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Abstract
We study the fundamental limits for reconstruction in weighted graph (or matrix) database align-
ment. We consider a model of two graphs where π∗ is a planted uniform permutation and all pairs
of edge weights (Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n are i.i.d. pairs of Gaussian variables with zero mean,
unit variance and correlation parameter ρ ∈ [0, 1]. We prove that there is a sharp threshold for exact
recovery of π∗: if nρ2 ≥ (4 + ε) log n + ω(1) for some ε > 0, there is an estimator π̂ – namely
the MAP estimator – based on the observation of databases A,B that achieves exact reconstruction
with high probability. Conversely, if nρ2 ≤ 4 log n− log log n−ω(1), then any estimator π̂ verifies
π̂ = π with probability o(1).

This result shows that the information-theoretic threshold for exact recovery is the same as
the one obtained for detection in a recent work by Wu et al. (2020): in other words, for Gaussian
weighted graph alignment, the problem of reconstruction is not more difficult than that of detection.
Though the reconstruction task was already well understood for vector-shaped database alignment
(that is taking signal of the form (ui, vπ∗(i))1≤i≤n where (ui, vπ∗(i)) are i.i.d. pairs in Rdu ×Rdv ),
its formulation for graph (or matrix) databases brings a drastically different problem for which the
hard phase is conjectured to be wide.

The proofs build upon the analysis of the MAP estimator and the second moment method,
together with the study of the correlation structure of energies of permutations.
Keywords: high-dimensional statistics, matrix alignment, information-theoretic limits, Gaussian
matrices

Introduction

Aligning databases We address the following problem: suppose that we have two databases con-
sisting in weighted graphs represented by their adjacency matrices A and B. For simplicity, assume
that the two graphs have same size and that each individual appears in both graphs. For a given in-
dividual, its attached signal consists in weighted edges with all other users. Across databases, edges
that correspond to pairs of matched individuals are correlated. We consider the following ques-
tion: if the graphs are shown unlabeled (that is, if users are anonymized), is it possible to recover
the corresponding matching between databases by aligning them at the sight of their correlation
structure?

Intuitively, when the matrices are correlated enough, one can learn the true matching between
individuals present in the databases. In this study we investigate the precise conditions on correlation
under which exact reconstruction (or perfect de-anonymization) is feasible with high probability.

De-anonymization problems aroused great interest when Narayanan and Shmatikov (2008) were
able to de-anonymize an unlabeled dataset of film ratings (namely, the Netflix prize dataset) with
the observation of a publicly available database (namely the Internet Movie Database), using cor-
relations between the ratings. Since then, they have been studied in recent literature, in several
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versions and reformulations. The range of applications has been widened to quantifying privacy
issues related to databases (Dwork (2008)) or social networks (Narayanan and Shmatikov (2009)).

Widespread attention was given on the graph alignment problem, focusing on more geometri-
cal databases (Cullina and Kiyavash (2017); Cullina et al. (2018a); Ding et al. (2018); Fan et al.
(2019a,b); Ganassali and Massoulié (2020)). Lots of other natural applications can be mentioned,
such as pattern recognition in image processing (Berg et al. (2005); Cour et al. (2007)), aligning
protein interaction networks in computational biology (Singh et al. (2008)) or performing ontology
alignment in natural language processing (Haghighi et al. (2005)).

Vector-shaped and graph-shaped databases From the theoretical point of view, fundamental
limits for the deanonymisation problem are now well understood when data only consists in vectors
u, v of given sizes n (Cullina et al. (2018b); Emre Dai et al. (2019)), that is when each user has its
own signal, regardless of its connections with others. In this setting, the problem can be phrased in
terms of a Linear Assigment Problem (LAP):

arg max
Π

〈Πu, v〉, (1)

where the maximum runs over all permutation matrices of size n. Even if greedy optimization is
easily seen to be exponential-time, LAP can be solved efficiently in O(n3) steps using the classical
Hungarian algorithm (Kuhn (1955)).

Another related problem is that of linear regression with an unknown permutation, studied in
Pananjady et al. (2016): this time, one observes y = Π∗Ax∗ + w, where x∗ ∈ Rd is an unknown
vector, Π∗ is an unknown n× n permutation matrix, and w ∈ Rn is additive Gaussian noise. Here
again, the permutation Π∗ applies only on the left side of A, which corresponds to row permutation.

On the other hand, when the databases are graphs, the problem is different and can be phrased
this time in terms of a Quadratic Assigment Problem (QAP):

arg max
Π

〈A,ΠBΠT 〉. (2)

A significant difference with the previous vector-shaped setting is that this problem is known to
be NP-hard in the worst case, as well as some of its approximations (Makarychev et al. (2014);
Pardalos et al. (1994)). In the case where the signal lies in the graph structure itself – that is, when
(Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n are correlated pairs of Bernoulli variables – recent work (Cullina and
Kiyavash (2017); Cullina et al. (2018a)) showed that there exists a sharp threshold for exact recov-
ery, where the signal-to-noise ratio can be expressed in the correlated Erdős-Rényi model in terms
of the size n of both graphs, the marginal edge probability p and the correlation parameter s between
edges of the two graphs. Indeed, they established that exact (resp. almost exact) reconstruction is
feasible with high probability if and only if nps ≥ log n + ω(1) (resp. nps ≥ ω(1)). When the
signal is sparser, e.g. np = Θ(1), the problem of partial graph alignment (that is, recovering only
a positive fraction of vertices) has been recently explored algorithmically (Ganassali and Massoulié
(2020)) and theoretically (Hall and Massoulié (2020)).

Model of Gaussian Wigner matrices This paper focuses on the case where signal lies in weights
on edges between all pairs of nodes. In order to rigorously analyze the fundamental limits of our
reconstruction problem, we will work in a probabilistic setting. The correlated Gaussian Wigner
model is first introduced by Ding et al. (2018) as a standard model for random graph alignment, and
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has been further investigated for its own sake in recent work (Fan et al. (2019a); Ganassali et al.
(2019); Wu et al. (2020)).

Assume that the weighted adjacency matrices A and B of the two graphs G and G′ are sym-
metric, and sampled as follows: first draw the planted permutation π∗ uniformly at random in Sn.
Then all pairs of edge weights (Ai,j , Bπ∗(i),π∗(j))1≤i<j≤n are i.i.d. couples of normal variables
with zero mean, unit variance and correlation parameter ρ ∈ [0, 1]. Since all Gaussian variables are
independent from π∗, matrix B can also be drawn from A as follows:

B = ρ ·Π∗TAΠ∗ +
√

1− ρ2 ·H, (3)

where H is an independent copy of A, and Π∗ is the n×n matrix representation of permutation π∗,
that is Π∗i,j = 1j=π∗(i).
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Figure 1: A sample from model (3) with n = 5. For representation, edges are colored according to
their weights, and the underlying alignment is u 7→ u′ for u ∈ {1, 2, 3, 4, 5}.

Detection problem A most recent paper (Wu et al. (2020)) studies fundamental limits for de-
tection, both in correlated Gaussian weighted and correlated Erdős-Rényi graphs. This time, the
problem is as follows: given A,B, are we able to distinguish between model (3) and a null model,
where the two graphs are just independent Gaussian weighted graphs? Intuitively, this problem is
less demanding than that of exact alignment, since the task is to detect – wherever in the graph –
the presence of a hidden planted alignment. Under the same model (3), Y. Wu, J. Xu and S. Yu
showed that detection is feasible with high probability if nρ2 ≥ 4 log n, whereas it is impossible
if nρ2 ≤ (4 − ε) log n for some ε > 0. Their study builds on an analysis of the likelihood ratio –
as often in detection problems. The contribution of this paper is to show that this sharp detection
threshold is also that of exact reconstruction. Interestingly, for Gaussian weighted graph alignment,
the problem of reconstruction is in fact not more difficult than that of detection.

After this paper was completed, the author was made aware of recent and independent work
conducted by Wu et al. (2021), which also obtains – among other things – the results of this paper,
albeit with different proof techniques.
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Main results

In the sequel, we work with the correlated Gaussian Wigner model described in (3), and establish
the precise (sharp) threshold for exact recovery of π∗ in this model.

Theorem 1 (Achievability part) If for n large enough

ρ2 ≥ (4 + ε) log n

n
(4)

for some ε > 0, then there is an estimator (namely, the MAP estimator) π̂ of π given A,B such that
π̂ = π∗ with probability 1− o(1).

Theorem 2 (Converse part) Conversely, if

ρ2 ≤ 4 log n− log logn− ω(1)

n
(5)

then any estimator π̂ of π given A,B verifies π̂ = π∗ with probability o(1).

Computational limits of exact recovery For the correlated Gaussian Wigner model (3), several
algorithms have been studied, usually as a first step in order to analyze further graph alignment
algorithms. The state-of-the-art polynomial-time algorithms are either based on degree profiles
(Ding et al. (2018)), or on a spectral method (Fan et al. (2019a)). In both cases, these methods
require the noise parameter

√
1− ρ2 to be O

(
log−1 n

)
. Ganassali et al. (2019) study a simpler

algorithm with lower computational complexity (O(n2) versus O(n3)), requiring
√

1− ρ2 to be
O(n−7/6). In any case, ρ needs to tend to 1, and the regimes in which these methods work well
are far from the fundamental limits established in this paper. The present paper thus corroborates
the idea that matrix alignment may be computationally hard even in the feasibility regime. In other
words, the hard phase can be conjectured to be really wide for this reconstruction problem. Proving
a result of that form however remains a very thorny question.

Paper organization

We first define our notations at the beginning of Section 1, and then establish a control on correla-
tions between energies of permutations, using Hanson-Wright inequality. The achievability result is
proved in Section 2: after showing that the classical first moment method fails, we take advantage
of the correlation structure established before to handle the sharp bound. Then, second moment
method is applied in Section 3 to show that lots of small perturbations of the true underlying per-
mutation have lower energies, establishing the converse bound. Finally, some additional proofs are
deferred to Appendix A. The proof techniques are not far from those used by Emre Dai et al. (2019),
the main novelty being the use of correlation of energies, which is essential to both achievability
and impossibility result.

1. Preliminaries

1.1. Definitions and notations

For any positive integer n, let [n] = {1, 2, . . . , n}. For two positive sequences {un} and {vn},
denote un = O(vn) if there exists C > 0 such that un ≤ Cvn for all n. We will also write
un = o(vn) (resp. un = ω(vn)) if un/vn → 0 (resp. vn/un → 0). All limits considered are taken
when n→∞.
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Linear algebra We work with the canonical euclidean norm ‖ · ‖ on Rn, and 〈·, ·〉 the canonical
inner product on Rn or Rn×n. For any n×n matrix M with real entries, its Frobenius norm ‖M‖F
and its operator norm ‖M‖op are defined as follows:

‖M‖F :=

 ∑
1≤i,j≤n

A2
i,j

1/2

and ‖M‖op := sup
X∈Rn\{0}

‖MX‖
‖X‖

.

Note that for any normal matrix (that is, ifMTM = MMT ), then ‖M‖op equals ρ(M), the spectral
radius of M .

Probability When working with model (3), we will denote by PA (resp. EA) the conditional
probability (resp. the conditional expectation) with respect to the random matrix A. Throughout
the paper, N (µ, v) denotes a Gaussian variable (resp. vector) with mean µ and variance (resp.
covariance matrix) v. Such a Gaussian variable (resp. vector) is called standard if µ = 0 and v = 1
(resp. v is the identity matrix). We say that an event An happens with high probability (w.h.p) if
P(An)→ 1 when n→∞.

Permutations We denote by Sm the set of permutations of [m]. To any permutation σ ∈ Sm, we
can associate its m ×m matrix representation Σ defined by Σi,j = 1j=σ(i). Define Fσ the set of
fixed points of σ:

Fσ := {i ∈ [m], σ(i) = i} , (6)

and denote fσ := ]Fσ. Similarly, we define the set of unfixed points of σ:

Dσ := [m] \ Fσ = {i ∈ [m], σ(i) 6= i} , (7)

and we denote dσ := ]Dσ. For any d ∈ {0, . . . ,m} we define Sm,d the set of permutations of Sm
with exactly d unfixed points. Note that ]Sm,1 = 0 and that we have the inequality

]Sm,d =

(
m

m− d

)
] {σ ∈ Sd, Fσ = 0} ≤

(
m

m− d

)
d! ≤ md. (8)

Similarity between two permutations σ, σ′ ∈ Sn is measured by their overlap:

ov(σ, σ′) :=
1

n

n∑
i=1

1σ(i)=σ′(i) =
1

n
fσ−1◦σ′ .

Observe that on a graph of size n, each permutation σ of the vertices [n] has a natural extension
to a canonical permutation on edges σE :

(
[n]
2

)
→
(

[n]
2

)
defined as follows:

σE : e = {i, j} 7→ σE(e) = {σ(i), σ(j)} .

Note that the mapping σ 7→ σE is one-to-one as soon as n ≥ 3, since for all i ∈ [n] and j 6= j′ ∈
[n] \ {i}, edges σE({i, j}) and σE({i, j′}) have only one node in common, which is σ(i). We will
use the notation FE

σ = FσE (resp. DE
σ = DσE) the set of fixed edges (resp. unfixed edges) of σ.

Similarly we denote fE
σ = fσE and fE

σ := dσE , for brievity.
Note that dE

σ and are dσ are closely tied, since for all σ ∈ Sn, we have the inequality

dσ

(
n− dσ

2

)
≤ dE

σ ≤ dσ
(
n− dσ − 1

2

)
. (9)

Indeed, observe that
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(i) the number of fixed edges is at least the number of pairs of fixed points, and

(ii) the number of fixed edges is exactly the number of pairs of fixed points plus the number of
pairs (i, j), i < j that are exchanged by σ (that is, the number of transpositions), this number
being at most dσ/2.

These remarks give that (
n− dσ

2

)
≤
(
n

2

)
− dE

σ ≤
(
n− dσ

2

)
+
dσ
2
,

which directly implies (9).

Remark 1.1 Note that inequality (9) gives the almost sure equivalents dE
σ ∼ dσn when dσ = o(n),

and dE
σ ∼ 1

2α(2− α)n2 when dσ = αn. In any case, dE
σ ∈

[
1
2dσn, dσn

]
.

1.2. MAP estimation, relative energy of permutations

Since π∗ is uniformly chosen, we work in a Bayesian setting: let us evaluate the posterior probability
density of π∗ given A,B:

pπ∗|A,B (π|a, b) ∝ pπ∗,A,B (π, a, b)

∝ exp

− 1

2(1− ρ2)

∑
1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2 ,

where ∝ indicates equality up to some factors that do not depend on σ. Define the loss function

L(π,A,B) :=
∑

1≤i<j≤n

(
Bπ(i),π(j) − ρAi,j

)2
. (10)

This loss function can also be viewed as the energy associated with permutation π. Note that the
posterior distribution is a Gibbs measure corresponding to this energy L, with inverse temperature
β = 1

2(1−ρ2)
. The MAP (maximum a posteriori) estimator is thus

π̂MAP := arg max
π

pπ∗|A,B (π|A,B) = arg min
π

L(π,A,B), (11)

where the minimum is taken over all permutations π ∈ Sn. The above formulation (11) is standard
in the literature of graph and matrix alignment and meets the classical QAP formulation (2), since

arg min
π

L(π,A,B) = arg max
Π

〈A,ΠBΠT 〉.

Theory from Bayesian optimal estimation guarantees that the best possible estimator for our
exact reconstruction problem, in the Bayes risk sense, is π̂MAP. Thus, if MAP estimator fails with
high probability, then no estimator can succeed. This is why this estimator is often studied in exact
reconstruction problems, as already done in previous works (Cullina and Kiyavash (2017); Cullina
et al. (2018b); Emre Dai et al. (2019)).
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From now on we work conditionally on π∗ which can always be assumed to be id without loss
of generality. More precisely, we will make the variable change σ = π∗ ◦ π−1 ; writing B as a
function of σ,A and H , (10) becomes

L(σ,A,H) = ρ2
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n
Hi,j

(
Ai,j −Aσ(i),σ(j)

)
+ (1− ρ2)

∑
1≤i<j≤n

H2
i,j .

The loss function L applied to the ground truth π = π∗ – that is σ = id – gives the energy reference
(1− ρ2)

∑
1≤i<j≤nH

2
i,j . In order to compare any π with π∗ – or any σ with id – we further define

the relative energy of a permutation σ ∈ Sn:

δ(σ) := L(σ,A,H)− L(id, A,H)

= ρ2
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2 − 2ρ
√

1− ρ2
∑

1≤i<j≤n
Hi,j

(
Ai,j −Aσ(i),σ(j)

)
. (12)

We next omit in our notations the dependency on A and H of δ(σ).

Remark 1.2 This relative energy δ, also introduced by Cullina and Kiyavash (2017) for Erdős-
Rényi graph alignment, is a measurement of the quality of a proposed alignment: δ(σ) ≤ 0 means
that σ−1 ◦ π∗ is a better alignment than π∗ for A and B in the posterior sense. A crucial set is then

Q := {σ ∈ Sn, δ(σ) ≤ 0} .

Points of Q are alignments on which the posterior distribution puts important weights – at least
greater weights than that of the ground truth – or equivalently points of low energy. Note that
id ∈ Q.

In view of (12), conditionally on A, δ(σ) is as follows:

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (13)

where

vσ :=
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

)2
,

and X = (Xσ)σ∈Sn is a Gaussian vector, centered, with covariance given by

Cov(Xσ, Xσ′) =
∑

1≤i<j≤n

(
Ai,j −Aσ(i),σ(j)

) (
Ai,j −Aσ′(i),σ′(j)

)
:= cσ,σ′ .

Note that for all σ ∈ Sn, cσ,σ = vσ. Elaborating on the correlation structure of these relative
energies is the object of the end of this section.

320



SHARP THRESHOLD FOR ALIGNMENT OF GRAPH DATABASES WITH GAUSSIAN WEIGHTS

1.3. Control of covariance structure of relative energies

For all σ, σ′ ∈ Sn, cσ,σ′ can be written as follows

cσ,σ′ =
∑

e∈([n]2 )

(
Ae −AσE(e)

)(
Ae −Aσ′E(e)

)

and satisfies
E
[
cσ,σ′

]
= ](DE

σ ∩ DE
σ′) + ](DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′).

In particular,
E [vσ] = dE

σ + dE
σ = 2dE

σ .

Random variables cσ,σ′ only depend on the entries of A, which are Gaussian. Moreover, cσ,σ′
being a quadratic form evaluated on a Gaussian vector, it can therefore be controlled using Hanson-
Wright inequality:

Lemma 1.1 (Hanson-Wright inequality (Hanson and Wright (1971))) LetX be a standard Gaus-
sian vector, and M a deterministic matrix. Then there exists a universal constant c > 0 such that
with probability at least 1− 2δ:∣∣XTMX − TrM

∣∣ ≤ c(‖M‖F√log(1/δ) + ‖M‖op log(1/δ)
)
. (14)

We refer to Hanson and Wright (1971) for a proof. Inequality (14) used in our context leads to the
following

Corollary 1.1 There exists a universal constant C > 0 such that with high probability, for every
d ∈ {2, . . . , n}, for all σ, σ′ ∈ Sn,d,∣∣cσ,σ′ − ](DE

σ ∩ DE
σ′)− ](DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′)
∣∣ ≤ Cd√n log n.

Proof We first make the following observation: for any σ, σ′ ∈ Sn,

cσ,σ′ =
∑
e

(
Ae −Aσ(e)

) (
Ae −Aσ′(e)

)
= AT (IN − Σ)T (IN − Σ′)A,

where A = (Ae)e is viewed as a standard Gaussian vector of size N =
(
n
2

)
, and Σ (resp. Σ′) is the

N ×N permutation matrix associated with σE (resp. σ′E). Note that

Tr((IN − Σ)T (IN − Σ′)) = N − fE
σ − fE

σ′ + fE
σ−1◦σ′

(a)
= ](DE

σ ∩ DE
σ′) + ](DE

σ ∩ DE
σ′ ∩ FE

σ−1◦σ′),

where (a) is obtained by noticing that

](DE
σ ∩ DE

σ′) + ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′) = dE

σ + dE
σ′ − ](DE

σ ∪ DE
σ′) + fE

σ−1◦σ′ − ](F
E
σ ∪ FE

σ′)
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and that ](DE
σ ∪ DE

σ′) + ](FE
σ ∪ FE

σ′) = N. For a fixed d and σ, σ′ ∈ Sn,d, one has

‖(IN − Σ)T (IN − Σ′)‖F ≤ ‖(IN − Σ′)‖F + ‖ΣT (IN − Σ′)‖F
= 2‖(IN − Σ′)‖F

≤ 2
√

2dE
σ′

≤ 2
√

2dn,

where we used (9) in the last step. One also has

‖(IN − Σ)T (IN − Σ′)‖op ≤ ρ(IN − Σ)× ρ(IN − Σ′)

≤ 2× 2 = 4.

Taking δ = n−(2d+2), Lemma 1.1 gives that with probability at least 1− 2δ,∣∣cσ,σ′ − ](DE
σ ∩ DE

σ′)− ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′)

∣∣ ≤ c(2
√

2
√
d(2d+ 2)

√
n log n+ 4(2d+ 2) log n

)
≤ Cd

√
n log n, (15)

for some universal constant C > 0. The proof is concluded by checking that this inequality holds
w.h.p. for all d and σ, σ′ ∈ Sn,d : the probability that at least one pair (σ, σ′) contradicts (15) is
upper bounded by

n× (]Sn,d)2 × 2δ ≤ 2n1+2d−2d−2 = o(1).

In the rest of the paper we define the event

A :=
{
∀d ∈ [n],∀σ, σ′ ∈ Sn,d,

∣∣cσ,σ′ − ](DE
σ ∩ DE

σ′)− ](DE
σ ∩ DE

σ′ ∩ FE
σ−1◦σ′)

∣∣ ≤ Cd√n log n
}
,

(16)
which happens with probability 1− o(1) by Corollary 1.1.

2. Achievability result

In this section, we establish Theorem 1.

2.1. Failure of first moment method

For the achievability result, the first strategy is to use the union bound (or first moment method) to
show that under condition (4) of Theorem 1,

P (MAP fails) = P (π̂MAP 6= π) = o(1).

As described hereafter, this naive method does not give the correct bound. Indeed, let us evaluate
P (δ(σ) ≤ 0) for a given σ 6= id. In view of the conditional distribution (13) of δ(σ) we have

P (δ(σ) ≤ 0) = E
[
EA
[
1δ(σ)≤0

]]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2Xσ ≤ 0

)]
= E

[
PA
(
ρ2vσ − 2ρ

√
1− ρ2

√
vσ · N (0, 1) ≤ 0

)]
= E

[
PA

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2

)]
≤ E

[
exp

(
− ρ2

8(1− ρ2)
vσ

)]
,
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where we used standard Gaussian concentration in the last inequality: P (N (0, 1) ≥ t) ≤ exp(−t2/2).
Note that on event A defined in (16) and inequality (9),

∀d ∈ [n],∀σ ∈ Sn,d, vσ ≥ 2dE
σ − Cdσ

√
n log n ≥ dE

σ (2− 2εn) ,

setting εn = 2C
√

log n/n. Union bound then gives

P (MAP fails) ≤ P (∃σ ∈ Sn \ {id} , δ(σ) ≤ 0)

≤ o(1) +
∑

σ∈Sn\{id}

E
[
exp

(
− ρ2

8(1− ρ2)
vσ

)
1A

]

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
− ρ2

8(1− ρ2)
(2− 2εn)dE

σ

)

≤ o(1) +
∑

σ∈Sn\{id}

exp

(
−ρ

2

4
(1− εn)dE

σ

)
,

where we used 1/(1 − ρ2) > 1 in the last step. Let us now study the last sum, distinguishing the
terms according to d := dσ:

• As long as d = o(n), by Remark 1.1, the terms behave like exp
(
−ρ2

4 (1− εn)dn
)

. By (8),

log ]Sn,d ≤ d log n so the partial sum is small if ρ2

4 (1 − εn)n − log n > 0, which gives the
necessary condition ρ2 ≥ 4 logn

n .

• However, the situation is different when it comes to large values of d. For instance, let us
study the contribution of derangements to the sum (that is, σ such that dσ = n). Note that
these derangements are very numerous (their number is ∼ e−1n!). Again by Remark 1.1,
their contribution is thus of order

e−1n! exp
(
ρ2(1− εn)n2/8(1− o(1))

)
= exp

((
n log n− ρ2n2/8

)
(1− o(1))

)
,

which gives a more restrictive condition: ρ2 ≥ 8 logn
n .

As seen here-above, this naive first moment method enables to ensure feasibility of exact recon-
struction only in the regime where ρ2 ≥ 8 logn

n , which is not the optimal one. This bound is actually
quite rough here, because the variables are substantially correlated when d gets large and their con-
tributions make the first moment explode. The next section takes advantage of these correlations in
order to get access to the sharp bound.

2.2. Improving the first moment method with correlations.

For all d ∈ {2, . . . , n}, define Ed the event:

Ed := {∃σ ∈ Sn,d, δ(σ) ≤ 0} .

In this Section we will assume that

ρ ≥ (2 + ε)

√
log n

n
,
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for some ε > 0. Recall that we work on the event A defined in (16), and that conditionally on
entries of matrix A, we can write

δ(σ) = ρ2vσ − 2ρ
√

1− ρ2Xσ, (17)

where X = (Xσ)σ∈Sn,d is a Gaussian vector, centered, with covariance given by Cov(Xσ, Xσ′) =
cσ,σ′ . Also note that on event A, for all d ≤ αn and σ ∈ Sn,d, inequality (9) gives

vσ = (1− o(1))2dn(1− α/2). (18)

In view of (18), as previously done in Section 2.1, naive first moment method may suffice for
d ≤ αn:

P

 ⋃
2≤d≤αn

Ed

 ≤ o(1) +

αn∑
d=2

]Sn,d × P

(
N (0, 1) ≥

ρ
√
vσ

2
√

1− ρ2
∩ A

)

≤ o(1) +
αn∑
d=2

]Sn,d × P
(
N (0, 1) ≥ (1 + ε/2)

√
2d log n(1− α/2)(1− o(1))

)
≤ o(1) +

αn∑
d=2

exp (d log n− d log n(1 + ε)(1− α/2) + o(d log n)) ,

which is o(1) as soon as α < α0 := 2ε
1−ε/2 . It then remains to control the probabilities P(Ed)

for d ≥ α0n. As mentioned earlier, we take advantage of the correlation structure in (17). More
precisely, we show that all variablesXσ at a given level d = αn have substantial positive covariance
when compared to their variance – of order α(2 − α)n2 on A by (18) – as shown in Figure 2. To
do so, we derive an appropriate lower bound for cσ,σ′ for σ, σ′ ∈ Sn,αn. This is the scope of the
following Lemma:

Lemma 2.1 With high probability, there exists a universal constant C1 > 0 such that for any
d = αn with fixed α > 0 and σ, σ′ ∈ Sn,αn:

Cov(Xσ, Xσ′) = cσ,σ′ ≥ f(α)n2 − C1n
3/2 log1/2 n,

with

f(α) :=

{
α2 if α < 1/2
α2 − 1

2(2α− 1)2 if α ≥ 1/2
(19)

Thus for any ε′ > 0, with high probability, for any d = αn with fixed α > 0,

max
σ∈Sn,αn

Xσ ≤
√

2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n.

The proof of this Lemma is obtained by working on event A defined in (16), and establishing a
lower bound on ](DE

σ ∩ DE
σ′), which is simply the number of edges that are deranged both by σE

and σ′E . It can be found in Appendix A.1.
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Figure 2: Plot on [0, 1] of normalized variance α(2 − α), together with the lower bound on the
normalized covariance (function f ) defined by (19).

Then, since f(α) ≤ α(2− α) with elementary computations, according to Lemma 2.1, there is
an event B of probability 1− o(1) such that

max
σ∈Sn,d

Xσ ≤ (1 + o(1))
√

2α (α(2− α)− f(α))n3/2 log1/2 n

holds for all d = αn with α > α0. Note that on event A ∩ B, for all d = αn and σ ∈ Sn,d,

ρ−1δ(σ) ≥ ρvσ − 2
√

1− ρ2 max
σ∈Sn,d

Xσ

≥ (1 + o(1))n3/2 log1/2 n
[
(2 + ε)α(2− α)− 2

√
2α (α(2− α)− f(α))

]
≥ (1 + o(1))× 2×

[
α(2− α)−

√
2α (α(2− α)− f(α))

]
n3/2 log1/2 n ≥ 0,

for n large enough, since it can be easily checked (see Appendix A.3) that

Lemma 2.2 For every α ∈ [0, 1],

α(2− α)−
√

2α (α(2− α)− f(α)) ≥ 0. (20)

Previous computations give that

P

 ⋃
d≥αn

Ed

 ≤ 1− P(A ∩ B) = o(1),

and ends the proof of Theorem 1.
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3. Converse bound: second moment method for transpositions

In this section, we prove Theorem 2. As already stated in the introduction, theory from Bayesian
optimal estimation guarantees that the best possible estimator for our exact reconstruction problem,
in the Bayes risk sense, is π̂MAP. We will show that under assumption (5) of Theorem 2, this MAP
estimator fails with high probability, which implies that no estimator can succeed.

This converse bound is obtained by a second moment argument, showing that with high proba-
bility, there are lots of permutation τ 6= id – in fact, transpositions – such that δ(τ) is negative, that
is, τ−1 ◦ π∗ is a substantially better alignment than π∗, with lowest energy. Let us denote Tn ⊂ Sn
the set of all permutations of [n] that are transpositions. For all τ ∈ Tn, we have dE

τ = 2(n − 2).
Corollary 1.1 gives that the event

C :=
{
∀τ, τ ′ ∈ Tn,

∣∣cτ,τ ′ − ](DE
τ ∩ DE

τ ′)− ](DE
τ ∩ DE

τ ′ ∩ FE
τ◦τ ′)

∣∣ ≤ C√n log n
}

happens with probability 1 − o(1) for C > 0 large enough. In particular, on C, for C > 0 large
enough,

∀τ ∈ Tn, |vτ − 4n| ≤ C
√
n log n.

In this section we are working under the assumption (5) that we recall here:

ρ2 ≤ 4 log n− log logn− ω(1)

n

We are about to show the following: under condition (5), with high probability,

] {τ ∈ Tn, δ(τ) < 0} = ω(1). (21)

To do so, we use the classical Paley-Zygmund inequality, proven in Appendix A.4 for self-containment:

Lemma 3.1 (Paley-Zygmund inequality) Let Y be a real random variable with positive mean
and finite variance. Then for all 0 ≤ c ≤ 1,

P (Y ≥ cE [Y ]) ≥ (1− c)2 E [Y ]2

E [Y 2]
.

Thus, in the case where E
[
Y 2
]
∼ E [Y ]2, taking c → 0 implies that Y ≥ o(E [Y ]) with high

probability.

Define
X :=

∑
τ∈Tn

1δ(τ)<0. (22)

Using a standard coupling argument in (22), one can see that X is decreasing with ρ, thus we can
assume without loss of generality that

ρ2 =
4 log n− log logn− an

n
, (23)
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with a sequence (an)n such that an = ω(1) and an = o(log log n). We compute the first moment
of X , in view of the conditional distribution of δ(τ) given in (13):

E [X] ≥ E [X1C ] =
n(n− 1)

2
E

[
PA

(
N (0, 1) ≥

ρ
√
vτ

2
√

1− ρ2
∩ C

)]

≥ n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥ 1

2

√
4 log n− log logn− an

√
4− Cn−1/2 log1/2 n

)]
=
n(n− 1)

2
E
[
(1− o(1))PA

(
N (0, 1) ≥

√
4 log n− log logn− an − o(1)

)]
∼ n2

4
√

2π
√

log n
exp

(
−2 log n+

log log n

2
+
an
2

)
=

1

4
√

2π
exp

(an
2

)
→∞.

Note that (23) is thus precisely the condition ensuring that E [X1C ] → ∞. The second moment
argument computation being a little more technical, we encapsulate it into the following Lemma:

Lemma 3.2 (Second moment computation of X1C) Let Y := X1C . Under assumption (23),

E
[
Y 2
]
≤ (1 + o(1))E [Y ]2 .

Proof [Proof of Lemma 3.2]
We represent a transposition τ by its only 2−cycle (i j) with i < j. We then distinguish two

cases in couples τ = (i j) 6= τ ′ = (k `) ∈ Tn:

• We write τ ∩τ ′ = ∅ when τ and τ ′ have no common point in their 2−cycle: i 6= k and j 6= l.
When τ ∈ Tn is fixed, note that

]
{
τ ′ ∈ Tn, τ ∩ τ ′ = ∅

}
=

(n− 2)(n− 3)

2
.

• We write τ ∩ τ ′ 6= ∅ when τ and τ ′ are different but share one common point: for instance
τ = (3 5) and τ = (5 11) verify τ ∩ τ ′ 6= ∅. When τ ∈ Tn is fixed, note that

]
{
τ ′ ∈ Tn, τ ∩ τ ′ 6= ∅

}
= 2(n− 2).

Note that

E
[
Y 2
]

= E [Y ] +
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) +
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C).

We now evaluate these two sums. For this, we will need the following Lemma, which proof is
deferred to Appendix A.5.

Lemma 3.3 (Control of deviation probabilities for correlated Gaussians) LetZ1, Z2 be two Gaus-
sian variables with mean 0, variance 1 and correlation αn ∈ [0, 1]. For any tn such that tn →∞,

(i) If αntn → 0, then for n large enough

P (Z1 > tn, Z2 > tn) ≤ e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) . (24)

(ii) More generally,

P (Z1 > tn, Z2 > tn) ≤ (1 + o(1))
1 + αn√

2π tn
exp

(
− t2n

1 + αn

)
. (25)
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First case: τ ∩ τ ′ = ∅. Without loss of generality we can assume that τ = (1 2) and τ ′ = (3 4).
The following diagram shows the simple action of τ and τ ′ on an interesting (overlapping) subset
of edges.

{1, 3} τ←→ {2, 3}
τ ′ l l τ ′
{1, 4} τ←→ {2, 4}

We then see that ](DE
τ ∩DE

τ ′)+](DE
τ ∩DE

τ ′∩FE
τ◦τ ′) = 4+0 = 4. So, denoting ατ,τ ′ :=

cτ,τ ′√
vτvτ ′

,
on C, ∣∣ατ,τ ′∣∣ ≤ C

√
n log n+ 4

4n− C
√
n log n

= O

(√
log n

n

)
.

In view of the conditional distribution of δ(τ) given in (13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′=∅

P (Zτ > tn, Zτ ′ > tn) ,

(26)
with tn =

√
4 log n− log logn− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0, with

correlation coefficient αn of order O(log1/2 n−1/2). Since αntn → 1, by lemma 3.3 case (i), the
sum in (26) is upper bounded by

(1− o(1))
n(n− 1)

2
× (n− 2)(n− 3)

2
×
[
Ce−2t2n + (1− o(1))P (Z1 > tn)P (Z2 > tn)

]
≤ (1 + o(1))E [Y ]2 .

Second case: τ∩τ ′ 6= ∅. Without loss of generality we can assume that τ = (1 2) and τ ′ = (2 3).
We can immediately deduce that ](DE

τ ∩DE
τ ′) + ](DE

τ ∩DE
τ ′ ∩FE

τ◦τ ′) = (n− 2) + 0 = n− 2. So,
denoting ατ,τ ′ :=

cτ,τ ′√
vτvτ ′

, on C,

∣∣ατ,τ ′∣∣ ≤ C
√
n log n+ n− 2

4n− C
√
n log n

∼ 1

4
.

Again, in view of the conditional distribution of δ(τ) given in (13):

∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P(δ(τ) < 0, δ(τ ′) < 0, C) = (1− o(1))
∑
τ∈Tn

∑
τ ′,τ∩τ ′ 6=∅

P (Zτ > tn, Zτ ′ > tn) ,

(27)
with tn =

√
4 log n− log logn− an, where Zτ , Zτ ′ are two Gaussian variables of mean 0, with

correlation coefficient αn ∼ 1/4. By Lemma 3.3 case (ii), the sum in (27) is upper bounded by

(1− o(1))
n(n− 1)

2
× 2(n− 2)×

[
(1 + o(1))

1 + αn√
2π tn

exp

(
− t2n

1 + αn

)]
≤ C ′′n3 log−1/2(n) exp

(
−16

5
log n+ o(log n)

)
= o(1) = o(E [Y ]2).
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Lemma 3.2 together with Payley-Zigmund inequality (Lemma 3.1) implies that Y ≥ o (E[Y ])
with high probability and thus proves (21) and the converse result of Theorem 2.

Remark 3.1 We have shown here that under condition (5), there is with high probability a great
number of negative relative energy points near the ground truth, none of them being of significant
interest to recover exactly our permutation. We may also study this relative energy far from the
planted permutation, which would be interesting to address the problem of almost exact (resp. par-
tial) alignment, which consists in finding an estimator π̂ that coincides with π on at least n− o(n)
(resp. some positive fraction of n) points. In the light of our result which shows that exact recovery
is not more difficult than detection, we can also conjecture that the same threshold nρ2/ log n = 4
is sharp for the tasks of almost exact and partial recovery.
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2017.

Daniel Cullina, Negar Kiyavash, Prateek Mittal, and H. Vincent Poor. Partial recovery of Erdős-
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Appendix A. Additional proofs

A.1. Proof of Lemma 2.1: lower bound on correlations of relative energies

Proof Recall that we work under event A. Fix α ∈ (0, 1] and take d = αn and σ, σ′ ∈ Sn,d. The
proof is obtained by establishing a fine lower bound on ](DE

σ ∩DE
σ′), which is simply the number of

edges that are deranged both by σE and σ′E . In order to establish this lower bound, let us assume
that σ and σ′ have ](Dσ ∩Dσ′) = βn common unfixed points, with β ∈ [0, α]. We then form edges
in DE

σ ∩ DE
σ′ in the following way:

• First, by taking all pairs but the pairs made of points in the complement ofDσ∩Dσ′ and those
made of pairs (i, j) that are transpositions of σ or σ′, we obtain at least 1

2β(2 − β)n2 − αn
edges.

• Then, add new edges made of one extremity inDσ \Dσ′ and one inDσ′ \Dσ. SinceDσ (resp
Dσ) is stable by σ (resp. by σ′), all these (α− β)2n2 edges are in DE

σ ∩ DE
σ′ .

Finally we formed g(α, β)n2 − αn edges, with

g(α, β) :=
1

2
β2 + (1− 2α)β + α2, (28)

which is minimal on [0, α] at β = 2α − 1 if α ≥ 1/2, or at β = 0 if α < 1/2. In any case, this
minimum is f(α). The first inequality is established by applying inequality (16) of event A.

For the second part, consider a centered vector Z = (Zσ)σ∈Sn,αn such that all Zσ have same
variance vα and Cov(Zσ, Zσ′) = cα for σ 6= σ′, with vα, cα defined as follows:

vα := α(2− α)n2 − C1n
3/2 log1/2 n,

cα := f(α)n2 − C1n
3/2 log1/2 n.

for some C1 > 0 large enough. Note that on event A, for all α ∈ (0, 1], all σ, σ′ ∈ Sn,αn,

Cov(Zσ, Zσ′) ≤ Cov(Xσ, Xσ′),

so one has that for all t > 0,

P
(

max
σ∈Sn,αn

Xσ > t ∩ A
)
≤ P

(
max

σ∈Sn,αn
Zσ > t

)
. (29)

We now control the right-hand side of (29) with this classical Lemma, which proof is find hereafter
in Appendix A.2:

Lemma A.1 (Maximum of totally correlated Gaussian variables) Let Z be a centered Gaus-
sian vector of size N , such that all Zi have same variance v and Cov(Zi, Zj) = c for i 6= j.
Then

P
(

max
1≤i≤N

Zi >
√

2(v − c) logN + 2
√
v log logN

)
≤ 2

logN
. (30)
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Note that for vα, cα previously defined, one has√
2(vα − cα) log ]Sn,αn ≤

√
2α(α(2− α)− f(α))n3/2 log1/2 n, (31)

and for n large enough,

2
√
vα log log ]Sn,αn ≤ 2

√
α(2− α)n

√
log n+ log log n ≤ (2 + ε′)n log1/2 n. (32)

Finally, we use equations (29)–(32) to conclude that for n large enough:

P
(
∃d = αn, α > α0, max

σ∈Sn,d
Xσ >

√
2α (α(2− α)− f(α))n3/2 log1/2 n+ (2 + ε′)n log1/2 n

)
≤ 1− P(A) +

∑
d=αn, α>α0

P
(

max
σ∈Sn,αn

Zi >
√

2(vα − cα) log ]Sn,αn + 2
√
vα log log ]Sn,αn

)
≤ o(1) +

∑
d=αn, α>α0

2

log ]Sn,αn
≤ o(1) +

2n

log ]Sn,α0n
= o(1) +

2

α0 log n
= o(1),

and Lemma 2.1 is proved.

A.2. Proof of Lemma A.1: maximum of totally correlated Gaussian variables

Proof Let us make a change of variables which preserves the joint distribution:

(Z1, Z2, . . . , ZN ) =
(√
c ξ0 +

√
v − c ξ1, . . . ,

√
c ξ0 +

√
v − c ξN

)
,

where ξ0, . . . , ξN are independent standard Gaussian random variables. The maximum thus writes

max
1≤i≤N

Zi =
√
c ξ0 +

√
v − c max

1≤i≤N
ξi

Then, with the classical inequality P (N (0, 1) ≥ t) ≤ e−t
2/2, then with probability at least 1 −

1/(logN), one has:

√
c ξ0 ≤

√
2c log logN, and

√
v − c max

1≤i≤N
ξi ≤

√
2(v − c) logN

(
1 +

log logN

logN

)
,

so with probability at least 1− 2/(logN):

max
1≤i≤N

Zi ≤
√

2(v − c) logN +
√

2 log logN
(√
c+
√
v − c

)
≤
√

2(v − c) logN + 2
√
v log logN,

where we used
√
c+
√
v − c ≤

√
2v in the last step.
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A.3. Proof of Lemma 2.2

Proof For α ∈ (0, 1],

(20) ⇐⇒ α2(2− α)2 ≥ 2α (α(2− α)− f(α))

⇐⇒ f(α) ≥ α2 − α3/2.

The inequality is verified for α < 1/2. To conclude the proof of (20), it remains to check that for
1 ≥ α ≥ 1/2, f(α) ≥ α2 − α3/2, which is equivalent to

α2 − 1

2
(2α− 1)2 ≥ α2 − α3/2 ⇐⇒ α3 − 4α2 + 4α− 1 ≥ 0

⇐⇒ (α− 1)(α2 − 3α+ 1) ≥ 0

⇐⇒ α2 − 3α+ 1 ≤ 0 ⇐⇒ α ≥ 3−
√

5

2
∼ 0.382...

A.4. Proof of Lemma 3.1: Payley-Zygmund inequality

Proof Using Cauchy-Schwarz inequality,

E[Y ] = E
[
Y 1Y <cE[Y ]

]
+ E

[
Y 1Y≥cE[Y ]

]
≤ cE [Y ] + E[Y 2]1/2 P(Y ≥ cE [Y ])1/2,

which gives E[Y ]2 (1− c)2 ≤ E[Y 2]P(Y ≥ cE [Y ]).

A.5. Proof of Lemma 3.3: Control of deviation probabilities for correlated Gaussians

Proof Let us first make a change of variable which preserves the joint distribution:

(Z1, Z2) = (Z,αnZ +
√

1− α2
nZ
′),

with Z,Z ′ two independent standard Gaussian variables.

Proof of (i): Note that standard Gaussian concentration gives P
(
Z > 2tn

∣∣Z > tn
)
∼ 1

2e
−3t2n/2.

Thus, for n large enough

P (Z1 > tn, Z2 > tn) ≤ P (Z > tn) e−3t2n/2 + P (Z > tn)P
(
αnZ +

√
1− α2

nZ
′ > tn, Z ≤ 2tn

∣∣Z > tn

)
≤ e−2t2n + P (Z > tn)P

(
Z ′ > tn − 2αntn +O(tnα

2
n)
)

≤ e−2t2n + P (Z > tn)P
(
Z ′ > tn − o(1)

)
≤ e−2t2n + (1 + o(1))P (Z > tn)P

(
Z ′ > tn

)
= e−2t2n + (1 + o(1))P (Z1 > tn)P (Z2 > tn) .
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Proof of (ii): For any (sn) such that sn ≤ tn for all n, one has

E
[
esnZ

∣∣Z > tn
]

=
1√
2π

∫ +∞

tn

esnz−z
2/2dz

(
1√
2π

∫ +∞

tn

e−z
2/2dz

)−1

= es
2
n/2

∫ +∞

tn−sn
e−z

2/2dz

(∫ +∞

tn

e−z
2/2dz

)
∼ tn
tn − sn

exp
(
s2
n/2− (tn − sn)2/2 + t2n/2

)
=

tn
tn − sn

esntn .

Using independence of Z,Z ′ and Chernoff bound, we get, taking sn such that αsn = utn with
u < 1, for n large enough,

P
(
αZ +

√
1− α2Z ′ > tn

∣∣Z > tn

)
≤ (1 + o(1))

tn
tn − αsn

exp

(
αsntn +

1− α2

2
s2
n − sntn

)
≤ (1 + o(1))

1

1− u
exp

((
u+

u2(1− α2)

2α2
− u

α

)
t2n

)
(a)

≤ (1 + o(1))(1 + α) exp

(
−1− α

1 + α
· t

2
n

2

)
where we took u = α

1+α < 1 in (a). The proof follows from this last inequality, together with the

bound P (Z > tn) ≤ 1√
2πtn

exp
(
− t2n

2

)
.
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