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Abstract
We develop a novel interpretable and learnable time-frequency representation (TFR) that produces
a super-resolved quadratic signal representation for time-series analysis; the proposed TFR is a
Gaussian filtering of the Wigner-Ville (WV) transform of a signal parametrized with a few inter-
pretable parameters. Our approach has two main hallmarks. First, by varying the filters applied
onto the WV, our new TFR can interpolate between known TFRs such as spectrograms, wavelet
transforms, and chirplet transforms. Beyond that, our representation can also reach perfect time
and frequency localization, hence super-resolution; this generalizes standard TFRs whose resolu-
tion is limited by the Heisenberg uncertainty principle. Second, our proposed TFR is interpretable
thanks to an explicit low-dimensional and physical parametrization of the WV Gaussian filtering.
We demonstrate that our approach enables us to learn highly adapted TFRs and is able to tackle a
range of large-scale classification tasks, where we reach higher performance compared to baseline
and learned TFRs. Ours is to the best of our knowledge the first learnable TFR that can contin-
uously interpolate between super-resolution representation and commonly employed TFRs based
on a few learnable parameters and which preserves full interpretability of the produced TFR, even
after learning.
Keywords: Learnable Time-Frequency Representation, Time-Series, Cohen Class, Wigner-Ville,
Spectrogram, Wavelet, Chirplet, Gabor Transform, Audio Classification, Interpretability, Explain-
ability, Super-Resolution, Speech Recognition, Environmental Sounds, biosonar, bioacoustics

1. Introduction

With the recent deep learning advances (LeCun et al., 2015; Goodfellow et al., 2016) there has
been an exponential growth in the use of Deep Networks (DNs) on various time-series, including
promising results on transients (Ferrari et al., 2020). However, the vast majority of DNs do not
directly observe the time-series data but instead a handcrafted, a priori designed representation.
Indeed, the vast majority of state-of-the-art methods combine DNs with some variant of a Time-
Frequency Representation TFR (Lattner et al., 2019; Purwins et al., 2019; Liu et al., 2019). A TFR
is an image representation of a time-serie obtained by convolving the latter with a filter-bank, such
as wavelets or localized complex sinusoids (e.g., Gabor transform). Different filter-banks lead to
different TFR families; that is, the produced image will highlight differently the events present in
the time-serie input. It is for example common to employ wavelet transforms on biological signals
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and spectrogram on electrical or machine signals. In short, the different representations all inform
about which frequency components are present at different times in the signal, but the precision of
that information will vary.

The TFR-DN combination is powerful due to three major reasons: (i) the TFR contracts small
transformations of the time-serie internal events such as translation, time and/or frequency warping
(Bruna and Mallat, 2013) leading to more stable learning and faster DN convergence; (ii) the image
representation allows to treat TFRs as a computer vision task where current DNs excels; (iii) the
representation of the features of interests, such as phonemes for speech (Waibel et al., 1989), form
very distinctive shapes in the TFR image, with dimensionality much smaller than the event’s time-
serie representation. In fact, a single coefficient of the TFR can encode information of possibly
thousands of contiguous bins in the time-serie representation (Coifman et al., 1994; Le Pennec and
Mallat, 2000; Logan et al., 2000). A coherent choice of TFR based on the data and task at hand will
greatly affect the importance of each of the above points; hence, the choice of TFR has the potential
to dim, or amplify, the above benefits further pushing the need to provide a TFR that can adapt to
the data and task at hand.

Choosing the “best” TFR is a long lasting research problem in signal processing (Coifman and
Wickerhauser, 1992; Jones and Baraniuk, 1994; Donoho, 1994). While TFR selection and adapta-
tion was originally driven by signal reconstruction and compression (Xiong et al., 1998; Do and Vet-
terli, 2000; Cosentino et al., 2016), the recent developments of large supervised time-series datasets
have led to novel learnable solutions that roughly fall into four camps. First, methods relying on
the Wavelet Transform (WT) (Meyer, 1992). A WT is TFR with a constant-Q filter-bank based on
dilations of a mother wavelet. In Balestriero et al. (2018) the learnability of the mother wavelet is
introduced by means of a cubic spline parametrization of the mother wavelet to learn the mother
wavelet shape. Second, methods relying on band-pass filters without center-frequency to bandwidth
(Q) constraint such as the Short-Time Fourier Transform (STFT) (Allen, 1977). Khan and Yener
(2018) propose to independently learn the center frequencies and bandwidths of a collection of Mor-
let wavelets (learning of those coefficients independently breaks the constant-Q property). Ravanelli
and Bengio (2018) relies on learning the start and cutoff frequency of a bandpass sinc filter apodized
with an hamming window. Those two methods similarly learn the location of the bandpass but use a
different apodization window of a complex sine (Gaussian or hamming). In Cosentino and Aazhang
(2020), it is proposed to learn a filter-bank through nonlinear transformations of a fixed filter, due
to this, recovery of WT and chirp like filters was possible as special cases. Third, Zeghidour et al.
(2018) proposes to learn Mel filters that are applied onto a spectrogram (modulus of STFT). Those
filters linearly combine adjacent filters in the frequency axis which can be interpreted as learning a
linear frequency subsampling of the spectrogram; learning the apodization window used to produce
the spectrogram has also been developed in Jaillet and Torrésani (2007); Pei and Huang (2012).
Finally, there are also methods relying on unconstrained DN layers applied on the time-series but
with designed parameter initialization such that the induced representation (layer output) resem-
bles (before training has started) an a priori determined target TFR. This has been done for chirplet
transforms (Baraniuk and Jones, 1996; Glotin et al., 2017; Balestriero and Glotin, 2019) and for
Mel-Spectrograms (Çakir and Virtanen, 2018).

All the above methods for learning the “best TFR” suffer from at least one of the three fol-
lowing limitations: (i) the inability to interpolate between different TFR families due to family
specific parametrization of the learnable filter-banks; (ii) the inability to maintain interpretability
of the filter-bank/TFR after learning; (iii) the inability to reach super-resolution in time and fre-

119



LEARNABLE SUPER-RESOLUTION TIME-FREQUENCY REPRESENTATION

quency to allow more precise representation. There is thus a need to provide a universal learnable
formulation able to interpolate between and within TFRs while preserving interpretability of the
learned representation and with the ability to reach super-resolution. The crucial component that
allows us to produce such a learnable TFR is that as opposed to current solutions, we do not learn a
filtering of the waveform signal, but a filtering of the Wigner-Ville transform (Wigner, 1932; Flan-
drin, 1998), which is a bilinear representation of the signal and from which common TFRs can be
obtained through Gaussian filtering of that representation. Through an explicit parametrization of
those Gaussians we allow adaptivity of those filters while maintaining interpretability of the filters
and the resulting TFR.

We validate our method on multiple large scale datasets of speech, bird and marine bioacoustic
and general sound event detection, and demonstrate that the proposed representation outperforms
current learnable TFR techniques as well as fixed baseline TFRs regardless of the DN employed on
top of those representations.

We summarize our contributions as follows:
[C1] We develop a Wigner-Ville Distribution based TFR with explicit interpretable parametriza-

tion able to reach super-resolution (Sec. 3.1), able to maintain interpretability of the filters and the
representation at any point in the learning phase (Sec. 3.2), able to continuously interpolate between
state-of-the-art TFRs (Sec. 3.3) and able to adapt its sensitivity to input transformations (Sec. 3.4).

[C2] We provide an efficient implementation allowing us to compute the proposed represen-
tation solely by means of Short-Time Fourier Transforms (Sec. 4.2). This allows GPU friendly
computation and applicability of the method to large scale time-series dataset. We study the method
complexity and provide details on our implementation (Sec. 4.1).

[C3] We validate our model and demonstrate how the proposed method outperforms other learn-
able TFRs as well as fixed expert based transforms on various datasets and across multiple DN ar-
chitectures. We interpret the learned representations hinting at the key features of the signals needed
to solve the task at hand (Sec. 4.3).

2. Background on Time-Frequency Representations

In this section we briefly recall the standard time-frequency representations that are commonly
employed when dealing with time-series data.

Fourier and Spectrogram. Motivated by the understanding of physical phenomena, mathe-
matical analysis tools have been created, notably the Fourier transform (Bracewell and Bracewell,
1986). Any signal x in L2(R) can be expressed in any basis of L2(R) (Mallat, 2008), the Fourier
transform of a signal expresses x in the orthogonal basis formed by complex exponentials as
Fx(ω) =

∫∞
−∞ x(t)e−iωtdt, providing a powerful representation for stationary signals. For non sta-

tionary signal analysis, where the observed signal carries different information dynamics throughout
its duration, co-existence of the time and frequency variables in the representation is needed. One
solution is offered by the Short Time Fourier Transform (STFT) (Allen, 1977) defined as follows

STFTx,g(t, f) =
∫ ∞

−∞
g(t− τ)x(τ)e−ifτdτ, (1)

with g an apodization window which vanishes when moving away from 0. This representation thus
only assumes stationarity within the effective support of g which we denote by σt. The squared
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modulus of the STFT is called the spectrogram as SPx,g(t, f) = |STFTx,g(t, f)|2. The simplic-
ity and efficiency of its implementation makes the spectrogram one of the most widely used TFR
for non-stationary signals. Nonetheless, the spectrogram has a fundamental antagonism between
its temporal and frequency resolution which depends on the apodization window spread σt. In a
spectrogram, large σt allows high frequency resolution and poor time resolution and conversely for
small σt. Most applications employ a Gabor (or truncated/approximated) apodization window, in
which case g(u) = 1√

2πσt
e−t

2/(2σ2
t ). Such spectrograms are denoted as Gabor transforms (Gabor,

1946). We will denote such a Gaussian window by gσt .
Wavelet Transform. A wavelet filter-bank is obtained by dilating a mother filter ψ0 ∈ L2(R)

with various scales s; the relationship between scale and center frequency f of the dilated filter is
given by s = 2S(1−

f
π
) with S the largest scale to be analyzed. Application of those dilated filters

onto a signal leads to the wavelet transform WT (Mallat, 2008)

WTx(t, s) = (x ⋆ ψs)(t), where ψs(t) =
1√
s
ψ0

(
t

s

)
,

with s > 0. The relative position of the mother wavelet center frequency is not relevant as the
scales can be adapted as desired, let consider here that ϕ0 is placed at the highest frequency to
be analyzed. Note that the above is often referred as the continuous wavelet transform due to the
use of analytical mother filter ϕ0. On the other hand there also exists a discrete wavelet transform
(Haar, 1909; Daubechies, 1992) in which the discrete mother wavelet is often obtained by solving
a system of equations (Jensen and la Cour-Harbo, 2001) which we do not consider in this study.
To provide a representation invariant to the phase of the signal’s internal events, it is common to
apply a complex modulus after the convolution, or a squared complex modulus (Lostanlen et al.,
2020), we thus consider in our study WTx(t, s) = |x ⋆ ψs|2(t). As opposed to the spectrogram,
the resolution of the WT varies with frequencies as the filters have a constant bandwidth to center
frequency ratio. In a WT, high frequency atoms ψs with s close to 1 are localized in time offering
a good time resolution but low frequency resolution. Conversely, for low frequency atoms with
s≫ 1, the time resolution is low but the frequency resolution is high. As natural signals tend to be
of small time duration when they are at high frequencies and of longer duration at low frequencies
(Daubechies, 1990), the scalogram is one of the most adapted TFR for natural biological signals
(Meyer, 1992).

Wigner-Ville Transform. The Wigner-Ville (WV) transform (or quasi probability or distribu-
tion) (Wigner, 1932) was originally derived for quantum mechanics (Moyal, 1949) and was only
proposed as a TFR representation in Ville (1948). As opposed to the above TFRs which linearly
transform x through a given basis or filter-bank, the WV transform is bilinear in x. The transform
combines complex sine filters as the Fourier transform and auto-correlations of the signal as follows

WVx(t, f) =

∫ ∞

−∞
x
(
t− τ

2

)
x∗

(
t+

τ

2

)
e−ifτdτ. (2)

Due to the auto-correlation term, computing the WV is demanding but provides a representation
with perfect time and frequency localization as opposed to the spectrogram, wavelet transform, or
any representation obtained through a linear filtering of the signal. This increased localization comes
at the cost of introducing artifacts, or interference, in the representation (Daubechies and Planchon,
2002) and led to many variants of the WT with goal to reduce those artifacts e.g. the Pseudo Wigner
Ville (Flandrin and Escudié, 1984) or the Smoothed Pseudo Wigner-Ville (Hlawatsch et al., 1995).
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Filtering the Wigner-Ville Transform: (Affine) Cohen Class. One of the greatest property
of the WV transform beyond perfect time-frequency localization lies in the ability to recover any
TFR obtained from a linear filtering of a signal with a filter-bank by instead performing a linear
filtering of the WV representation with a low-pass filter we denote as Π ∈ L2(R2) as in (WVx ⋆Π)
with ⋆ the 2-dimensional convolution. Collecting all possible low-pass filtered WV representation
produces the Cohen class (Cohen, 1989) which we denote simply as Cx and defined as

Cx = {WVx ⋆Π|Π ∈ L2(R2),Π low-pass }, (3)

and where we have as special cases SPx,g ⊂ Cx for any Gaussian g. We thus see that any Gabor
transform lives in this class, as well as many other known TFRs as we will discuss in the following
section. An important extension of the Cohen class is given by the affine Cohen class (Flandrin
and Rioul, 1990; Flandrin, 1993; Daubechies and Planchon, 2002) where not a single filter Π is
employed with a 2-dimensional convolution but instead a time only convolution is employed with a
collection of filters {Πf , f ∈ R∗} with the constraint that Πf (τ, ω) = Π0(fτ, fω) given a “mother”
low-pass filter Π0. One should notice the close resemblance to the WT, in fact, WTs belong to the
affine Cohen class.

This paper extends the Cohen class and the affine Cohen class by removing the affine trans-
formation constraint relating the kernels Πf , and by imposing a parametrization of those filters to
allow learning, computational efficiency and interpretability of the filters and produced representa-
tion. Removing the affine constraint is key in allowing the WV transform filtering to reach a larger
set TFRs e.g. chirplet transforms which are fundamental for many applications (Gribonval, 2001;
Yin et al., 2002).

3. Learnable, Universal and Stable Wigner-Ville Based Signal Representation

In this section we develop our proposed signal representation which builds upon the Wigner-Ville
Distribution. We first define our representation and study some key properties to finally propose a
physics based parametrization that will allow for interpretability and robust learning. Throughout
our development, we consider continuous time and frequency and will consider the finite sample,
descrete case in the next section.

3.1. Wigner-Ville Based Signal Representation

We now define our transformation, coined the K-transform, which corresponds to applying a 2-
dimensional truncated Gaussian kernel Φf ∈ L2(R × [0, 2π)) onto the Wigner-Ville transform
WVx ∈ L2(R × [0, 2π)) of the signal x ∈ L2(R) (recall (2)), each kernel employs independent
parameters for different frequencies f ∈ [0, 2π).

Definition 1 (K-transform) The K-transform of a signal x with kernel Φ is defined as

Kx(t, f) =
∫
R×[0,2π)

WVx(τ, ω)Φf (t− τ, ω)dτdω, (4)

where the 2-dimensional Gaussian density function is parametrized by

Φf (τ, ω) = N

((
τ
ω

)
;

(
0

µf(f)

)
,

(
σt(f)

2 ρ(f)
ρ(f) σf(f)

2

))
1{ω∈[0,2π)}, (5)

where N is the Gaussian multivariate density function.
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First, one should notice that the above extends the definition of the Cohen’s class (recall (3))
and the affine Cohen class. The K-transform falls back to the Cohen class iff the kernels Φf are
identical for any frequency position f (in that case Kx can be obtained with a single 2-dimensional
convolution between WVx and the single Gaussian kernel). The K-transform falls back to the affine
Cohen class iff the mean and covariance parameters are tied together as in σt(f)2 ∝ 1/µf(f) and
σf(f)

2 ∝ µf(f). That is, the filters have bandwidths varying with their mean and center-frequencies
(in the WV domain). One important family of TFRs known as variable Q-transform (Huang et al.,
2015) can be reached by the K-transform but not by the affine Cohen class as opposed to constant
Q-transforms TFRs (Brown, 1991) that can be reached by the K-transform and the affine Cohen
class.

Second, the K-transform is real valued as both the Wigner-Ville representation WVx and the
Gaussian kernel are real valued. We now discuss the advantages of such a parametrization. Each
filter has 4 degrees of freedom that fully characterize the type of events being captured and allow for
interpretability, we discuss this further below. As the parameters of different filters Φf ,Φf ′ , f ̸= f ′

are independent, the number of degrees of freedom of the transform depends (linearly) on the desired
number of filters (a finite number in practice). For common machine learning tasks and datasets we
rarely see the number of filters exceed 128 which leads to 512 degrees of freedom. In this paper we
will learn those parameters with some flavors of gradient descent as the transform is differentiable
w.r.t. the Gaussian parameters. This will allow to adapt the filters and thus the transform to the
data and task at hand. All the implementation details as well as a fast computation method will be
provided in the next section.

Lastly, a key property of most TFRs reside in their time-frequency resolution, that is, how pre-
cise will be the representation into reflecting the frequency content at each time step present in the
studied signal. Standard TFRs (and their learnable versions) have limited resolutions constrained by
the uncertainty principle. In short, TFRs such as scalograms or STFTs all employ time-frequency
filters that have their effective support’s area lower bounded (when viewed in the WV domain).
And while changing the hyper-parameters of those TFRs alter the supports’ shape of those filters,
the area constraint prevents them from being highly localized in both time and frequency. We
present an illustration of this in Fig. 4. The WV has perfect time and frequency localization, and
thus the K-transform can reach super-resolution by adapting the covariance matrices of the filters.
In the limit when the Gaussian filters become Dirac functions (ρ(f) = 0, σt(f) = σf(f) = ϵ),
the K-transform falls back to the WV transform. We will study the sensitivity of the learned repre-
sentation as a function of the Gaussian covariance matrices in the next section (Prop. 2), where we
show that reaching super-resolution will make the representation highly sensitive to input noise and
deformations; the ability to learn and adapt to the task and data at hand is thus crucial to ensure that
super-resolution is reached only if beneficial to increase performances.

3.2. Interpretability

The Gaussian parametrization of the kernel Φ (recall (5)) plays many crucial roles; the first being the
ease of interpretability of the filters and of the produced representation. The frequency mean µf(f)
represents the frequency center of the events captured by this filter. Studying the mapping µwill also
inform on the concentration of those center-frequencies and if for example they follow a logarithmic
growth as in the WT or a linear growth as in the STFT. The diagonal of the covariance matrix
(σt(f)

2, σf(f)
2, ) encodes the frequency and time bandwidths of the filter. That is, how precise
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Figure 1: Visualization of four different Gaussian filters Φ in the time-
frequency plane (the Wigner-Ville domain) each depicted with a different
color. Interpretability of the filters (as detailed in Sec. 3.2) can be done
directly by looking at the mean (position) of the Gaussian and the covari-
ance matrix. In this case, the black/top filter is highly localized in time and
frequency near the Nyquist frequency (notice the much higher localization
than allowed in a WT or STFT; the orange/anisotropic filter is encoding
chirp events (linear change in time of the instantaneous frequency), this is
typical of bats or birds’calls; the green/flat filter is highly localized in fre-
quency and encodes long duration event, this can be seen with insects emit-
ting relatively high frequency sounds for a long duration; the red/bottom
filter on the contrary is localized in time and encodes large band frequency
events, this is typical of transient events such as clicks of dolphins.

in time and in frequency is the filter. For example when capturing a stationary signal with long
time duration an appropriate σt(f) to best capture the event would be greater than when capturing a
transient (short duration, burst like) event. Hence, studying the learned parameters (and filters) allow
to study the physical properties of the encoded events which is crucial for example in bioacoustics
(Dawson, 1991) or geophysics (Seydoux et al., 2020). The off-diagonal of the covariance, ρ(f),
encodes the (linear) chirpness of the filter; that is, how the instantaneous frequency of the filter
changes with time. This chirpness parameter plays a crucial when capturing events as generated
by bats, birds (Barclay, 1999; Capus and Brown, 2003) or radar and imaging devices (Baraniuk
and Steeghs, 2007; Luo et al., 2009). Beyond this direct interpretability of the types of event being
encoded by each filter, this parametrization is also general enough to reach most of the current TFRs
as we now demonstrate.

3.3. Universality

A second key benefit of the proposed Gaussian parametrization resides in its ability to reach most of
the employed TFRs. In fact, it has been shown through various studies how TFRs such as the chirplet
transform, the WT with Morlet wavelet or the Gabor transform (Nuttall, 1988; Flandrin and Rioul,
1990; Jeong and Williams, 1990; Baraniuk and Jones, 1996; Talakoub et al., 2010; Gillespie and
Atlas, 2001) all belong to the (affine) Cohen class where the convolution kernels are 2-dimensional
Gaussian where only the mean and covariance parameters are to be changed. We formalize this
result below.

Proposition 1 (Universality) Any Gabor transform, Gabor wavelet transform, Gabor chirplet
transform are reachable by the K-transform. (Proof in App. C.2.)

The above result is crucial as it demonstrates how the proposed formulation covers most of the
current state-of-the-art deterministic TFRs. In addition, most learnable frameworks simply adapt
the parameters of some fixed TFRs, as such, those learned representations are also reachable by the
K-transform. We depict in Fig. 2 some specific cases of means and covariances that can be imposed
on the parameters of the Gaussians Φf to make the K-transform fall back to known TFRs; we also
give the analytically parameters for each case in Table 3 in the Appendix.

We should highlight that not all representations can be reached by the K-transform. For example,
a sinc based filter-bank can not be reached as it would require not a Gaussian filter applied onto WVx
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Figure 2: Depiction of various filter-banks in the frequency domain, time domain and time-frequency plane
(Wigner-Ville domain) for a STFT (top) with small Gaussian apodization window (left) and large Gaus-
sian apodization window (right); for a wavelet transform (middle) with Morlet wavelets, and for a chirplet
transform (bottom). First, all those TFRs can be obtained through a Gaussian filtering of the Wigner-Ville
representation each with a specific set of means and covariances for the Gaussians. By changing those pa-
rameters it is possible to move continuously from one TFR to another (Theorem 1). Second, the larger is the
Gaussian (covariance) in one direction or the other (time or frequency) the more stable will be the produced
TFR (Prop. 2), with an highly localized Gaussian (small covariance entries) super-resolution is achieved pro-
viding the produced TFR increased time and/or frequency precision of the events present in the input signal.
Third, learnability of the Gaussian parameters allow to let the data, classification/regression pipeline and the
loss function at hand drive the design of the TFR to maximize performances.
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but a rectangular window. Also, any TFR employing a time-varying basis can not be recovered by
the K-transform. This type of “signal adapted” basis (Ramchandran and Vetterli, 1993; Abramovich
et al., 1998) is not common in regression and classification tasks as those tasks heavily rely on
translation invariance of the representation. A simple rule determining if a TFR can be reached by
the K-transform is formalized below as a direct application of Moyal theorem (see Theorem 8 in
Bahri and Ashino (2015)).

Remark 1 Any signal representation R that can be expressed as R(., f) = |x ⋆ ψf |2 where
ψ1, ψ2, . . . are possibly independent filters from each other can be reached by the K-transform
if the WV transform of the signals WVψf

, ∀f are 2-dimensional Gaussian.

3.4. Continuity and Stability

In this section we highlight some fundamental properties of the K-transform concerning its stability
to changes in the Gaussian parameters of the filters, and changes in the input signal x. In particular
our first result demonstrate how the proposed formulation allows to continuously move from one
TFR to another (recall Prop. 1) when changing the Gaussian parameters.

Continuity. For convenience, we encapsulate all the Gaussian parameters as a single operator
θ : [0, 2π) 7→ R× R+ × R+ × R defined as

θ(f) ≜
(
µf(f), σt(f)

2, σf(f)
2, ρ(f)

)T
, (6)

where to simplify notation we assume ρ(f) ∈ R, we discuss the valid support that ensures invert-
ibility of the covariance matrix in the next section; we also explicit the K-transform as Kx,θ to make
the dependency on θ explicit. We can now derive the Lipschitz continuity result of the proposed
representation in term of its parameters.

Lemma 2 (Lipschitz continuity) Given two parameter mappings θ and θ′ in L2(R) as defined by
(6), the distance between the two induced representations is upper bounded by the distance between
those mappings as in

∥Kx,θ − Kx,θ′∥2L2(R2) ≤ κ∥x∥2L2(R)

(∫ 2π

0
∥θ(f)− θ′(f)∥22df

) 1
2

,

with κ the Lipschitz constant of a standard 2D Gaussian (≈ 0.2422). (Proof in App. C.1.)

From the above result we see how one can compare different K-transforms simply by comparing
their associated parameters, as close parameters imply close representations of the same inputs. As
such, if the learned parameters are say close to the ones of a WT, then one can confidently assume
the learned representation to be a WT. Lipschitz continuity also naturally provides the following.

Theorem 1 (TFR Interpolation) The representation Kx,θ moves continuously with θ allowing to
continuously interpolate between any reachable TFR. (Proof in App. C.3.)

The above result demonstrates that the transform is Lipschitz continuous with respect to its param-
eters θ, hence, moving from any representation to another is done in a continuous fashion when
continuously moving the parameters. This property is also important in our context of learning θ. In
fact, when performing updates of those parameters in a gradient based fashion (small increments)
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we are guaranteed to not produce abrupt changes in the representations. This is highly beneficial to
have stability during training. We conclude with an important result derived when the affine Cohen
class was generalized to produce wavelet transforms in Flandrin and Rioul (1990) (Prop. 4) stating
that the Gaussian parametrization we employ is not only sufficient but also necessary.

Remark 3 A continuous passage from a spectrogram to a scalogram by filtering the WVx is possi-
ble iff the filtering is done with Gaussians filters.

The above result should demonstrate along with Sec. 3.2 and 3.3 that the Gaussian parametrization
is not only providing interpretability and universality but is also the only parametrization allowing
a continuous interpolation between TFRs.

Stability. We now study how does the representation change when the input x is perturbed
(as opposed to the previous paragraph that focused on perturbations of the parameters θ). The
first direct result concerns the equivariance of the representation with translation of the input in
time. That is, translating the input in time translates the representation. This results comes from
the fact that the WV is itself translation equivariant, and since we apply a time convolution on
this representation, itself being translation equivariant, we have that the K-transform maintains this
property. Maintaining this property is important especially for tasks without a priori knowledge in
order to maintain enough information about the input signal (Kondor and Trivedi, 2018; Cohen and
Welling, 2016; Cohen et al., 2018).

On the other hand, we also want to ensure that small changes in the input do not yield high
changes in the representation. This stability to input deformation is also crucial to provide easier
stochastic optimization and improved generalization (Mallat, 2016). This type of stability is often
achieved from handcrafted designs such as a time averaging (Bruna and Mallat, 2013). We now
demonstrate that in the K-transform, the sensitivity to input transformations is directly controlled
by the covariance of the Gaussian filters, and that during training, the filters will adapt to produce
stable representations only if needed based on the data and task specific perturbations. Denote a
transformation u applied on the signal x and formally characterize the induced perturbation amount
in the K-transform by ∥Kx,Φ − Ku(x),Φ∥L2(R2), let also denote det(Φf ) ≜ σt(f)

2σf(f)
2 − ρ(f)2.

Proposition 2 (Stability to deformation) A transformation of the signal D(x) implies a change
in the representation proportional to the inverse of the covariance determinant as

∥Kx,Φ − KD(x),Φ∥L2(R2) ≤
κ ∥x−D(x)∥L2(R)

minf det(Φf )
,

with κ the Lipschitz constant of the WV which exists and is finite for bounded domain. (Proof in
App. C.6.)

Based on the data and task at hand, the K-transform can adapt its parameters and in particular its
covariance matrix to reach super-resolution or to reach stability to input deformations. The extreme
cases range from Dirac-like filters producing a highly sensitive TFR to constant filters (infinite limit
variance) producing a completely invariant representation. This highlighted trade-off demonstrates
how current TFRs (e.g. WT, SP) which have det(Φf ) lower bounded by the uncertainty principle
provide some stability in their representation. Furthermore, specific invariants can be obtained as
highlighted below allowing to recover for example time invariance à la scattering network (Mallat,
2012).
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Remark 4 Time invariance, ∥Kx,Φ − KD(x),Φ∥L2(R2) = 0 with D any translation operator, is
reached as σt(f) → ∞,∀f , frequency invariance, ∥Kx,Φ − KD(x),Φ∥L2(R2) = 0 with D any fre-
quency shift operator, is reached as σf(f) → ∞, ∀f .

Noise Sensitivity. One last important study concerns the sensitivity of the proposed transform
in the presence of noise in the signal. That is, we concentrate the above analysis to the case whereD
would produce an observation x formed by an underlying signal y corrupted with additive random
noise ϵ. In the case of i.i.d. noise variables with finite first two moments we obtain the following
result.

Lemma 5 The K-transform of a noisy signal x = y + ϵ, with i.i.d. noise (in time) ϵ, is a random
variable with mean given by

E [Kx(t, f)] = Ky(t, f) +
∫ 2π

0
S(ω)ϕf

(
ω;µf(f), σ

2
f (f)

)
dω, (7)

with S(ω) the noise power density function and ϕf is the density function of a 1-dimensional Gaus-
sian with given mean and variance. (Proof in App. C.5.)

From the above, we obtain that the K-transform of noisy signals will be biased based on the noise
power density function and its correlation with the employed Gaussian kernels. The variance of
the noisy transform Kx(t, f) can also be obtained analytically as we demonstrate in Lemma 5’s
proof. While we will focus on classification problems in this study, the above result shall open the
door to applying the K-transform and learning the Gaussian kernels Φf for denoising applications.
We now demonstrate how the K-transform can be computed efficiently solely from Fast Fourier
Transforms, for other properties of the transform such as characterization of the interference based
on the covariance please see Appendix D.

4. Fast Fourier Transform Computation of the K-transform

We carefully develop in this section the implementation of our method as well as present an interest-
ing computation method allowing to scale the K-transform to large scale dataset and signal with long
time duration (high number of recorded bins). We then employ our method on various large scale
benchmarks and compare with alternative learnable TFRs and demonstrate how the K-transform
attains higher accuracies.

4.1. Gaussian Parameter Learning.

Recall from Def. 1 that the K-transforms involves a Gaussian filtering of the WVx representation.
We propose to learn the Gaussian parameters for each filter of the finite filter-bank

{Φ1, . . . ,ΦF },

where the values of θ(1), . . . , θ(F ) from (6) are considered as the learnable parameters of the model.
In order to ensure stability during training and avoid learning parameters producing non positive
semidefinite (PSD) covariance matrices we impose

σt(i) > 0, σf(i) > 0, ρ(i) ∈
(
−0.95

√
σt(i)σf(i), 0.95

√
σt(i)σf(i)

)
, i = 1, . . . , F,
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ensuring that we can perform unconstrained gradient descent optimization of our objective function
without producing covariance matrices that are not PSD. We do not impose constraints on µf(i),
from the experiments we observed that no divergence of this parameter occurred; however one
could enforce that µf(i) ∈ [0, π).

4.2. The Short-Time-Fourier-Transform Trick

The definition of the K-transform leverages the WVx transform of a signal x. For a discrete signal of
length N , this requires the computation of a N ×N matrix obtained by doing N Fourier transforms
of length N . Its computational complexity is thus quadratic (O(N2 log(N))) making it unsuited
for large scale tasks when N can easily reach 100, 000 or more. Once again, we will leverage the
Gaussian parametrization to greatly speed-up the K-transform computation.

Isotropic covariance case. In order to provide a fast implementation, we will first consider
the case of Φf employing an isotropic covariance matrix, that is, ρ(f) = 0 and σt(f) = σf(f), ∀f .
In that specific case, the K-transform can be obtained by (i) computing STFTx,σt(f), (ii) doing a
spectral autocorrelation of STFTx,σ and (iii) doing a 2D convolution with a Gaussian with diagonal
covariance. We formalize this result below.

Lemma 6 Any K-transform (recall (4)) with Φf having isotropic covariance matrix σ2I2, ∀f can
be obtained via

Kx(t, f) =

(
WVx ⋆N

(
.;

(
0

µf(f)

)
, σ2I2

))
(t, f) =

(
WVx ⋆N

(
.;0, σ2I2

))
(t, µf(f))

=

∫ ∞

−∞
gσ−1−σ(ω)e

j2πωtSTFTx,σ−1

(
t, µf (f) +

ω

2

)
STFT∗

x,σ−1

(
t, µf (f)−

ω

2

)
dω,

where gσ is a 1-dimensional Gaussian function with spread σ. (Proof in App. C.7.)

It is clear from the above result that σ greatly impacts the speed of computation of Kx as (i) it will
limit the amount of cross-correlation to perform (not computation needed outside of the effective
support of g which decreases as σ grows), and (ii) the STFT computation will be perform on smaller
windows as σ increases. For details on the Gaussian window truncation please see Appendix E. As
a result, the above provide a convenient solution to produce a transform with diagonal covariance
matrix in the filters Φf and the computational cost increases as σ reduces. In the discrete case,
the above turns the complexity from O(N2 log(N)) to O(NM log(M)) with M the window size
(effective support in bins of a Gabor apodization with standard deviation σ−1; where M → N as
σ → 0. We now move to the general case of arbitrary covariance matrices.

General case. In the general case we do not impose any constraint on the filter Φf covariance
matrices. Nevertheless, it should be clear that any 2-dimensional Gaussian with arbitrary covariance
can be rewritten as the convolution between a Gaussian width diagonal covariance matrix and a
Gaussian with arbitrary covariance matrix.

Theorem 2 Any K-transform can be obtained from convolving the WV with a diagonal covariance
Gaussian and a full covariance Gaussian as

Kx(t, f) =

WVx ⋆N
(
.;0, σ2I2

)︸ ︷︷ ︸
does not depend on f

⋆N (.;0,Σ(f))

 (t, µf(f)),
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Figure 3: Computation time (in sec.) to evaluate WVx ⋆ N

(
.;0, σ2I2

)
on signals x of different lengths

depicted with different colors and with varying σ. The smaller σ the more localized in time and frequency
is the representation, in the limit case of σ → 0 the produced representation falls back to the WV transform.
An increase in the length of the signal x incurs a linear increase in computation time. The outer left case has
similar computation time than the corresponding STFT with same σ for its frequency bandwidth.

with Σ(f) a positive semidefinite matrix and σ2 the largest value such that

Σ(f) + σ2I2 =

(
σ2t (f) ρ(f)
ρ(f) σf(f)

)
.

(Proof in Appendix C.8.)

By employing the above and Lemma 6 we see how one can compute a priori the representation
WVx ⋆ N

(
.;0, σ2I2

)
that is then used to produce the desired K-transform. We propose in Fig. 3

computation times of WVx ⋆ N
(
.;0, σ2I2

)
for different signal lengths and different values of σ.

Computing the K-transform for various kernels can be done from a base representation which is not
the WV but the already convolved WV. If one a priori imposes a minimal value for the covariance
matrix then this method can greatly speed up computation as opposed to employing the analytical
WVx from (2). Furthermore, the employed STFT is efficiently implemented in most (CPU/GPU)
software allowing an efficient computation of the transform.

Remark 7 The K-transform time and/or frequency resolution is inversely proportional to its speed
of computation.

Pseudo-code. We provide below the explicit pseudo code that summarizes all the involved steps
and their impact of the final representation obtained (see App. G for the computational complexity):
1. Do a Gabor transform of x with a Gaussian window gσ for apodization leading to STFTx,σ;this
parameter will determine the final frequency resolution of the transform (∝ σ) (Prop. 7, Fig. 2).
2. Do the spectral auto-correlation of STFTx,σ with a gaussian spectral apodization window g1/σ−σ
to obtain

(
WVx ⋆N

(
.;0, σ2I2

))
from Lemma 6. This maintains the frequency resolution of

STFTx,σ while increasing the original time resolution 1
σ by σ.

3. Compute the K-transform as per Theorem 2.
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Figure 4: Depiction of the learned filters Ψ[., f ] (Def. 1). The full filters banks can be found in Appendix B,
the vertical over horizontal axes ratio is 1. Left, our learned representation on AudioMNIST dataset
(Becker et al., 2018): This noiseless speech pushes the filters with high frequency resolution (easily seen
from the filter covariance as per (6)). For some of these filters the time resolution is also very high (reaching
super-resolution), while others favor local translation invariance. For all the medium to low frequency filters,
great frequency and time invariance is preferred with large gaussian support, with a slight chirpness for
the medium frequency filters. Thus, the low frequency filters tend to favor time resolution. Right, our
learned representation on Birdvox dataset (Lostanlen et al., 2018): We see that the detection of bird songs
heavily relies on chirps. Indeed the characteristic sound of birds is increasing or decreasing in frequency over
time. Moreover, the learned representation demonstrate filters that reach super-resolution. Thus it encodes
with high precision the time and/or frequency position of the events per Prop. 2) as the cost of being more
sensitive to input deformation. It fits with the extreme time-frequency accuracy of bird audition and acoustic
production (Dooling and Lohr, 2006).

4.3. Experimental Validation

We propose to validate our method on various classification tasks. We briefly describe below the
used dataset and DN architectures and provide the accuracy results averaged over 10 runs and over
multiple learning rates in Table 1. All dataset are described in details in Appendix H. For each
dataset we experiment composing our learnable TFR with three DN architectures (for detailed de-
scription of those architectures and additional hyper parameters choices please see Appendix A).
First, we consider a simple model that corresponds to a Linear Scattering where we have TFR-
global time averaging-linear classifier. This model will fully rely on the TFR as no additional
(non)linear transformation processes the inputs prior reaching the linear classifier. Second, we em-
ploy a slightly more complex model involving a nonlinear classifier instead. That is, we use the
pipeline TFR-global time averaging-MLP; we denote it as Nonlinear Scattering. Lastly, we ex-
tended the Nonlinear Scattering case by employing a convolutional layer prior the time averaging
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Table 1: Average over 10 runs of classification result using three architectures without data augmentation,
one layer scattering followed by a linear classifier (Linear Scattering), one layer scattering followed by a
two layer neural network (Nonlinear Scattering) and a two layer scattering with joint (2D) convolution for
the second layer followed by a linear classifier (Linear Joint Scattering). For each architecture and dataset,
we experiment with the baseline, Morlet wavelet fitler-bank (morlet), and learnable frameworks being ours
(lwvd), learnable sinc based filters (sinc) and learnable Morlet wavelet (lmorlet). As can be seen, across
the dataset, architectures and learning rates, the proposed method provides significant performance gains
(stds in Tab. 2). The increased gap in performances for the linear case and the ability of the K-transform
to reach high accuracies in that linear case confirm the ability to produce highly adapted representations
across datasets. For the reader’s curiosity we provide some banchmarks on those datasets, however direct
comparison is not possible at different data splitting, data augmentation (in our case no data augmentation is
employed) and the likes are different for each study. For Audio MNIST using AlexNet on spectrogram leads
to 95% (Becker et al., 2018) accuracy; for biosonar classification in DOCC10 challenge raw audio CNN lead
to 71.13% test accuracy (Ferrari et al., 2020); for BirdVox, using carefully designed spectrograms with PCA
and kernel SVM lead to 87.77% accuracy, and employing instead 3 layers of 2D convolution and 2 fully
connected layers lead to 90.48% (and 94.85% with data augmentation) test accuracy (Lostanlen et al., 2018);
for the Google command dataset, a DenseNet 121 without pretraining nor data augmentation reaches 80%
test accuracy (de Andrade et al., 2018) using a spectrogram.

Linear Scattering Nonlinear Scattering Linear Joint Scattering
le. rate morlet lwvd sinc lmorlet morlet lwvd sinc lmorlet morlet lwvd sinc lmorlet

D
O

C
C

10 0.0002 14.3 63 31.1 29.7 54.1 84.7 74.4 74.9 70.7 83.7 82.4 75.8
0.001 12.7 65.5 26.0 28.3 50.1 87.9 77.4 77.4 70.1 80.6 80.8 73.2
0.005 13.0 65.9 17.1 27.0 51.8 87.1 43.3 83.2 65.9 78.0 70.5 80.8

B
ir

dV
ox 0.0002 63.8 77.9 69.6 65.4 84.7 92.9 88.1 85.8 82.1 90.5 87.2 84.3

0.001 65.0 80.0 67.2 64.3 85.0 94.2 88.1 86.6 80.3 88.7 86.8 83.1
0.005 65.2 80.4 67.3 66.9 84.8 94.2 86.0 87.2 78.1 87.5 78.3 82.8

M
N

IS
T 0.0002 43.9 68.4 52.2 44.0 82.3 85.3 10.4 83.0 95.3 97.6 22.1 95.4

0.001 41.5 68.8 43.5 42.2 83.2 89.8 87.1 85.4 89.7 97.8 93.2 90.4
0.005 34.6 68.8 23.9 36.0 82.7 22.1 68.7 88.1 81.1 12 64.4 80.2

co
m

m
an

d 0.0002 8.1 24.9 9.5 7.6 33.9 38.2 36.2 33.4 65.8 76.7 3.7 66.8
0.001 7.5 26.1 8.0 8.2 33.5 42.9 35.5 33.7 53.6 71.8 27.9 51.9
0.005 7.3 25.7 6.2 6.5 33.0 17.0 28.9 34.8 32.1 35.2 17.2 32.9

fs
d

0.0002 9.7 15.3 10.3 9.0 22.9 23.1 2.3 27.9 40.1 38.8 1.6 42.0
0.001 9.8 16.7 10.4 10.6 24.2 27.4 13.1 31.1 38.9 44.9 2.1 42.3
0.005 9.0 17.4 5.5 10.2 24.2 28.8 16.9 30.4 25.0 31.5 17.0 33.2

and then using a linear classifier as in TFR-Conv 2D-global time averaging-linear classifier, and is
denoted as Linear Joint Scattering). While we provide those different settings to represent the
plurality of situations where learnable TFRs can be used in practice, the Linear Scattering model is
the one relying the most in the TFR and is thus the case where the most significant trends should
occur.

In addition to comparing different classification networks, we also compare for each of those
networks and each dataset our learnable TFR (the K-transform) that we abbreviate as lwvd, to the
learned Morlet filter-bank (Khan and Yener, 2018) denoted as lmorlet, and to the learnable sinc
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based filter-bank (Ravanelli and Bengio, 2018) denoted as lsinc, which are the current state-of-the-
art techniques proposing a learnable TFR. In order to calibrate all the results we also compare with
a fixed Morlet filter-bank which is the one that is often seen as the most adapted when dealing
with speech and bird signals. We do not employ any data-augmentation technique. In all cases the
K-transform outperforms other learnable TFRs and the a priori optimal one across dataset and opti-
mization settings, offering significant performance gains. We propose in Fig. 4 and Appendix B all
the figures of the learned filters and their interpretation. We provide the results in Tab. 1 and Tab. 2
averaged over 10 runs, for each of the runs, the same data split, DN initialization and parameters are
used across all TFRs to allow exact performance comparisons. We also provide the results across
various learning rate to perceptually measure the sensitivity of each method to this parameter. The
first key observation is that the learnable methods are much more sensitive to the learning rate than
when using a fixed TFR. Nevertheless, the proposed K-transform is able to outperform all methods
across the datasets and for any DN. This comes from the extreme adaptivity of the produced TFR.
Notice that the fixed morlet TFR reaches reasonable accuracy especially on speech data without
noise (audio MNIST). This is another key feature of learnable TFR, the ability to learn more ro-
bust representations. Another key observation comes from the ability of the proposed method to
reach state-of-the-art performances while leveraging a simple (few layer) DN in the Linear Joint
Scattering case.

5. Conclusions
We proposed a novel approach to learn generic WVD based TFR, derived an efficient implementa-
tion and demonstrated its ability to outperform standard and other learnable TFR techniques across
dataset and architecture settings. In addition of learning any desired TFR, our framework is inter-
pretable allowing one to easily understand the physical properties being captured by the learned
TFR as well as positioning the learned TFR in the realm of the conventional TFRs such as spectro-
grams and scalograms. Our study opens many interesting research directions. First, it is possible
to perform statistical analysis of noisy signals in order to better design and constrain the Gaussian
filters of the K-transform to minimize the impact of noise into the final representation. This is a
powerful scope that would allow interpretable and theoretically grounded regularization techniques
to be obtained for the K-transform filters as has been done in the case of the WV transform in Amir-
mazlaghani and Amindavar (2009, 2013); Levy et al. (2020). Another extension of the proposed
method is model-based signal approximation, such as using a tree model Baraniuk (1999). Yet an-
other extension consists of using an additional learnable parameter for the time dimension of the
Gaussian filters mean parameters. Doing so would allow further flexibility in the learned represen-
tation at the cost of reduced interpretability as each frequency dimension will have its own time
alignment. Such a compromise of representation power versus interpretability should offer more
options for practitioners. Lastly, it is possible to leverage advances in computational methods for
performing convolutions with Gaussian filters (Getreuer, 2013) in order to speed up the proposed
method or enable CPU and/or memory efficient computations.
Acknowledgments: Randall Balestriero and Richard Baraniuk are supported by NSF grants CCF-1911094,
IIS-1838177, and IIS-1730574; ONR grants N00014-18-12571, N00014-20-1-2787, and N00014-20-1-2534;
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learning for audio signal processing. IEEE J. Sel. Topics in Signal Proc., 13(2):206–219, 2019.

Kannan Ramchandran and Martin Vetterli. Best wavelet packet bases in a rate-distortion sense.
IEEE Transactions on Image Processing, 2(2):160–175, 1993.

Mirco Ravanelli and Yoshua Bengio. Interpretable convolutional filters with sincnet. arXiv preprint
arXiv:1811.09725, 2018.

138



LEARNABLE SUPER-RESOLUTION TIME-FREQUENCY REPRESENTATION

Debashis Sen. The uncertainty relations in quantum mechanics. Current Science, pages 203–218,
2014.
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61–74, 1948.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J Lang.
Phoneme recognition using time-delay neural networks. IEEE transactions on acoustics, speech,
and signal processing, 37(3):328–339, 1989.

Pete Warden. Speech commands: A public dataset for single-word speech recognition. Tensrflow,
2017.

Eugene Wigner. On the Quantum Correction For Thermodynamic Equilibrium. Physical Review,
40(5):749–759, Jun 1932. doi: 10.1103/PhysRev.40.749.

Zixiang Xiong, Kannan Ramchandran, and Michael T Orchard. Wavelet packet image coding using
space-frequency quantization. IEEE transactions on image processing, 7(6):892–898, 1998.

Qinye Yin, Shie Qian, and Aigang Feng. A fast refinement for adaptive gaussian chirplet decompo-
sition. IEEE transactions on signal processing, 50(6):1298–1306, 2002.

Neil Zeghidour, Nicolas Usunier, Iasonas Kokkinos, Thomas Schaiz, Gabriel Synnaeve, and Em-
manuel Dupoux. Learning filterbanks from raw speech for phone recognition. In ICASSP, pages
5509–5513. IEEE, 2018.

139



LEARNABLE SUPER-RESOLUTION TIME-FREQUENCY REPRESENTATION

Supplementary Material
This appendix proposes to first review the implementation details and visual results of the paper,

studying the learned filters, we conclude with all the proofs of the theoretical results.

Appendix A. DN topology

We leverage a time translation covariant form of the proposed learnable model as we aim at solving
classification tasks based on audio clips. Hence the representation should be translation invariant.
We keep the unconstrained frequency dimensions and thus do not impose any frequency shift in-
variance as in the Cohen class family of representations. The kernels are parametrized as given in
the main text and the networks are given as follows:

TF: any representation (morlet, lwvd, ...)
the first mean(3) represents time pooling

- onelayer_nonlinear_scattering
input = T.log(TF.mean(3).reshape([N, -1])+0.1)
Dropout(0.3)
Dense(256)
BatchNormalization([0])
LeakyReLU
Dropout(0.1)
Dense(n_classes)

- onelayer_nonlinear_scattering:
input = T.log(TF.mean(3).reshape([N, -1])+0.1)
Dropout(0.1)
Dense(n_classes)

- joint_linear_scattering:
feature = T.log(TF.mean(3).reshape([N, -1])+0.1)

input = T.log(TF+0.1)
Conv2D(64, (32,16))
BatchNormalization([0,2,3])
AbsoluteValue
Concatenate(AbsoluteValue, feature)
Dropout(0.1)
Dense(n_classes)

all training is done with the Adam optimizer, same initialization and data splitting.
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Appendix B. Additional Figures

We represent in this section the learned filters/kernels Φ applied on the smoothed pseudo Wigner-
Ville distribution, for clarity we only depict one every 4 filters, concatenated horizontally. We do so
for three dataset and provide analysis in the caption of each figures.

B.1. Samples of learnt filters

We propose in Fig. 5 and Fig. 8 and Fig. 7 the filters after learning for each dataset with their
analysis.

Figure 5: Audio MNIST: this dataset deals with spoken digit classification. A few key observations:
the high frequency filters tend to take an horizontal shape greatly favoring frequency resolution, for
some of the filters the time resolution is also very high (reaching super-resolution) while others favor
local translation invariance. For all the medium to low frequency filters, great frequency and time
invariance is preferred (large gaussian support) with a slight chirpness for the medium frequency
filters. The low frequency filters tend to favor time resolution.

Appendix C. Proofs

In this section we present in details all the proofs of the main paper results, as well as providing
some additional ones.
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Figure 6: FreeSound: this dataset contains various different classes ranging on different frequencies
and without an a priori prefered form of the events in the WV space. As opposed to the AudioM-
NIST case, we can see that the kernels tend to have smaller covariance (support) hence preferring
time and frequency resolution to invariance. This becomes especially true for the high frequency
atoms. We also see the clear chirpness for the medium/high frequency kernels with a specific (-30)
angle, with decreasing slope. This might be specific to some particular events involving moving
objects such as train, cars and so on.

C.1. Proof of Lemma 2

Let first prove the general case with arbitrary kernels

Lemma 8 The norm of the difference of two representations obtained from kernel Φ and Φ′ is
bounded above as ∥Kx,Φ − Kx,Φ′∥L2(R2) ≤ ∥x∥2L2(R)∥Φ − Φ′∥L2(R4). with ∥Φ − Φ′∥L2(R4) =√∫

t,f ∥(Φ− Φ′)[t, f ]∥2
L2(R2)

.
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Figure 7: Bird: This dataset proposes to predict the presence or absence of a bird in short audio
clips. A priori, detection of such events heavily relies on chirps, the characteristic sound of birds
with increasing/decreasing frequency over time. We can see from the learned filters how the learned
representation indeed focuses on such patterns, reach super-resolution and thus extreme sensitivity
to the time and frequency position of the events, in particular for medium to low frequency kernels.
For high frequency kernels, the time and frequency resolution is further increased.

Proof First, one can easily derive ∥WVx∥L2(R) = ∥x∥2L2(R2) (see for example Cordero and Nicola
(2018)). Given this, and the definition of the K-transform, we obtain that

∥Kx,Φ − Kx,Φ′∥L2(R2) =

√∫
t,f
(⟨WVx,Φ[t, f ]⟩L2(R2) − ⟨WVx,Φ′[t, f ]⟩L2(R2))

2

=

√∫
t,f
⟨WVx,Φ[t, f ]− Φ′[t, f ]⟩2

L2(R2)

≤

√∫
t,f

∥WVx∥2L2(R2)
∥Φ[t, f ]− Φ′[t, f ]∥2

L2(R2)
Cauchy-Schwarz Ineq.

=∥WVx∥L2(R2)

√∫
t,f

∥Φ[t, f ]− Φ′[t, f ]∥2
L2(R2)

=∥x∥2L2(R)

√∫
t,f

∥Φ[t, f ]− Φ′[t, f ]∥2
L2(R2)

=∥x∥2L2(R)∥Φ− Φ′∥L2(R4)
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Table 2: Std over 10 runs of classification result using three architectures, one layer scattering followed by
a linear classifier (Linear Scattering), one layer scattering followed by a two layer neural network (Nonlinear
Scattering) and a two layer scattering with joint (2D) convolution for the second layer followed by a linear
classifier (Linear Joint Scattering). For each architecture and dataset, we experiment with the baseline, Morlet
wavelet fitler-bank (morlet), and learnable frameworks being ours (lwvd), learnable sinc based filters (sinc)
and learnable Morlet wavelet (lmorlet). As can be seen, across the dataset, architectures and learning rates,
the proposed method provides significant performance gains.

Linear Scattering Nonlinear Scattering Linear Joint Scattering
le. rate morlet lwvd sinc lmorlet morlet lwvd sinc lmorlet morlet lwvd sinc lmorlet

D
O

C
C

10 0.0002 3 0.2 1.1 1.1 0.8 0.2 24.6 0.8 0.2 0.1 40 0.1
0.001 1.8 0.1 1.5 1.4 1.5 0.2 25.6 0.6 0.8 0.2 26.7 0.3
0.005 1.4 0.9 1.6 0.6 1.2 28.8 14.3 0.5 0.4 25.8 34.2 0.5

B
ir

dV
ox 0.0002 0.3 0 1 0.2 0.2 0.2 42.6 0.1 0.3 0.3 0.3 0.2

0.001 0.7 0.2 1.9 1.6 0.2 0.2 29.1 0.3 0.4 0.4 0.8 0.3
0.005 0.8 0.9 1.1 0.9 0.2 47.1 28.5 0.3 0.4 37.9 25.9 0.5

M
N

IS
T 0.0002 0.8 0.4 0.6 1 0.1 0.1 27.5 0.2 0.2 0.1 38.6 0.2

0.001 1.9 0.4 1.6 1.5 0.3 0.3 0.6 0.3 0.6 0.1 0.6 1.1
0.005 2.4 0.9 3.8 2.5 0.3 38.4 4.8 0.2 1.4 31.9 25.7 2.1

co
m

m
an

d 0.0002 0.3 0.1 0.7 0.5 0.3 0.4 0.2 0.3 0.7 0.2 8.1 0.6
0.001 0.7 0.2 0.4 0.8 0.2 0.2 0.2 0.1 1.8 0.5 24.8 3
0.005 0.5 0.4 0.6 0.1 0.1 18.8 0.8 0.3 3.4 30.6 14.9 1.1

fs
d

0.0002 0.5 0.2 2.9 0.2 0.4 0.3 7 0.5 1 0.8 4.7 1
0.001 0.9 0.6 1.1 0.5 0.4 0.6 16.1 0.8 0.9 0.6 6.2 1.3
0.005 1.1 1.7 1.3 1.1 0.6 0.7 1.2 0.7 0.8 1.2 5.9 1.2

Now the proof for the special case of a 2D Gaussian kernel follows the exact same procedure as
the one above for the Lipschitz constant of the general K-transform.
Proof In the same way we directly have

∥Kx,Φ − Kx,Φ′∥L2(R2) ≤∥x∥2L2(R)

√∫
t,f

∥Φ[t, f ](θ)− Φ[t, f ](θ′)∥2
L2(R2)

now the only different is that we need a last inequality to express the distance in term of the θ
parameters and not the kernels Φ. To do so, we leverage the fact that the parametric kernel is a
2-dimensional Gaussian with zero mean and unit variance and leverage the following result:

∥f(θ)− f(θ′)∥ ≤ max
u

∥∇f (u)∥∥θ − θ′∥

and simply denote by κ the maximum of the Gaussian gradient norm, leading to the desired result
by setting f the 2-dimensional Gaussian.
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C.2. Proof of Prop. 1

First we prove the more general result which follows.

Lemma 9 For any TFR or signal adapted TFR, there exists a kernel Φ such that Kx,Φ (recall (4))
is equal to it.

Proof The proof is a direct application of Moyal Theorem which states that given a signal x and
a filter y the application of the filter onto the signal and squaring the result can be expressed as the
inner product between the Wigner-Ville transforms of the signal and filter as in

|
∫ ∞

−∞
x(t)y∗(t)dt|2 =

∫ ∞

−∞

∫ ∞

−∞
WVx(τ, ω)WVy(τ, ω)dτdω.

From the above we can see that any time frequency representation (time invariant or not) can be
recovered simply by setting Φ[t, f ] = WVy of some desired filter y.

Now for the special case of the Gabor based transform we can leverage the above result and
proof with the following.
Proof This result is a direct application of the analytically derived kernels from Nuttall (1988);
Flandrin and Rioul (1990); Jeong and Williams (1990); Baraniuk and Jones (1996); Talakoub et al.
(2010) for various analytical time-frequency representations. For the Gabor transform, Morlet
wavelet and Morlet based Chirplet atom, all the analytically derived kernels that are applied onto
a Wigner-Ville distribution as a parametric form of the 2-dimensional Gaussian kernel proving the
result.

C.3. Proof of Theorem 1

Proof The proof follows directly from the above result. In fact, we obtained above that the Lipschitz
constant of the K-transform w.r.t. the Φ parameter is obtained by ∥x∥2L2(R). Thus, the Lipschitz
continuity implies continuity of the transform w.r.t. the Φ parameters which proves the result (see
for example Kreyszig (1978)).

C.4. Proof of Lemma on Invariant

Proof
We provide the proof for each case below:

• Time translation of the signal x by τ to have y(t) = x(t− τ) leads to

WVy(t, ω) =

∫ ∞

−∞
y(t+

τ

2
)y∗(t− τ

2
)e−iτωdτ

=

∫ ∞

−∞
x(t+

τ

2
− τ)x∗(t− τ

2
− τ)e−iτωdτ

= WVx(t− τ, ω)
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Thus, the time equivariance of the representation defined as Ky,Φ(t, f) = Kx,Φ(t − τ, f) is
obtained iff

Ky,Φ(t, f) =⟨WVy,Φ[t, f ]⟩ = ⟨WVx,Φ[t, f ](.+ τ, .)⟩ = ⟨WVx,Φ[t− τ, f ]⟩
⇐⇒ Φ[t, f ](.+ τ, .) = Φ[t− τ, f ]

as a result the above condition demonstrates that filters of different times Φ[t − τ, f ], ∀τare
just time translations of each other giving the desired result.

• Frequency modulation/shift with frequency ω0 to have y(t) = x(t)eiω0t leads

WVy(t, ω) =

∫ ∞

−∞
y(t+

τ

2
)y∗(t− τ

2
)e−iτωdτ

=

∫ ∞

−∞
x(t+

τ

2
)eiω0(t+

τ
2
)x∗(t− τ

2
)e−iω0(t− τ

2
)e−iτωdτ

=

∫ ∞

−∞
x(t+

τ

2
)eiω0τ)x∗(t− τ

2
)e−iτωdτ =Wx(t− τ, ω)

=

∫ ∞

−∞
x(t+

τ

2
)x∗(t− τ

2
)e−iτ(ω+ω0)dτ =Wx(t− τ, ω)

= WVx(t, ω + ω0)

now leveraging the same result that for the time equivariance, we obtain the desired result.

• For completeness, we also demonstrate here how the Wigner-Ville behaves under rescaling
of the input y(t) = x(t/a)

WVy(t, ω) =

∫ ∞

−∞
y(t+

τ

2
)y∗(t− τ

2
)e−iτωdτ

=

∫ ∞

−∞
x((t+

τ

2
)/a)x∗((t− τ

2
)/a)e−iτωdτ

=

∫ ∞

−∞
x(t/a+

τ

2a
))x∗(t/a− τ

2a
)e−iτωdτ

=

∫ ∞

−∞
x(t/a+

τ

2a
))x∗(t/a− τ

2a
)e−iτωdτ

= a

∫ ∞

−∞
x(t/a+

τ

2
))x∗(t/a− τ

2
)e−iτaωdτ

= aWVx(t/a, aω)

C.5. Proof of Lemma 5

Proof The proof consists of first computing the analytical form of the noisy Wigner-Ville transform.
Since the K-transform is a linear transformation of the Wigner-Ville transform we will obtain our
result from that. Consider the noisy signal x made of the true underlying signal y augmented with
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additive noise ϵ as in x = y + ϵ. By using Eq. 4 from Stankovic and Stankovic (1993) we obtain
that

E [Kx(t, f)] =E

[∫
R×[0,2π)

WVx(τ, ω)Φf (t− τ, ω)dτdω

]

=

∫
R×[0,2π)

E [WVx(τ, ω)] Φf (t− τ, ω)dτdω

=

∫
R×[0,2π)

(WVy(τ, ω) + S(ω)) Φf (t− τ, ω)dτdω

=Ky(t, f) +

∫
R×[0,2π)

S(ω)Φf (t− τ, ω)dτdω

=Ky(t, f) +

∫ 2π

0
S(ω)

∫
R
Φf (t− τ, ω)dτdω

=Ky(t, f) +

∫
[0,2π)

S(ω)ϕf (ω)dω

where the last equality comes from the fact that integrating a two-dimensional Gaussian with respect
to one dimension (the time one in this case) produces a one-dimensional Gaussian with mean and
variance equal to the ones of the remaining dimension. For details on this step we refer the reader to
Theorem 4 in http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/
node7.html leading to the desired result. Be exploiting Eq. 5 from Stankovic and Stankovic
(1993) it is also possible to derive the variance of the noisy K-transform using the same recipe.

C.6. Proof of Prop 2

Proof The proof is obtained by using the fact that the maximum of the 2-dimensional Gaussian
with given covariance matrix will always be smaller than 1

det(Σ) and is always nonnegative, and
then simply upper bounding the norm difference by this value times the representation. Now that
we have the upper bound in term of ∥WVx −WVD(X)∥L2(R2) simply apply the Lipschitz constant
inequality with κ the constant of the WVD which exists as long as x is bounded which is the case
as we have L2(R) leading to the desired result.
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C.7. Proof of Lemma 6

Proof We will obtain the desired result by unrolling the following equations and see that it coincides
with the one of the Theorem with the given kernel applied on the WV representation:∫ ∞

−∞
STx(t, ω +

η

2
)ST∗

x(t, ω − η

2
)Fg(η)e

j2πηtdη

=

∫ ∞

−∞
STx(t, ω +

η

2
)ST∗

x(t, ω − η

2
)

∫ ∞

−∞
g(ξ)e−iξηdξej2πηtdη

=

∫ ∞

−∞

∫ ∞

−∞
w∗(t− τ)x(τ)w(t− θ)x∗(θ)e−iω(τ−θ)

∫ ∞

−∞
g(ξ)

∫ ∞

−∞
ej2πη(t−

τ
2
− θ

2
−ξ)dηdξdτdθ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w∗(t− τ)x(τ)w(t− θ)x∗(θ)e−iω(τ−θ)g(ξ)δ(t− τ

2
− θ

2
− ξ)dξdτdθ

=

∫ ∞

−∞

∫ ∞

−∞
w∗(t− τ)x(τ)w(τ + 2ξ − t)x∗(2t− τ − 2ξ)g(ξ)e−iω(2τ−2t+2ξ)dξdτ

=

∫ ∞

−∞
g(ξ)

∫ ∞

−∞
w∗(ξ − µ/2)x(t+ µ/2− ξ)w(ξ + µ/2)x∗(t− µ/2− ξ)e−iω(2µ)dτdξ

(µ = 2(τ − t+ ξ))

=

∫
g(ξ)(Ww(ξ, .) ⋆ Wx(t− ξ, .))(ω)/2dξ =⇒ Π′(τ, ω) = g(τ)Ww(τ, ω)/2

with Π′(t, ω) = 1√
2πσ

e
− t2

σ2
t /(σ

2
ωσ2

t +1)
−ω2σ2

t
2 .

C.8. Proof of Thm. 2

Proof From the above (lemma) result, it then follows directly that performing convolutions with
two gaussians can be rewritten as a single Gaussian convolution with the given parameters based on
both Gaussians.

Appendix D. Interferences

Finally, we now consider the study of interference that can arise in the K-transform whenever mul-
tiple events occur in the signal x Sen (2014). In fact, the Gabor limit also known as the Heisenberg
Uncertainty principle Heisenberg (1927), corresponds to the optimal limit one can achieve in time
and frequency resolution without introducing interference in the representation. In our case, no
constraints are imposed onto Φ[t, f ], and while learning will allow to reach any desired kernel for
the task at hand, we propose some conditions that would prevent the presence of interference. In
fact, there is a general necessary condition ensuring that the representation does not contain any
interference.

Proposition 3 A sufficient condition to ensure absence of interference in the K-transform is to have
a nonnegative representation as in Kx,Φ(t, f) ≥ 0,∀t, f .
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Proof We only consider signals that can be expressed as a linear combination of oscillatory atoms
(natural signals) Mallat (1989). Due to the form of the Wigner-Ville distribution (with the quadratic
term) the interference are oscillatory terms and thus can not be positive only. In short, there can
not be a positive coefficient appearing due to an interference without its negative counterpart. As
a result, a nonnegative representation can not have any interference. See (Cohen (1995)) for more
details and background on Wigner-Ville distribution and interference.

Lastly, thanks to the Gaussian form, we can directly obtain the shape and in particular area of
the logon (the inverse of the joint time and frequency resolution) as follows.

Proposition 4 A sufficient condition to ensure absence of interference in the K-transform is to have
the effective area of the 2D Gaussian greater that 1

4π , that is, σ′Tσ
′
F ≥ 1

4π , ∀t, f with

σ′T =σT cos2(θ) + 2ρ cos(θ) sin(θ) + σF sin2(θ) (8)

σ′F =σT sin2(θ)− 2ρ cos(θ) sin(θ) + σF cos2(θ), (9)

θ =
arctan( 2ρ

σT−σF )

2
(10)

Proof The proof applies the Uncertainty principle which provides the minimal area of the Logon
to ensure absence of interference (Gabor (1946)), this is then combined with the above result on
the area of the Logon in the case of our 2-dimension Gaussian to obtain the desired result. So
first, the condition is that σTσF ≥ 1

4π , however in our case we also have the possible chirpness
parameter. But we can obtain the new rotated covariance matrix s.t. the chirpness is removed
by rotating the time-frequency place instead. This can be done easily (see for example http:
//scipp.ucsc.edu/˜haber/ph116A/diag2x2_11.pdf) to obtain the new parameter as

σT =σT cos2(θ) + 2ρ cos(θ) sin(θ) + σF sin2(θ)

σF =σT sin2(θ)− 2ρ cos(θ) sin(θ) + σF cos2(θ),

θ =
arctan( 2ρ

σT−σF )

2
now the constraint can be expressed as(
σT cos2(θ) + 2ρ cos(θ) sin(θ) + σF sin2(θ)

) (
σT sin2(θ)− 2ρ cos(θ) sin(θ) + σF cos2(θ)

)
≥ 1

4π

Appendix E. Gaussian Truncation

Notice however that the STFT has to be done by padding the signal windows to allow interpolation,
this is common when dealing with such transformations. Given some parameters, we convert them
into discrete bins to get actual window sizes as follows

Nσ(ϵ) = −g−1
σ (ϵ)× 2Fs

with g−1
σ the inverse of the gaussian density distribution with 0 mean and σ standard deviation,

taken only on the negative part of its support. As such, N is a function that maps a given tolerance
and standard deviation to the window length in bins s.t. the apodization window at the boundaries
of this window are of no more than ϵ.
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Table 3: Various hand picked K-transform parameters leading to known time invariant TFRs with their
respective parameters. For the adaptive versions, such as the wavelet tree with various Gabor mother wavelet
parameters σ0, then at each time t, the corresponding parameter is any of the optimal one based on the desired
criterion.

µtime(t, f) µfreq(t, f) σtime(t, f) σfreq(t, f) ρ(t, f) (chirpness)

Spectrogram t f σt σ−1
t 0

Melscale Spectrogram t 2S(1−f/π) σt 2S(f/π−1)σ−1
t 0

Scalogram t 2S(1−f/π) 2S(1−f/π)σ0 2S(f/π−1)σ−1
0 0

Scattering Layer t 2S(1−f/π) s2S(1−f/π)σ0 2S(f/π−1)σ−1
0 0

Chirpogram t 2S(1−f/π) 2S(1−f/π)σ0 2S(f/π−1)σ−1
0 ρ(t, f) ̸= 0

Appendix F. Example of K-transform parameterization

We propose in Table 3 different configurations of the parameter θ corresponding to some standard
and known TFRs.

Appendix G. Computational Complexity

The computational complexity of the method varies with the covariance matrix of the kernels, it
will range from quadratic when the kernels tend toward a Delta function (as the representation
computation bottleneck becomes the computation of the exact WV) to linear for large covariance
matrices. In such case, the computation is done with spectrograms of small windows (and with
almost no spectral frequency correlation) for the smoothed pseudo WV. In addition to those cases,
the use of translation (in time and/or frequency) also greatly reduce computational costs as it allows
for the use of convolutions into the K-transform computation. This allows to put all the computation
bottleneck into the computation of the smoothed pseudo WV.

Appendix H. Data sets description

Audio-MNIST. This dataset consists of multiple (60) speakers of various characteristics enunci-
ation digits from 0 to 9 inclusive Becker et al. (2018). The classification task consists of clas-
sifying the spoken digit, 30, 000 recordings are given in the dataset. Each recording is from a
controlled environment without external noise except breathing and standard recording device ar-
tifacts. BirdVox-70k. This dataset consists of avian recording obtained during the fall migration
season of 2015. The recording were obtained in North American and is made of a balanced binary
classification of predicting the presence or not of a bird in a given audio clip Lostanlen et al. (2018).
In total 70, 000 clips are contaiend in the dataset. The outside recordings present various types of
non stationnary noises and sources. Google Speech Commands. This dataset consists of 65, 000
one-second long utterances of 30 short words such as “yes”, “no”, “right” or “left” Warden (2017).
The recordings are obtained from thousands of different people who contributed through the AIY
website 1. The task is thus to classify the spoken command. FreeSound DCASE. This task ad-
dresses the problem of general-purpose automatic audio tagging Fonseca et al. (2018). The dataset

1. https://aiyprojects.withgoogle.com/open_speech_recording
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provided for this task is a reduced subset from FreeSound and is a large-scale, general-purpose au-
dio dataset annotated with labels from the AudioSet Ontology. There are 41 classes and ≈95,000
training samples, classes are diverse such as Bus, Computer keyboard, Flute, Laughter or Bark. The
main challenge of the task is the noise present in the training set labels reflecting the expensiveness
of having high quality annotations.

DOCC10. The goal of this dataset is to classify biosonar waveform from cetaceans recorded
from various subsea acoustic stations or autonomous surface vehicles. This task (Ferrari et al., 2020)
has been part of ENS Paris College de France challenge. The recordings of the clicks are from a
post-processed subset of DCLDE 2018 challenge (9 species, http://sabiod.org/DCLDE)
from Scripps Institute, plus recordings of Cachalot (Physteter macrocephalus) from ASV Sphyrna
(http://sabiod.org/pub/SO1.pdf) near Toulon, France. Each input signal is 8192 bins,
at a sampling rate of 200 kHz. They each includes a click centered in the middle of the window in
the case of the test set. The clicks in the training set are in various positions and background noises.

Challenge goal is to classify each click according to the corresponding emitting species. The
10 species are : (0) Gg: Grampus griseus- Risso’s dolphin (1) Gma: Globicephala macrorhynchus-
Short-finned pilot whale (2) La: Lagenorhynchus acutus- Atlantic white-sided dolphin (3) Mb:
Mesoplodon bidens- Sowerby’s beaked whale (4) Me: Mesoplodon europaeus- Gervais beaked
whale (5) Pm: Physeter macrocephalus - Sperm whale (6) Ssp: Stenella sp.Stenellid dolphin (7)
UDA: Delphinid type A - a group of dolphins (species not yet determined) (8) UDB: Delphinid
type B - another group of dolphins (species not yet determined) (9) Zc: Ziphius cavirostris- Cu-
vier’s beaked whale The metric is the MAP. Most of the recording consist of acoustic recordings
from multiple deployments of high-frequency acoustic recording packages (Wiggins and Hilde-
brand, 2007) deployed in the Western North Atlantic (US EEZ) and Gulf of Mexico. It has a
100 kHz of bandwidth (200 kHz sample rate) http://sabiod.org/DCLDE/challenge.
html#highFreqData. The initial data set is 3 To with weak labeled. (Ferrari et al., 2020) fil-
tered the labels by several detector and clustering, yielding to 90 000 samples (6 Go). Another part
(1 class) is from Mediterranean sea, ASV Sphyrna, at 384 kHz SR downsampled at 200 kHz SR. In
sum, it yields around 11312 samples per class in the train set, and 2096 samples per class in the test
set.
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Figure 8: DOCC10 dataset samples, one class per column. The click is centered. Details in ENS
DATA CHALLENGE WEB SITE.

152


	Introduction
	Background on Time-Frequency Representations
	Learnable, Universal and Stable Wigner-Ville Based Signal Representation
	Wigner-Ville Based Signal Representation
	Interpretability
	Universality
	Continuity and Stability

	Fast Fourier Transform Computation of the K-transform
	Gaussian Parameter Learning.
	The Short-Time-Fourier-Transform Trick
	Experimental Validation

	Conclusions
	DN topology
	Additional Figures
	Samples of learnt filters

	Proofs
	Proof of Lemma 2
	Proof of Prop. 1
	Proof of Theorem 1
	Proof of Lemma on Invariant
	Proof of Lemma 5
	Proof of Prop 2
	Proof of Lemma 6
	Proof of Thm. 2

	Interferences
	Gaussian Truncation
	Example of K-transform parameterization
	Computational Complexity
	Data sets description

