θ′,θ

[i]
t )∇ log η(θ′) +∇1K(θ′,θ

[i]
t )
]
, (1)

where ∇1 denotes the gradient with respect to the first argument. In practice, the expectation is
approximated using the empirical distribution of the ensemble of particles {θ[i]

t }Ni=1 and the ODE is
integrated using the forward Euler method. Thus, the SVGD update becomes

θ
[i]
t+δ = θ

[i]
t +

δ

N

(∑N

j=1
∇1K(θ

[j]
t ,θ

[i]
t ) +

∑N

j=1
K(θ

[j]
t ,θ

[i]
t )∇ log η(θ

[j]
t )

)
. (2)

In (Liu, 2017), the distribution of the particles {θ[i]
t }Ni=1 in the limit as N → ∞ is given by the

mean-field PDE

∂tµt(θ) = −∇ ·
(
µt(θ)Eθ′∼µt

[
K(θ′,θ)∇ log η(θ′) +∇1K(θ′,θ)

])
, (3)

with an initial measure µ0; see also (Chewi et al., 2020; Han and Liu, 2017). Liu (2017) shows that
a steady state is reached in the limit t→∞ and the empirical distribution converges weakly (i.e. in
distribution) to the target η.

2.2. Approximating intractable target measures with SVGD

Consider now an intractable target distribution π; in contrast to the measure η in Section 2.1, we
can neither evaluate the (unnormalized) density of π nor sample from π directly. Thus, the SVGD
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algorithm cannot directly be applied to π. Instead, suppose we have a sequence of distributions
(π(`))`≥1 that converges weakly to π for ` → ∞ (note that weak convergence is implied by con-
vergence in the KL divergence) and call ` the level. Moreover, we can evaluate the unnormalized
density of each π(`) with computational costs c`. Such a setup is common in Bayesian inverse
problems; cf. Section 1.

Single-level approximation with SVGD The aim is deriving a distribution µ that approximates
π with accuracy ε. To quantify how close the approximation µ is to the target distribution, we
consider the Hellinger distance dHell(·, ·) in the following: First, select a level L ∈ N such that
dHell(π

(L), π) ≤ ε/2. Then, to approximate π(L) with SVGD, derive µwith accuracy dHell(µ, π
(L)) ≤

ε/2 from an initial distribution µ0; the triangle inequality leads to dHell(µ, π) ≤ ε. The fact that the
Hellinger distance is a metric is important because it allows us to separate the error due to truncating
at level L and the error due to the SVGD approximation of π(L); see Appendix A for the definition
of the Hellinger distance.

Computational costs The costs of such an approach depend on two factors: (1) the costs cL of
evaluating the density π(L) on level L, which is independent of SVGD, and (2) the costs of SVGD
to find µ from π(L) with initial distribution µ0 to achieve dHell(µ, π

(L)) ≤ ε/2. In the continuous
SVGD given by Equation (1), we identify the costs of the approximation µT after integrating up to
end time T as

cSL(T ) = cLT . (4)

We will see that the integration time T depends on the divergence between µ0 and π(L). For the
discrete SVGD given by Equation (2), time is replaced with number of iterations and the costs must
be multiplied by the number of particles N .

Remark 1 Although we use the Hellinger distance dHell in the following, the proposed analysis is
also applicable if a different metric is used as long as it can be upper bounded by the KL divergence;
see Section 3.3 for more details. Indeed, we make frequent use of the fact that the Hellinger distance
can be bounded as

2 dHell(ρ1, ρ2)2 ≤ KL(ρ1 || ρ2) (5)

for two distributions ρ1, ρ2; see Lemma 2.4 of (Tsybakov, 2009) (note that the definition of Hellinger
distance there is scaled by a constant factor

√
2). The Hellinger distance is also useful because it

can be used to bound the bias of a Monte Carlo estimator as shown in (Stuart, 2010).

3. A continuous multilevel Stein variational method and its cost complexity

We propose MLSVGD that leverages the measures π(1), . . . , π(L−1) with the aim to reduce the
costs of approximating π(L) compared to the traditional, single-level SVGD that uses π(L) only.
Our analysis of the proposed MLSVGD method is conducted in the time-continuous and mean-field
setting where the SVGD measures satisfy the PDE (3) and the particles satisfy the ODE (1). A
discrete, heuristic, algorithmic formulation follows in Section 5 with a numerical comparison to
single-level SVGD in Section 6.
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single-level SVGD:

µ0
π(L)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
T

µSL

proposed MLSVGD:

µ0
π(1)

−−−−−−→
T1

µ
(1)
T1

π(2)

−−−−−−→
T2

µ
(2)
T2

π(3)

−−−−−−→
T3

· · · π(L)

−−−−−−→
TL

µML

Figure 1: The proposed MLSVGD leverages a hierarchy of distributions with increasing costs and
fidelity with the aim of requiring fewer iterations on the higher, more expensive levels
compared to traditional, single-level SVGD that uses the highest-level distribution only.

3.1. Continuous MLSVGD

To describe the proposed MLSVGD, consider the levels ` = 1, . . . , L and let µ0 be an initial
distribution. At level ` = 1, we define µ(1)

T1
as the distribution of the continuous SVGD (3) at time

T1 with target π(1) and initial µ0. At level ` = 2, we obtain µ(2)
T2

at time T2 with the target π(2) and

initial distribution µ(1)
T1

. In general, at level `, we obtain µ(`)
T`

at time T` with target π(`) and initial

distribution µ(`−1)
T`−1

. Thus, deriving µ(`)
T`

is an iterative process over the levels 1, . . . , `− 1, depicted

in Figure 3, of first computing µ(1)
T1
, . . . , µ

(`−1)
T`−1

. The costs of MLSVGD are given by

cML(T1, . . . , TL) =
L∑
`=1

c`T` , (6)

cf. the costs cSL(T ) = cLT of the single-level SVGD as defined in (4).

3.2. Assumptions for cost complexity analysis of single-level SVGD and MLSVGD

We build on the following three assumptions to derive the cost complexity of both traditional single-
level SVGD as well as the proposed MLSVGD. The first assumption is a standard assumption in
scientific computing on the cost of evaluating the densities, while the second and third are needed
to certify that dHell(µ, π) ≤ ε.

Assumption 1 The costs c` of evaluating the (unnormalized) density π(`) are bounded as

c` ≤ c0s
γ` , ` ∈ N ,

with constants c0, γ > 0 independent of ` and s > 1.

Assumption 2 There exists α, k0, k1 > 0 independent of ` such that KL(µ0||π(`)) ≤ k0 for all
` ∈ N and

KL(π(`)||π) ≤ k1s
−α` , ` ∈ N ,

where s is the same constant independent of ` as in Assumption 1 and µ0 is the initial distribution.
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Assumption 3 There exists a rate λ > 0 such that for any initial distribution ν0

KL(νt||π(`)) ≤ e−λt KL(ν0||π(`)) , ` ∈ N ,

holds, where νt solves the mean-field SVGD equation (3) at time t.

Korba et al. (2020) show that Assumption 3 is satisfied if the measures π(`) satisfy a Stein log-
Sobolev inequality. Chewi et al. (2020) also show that Assumption 3 is satisfied for a specific
choice of the kernel K. We also note that the exponential convergence rate for the KL divergence
appears in the theory for the convergence of Markov processes when the target measure satisfies
a log-Sobolev inequality (Bakry et al., 2014, Theorem 5.2.1); however, SVGD approximates the
gradient in an RKHS and thus (Bakry et al., 2014, Theorem 5.2.1) is not directly applicable.

3.3. Cost complexity of continuous single-level SVGD

Consider the single-level SVGD that selects L such that dHell(π
(L), π) ≤ ε/2 and then starts with a

µ0 to find µSL
T that satisfies dHell(µ

SL
T , π

(L)) ≤ ε/2. For brevity, we write µSL = µSL
T . The following

proposition bounds the costs of this single-level SVGD with respect to the tolerance ε.

Proposition 2 If Assumptions 1–3 hold, then the costs of continuous single-level SVGD to obtain
µSL with

dHell(µ
SL, π) ≤ ε

is bounded as

c∗SL(ε) ≤ 2c0s
γ

λ

(√
2k1

ε

)2γ/α

log

(√
KL(µ0 || π(L))√

2ε

)
. (7)

Proof By the triangle inequality for the Hellinger distance we have that

dHell(µ
SL, π) ≤ dHell(µ

SL, π(L)) + dHell(π
(L), π),

so we will bound both of these terms independently by ε/2. By inequality (5), it is sufficient to
bound the KL divergence because

dHell(µ
SL, π(L)) ≤

√
KL(µSL || π(L))

2
, (8)

and similarly for dHell(π
(L), π). By Assumption 2 choose L to be

L =

⌈
1

α
logs

(
2k1

ε2

)⌉
≤ 1

α
logs

(
2k1

ε2

)
+ 1, (9)

so that

dHell(π
(L), π) ≤

√
KL(π(L) || π)

2
≤
√
k1s−αL

2
≤ ε

2
. (10)

Now by Assumptions 3 the time needed to integrate with SVGD to achieve dHell(µ
SL, π(L)) ≤ ε/2

is

T ∗SL ≤
1

λ
log

(
KL(µ0 || π(L))

2ε2

)
. (11)
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The total cost to integrate until time T ∗SL at level L is thus

c∗SL(ε) = c0s
γLT ∗SL ≤

2c0s
γ

λ

(√
2k1

ε

)2γ/α

log

(√
KL(µ0 || π(L))√

2ε

)
.

Discussion of cost complexity of single-level SVGD The bound (7) in Proposition 2 shows that if
we start with an initial distribution µ0 that has a large KL divergence KL(µ0||π(L)) with respect to
π(L), then we will need to integrate for a long time with SVGD to reach our tolerance. The proposed
MLSVGD is aiming to avoid the long time integration by starting the integration at the highest level
L with good initial distributions found on the cheaper, lower levels ` = 1, . . . , L− 1 that are closer
to π(L) in the KL divergence than µ0.

3.4. Cost complexity of continuous MLSVGD

Consider now the MLSVGD approach of Section 3.1. We need to make one additional assumption
compared to the single-level SVGD regarding the KL divergence between consecutive measures
π(`) and π(`−1) that will allow us to chain them together as in Figure 3.

Assumption 4 There exists a constant k2 > 0 independent of ` such that KL(π(`−1)||π(`)) ≤
k2s
−α` , where α is the same rate as in Assumption 2.

The key result is to use a triangle-like inequality as in Appendix D to decompose the KL divergence.
In particular,

KL
(
µ

(`−1)
T`−1

|| π(`)
)

= KL
(
µ

(`−1)
T`−1

|| π(`−1)
)

+ KL
(
π(`−1) || π(`)

)
+R` (12)

with the remainder R` given by

R` =

∫
Rd

(
µ

(`−1)
T`−1

(θ)− π(`−1)(θ)
)

log

(
π(`−1)(θ)

π(`)(θ)

)
dθ. (13)

Because π(`) converges to π, we have that π(`−1)/π(`) → 1 pointwise and hence log
(
π(`−1)/π(`)

)
→

0. Moreover, µ(`)
T`
→ π(`) as T` →∞. Thus,R` → 0. In particularR` is a bounded sequence mean-

ing that there is some constantR ≥ R` for all `. The following proposition give bounds on the costs
of MLSVGD. The later Proposition 4 will give a faster decaying bound on the costs if R` goes to
zero with a known rate, as in our Bayesian inverse problems in Section 4.

Proposition 3 If Assumptions 1–4 hold, then continuous MLSVGD gives µML with dHell(µ
ML, π) ≤

ε with costs bounded as

c∗ML(ε) ≤ 2c0s
2γ

λγ log(s)

(√
2k1

ε

)2γ/α

log

(√
ε2 + 2(k2 +R)

ε

)
,

where R bounds (13).
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Proof As in Equation (9) in the proof of Proposition 2 we select the level L as

L =

⌈
1

α
logs

(
2k1

ε2

)⌉
≤ 1

α
logs

(
2k1

ε2

)
+ 1, (14)

so that dHell(π
(L), π) ≤ ε/2. The total cost for the continuous MLSVGD is

c∗ML(ε) =
L∑
`=1

c0s
γ`T` , (15)

where it remains to choose the integration times T` at each level. To do this we balance the KL di-
vergence of the SVGD approximation with the KL divergence due to the fidelity. By Equation (12),
we have

KL(µ
(`)
T`
|| π(`)) ≤ e−λT`

(
KL
(
µ

(`−1)
T`−1

|| π(`−1)
)

+ KL
(
π(`−1) || π(`)

)
+R`

)
, (16)

giving a recursive bound on the KL divergence in terms of the KL divergence at the previous level.
At each level ` choose the integration time T` so that

KL
(
µ

(`)
T`
|| π(`)

)
≤ ε2

2
(17)

is satisfied. In particular, at the final level L we will have that KL(µML || π(L)) ≤ ε2/2 and hence
dHell(µ

ML || π(L)) ≤ ε/2 as desired. By choosing T` so that this is satisfied at every level we have
from Equation (16) that

KL
(
µ

(`)
T`
|| π(`)

)
≤ e−λT`

(
ε2

2
+ KL(π(`−1) || π(`)) +R`

)
≤ ε2

2
. (18)

Thus, we choose T` sequentially so that Equation (17) is always satisfied. As a result, the integration
time T` needed at each level ` is bounded by

T` ≤
1

λ
log

(
1 +

2(KL(π(`−1) || π(`)) +R`)

ε2

)
. (19)

Finally, the total cost can be bounded by

c∗ML(ε) ≤
L∑
`=1

c0

λ
sγ` log

(
1 +

2(KL(π(`−1) || π(`)) +R`)

ε2

)
. (20)

We now use the fact that R` ≤ R and KL(π(`−1) || π(`)) ≤ k2 to obtain

c∗ML(ε) ≤
L∑
`=1

c0

λ
sγ` log

(
1 +

2(k2 +R)

ε2

)
. (21)
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Since the terms in this sum are increasing, we can upper bound the cost further by switching to an
integral

c∗ML(ε) ≤
∫ L+1

0

c0

λ
sγx log

(
1 +

2(k2 +R)

ε2

)
dx

=
c0

λγ log(s)
log

(
1 +

2(k2 +R)

ε2

)
sγ(L+1)

≤ 2c0s
2γ

λγ log(s)

(√
2k1

ε

)2γ/α

log

(√
ε2 + 2(k2 +R)

ε

)
.

(22)

We now consider the case where the remainder term behaves as R` . s−α`, which allows us to
make a more efficient choice when selecting the integration time T` at each level. In particular, it
allows us to set T` such that

KL(µ
(`)
T`
|| π(`)) ∼ s−α` , (23)

which leads to the following proposition that shows an improved cost complexity compared to
Proposition 3.

Proposition 4 If Assumptions 1–4 hold and R` ≤ k3s
−α`, then the costs of continuous MLSVGD

to have dHell(µ
ML, π) ≤ ε can be bounded as

c∗ML(ε) ≤ c0s
2γ

λγ log(s)
log

(
sα +

k2 + k3

k1

)(√
2k1

ε

)2γ/α

. (24)

Proof Starting from Equation (16) in the proof of Proposition 3 change ε to instead be

ε` =
√

2k1s
−α`/2 (25)

at each level `. By Assumption 2 we know that L is chosen so that

ε2L = 2k1s
−αL ≤ ε2 , (26)

so that εL ≤ ε. Plugging in this choice gives that the integration times needed are

T ∗` ≤
1

λ
log

(
sα +

KL(π(`−1) || π(`)) +R`
k1s−α`

)
. (27)

By Assumption 4 and the assumption in the proposition, we have that

T ∗` ≤
1

λ
log

(
sα +

k2 + k3

k1

)
, (28)

so that the integration time is fixed at each level. The cost is now bounded by

c∗ML(ε) ≤
L∑
`=1

c0

λ
sγ` log

(
sα +

k2 + k3

k1

)
. (29)
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Since the terms in the sum are increasing, we can further bound this with an integral :

c∗ML(ε) ≤
L∑
`=1

c0

λ
sγ` log

(
sα +

k2 + k3

k1

)
≤
∫ L+1

1

c0

λ
sγx log

(
sα +

k2 + k3

k1

)
dx . (30)

Computing the integral gives

c∗ML(ε) ≤ c0s
2γ

λγ log(s)
log

(
sα +

k2 + k3

k1

)
sγL . (31)

Finally, by plugging in L we obtain

c∗ML(ε) ≤ c0s
2γ

λγ log(s)
log

(
sα +

k2 + k3

k1

)(√
2k1

ε

)2γ/α

. (32)

Discussion of cost complexity of MLSVGD Looking at the single-level SVGD and MLSVGD
cost bounds from Propositions 2 and 4, respectively, we note two major differences. The first is that
there is no log ε−1 term in the cost bound (24) of Proposition 4 and thus MLSVGD achieves a cost
complexity that grows by log ε−1 slower than the cost complexity of single-level SVGD as ε → 0.
Moreover, whenever ε → 0, we now have a fixed integration time at each level ` as opposed to
requiring an increasing number of iterations as the level goes to infinity as in the single-level case.
The second notable difference is that the constant k0, which depends on the KL divergence from
the initial distribution µ0 and the target π, does not appear in (24). Instead the bound (24) depends
on the constant k2 from Assumption 4, which depends only on the KL divergence between two
consecutive levels. Thus, if the KL divergence between consecutive levels is low, then the previous
level serves as a good preconditioner for the next level leading to reduced costs.

Remark 5 The order log ε−1 comes from the exponential decay rate of the KL divergence for SVGD
in Assumption 3. If the assumption is violated and, for example, the KL divergence decays only
algebraically, then we expect the speedup to be on the order of ε−β for some constant β > 0. This
is further supported by our numerical results that indicate that MLSVGD obtains speedups even if
SVGD converges slower than in Assumption 3. We leave the detailed analysis of this to future work.

4. MLSVGD for Bayesian inverse problems

Typically, in Bayesian inverse problems in scientific computing, one is interested in inferring an
unknown quantity θ from some noisy observed data y = G(θ∗)+e withG denoting the parameter-
to-observable map and e being the noise; see, e.g., (Stuart, 2010; Kaipio and Somersalo, 2007;
Martin et al., 2012). Let π0 be the prior and consider zero-mean Gaussian noise with covariance Γ,
then the posterior is given by

π(θ) =
1

Z
exp

(
−1

2
‖y −G(θ)‖2

Γ−1

)
π0(θ) , (33)
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with the normalizing constant

Z =

∫
Θ

exp

(
−1

2
‖y −G(θ)‖2

Γ−1

)
π0(θ) dθ , (34)

where ‖u‖Γ−1 = 〈Γ−1u,u〉. Now let (G`)`≥1 denote a sequence of approximations to the parameter-
to-observable map G, e.g., given by finite-difference or finite-element discretizations of the PDEs
underlying G, and define π(`) by replacing G with G` and define Z` similarly. The next two as-
sumptions will be sufficient to apply our results from Section 3.

Assumption 5 (Model error) There is a function ψ : N→ (0,∞), with ψ(`)→ 0 as `→∞, such
that

‖G(θ)−G`(θ)‖L2(π0) ≤ ψ(`) , (35)

where the ‖ · ‖L2(π0) is the L2 norm over π0; cf. (49) in Appendix A.

Assumption 6 There exists a constant b3 > 0 independent of ` such that

µ
(`)
T`

(θ) ≤ b3π0(θ) (36)

for all ` ≥ 1.

The next theorem shows that if Assumptions 1, 3, 5, and 6 are satisfied, then our cost complexity
results derived for MLSVGD in Section 3 hold in the Bayesian inverse problem setting. These as-
sumptions can be interpreted in the context of Bayesian inverse problems as follows: Assumption 1
and Assumption 5 are related to the forward model. Together they state that the approximation G`
converges in an L2-sense to G as the level ` is increased. At the same time, as the level ` is in-
creased and G` gets closer to G, the computational costs of evaluating G` may increase with a rate
γ. This is typical behavior in, e.g., finite-element forward models where refining the mesh (increas-
ing the level) leads to more accurate approximations and at the same time the computational costs
of computing the finite-element solution increase with the number of mesh points. Furthermore,
Assumption 5 is similar to the assumptions of (Stuart, 2010, Corollary 4.9), although there a point-
wise bound is used. Assumption 3 is the convergence rate of SVGD and motivated by results from
the literature as discussed in Section 3; cf. Remark 5 for other convergence behavior. Assumption 6
ensures that the tail of the posterior distribution behaves as the tail of the prior and is similar to the
envelope assumption made in, e.g., acceptance/rejection sampling (Robert and Casella, 2004).

Theorem 6 If Assumptions 1, 3, and 6 hold and Assumption 5 holds with ψ(`) = b0s
−α`, then

Assumptions 2 and 4 hold and thus the cost complexity to find µML with dHell(µ
ML, π) ≤ ε is given

by

c∗ML(ε) ≤ c0s
2γ

λγ log(s)
log

(
sα + (1 + sα)

(
4

3
+

b3
3b1b2

))(√
3b1b2b0
ε

)2γ/α

, (37)

where the constants b1, b2 are independent of ε and given in the proof of Lemma 7 in Appendix B.

Proof By Lemma 8 in Appendix C we know that Assumptions 2 and 4 hold with k1 = Cb0 and
k2 = Cb0(1 + sα). Thus, we just need to verify that R` ≤ k3s

−α` for some constant k3 to apply

103



MULTILEVEL STEIN VARIATIONAL GRADIENT DESCENT (MLSVGD)

Proposition 3.

R` =

∫
Θ

(
µ

(`−1)
T`−1

(θ)− π(`−1)(θ)
)

log

(
π(`−1)(θ)

π(`)(θ)

)
dθ

=

∫
Θ

(
µ

(`−1)
T`−1

(θ)− π(`−1)(θ)
)

log

Z` exp
(
−1

2‖y −G`−1(θ)‖2
Γ−1

)
Z`−1 exp

(
−1

2‖y −G`(θ)‖2
Γ−1

)
 dθ

=

∫
Θ

(
µ

(`−1)
T`−1

(θ)− π(`−1)(θ)
)

log

exp
(
−1

2‖y −G`−1(θ)‖2
Γ−1

)
exp

(
−1

2‖y −G`(θ)‖2
Γ−1

)
 dθ,

(38)

where the last line follows from the fact that∫
Θ

(
µ

(`−1)
T`−1

(θ)− π(`−1)(θ)
)

log

(
Z`
Z`−1

)
dθ = 0 (39)

since Z`
Z`−1

is a constant and π(`−1) and µ(`−1)
T`−1

both integrate to one. By the triangle inequality we
have that

R` ≤
1

2

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣µ(`−1)
T`−1

(θ) dθ

+
1

2

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣π(`−1)(θ) dθ .

(40)

We have that
π(`−1)(θ) ≤ 1

Z`−1
π0(θ) , (41)

so that when combined with Assumption 6

R` ≤
1

2

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣µ(`−1)
T`−1

(θ) dθ

+
1

2

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣π(`−1)(θ) dθ

≤ b3
2

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣π0(θ) dθ

+
1

2Z`−1

∫
Θ

∣∣‖y −G`(θ)‖2
Γ−1 − ‖y −G`−1(θ)‖2

Γ−1

∣∣π0(θ) dθ

≤
(
b3
2

+
b1b2

2

)
‖G` −G`−1‖L2(π0),

(42)

so that k3 =
(
b3
2 + b1b2

2

)
b0(1 + sα). Plugging in the values of k1, k2, and k3 into Proposition 3

gives the result.
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Algorithm 1 Discrete MLSVGD with adaptive stopping criterion

Inputs: (unnormalized) densities π(1), . . . , π(L), initial particles {θ[i]
0 }Ni=1, step size δ, tolerance ε

Result: Particles {θ[i]
t }Ni=1

for ` = 1, . . . , L do
repeat

Set si = ∇ log π(`)(θ
[i]
t ) for i = 1, . . . , N

for i = 1, . . . , N do
θ

[i]
t+δ = θ

[i]
t + δ

N

(∑N
j=1∇1K(θ

[j]
t ,θ

[i]
t ) +

∑N
j=1K(θ

[j]
t ,θ

[i]
t )sj

)
end
Estimate the norm of the gradient ĝ(`)

t as in (43)
Set t← t+ δ

until ĝ(`)
t ≤ ε;

end

5. A discrete, heuristic MLSVGD algorithm with adaptive stopping criterion

In this section, we propose a discrete, heuristic MLSVGD method given in Algorithm 1 that uses
an adaptive stopping criterion to decide when to switch to the next higher level. The proposed
Algorithm 1 uses the estimates of the gradient norms to decide when to switch to the next higher
level. Thus, the algorithm avoids requiring any constants that are not readily available in practice.
In particular, the algorithm is independent of the constants and rates used in the MLSVGD cost
complexity analysis to derive the optimal choice of times T ∗1 , . . . , T

∗
L.

Let g(`)
t denote the functional gradient of the KL divergence, as discussed in Section 2.1, at µ(`)

t

with target measure π(`). We approximate the expected norm of the gradient E
θ∼µ(`)t

∥∥∥g(`)
t (θ)

∥∥∥with
the estimator

ĝ
(`)
t =

1

N

∑N

i=1

∥∥∥∥∑N

j=1
∇1K(θ

[j]
t ,θ

[i]
t ) +

∑N

j=1
K(θ

[j]
t ,θ

[i]
t )∇ log π(`)(θ

[j]
t )

∥∥∥∥ , (43)

where we note that each term in the sum is computed during the update (2). The adaptive stopping
criterion used in Algorithm 1 is to terminate the iterations at level ` whenever ĝ(`)

t ≤ ε. Ideally, one
would want to track the KL divergence between the SVGD approximation and the target distribution
and switch to the following level once the KL divergence is below some specified threshold. How-
ever, because the normalized target density as well as the density of the SVGD approximation itself
are unknown, attempting to monitor the KL divergence at each iteration is impractical. The adap-
tive stopping criterion based on the gradient norm, which we use, is motivated by (Duncan et al.,
2019, Equation 61). It states that for small perturbations from the target density, the KL divergence
between the perturbed distribution and the target distribution is asymptotically the same as the norm
of the gradient squared.

6. Numerical experiments

We now demonstrate MLSVGD on Bayesian inverse problems: The aim is to infer the unknown co-
efficients of a PDE model from noisy observations of the state of the PDE at a few locations in the
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Figure 2: Diffusion-reaction: MLSVGD achieves speedups because most of the iterations are on
lower, cheaper levels, in contrast to SVGD that performs all iterations on the highest,
most expensive level. A spike in the gradient norm indicates switching to a higher level.

spatial domain. In Section 6.1, we consider a reaction-diffusion model with unknown reaction pa-
rameters, which are then inferred from measurements of the diffusion-reaction field. In Section 6.2,
the displacement of an Euler-Bernoulli beam is observed and we then infer the stiffness of the beam.
Details about the setup of the numerical experiments are in Appendix E.

6.1. Diffusion equation with nonlinear reaction term

Let Ω = (0, 1)2 and P = R2 and consider the PDE

−∇2u(x1, x2;θ) + g(u(x1, x2;θ),θ) = 100 sin(2πx1) sin(2πx2) , x ∈ Ω , (44)

with homogeneous Dirichlet boundary conditions, where x = [x1, x2]T , θ = [θ1, θ2]T ∈ P , and
u : Ω× P → R is the solution function. The nonlinear reaction term g is

g(u(x;θ),θ) = (0.1 sin(θ1) + 2) exp(−2.7θ2
1)(exp(1.8θ2u(x;θ))− 1) .

The PDE (44) is discretized with finite differences on a grid with equidistant grid points and mesh
width h > 0. The corresponding system of nonlinear equations is solved with Newton’s method
and inexact line search based on the Armijo condition. The model G` : P → Y derived with
mesh width h = 2−`−2 maps from P into Y = R12. The components of the observed data
G`(θ) ∈ Y correspond to the value of the approximated solution function at the spatial coordi-
nates [0.25i , 0.2j]T ∈ Ω with i ∈ [3] , j ∈ [4]. We set θ∗ = [−π/4, 3]T and consider the data
y = GL+1(θ∗) + e, where L = 3 (i.e., h = 2−5) and e adds zero-mean Gaussian noise of 0.5%.
The prior distribution is a Gaussian distribution with mean [π/2, 1.5] and diagonal covariance ma-
trix with [50, 0.5] on the diagonal.

SVGD and MLSVGD We start withN = 1000 particles sampled from a normal distribution with
mean [1, 1]T and diagonal covariance matrix with 10−4 on the diagonal. The kernel is k(θ,θ′) =
exp
(
−‖θ − θ′‖2/(2σk)

)
with σk = 10−2. The gradient of the likelihood is approximated with

central differences with mesh width 2−6. The step size is δ = 10−1. We run SVGD for π(L)

until the norm of the estimated gradient (43) reaches a tolerance ε. We also run MLSVGD as in
Algorithm 1 with levels ` ∈ {1, 2, 3} and ` ∈ {1, 3}.
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Figure 3: Diffusion-reaction: MLSVGD reaches a particle mean with error 10−3 with respect to an
MCMC reference with more than one order of magnitude speedup compared to SVGD.

Results Figure 2 shows the decay of the estimated gradient norm (43) for SVGD and MLSVGD
with two and three levels, respectively, for a tolerance ε = 10−4. While the number of total iterations
over all levels in MLSVGD is higher than in SVGD, the costs per iteration are lower on lower levels
and thus MLSVGD achieves a speedup of about 8 in this example. Notice that a switch to the next
higher level leads to an increase of the gradient norm (e.g., Figure 2b near 1000 iterations), which
is then reduced quickly in subsequent iterations. MLSVGD with 2 levels (` ∈ {1, 3}) achieves a
slightly lower speedup than MLSVGD with 3 levels in this example. Figure 2c shows the speedup
of MLSVGD with 3 levels for various tolerances. The speedup increases as the tolerance decreases.
Figure 3a shows the error of the particle mean with respect to an MCMC reference over 10 replicates
(cf. Appendix E). The proposed MLSVGD with 3 levels achieves more than one order of magnitude
speedup compared to SVGD on the highest level. Notice that running SVGD on the lowest level ` =
1 is fast but leads to a bias of the particle mean as indicated by the leveling off of the corresponding
curve. Figure 3b-c show the pointwise error of the finite-difference solution u of (44) computed at
the particle mean of MLSVGD and the particle mean of SVGD with the same costs as MLSVGD.
The error is computed with respect to the solution at the MCMC reference. Notice the lighter color
in the SVGD plot, which indicates higher pointwise error.

6.2. Euler-Bernoulli beam

Let Ω = (0, 1) ⊂ R and consider the Euler-Bernoulli beam described by

∂2
x(E(x)∂2

xu(x)) = f(x) , x ∈ Ω , (45)

where u : Ω → R is the vertical deflection of the beam and f : Ω → R is the load. The effective
stiffness of the beam is given by E : Ω → R and describes the beam geometry and material
properties. The beam is in cantilever configuration, where the left boundary is fixed and the right
boundary is free. The PDE (45) is discretized with finite differences on a mesh of 601 equidistant
grid points in Ω. The observation y ∈ R41 is the displacement at 41 equidistant points in Ω polluted
with 0.01% zero-mean Gaussian noise. We consider a smoothed piecewise constant approximation
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Figure 4: Euler-Bernoulli: MLSVGD achieves speedups between 6–10 in this example compared
to SVGD. (Plots (c) shown for d = 9.)

Êd of the stiffness E that depends on d ∈ N parameters θ = [θ1, . . . , θd]
T , cf. Appendix E. The

parameter-to-observable map G` is then given by numerically solving (45) with stiffness Êd on
level `. The levels ` = 1, . . . , 6 are corresponding to a discretization of the PDE on a mesh of
51, 101, . . . , 501 equidistant grid points. The prior is log-normal with parameters µ = 1 and σ =
0.05.

Results for SVGD and MLSVGD The initial distribution is normal with mean [1, 1, . . . , 1]T ∈
Rd and diagonal covariance with 4 × 10−4 on the diagonal. We consider N = 500 particles. The
step size is δ = 10−3 for d = 3 and δ = 10−2 for d ∈ {6, 9} and δ = 5×10−3 for d ∈ {12, 16}. The
kernel bandwidth σk is 10−6 for d = 3 and 10−5 for d ∈ {6, 9} and 5× 10−5 for d ∈ {12, 16}. We
consider MLSVGD for levels ` ∈ {1, . . . , 6} and ` ∈ {1, 3, 6}. The rest of the setup is the same as
in Section 6.1. Figure 4a shows the convergence behavior of MLSVGD and SVGD for the problem
with d = 9 dimensions and tolerance ε = 5 × 10−3. A speedup of about 6 is observed to reach
an estimated gradient norm below ε. Note that MLSVGD with 3 levels achieves about the same
speedup as MLSVGD with 6 levels, which indicates that adding more and more intermediate levels
cannot further reduce the costs. Speedups are reported in Figure 4b for MLSVGD with 3 levels;
cf. Appendix E. If one asks for the error of the particle mean to be below 3×10−3 with respect to an
MCMC reference, then MLSVGD achieves a speedup of about one order of magnitude compared
to SVGD, as shown in Figure 4c. Figure 5 shows the relative pointwise error of the finite-difference
solution u of (45) computed at the particles obtained with MLSVGD and single-level SVGD; see
also Figure 11 in the appendix. The error bars denote the minimum and maximum pointwise error
of the inferred solutions over the ensemble of particles. The results show that MLSVGD achieves
a similar error as single-level SVGD even though the computational costs of MLSVGD are lower
than single-level SVGD in this example; cf. Figure 4b. Additionally, the variation of the error in
terms of minimum and maximum error over the ensemble is comparable between MLSVGD and
single-level SVGD in this example.

7. Conclusions

The proposed MLSVGD shows that speedups compared to single-level SVGD can be achieved by
balancing the SVGD error with the discretization error given by a hierarchy of ever more accurate
and ever more expensive-to-sample distributions. The analysis is conducted in the mean-field limit
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Figure 5: Euler-Bernoulli: The pointwise errors over an ensemble of inferred solutions obtained
with MLSVGD (left and middle) is comparable to the errors obtained with the computa-
tionally more expensive single-level SVGD (right) in this example. The error bars show
the minimum and maximum error over the ensemble. Results are shown for d = 9.

and shows a cost complexity reduction of MLSVGD compared to single-level SVGD. The numer-
ical experiments demonstrate empirically that MLSVGD achieves up to one order of magnitude
speedup compared to single-level SVGD in the discrete-time and finite-particle regime in the appli-
cations considered in this work. A cost analysis in discrete time and with finite particles remains
future work for MLSVGD especially because there are only limited convergence results available
even for single-level SVGD for discrete-time and finite-particle regimes.
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Appendix A. Metrics and divergences and other definitions

The Hellinger distance between two probability distributions µ and η on Rd is defined as

dHell(µ, η) =

√
1

2

∫
Rd

(√
µ(θ)−

√
η(θ)

)2
dθ . (46)

The Kullback-Leibler (KL) divergence from µ to η is defined as

KL(µ||η) =

∫
Rd

µ(θ) log

(
µ(θ)

η(θ)

)
dθ . (47)

112



MULTILEVEL STEIN VARIATIONAL GRADIENT DESCENT (MLSVGD)

Define the L2(µ) space for a distribution µ and vector-valued functions as

L2(µ) =

{
f :

∫
Rd

‖f(θ)‖2µ(θ) dθ <∞
}
, (48)

and the L2(µ) norm of a vector-valued function as

‖f‖2L2(µ) =

∫
Rd

‖f(θ)‖2µ(θ) dθ . (49)

Appendix B. Lemma 7 and proof

Lemma 7 If Assumption 5 holds, there exists a constant C > 0 such that for all 1 ≤ `1, `2 ≤ ∞
sufficiently large

KL(π(`1) || π(`2)) ≤ C‖G`1 −G`2‖L2(π0) . (50)

Note that for ` =∞ we say G` = G.

We note that this proof closely mirrors the proofs of Lemma 4.2 and 4.3 in (Marzouk and Xiu,
2009), but is slightly more general.
Proof For brevity write Gi = G`i , Zi = Z`i , and πi = π(`i) for i = 1, 2. Consider that for any
vectors u,v,w ∈ Rd and symmetric positive definite matrix A ∈ Rd×d we have

‖u−w‖2A − ‖v −w‖2A = ‖(u− v) + (v −w)‖2A − ‖v −w‖2A
= 〈(u− v), A(u− v)〉+ 2〈(u− v), A(v −w)〉
= 〈(u− v), A(u+ v − 2w)〉
≤ ‖u− v‖ · ‖A(u+ v − 2w)‖ ,

(51)

with the last line following from the Cauchy-Schwarz inequality. Applying this bound with u =
G1(θ), v = G2(θ), w = y, and A = Γ−1 gives∫

Θ

∣∣‖y −G1(θ)‖2
Γ−1 − ‖y −G2(θ)‖2

Γ−1

∣∣π0(θ) dθ

≤
∫

Θ
‖G1(θ)−G2(θ)‖ · ‖Γ−1(2y −G1(θ)−G2(θ))‖π0(θ) dθ

≤ ‖G1 −G2‖L2(π0) · ‖Γ−1(2y −G1 −G2)‖L2(π0) ,

(52)
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where the last line again follows from the Cauchy-Schwarz inequality on the inner-product space
L2(π0). The KL divergence can now be bounded using Equation (52)

KL(π1 || π2) =

∫
Θ
π1(θ) log

(
π1(θ)

π2(θ)

)
dθ

=

∫
Θ
π1(θ) log

Z2 exp
(
−1

2‖y −G1(θ)‖2
Γ−1

)
Z1 exp

(
−1

2‖y −G2(θ)‖2
Γ−1

)
 dθ

= log

(
Z2

Z1

)
+

∫
Θ
π1(θ) log

exp
(
−1

2‖y −G1(θ)‖2
Γ−1

)
exp

(
−1

2‖y −G2(θ)‖2
Γ−1

)
 dθ

≤ log

(
Z2

Z1

)
+

1

2Z1

∫
Θ

∣∣‖y −G1(θ)‖2
Γ−1 − ‖y −G2(θ)‖2

Γ−1

∣∣π0(θ) dθ

≤
∣∣∣∣log

(
Z2

Z1

)∣∣∣∣+
1

2Z1
‖G1 −G2‖L2(π0) · ‖Γ−1(2y −G1 −G2)‖L2(π0) ,

(53)

where in the second-to-last line we used the fact that 1
2‖y −G1(θ)‖2

Γ−1 ≥ 0 and hence

exp

(
−1

2
‖y −G1(θ)‖2

Γ−1

)
≤ 1 . (54)

We bound the logarithm of the ratio of the normalizing constants by first bounding the difference of
the normalizing constants using the bound in Equation (52)

|Z1 − Z2| =
∣∣∣∣∫

Θ

{
exp

(
−1

2
‖y −G1(θ)‖2

Γ−1

)
− exp

(
−1

2
‖y −G2(θ)‖2

Γ−1

)}
π0(θ) dθ

∣∣∣∣
≤
∫

Θ

∣∣∣∣exp

(
−1

2
‖y −G1(θ)‖2

Γ−1

)
− exp

(
−1

2
‖y −G2(θ)‖2

Γ−1

)∣∣∣∣π0(θ) dθ

≤ 1

2

∫
Θ

∣∣‖y −G1(θ)‖2
Γ−1 − ‖y −G2(θ)‖2

Γ−1

∣∣π0(θ) dθ

≤ 1

2
‖G1 −G2‖L2(π0) · ‖Γ−1(2y −G1 −G2)‖L2(π0) .

(55)

The third line follows from the fact that |e−x− e−y| ≤ |x−y| for all x, y ≥ 0. Let γmin > 0 denote
the smallest eigenvalue of the noise covariance matrix Γ. By the triangle inequality

‖Γ−1(2y −G1 −G2)‖L2(π0) ≤ 2‖Γ−1y‖L2(π0) + ‖Γ−1(G1 +G2)‖L2(π0)

≤ 2‖Γ−1y‖L2(π0) + 2‖Γ−1G‖L2(π0) + ‖Γ−1(G1 +G2 − 2G)‖L2(π0)

≤ 2‖Γ−1y‖L2(π0) + 2‖Γ−1G‖L2(π0)

+
1

γmin
‖G1 −G‖L2(π0) +

1

γmin
‖G2 −G‖L2(π0) .

(56)

Since ‖G` −G‖L2(π0) → 0 by Assumption 5, we can bound ‖G1 −G‖L2(π0) and ‖G2 −G‖L2(π0)

independently of `1 and `2. Therefore, there exists a constant b1 > 0 independent of ` such that

‖Γ−1(2y −G1 −G2)‖L2(π0) ≤ b1. (57)
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Combining Equations (55) and (57) yields

|Z1 − Z2| ≤
b1
2
‖G1 −G2‖L2(π0) . (58)

The ratio of the normalizing constants can be written∣∣∣∣Z2

Z1
− 1

∣∣∣∣ =
1

Z1
|Z1 − Z2| , (59)

so the logarithm can be bounded as∣∣∣∣log

(
Z2

Z1

)∣∣∣∣ ≤ max

{∣∣∣∣log

(
1− |Z2 − Z1|

Z1

)∣∣∣∣ , log

(
1 +
|Z2 − Z1|

Z1

)}
(60)

since x 7→ | log x| is decreasing on (0, 1] and increasing on [1,∞). Combining this with the in-
equality that x

1+x ≤ log(1 + x) ≤ x for all x > −1 gives∣∣∣∣log

(
Z2

Z1

)∣∣∣∣ ≤ max

{ |Z2−Z1|
Z1

1− |Z2−Z1|
Z1

,
|Z2 − Z1|

Z1

}
≤ |Z1 − Z2|
Z1 − |Z1 − Z2|

. (61)

Since Z` → Z ∈ (0,∞) is a convergent sequence, there exists a constant b2 > 0 such that

Z−1
1 ≤ sup

`≥1
Z−1
` ≤ b2 . (62)

Moreover, for all `1, `2 sufficiently large |Z1 − Z2| ≤ b−1
2 /2. Using the bound gives∣∣∣∣log

(
Z2

Z1

)∣∣∣∣ ≤ |Z1 − Z2|
b−1
2 − |Z1 − Z2|

≤ 2b2|Z1 − Z2| . (63)

Combining Equations (53), (57), (58), (62), and (63) gives

KL(π1 || π2) ≤ 3

2
b1b2‖G1 −G2‖L2(π0) . (64)

Now set C = 3
2b1b2 to obtain the result.

Appendix C. Lemma 8 and proof

Lemma 8 If Assumption 5 holds with ψ(`) = b0s
−α`, then Assumptions 2, 4 also hold with the

same rate α.

Proof Let `1 = ` and `2 =∞, so that by Lemma 7 in Appendix B we immediately have

KL(π(`) || π) ≤ C‖G` −G‖L2(π0) ≤ Cψ(`) = Cb0s
−α`, (65)

so that k1 = Cb0. Moreover, setting `1 = `− 1 and `2 = ` and using the triangle inequality gives

KL(π(`−1) || π(`)) ≤ C‖G`−1 −G`‖L2(π0) ≤ C
(
‖G`−1 −G‖L2(π0) + ‖G` −G‖L2(π0)

)
. (66)

Thus,

KL(π(`−1) || π(`)) ≤ C
(

1 +
ψ(`− 1)

ψ(`)

)
ψ(`) ≤ Cb0 (1 + sα) s−α` , (67)

so that k2 = Cb0 (1 + sα).
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Appendix D. A triangle-like inequality for the KL divergence

Let ρ0, ρ1, ρ2 be three probability distributions on Θ. We have that

KL(ρ0 || ρ2) =

∫
Θ
ρ0(θ) log

(
ρ0(θ)

ρ2(θ)

)
dθ

=

∫
Θ
ρ0(θ) log

(
ρ0(θ)ρ1(θ)

ρ1(θ)ρ2(θ)

)
dθ

=

∫
Θ
ρ0(θ) log

(
ρ0(θ)

ρ1(θ)

)
dθ +

∫
Θ
ρ0(θ) log

(
ρ1(θ)

ρ2(θ)

)
dθ

= KL(ρ0 || ρ1) + KL(ρ1 || ρ2) +

∫
Θ

(ρ0(θ)− ρ1(θ)) log

(
ρ1(θ)

ρ2(θ)

)
dθ ,

(68)

cf. the inequality given in (Marzouk and Xiu, 2009). We refer to this third term in the last line as
the remainder term.

Appendix E. Details about numerical experiments

E.1. General

The step size δ and kernel bandwidth h was chosen via a manual process so that SVGD on the
highest level numerically converged. The same δ and h are used for SVGD and MLSVGD. Time
measurements were performed on compute nodes with Intel Xeon CPU E5-2690 v2, restricted to
8 cores and 32GB memory, with a Matlab implementation. The MCMC reference is computed
with the delayed-rejection adaptive Metropolis (DRAM) method (Haario et al., 2001, 2006) on
the highest level L of the respective problem. The covariance matrix of the Gaussian proposal is
initialized to be diagonal with 10−2 on the diagonal. The burn-in time is 10,000 samples. Another
20,000 samples are generated and every other sample is then used to compute the MCMC reference
mean θ̄ of the parameter. The error reported in Figure 3a and Figure 4c is 1

10

∑10
i=1 ‖θ̄ − θ

(i)‖2,
where θ(i) is the mean of (ML)SVGD particles of the i-th replicate.

E.2. Diffusion equation with nonlinear reaction term

We repeat the experiments of Section 6.1 with N ∈ {500, 2500, 5000} particles and show the cor-
responding speedups in Figure 6. The speedup of MLSVGD is roughly the same over the different
numbers of particles, which is expected because the cost of MLSVGD scales with the number of
particles as the cost of SVGD.

E.3. Euler-Bernoulli beam

In Section 6.2 we consider the PDE (45) for Ω = [0, 1], where u : Ω→ R is the vertical deflection of
the beam and f : Ω→ R is the load. The effective stiffness of the beam is given by E : Ω→ R and
describes beam geometry and material properties. The beam is in cantilever configuration, where
the left boundary is fixed and the right boundary is free i.e., the boundary conditions are

u(0) = 0 ,
∂

∂x
u
∣∣∣
x=0

= 0 ,
∂3

∂x3
u
∣∣∣
x=1

= 0 ,
∂3

∂x3
u
∣∣∣
x=1

= 0 .
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(a) tolerance ε = 5× 10−2 (b) tolerance ε = 10−2 (c) tolerance ε = 10−3

Figure 6: Diffusion-reaction: The cost of MLSVGD scales with the number of particles as the cost
of SVGD, which means that the speedups that MLSVGD obtains compared to SVGD in
this example remain roughly the same for different number of particles.

We use the same stiffness E available in the model developed by Matthew Parno for the 2018 Gene
Golub SIAM Summer School on “Inverse Problems: Systematic Integration of Data with Models
under Uncertainty.” The model is available on GitHub.1

Forward model The forward model is derived as follows. Consider the function I : R× Ω→ R
defined as

I(x, α) =

(
1 + exp

(
−x− α

0.005

))−1

,

with
lim

x→−∞
I(x, α) = 0 , lim

x→∞
I(x, α) = 1

such that there is a smooth transition from 0 to 1 at α. For k > 1, let α1, . . . , αk+1 be k + 1
equidistant points in Ω. Let R+ = {z ∈ R : z > 0} and consider the parameter θ = [θ1, . . . , θk]

T ∈
Rk+. Define the function Êi : Ω× R→ R as

Êi(x, θi) = (1− I(x, αi))Êi(x, θi−1)

Given a parameter θ, the function Êk is a smooth approximation of the piecewise constant function∑k
i=1 θi1(αi, αi+1], where 1(αi, αi+1] is the indicator function of the interval (αi, αi+1] ⊂ R.

Additional plots for d ∈ {3, 6, 12, 16} . Figure 7–10 show the analogous results to Figure 4 for
dimension d ∈ {3, 6, 12, 16}, respectively. Figure 11 shows the analogous results to Figure 5. The
behavior of MLSVGD compared to SVGD is qualitatively the same as for dimension d = 9.

1. https://github.com/g2s3-2018/labs
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Figure 7: Euler-Bernoulli beam: Results of MLSVGD for dimension d = 3.
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Figure 8: Euler-Bernoulli beam: Results of MLSVGD for dimension d = 6.
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Figure 9: Euler-Bernoulli beam: Results of MLSVGD for dimension d = 12.
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Figure 10: Euler-Bernoulli beam: Results of MLSVGD for dimension d = 16.
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(a) d = 3, single-level SVGD (b) d = 3, MLSVGD (3 levels) (c) d = 3, MLSVGD (6 levels)
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(d) d = 6, single-level SVGD (e) d = 6, MLSVGD (3 levels) (f) d = 6, MLSVGD (6 levels)
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(g) d = 12, single-level SVGD (h) d = 12, MLSVGD (3 levels) (i) d = 12, MLSVGD (6 levels)
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Figure 11: Euler-Bernoulli beam: Minimum and maximum of pointwise error over ensemble of
inferred solutions for d ∈ {3, 6, 12, 16}.
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