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Abstract
We propose an Euler particle transport (EPT) approach to generative learning. EPT is motivated
by the problem of constructing an optimal transport map from a reference distribution to a target
distribution characterized by the Monge-Ampère equation. Interpreting the infinitesimal linearization
of the Monge-Ampère equation from the perspective of gradient flows in measure spaces leads to a
stochastic McKean-Vlasov equation. We use the forward Euler method to solve this equation. The
resulting forward Euler map pushes forward a reference distribution to the target. This map is the
composition of a sequence of simple residual maps, which are computationally stable and easy to
train. The key task in training is the estimation of the density ratios or differences that determine
the residual maps. We estimate the density ratios based on the Bregman divergence with a gradient
penalty using deep density-ratio fitting. We show that the proposed density-ratio estimators do not
suffer from the “curse of dimensionality” if data is supported on a lower-dimensional manifold.
Numerical experiments with multi-mode synthetic datasets and comparisons with the existing
methods on real benchmark datasets support our theoretical results and demonstrate the effectiveness
of the proposed method.
Keywords: Density-ratio estimation; gradient flow; high-dimensional distribution; residual map;
sampling; velocity fields
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EULER PARTICLE TRANSPORT

1. Introduction

The ability to efficiently sample from complex distributions plays a key role in a variety of prediction
and inference tasks in machine learning and statistics (Salakhutdinov, 2015). The long-standing
methodology for learning an underlying distribution relies on an explicit statistical data model,
which can be difficult to specify in many applications such as image analysis, computer vision and
natural language processing. In contrast, implicit generative models do not assume a specific form
of the data distribution, but rather learn a nonlinear map to transform a reference distribution to the
target distribution. This modeling approach has been shown to achieve impressive performance in
many machine learning tasks (Reed et al., 2016; Zhu et al., 2017). Generative adversarial networks
(GAN) (Goodfellow et al., 2014), variational auto-encoders (VAE) (Kingma and Welling, 2014)
and flow-based methods (Rezende and Mohamed, 2015) are important representatives of implicit
generative models.

GANs model the low-dimensional latent structure via deep nonlinear factors. They are trained by
sequentially differentiable surrogates of two-sample tests, including the density-ratio test (Goodfellow
et al., 2014; Nowozin et al., 2016; Mao et al., 2017; Mroueh and Sercu, 2017; Tao et al., 2018) and the
density-difference test (Li et al., 2015; Sutherland et al., 2017; Li et al., 2017; Arjovsky et al., 2017;
Binkowski et al., 2018), among others. VAE is a probabilistic deep latent factor model trained with
variational inference and stochastic approximation. Several authors have proposed improved versions
of VAE by enhancing the representation power of the learned latent codes and reducing the blurriness
of the generated images in vanilla VAE (Makhzani et al., 2016; Higgins et al., 2017; Tolstikhin et al.,
2018; Zhang et al., 2019). Flow-based methods learn a diffeomorphism map between the reference
distribution and the target distribution by maximum likelihood using the change of variables formula.
Recent work on flow-based methods has been focused on developing training methods and designing
neural network architectures to trade off between the efficiency of training and sampling and the
representation power of the learned map (Rezende and Mohamed, 2015; Dinh et al., 2015, 2017;
Kingma et al., 2016; Papamakarios et al., 2017; Kingma and Dhariwal, 2018; Grathwohl et al., 2019).

We propose an Euler particle transport (EPT) approach to learning a generative model by integrat-
ing ideas from optimal transport, numerical ODE, density-ratio estimation and deep neural networks.
EPT is motivated by the problem of finding an optimal transport from a reference distribution to the
target distribution based on the quadratic Wasserstein distance. Since it is challenging to solve the
Monge-Ampère equation that characterizes the optimal transport, we consider the Mckean-Vlasov
equation derived from the linearization of the Monge-Ampère equation, which is associated with a
gradient flow converging to the target distribution. We solve the Mckean-Vlasov equation using the
forward Euler method. The resulting EPT that pushes forward a reference distribution to the target
is a composition of a sequence of simple residual maps that are computationally stable and easy to
train. The residual maps are completely determined by the density ratios between the distributions at
the current iterations and the target distribution. We estimate the density ratios using neural networks
based on the Bregman divergence with a gradient regularizer.

We establish bounds on the approximation errors due to linearization of the Monge-Ampère
equation, Euler discretization of the Mckean-Vlasov equation, and deep density-ratio estimation.
Our result on the error rate for the proposed density-ratio estimators improves the minimax rate of
nonparametric estimation via exploring the low-dimensional structure of the data and circumvents
the “curse of dimensionality”. Experimental results on multi-mode synthetic data and comparisons
with state-of-the-art GANs on benchmark data support our theoretical findings and demonstrate that
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EPT is computationally more stable and easier to train than GANs. Using simple ReLU ResNets
without batch normalization and spectral normalization, we obtained results that are better than or
comparable with those using GANs trained with such tricks.

2. Euler particle transport: method description

Let X ∈ Rm be a random vector with distribution ν and let Z ∈ Rm be a random vector with
distribution µ, where ν is the target distribution we wish to learn and µ is a known reference
distribution. We assume that µ has a simple form and is easy to sample from. Our goal is to construct
a transformation T such that T#µ = ν, where T#µ denotes the push-forward distribution of µ by
T , that is, the distribution of T (Z). Then we can sample from ν by first generating a Z ∼ µ and
calculate T (Z). In practice, ν is unknown and only a random sample {Xi}ni=1 i.i.d. ν is available,
our task is to construct T based on the sample.

In this section we provide an overall description of EPT. The motivation and its connections with
optimal transport theory and gradient flows are given in Section 3. EPT uses a sequence of residual
maps to move the particles from the reference µ gradually to the target ν. The key question is how to
determine the direction of the movement. We determine the direction via minimizing a measure of
the discrepancy between the density of the particles and the density of the observations.

Specifically, suppose we have generated an initial particle X0 ∈ Rm from the reference distri-
bution µ. Let µ0 = µ and let s > 0 be a small step size. EPT pushes forward X0 to the target ν
iteratively using residual maps as follows,

Tk = 1 + svk, (1)

Xk+1 = Tk(Xk), (2)

µk+1 = (Tk)#µk, (3)

where 1 is the identity map and vk is the velocity field at the kth step, k = 0, 1, . . . ,K for some
large K. As explained in Section 3, this is a discretized version of the continuous process {Xt}t≥0

determined by the Mckean-Vlasov equation (10) given below. The final transport map is the
composition of the residual maps T0, T1, . . . , TK , i.e.,

T = TK ◦ TK−1 ◦ · · · ◦ T0. (4)

This updating scheme is based on the forward Euler method for solving equation (10). So we refer to
the proposed method as Euler particle transport (EPT).

Given the initial particle X0 ∼ µ0 ≡ µ, the iteration scheme (1)-(3) is to move X0 from µ0

to µK one step at a time. The processes {Xk}k≥0 and {µk}k≥0 defined by (1)-(3) are completely
determined by the velocity fields vk. How do we determine the velocity fields vk to ensure that Xk

moves closer to ν at each update and µK ≈ ν approximately? The basic intuition is that we should
move in the direction that decreases the discrepancy between µk and the target ν. We use an energy
functional L[µk] to measure such discrepancy. An important energy functional is the f -divergence
(Ali and Silvey, 1966),

L[µk] = Df (µk‖ν) =

∫
Rm

p(x)f

(
qk(x)

p(x)

)
dx, (5)
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where qk is the density of µk, p is the density of ν and f : R+ → R is a given twice-differentiable
convex function with f(1) = 0. We choose vk such that L[µk] is minimized. Theorem 5 in
Subsection 3.3 shows that this leads to

vk(x) = −f ′′(rk(x))∇rk(x), where rk(x) =
qk(x)

p(x)
, x ∈ Rm.

For example, if we use the Pearson χ2-divergence with f(x) = (x− 1)2/2, then vk(x) = −∇rk(x)
is simply the negative gradient of the density ratio. Other types of velocity fields can be obtained
by using different energy functionals such as the Lebesgue norm of the density difference, see
Subsection 3.3 for details.

When the target ν is unknown and only a random sample is available, it is natural to train T
by first estimating the velocity fields vk at the sample level and then plugging the estimator of
vk in (1). For example, if we use the f -divergence as the energy functional, estimating vk(x) =
−f ′′(rk(x))∇rk(x) boils down to estimating the density ratios rk(x) = qk(x)/p(x) dynamically
at each iteration k. Nonparametric density-ratio estimation using Bregman divergences and gradient
regularizers are discussed in Section 4 below. We estimate the density ratios with deep neural
networks. Let v̂k be the estimated velocity field at the kth iteration. The kth estimated residual map
is T̂k = 1 + sv̂k. The trained map corresponding to (2) is

T̂ = T̂K ◦ T̂K−1 ◦ · · · ◦ T̂0. (6)

We will use another neural network to preserve the information about this composition map so that it
is convenient to generate new samples based on the reference distribution without additional training.
This will also allow us to use a reference distribution with a different dimension from that of the
target distribution. The details are given in Section 5.

3. Motivation and theoretical analysis

3.1. Motivation

We describe the motivation of the proposed EPT and its connection with the optimal transport theory.
Consider the quadratic Wasserstein distance between µ and ν defined by

W2(µ, ν) = { inf
γ∈Γ(µ,ν)

E(Z,X)∼γ [‖Z −X‖22]}
1
2 , (7)

where Γ(µ, ν) denotes the set of couplings of (µ, ν) (Villani, 2008; Ambrosio et al., 2008). Suppose
that µ and ν have densities q and p with respect to the Lesbeque measure, respectively. Then
the optimal transport map T such that T#µ = ν is characterized by the Monge-Ampère equation
(Brenier, 1991; McCann, 1995; Santambrogio, 2015). Specifically, the minimization problem in
(7) admits a unique solution γ = (1, T )#µ with T = ∇Ψ, µ-a.e., where 1 is the identity map and
∇Ψ is the gradient of the potential function Ψ : Rm → R. This function is convex and satisfies the
Monge-Ampère equation

det(∇2Ψ(z)) =
q(z)

p(∇Ψ(z))
, z ∈ Rm. (8)

In theory, to find the optimal transport T , it suffices to solve (8) for Ψ. However, in practice it is
infeasible to solve this degenerate elliptic equation in high-dimensional settings due to its highly
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nonlinear nature, particularly when the target density function p is unknown and only a random
sample from p is available.

A basic approach to addressing the difficulty due to nonlinearity is linearization. Instead of
attempting to solve the Monge-Ampère equation (8), we linearize (8) using residual maps and solve
the resulting linearized versions of (8). These linearized versions are stochastic ordinary differential
equations, called the Mckean-Vlasov equations given in (10) below. For a given residual map, EPT
solves a discretized Mckean-Vlasov equation using the forward Euler method, which leads to the
particle updating scheme (1) to (3). We note that different residual maps generally lead to different
linearized versions of (8). Thus although the optimal transport characterized by (8) is unique, the
transport trained via EPT is not. In Subsection 3.3 below, we establish the connection between EPT
and the gradient flows from µ to ν. Different EPT corresponding to different residuals maps all push
forward µ to ν, although along different gradient flows. See also Proposition 2 and Remark 4 below
for the connection between EPT and the optimal transport in a local sense.

We employ a linearization scheme using the residual map

Tt,Φ = ∇Ψ = 1 + t∇Φt, t ≥ 0, (9)

where Φt : Rm → R1 is a function to be chosen such that the law of Tt,Φ(Z) is closer to ν than
that of Z (Villani, 2008). We then iteratively improve the approximation by repeatedly applying the
residual map to the current particles. The specific forms of Φt in (22) and (23) are given in Theorem
5 in Subsection 3.3.

The linearization based on (9) leads to the stochastic process Xt : Rm → Rm satisfying the
McKean-Vlasov equation

d
dt
Xt(x) = vt(Xt(x)), t ≥ 0, with X0 ∼ µ, µ- a.e. x ∈ Rm, (10)

where vt is the velocity fields of Xt. In addition, we show that vt = ∇Φt. Thus vt also determines
the residual map (9). The details of the derivation are given in Theorems 5 and 6 in Subsection
3.3. Therefore, the problem of estimating the residual maps (9) is equivalent to that of estimating
the velocity fields vt. The EPT updating process (1)-(3) is the Euler forward method for solving a
discretized version of (10). We choose a vt to decrease the discrepancy between the distribution
of Xt, say µt, at time t and the target ν with respect to a properly chosen measure such as the
f -divergence given in (5).

An equivalent formulation of (10) is through the gradient flow {µt}t≥0 with {vt}t≥0 as its
velocity fields, see Proposition 2 in Subsection 3.3. Computationally it is more convenient to work
with (10). However, for the error analysis of EPT, it is useful to consider the connection between
EPT and the gradient flow.

3.2. Summary of error analysis results

Here we provide an overview of the error bounds due to linearization, discretization and nonparamet-
ric density ratio estimation. Detailed descriptions are given in Subsection 3.3.

We establish the following bound on the approximation error due to the linearization of the
Monge-Ampère equation under appropriate conditions:

W2(µt, ν) = O(e−λt), (11)
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for some λ > 0, see Proposition 2 in Subsection 3.3. Therefore, µt converges to ν exponentially fast
as t→∞. For an integer K ≥ 1 and a small s > 0, let {µst : t ∈ [ks, (k + 1)s), k = 0, 1, . . . ,K}
be a piecewise constant interpolation between µks and µ(k+1)s, k = 0, 1, . . . ,K.

Under the assumption that the velocity fields vt are Lipschitz continuous with respect to (x, µt),
it is shown in Proposition 8 in Subsection 3.3 that the discretization error of µst can be bounded in a
finite time interval [0, T ) as follows:

sup
t∈[0,T )

W2(µt, µ
s
t ) = O(s). (12)

The error bounds (11) and (12) imply that the distributions of the particles Xk generated by the EPT
map defined in (2) with a small s and a sufficiently large k converges to the target ν at the rate of
discretization size s.

In Theorem 11 in Section 4, we provide an error bound for the density ratio estimation. Our result
improves the minimax rate of deep nonparametric estimation via exploring the low-dimensional
structure of data and circumvents the “curse of dimensionality.” Thus deep neural networks are
capable of adaptively estimating the density ratio supported on a lower-dimensional manifold.

3.3. Gradient flows associated with EPT

For convenience, we first define the notations used in the remaining sections. Let P2(Rm) denote the
space of Borel probability measures on Rm with finite second moments, and let Pa2 (Rm) denote the
subset of P2(Rm) in which measures are absolutely continuous with respect to the Lebesgue measure
(all distributions are assumed to satisfy this assumption hereinafter). TanµP2(Rm) denotes the tan-
gent space toP2(Rm) at µ. Let ACloc(R+,P2(Rm)) = {µt : I → P2(Rm) is absolutely continuous,
|µ′t| ∈ L2(I), I ⊂ R+}. Liploc(Rm) denotes the set of functions that are Lipschitz continuous on
any compact set of Rm. For any ` ∈ [1,∞], we use L`(µ,Rm) (L`loc(µ,Rm)) to denote the L`

space of µ-measurable functions on Rm (on any compact set of Rm). With 1, det and tr, we
refer to the identity map, the determinant and the trace. We use ∇, ∇2, ∇· and ∆ to denote the
gradient or Jacobian operator, the Hessian operator, the divergence operator and the Laplace operator,
respectively.

We are now ready to establish the connection between EPT and the gradient flows corresponding
to the Mckean-Vlasov equation (10). Let X ∼ q, and let

X̃ = Tt,Φ(X) = X + t∇Φ(X), t ≥ 0.

Here we let Φ be independent of t for the moment. Denote the distribution of X̃ by q̃. With a small
t, the map Tt,Φ is invertible according to the implicit function theorem. By the change of variables
formula, we have

det(∇2Ψ)(x) = |det(∇Tt,Φ)(x)| = q(x)

q̃(x̃)
, (13)

where
x̃ = Tt,Φ(x). (14)

Using the fact that the derivative d
dt

∣∣
t=0

det(A + tB) = det(A)tr
(
A−1B

)
,∀A,B ∈ Rm×m,

provided that A is invertible, and applying the first order Taylor expansion to (13), we have

log q̃(x̃)− log q(x) = −t∆Φ(x) + o(t). (15)
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Let t→ 0 in (14) and (15) and let x0 be a realization of the random variable sampled from q. We
obtain a random process {xt}t≥0 and its laws {qt}t≥0 satisfying

dxt
dt

= ∇Φ(xt), t ≥ 0, (16)

d ln qt(xt)

dt
= −∆Φ(xt), with q0 = q. (17)

Equations (16) and (17) resulting from linearizing the Monge-Ampère equation (8) can be interpreted
as gradient flows in measure spaces (Ambrosio et al., 2008). Thanks to this connection, we can resort
to solving a continuity equation characterized by a McKean-Vlasov equation, an ODE system that is
easier to work with.

For µ ∈ Pa2 (Rm) with density q, let

L[µ] =

∫
Rm

F (q(x))dx : Pa2 (Rm)→ R+ ∪ {0} (18)

be an energy functional satisfying ν ∈ arg minL[·], where F (·) : R+ → R1 is a twice-differentiable
convex function. Among the widely used measures on Pa2 (Rm) in generative learning, the following
two are important examples of L[·] : (i) the f -divergence given in (5) (Ali and Silvey, 1966); (ii) the
Lebesgue norm of density difference:

‖µ− ν‖2L2(Rm) =

∫
Rm
|q(x)− p(x)|2dx. (19)

Definition 1 We call {µt}t≥0 ⊂ ACloc(R+,P2(Rm)) a gradient flow of the functional L[·], if
{µt}t≥0 ⊂ Pa2 (Rm) a.e., t ∈ R+ and the velocity fields vt ∈ TanµtP2(Rm) satisfies vt ∈
−∂L[µt] a.e. t ≥ 0, where ∂L[·] is the subdifferential of L[·].

The gradient flow {µt}t≥0 of L[·] enjoys the following nice properties.

Proposition 2

(i) The following continuity equation holds in the sense of distributions.

∂

∂t
µt = −∇ · (µtvt) in [0,∞)× Rm with µ0 = µ. (20)

(ii) Energy decay along the gradient flow: d
dtL[µt] = −‖vt‖2L2(µt,Rm) a.e. t ≥ 0. In addition,

W2(µt, ν) = O(exp−λt), (21)

if L[µ] is λ-geodetically convex with λ > 01.

1. L is said to be λ-geodetically convex if there exists a constant λ > 0 such that for every µ1, µ2 ∈ Pa2 (Rm), there
exists a constant speed geodestic γ : [0, 1]→ Pa2 (Rm) such that γ0 = µ1, γ1 = µ2 and

L(γs) ≤ (1− s)L(µ1) + sL(µ2)−
λ

2
s(1− s)d(µ1, µ2), ∀s ∈ [0, 1],

where d is a metric defined on Pa2 (Rm) such as the quadratic Wasserstein distance.
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(iii) Conversely, if {µt}t≥0 is the solution of continuity equation (20) in (i) with vt(x) specified by
(22), then {µt}t≥0 is a gradient flow of L[·].

Remark 3 In part (ii) of Proposition 2, for general f -divergences, we assume the functional L to be
λ-geodetically convex for the convergence of µt to the target ν in the quadratic Wasserstein distance.
However, for the KL divergence, the convergence can be guaranteed if ν satisfies the log-Sobolev
inequality (Otto and Villani, 2000). In addition, the distributions that are strongly log-concave
outside a bounded region, but not necessarily log-concave inside the region satisfy the log-Sobolev
inequality, see, for example, Holley and Stroock (1987). Here the functional L can even be nonconvex,
an example includes the densities with double-well potential.

Remark 4 Equation (8.48) in Proposition 8.4.6 of Ambrosio et al. (2008) shows the connection (in
a local sense) of the velocity vt of the gradient flow µt and the optimal transport along µt, i.e., let
T
µt+h
µt be the optimal transport from µt to µt+h for a small h > 0, then Tµt+hµt = 1 + hvt + o(h) in
Lp(Rm). So locally, 1 + hvt approximates the optimal transport map from µt to µt+h on [t, t+ h].
However, the global approximation property of the proposed method is not clear. This is a challenging
problem that requires further study and is beyond the scope of this paper.

The following result makes the connection between the linearized Monge-Ampère equations
(16)-(17) and the gradient flow defined in (20).

Theorem 5 (i) Representation of the velocity fields: if the density qt of µt is differentiable, then

vt(x) = −∇F ′(qt(x)) µt-a.e. x ∈ Rm. (22)

(ii) If we let Φ be time-dependent in (16)–(17), i.e., Φt, then the linearized Monge-Ampère
equations (16)–(17) are the same as the continuity equation (20) by taking

Φt(x) = −F ′(qt(x)). (23)

Theorem 5 and (21) in Proposition 2 imply that {µt}t≥0, the solution of the continuity equation
(20) with vt(x) = −∇F ′(qt(x)), converges rapidly to the target distribution ν. Furthermore, the
continuity equation has the following representation under mild regularity conditions on the velocity
fields.

Theorem 6 Assume ‖vt‖L1(µt,Rm) ∈ L1
loc(R+) and vt(·) ∈ Liploc(Rm) with upper bound Bt

and Lipschitz constant Lt such that (Bt + Lt) ∈ L1
loc(R+). Then the solution of the continuity

equation (20) can be represented as µt = (Xt)#µ, where Xt(x) : R+ × Rm → Rm satisfies the
McKean-Vlasov equation (10).

As shown in Lemma 7 below, the velocity fields associated with the f -divergence (5) and the
Lebesgue norm (19) are determined by density ratio and density difference respectively.

Lemma 7 The velocity fields vt satisfy

vt(x) =

{
−f ′′(rt(x))∇rt(x), L[µ] = Df (µ‖ν), where rt(x) = qt(x)

p(x) ,

−2∇dt(x), L[µ] = ‖µ− ν‖2L2(Rm), where dt(x) = qt(x)− p(x).
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Several methods have been developed to estimate density ratio and density difference in the
literature. Examples include probabilistic classification approaches, moment matching and direct
density-ratio (difference) fitting, see Sugiyama et al. (2012a,b); Kanamori and Sugiyama (2014);
Mohamed and Lakshminarayanan (2016) and the references therein.

Proposition 8 For any finite T > 0, suppose that the velocity fields vt are Lipschitz continuous
with respect to (x, µt) for t ∈ [0, T ], that is, there exists a finite constant Lv > 0 such that

‖vt(x)− vt̃(x̃)‖ ≤ Lv[‖x− x̃‖+W2(µt, µt̃)], t, t̃ ∈ [0, T ] and x, x̃ ∈ Rm. (24)

Then the bound (12) on the discretization error holds.

Remark 9 If we take f(x) = (x − 1)2/2 in Lemma 7, then the velocity fields vt(x) = −∇rt(x),
where rt(x) = qt(x)/p(x). In the proof of Theorem 5, part (ii), it is shown that qt satisfies
∂qt/∂t = −∇ · (qtvt). Thus for this simple f -divergence function, the verification of the Lipschitz
condition (24) amounts to verifying that∇rt(x) is Lipschitz continuous in the sense of (24).

4. Deep density-ratio fitting

The evaluation of velocity fields depends on the dynamic estimation of a discrepancy between the
push-forward distribution qt and the target distribution p. Density-ratio and density-difference fitting
with the Bregman score provides a unified framework for such discrepancy estimation without
estimating each density separately (Gneiting and Raftery, 2007; Dawid, 2007; Sugiyama et al.,
2012a,b; Kanamori and Sugiyama, 2014).

Let r(x) = q(x)/p(x) be the density ratio between a given density q(x) and the target p(x).
Let g : R→ R be a differentiable and strictly convex function. The separable Bregman score with
the base probability density p for measuring the discrepancy between r and a measurable function
R : Rm → R1 is

B(r,R) = EX∼p[g′(R(X))R(X)− g(R(X))]− EX∼q[g′(R(X))].

We focus on the widely used least-squares density-ratio (LSDR) fitting with g(x) = (x− 1)2 as a
working example, i.e.,

BLSDR(r,R) = EX∼p[R2(X)]− 2EX∼q[R(X)] + 1. (25)

For other choices of g, such as g(x) = x log x− (x+ 1) log(x+ 1) corresponding to estimating r
via the logistic regression (LR), and the scenario of density difference fitting will be presented in
detail in Appendix B.2.1.

4.1. Gradient regularizer

The distributions of real data may have a low-dimensional structure with their support concentrated on
low-dimensional manifolds, which may cause the f -divergence to be ill-posed due to non-overlapping
supports. To exploit such underlying low-dimensional structures and avoid ill-posedness, we derive a
simple weighted gradient regularizer 1

2Ep[g
′′(R)‖∇R‖22],motivated by the recent work on smoothing
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via noise injection (Sønderby et al., 2017; Arjovsky and Bottou, 2017). This serves as a regularizer
for deep density-ratio fitting. For example, with g(x) = (x− 1)2, the resulting gradient regularizer is

Ep[‖∇R‖22], (26)

which recovers the well-known squared Sobolev semi-norm in nonparametric statistics. Gradient
regularization stabilizes and improves the long time performance of EPT. The detailed derivation is
presented in Appendix B.2.2.

4.2. LSDR estimation with gradient regularizer

Let {Xi}ni=1 and {Yi}ni=1 be two collections of i.i.d data in Rm from densities p and q, respectively.
LetH ≡ HD,W,S,B be the set of ReLU neural networksRφ with parameter φ, depthD, widthW , size
S , and ‖Rφ‖∞ ≤ B.Here the depthD refers to the number of hidden layers, so the network hasD+1
layers in total. A (D + 1)-vector (w0, w1, . . . , wD) specifies the width of each layer, where w0 = m
is the dimension of the input data and wD = 1 is the dimension of the output. The width W =
max{w1, . . . , wD} is the maximum width of the hidden layers. The size S =

∑D
i=0[wi × (wi + 1)]

is the total number of parameters in the network. For multilayer perceptrons with equal-width hidden
layers except the output layer, we have S =W(m+ 1) + (W2 +W)(D − 1) +W + 1.

We combine the least squares loss (25) with the gradient regularizer (26) as our objective function.
The resulting gradient regularized LSDR estimator of r = q/p is given by

R̂φ ∈ arg min
Rφ∈H

1

n

n∑
i=1

[R2
φ(Xi)− 2Rφ(Yi)] + α

1

n

n∑
i=1

‖∇Rφ(Xi)‖22, (27)

where α ≥ 0 is a regularization parameter.

4.3. Estimation error bound

We first show that the density ratio r is identifiable through the objective function by proving that, at
the population level, we can recover the density ratio r via minimizing

Bα
LSDR(R) = BLSDR(r,R) + αEp[‖∇R‖22] + C,

where BLSDR is defined in (25) and C = EX∼q[r2(X)]− 1.

Lemma 10 For any α ≥ 0, we have r ∈ arg minRBα
LSDR(R). In addition, Bα

LSDR(R) ≥ 0 for any
R with EX∼pR2(X) <∞, and Bα

LSDR(R) = 0 iff R(x) = r(x) = 1 (q, p)-a.e. x ∈ Rm.

This identifiability result shows that the target density ratio is the unique minimizer of the population
version of the empirical criterion in (27). This provides a basis for establishing the convergence
result of deep nonparametric density-ratio estimation.

Next we bound the nonparametric estimation error ‖R̂φ − r‖L2(ν) under the assumptions that the
support of ν is concentrated on a compact low-dimensional manifold and r is Lipschitz continuous.
Let M ⊆ [−c, c]m be a Riemannian manifold (Lee, 2010) with dimensionm∗, condition number 1/τ ,
volume V , geodesic covering regularity R, and m∗ � M = O (m∗ ln(mVR/τ)) � m. Denote
Mε = {x ∈ [−c, c]m : inf{‖x− y‖2 : y ∈M} ≤ ε} , ε ∈ (0, 1).
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Theorem 11 Assume supp(r) = Mε and r(x) satisfies |r(x)| ≤ B for a finite constant B > 0 and
is Lipschitz continuous with a Lipschitz constant L. Suppose the topological parameter ofHD,W,S,B

in (27) with α = 0 satisfies D = O(log n),W = O(n
M

2(2+M) / log n), S = O(n
M−2
M+2 / log4 n), and

B = 2B. Then,

E{Xi,Yi}ni=1
[‖R̂φ − r‖2L2(ν)] ≤ C(B2 + cLmM)n−2/(2+M),

where C is a universal constant.

The error bound established in Theorem 11 for the nonparametric deep density-ratio fitting is
new. This result is of independent interest for nonparametric estimation with deep neural networks.
SinceM = O (m∗ ln(mVR/τ))� m, the convergence rate O(n−

2
2+M ) obtained in Theorem 11

is faster than the optimal rate of convergence for nonparametric estimation of a Lipschitz target
in Rm, where the optimal rate is O(n−

2
2+m ) (Stone, 1982; Schmidt-Hieber, 2020), as long as the

intrinsic dimensionM of the data is much smaller than the ambient dimension m. Therefore, the
proposed density-ratio estimators circumvent the “curse of dimensionality” if data is supported on a
lower-dimensional manifold.

5. Implementation

We now described how to implement EPT and train the transport map T with an i.i.d. sample
{Xi}ni=1 ⊂ Rm from an unknown target distribution ν. The EPT map is trained via the forward
Euler iteration (1)-(3) with a small step size s > 0. The resulting map is a composition of a
sequence of residual maps, i.e., TK ◦ TK−1 ◦ ... ◦ T0 for a large K. As implied by Theorem 11 in
Section 4, each Tk, k = 0, 1, . . . ,K can be estimated with high accuracy by T̂k = 1+ sv̂k, where
v̂k(x) = −f ′′(R̂φ(x))∇R̂φ(x). Here R̂φ is the density-ratio estimator defined in (27) below based
on {Yi}ni=1 ∼ qk and the data {Xi}ni=1 ∼ p. Therefore, according to the EPT map (6), the particles

T̂ (Ỹi) ≡ T̂K ◦ T̂K−1 ◦ ... ◦ T̂0(Ỹi), i = 1, 2, . . . , n

serve as samples drawn from the target distribution ν, where particles {Ỹi}ni=1 ⊂ Rm are sampled
from a simple reference distribution µ. The pseudocode of the basic EPT algorithm is given in
Algorithm 2 in Appendix A.1.

In many applications, high-dimensional complex data such as images, texts and natural languages,
tend to be supported on lower-dimensional manifolds. To learn generative models with latent low-
dimensional structures, it is beneficial to have the option of first sampling particles {Zi}ni=1 from
a low-dimensional reference distribution µ̃ ∈ P2(R`) with ` � m. For this purpose, we train
a generator Gθ : R` → Rm together with the EPT map T , where Gθ is a neural network with
parameter θ. The generator Gθ and the EPT map T are trained iteratively as follows:

(a) Begin outer loop: given an initial Gθ, compute Ỹi ← Gθ(Z̃i), where Z̃i ∼ µ̃, i = 1, 2, . . . , n;

(b) Inner loop: update the particles {Ỹ }ni=1 by iteratively using the EPT updating steps (1)-(3);
(c) End outer loop: update Gθ by minimizing the least squares

Gθ ← arg min
Gθ

1

n

n∑
i=1

‖Gθ(Z̃i)− Ỹi‖22 via SGD.
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Algorithm 1: Euler particle transport with an optional outer loop

Input: KI ,KO ∈ N∗, s > 0, `, α > 0 // maximum inner loop count, maximum outer

loop count, step size, dimension of the reference distribution,

regularization parameter

Xi ∼ ν, i = 1, 2, · · · , n // real samples

Ĝ0
θ ← Ginitθ // initialize the transport map

j ← 0
/* outer loop */

while j < KO do
Zji ∼ µ̃, i = 1, 2, · · · , n // latent particles

Ỹ 0
i = Ĝjθ(Z

j
i ), i = 1, 2, · · · , n // intermediate particles

k ← 0
/* inner loop */

while k < KI do
R̂kφ ∈ arg minRφ

1
n

∑n
i=1[Rφ(Xi)

2 + α‖∇Rφ(Xi)‖22 − 2Rφ(Ỹ k
i )] via SGD

// estimate density ratio

v̂k(x) = −f ′′(R̂kφ(x))∇R̂kφ(x) // approximate velocity fields

T̂ k = 1 + sv̂k // compute forward Euler maps

Ỹ k+1
i = T̂ k(Ỹ k

i ), i = 1, 2, · · · , n // update particles

k ← k + 1
end
Ĝj+1
θ ∈ arg minGθ

1
n

∑n
i=1 ‖Gθ(Z

j
i )− Ỹ

KI
i ‖22 via SGD // fit the transport map

j ← j + 1
end
Output: ĜKOθ : R` → Rd // transport map with a latent structure

Then we iterate steps (a)-(c) until the maximum number of iterations is reached. The purpose of step
(c) is to preserve the information about the trained particle transport in the generator Gθ. In addition
to being able to start from a lower-dimensional reference distribution, a second benefit of using a
generator Gθ in the outer loop is that it memorizes the composition of the residual maps trained in
EPT. After this generator Gθ is well trained, it can then be used to directly transform new samples
from the reference distribution to the target without the need for additional training. The pseudocode
of the EPT algorithm with an outer loop (an additional generator Gθ) is given in Algorithm 1.

6. Related work

The existing generative models, such as VAEs, GANs and flow-based methods, parameterize a
transform map with a neural network, say G, that solves

min
G

D(G#µ, ν), (28)

where D(·, ·) is an integral probability discrepancy. The original GAN (Goodfellow et al., 2014),
f -GAN (Nowozin et al., 2016) and WGAN (Arjovsky et al., 2017) solve the dual form of (28) by
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parameterizing the dual variable using another neural network with D as the Jensen–Shannon (JS)
divergence, the f -divergence and the 1-Wasserstein distance, respectively. SWGAN (Deshpande
et al., 2018) and MMDGAN (Li et al., 2017; Binkowski et al., 2018) use the sliced quadratic
Wasserstein distance and the maximum mean discrepancy (MMD) as D, respectively.

Vanilla VAE (Kingma and Welling, 2014) approximately solves the primal form of (28) with
the Kullback–Leibler (KL) divergence. Several authors have proposed methods that use optimal
transport losses, such as various forms of Wasserstein distances between the distribution of learned
latent codes and the prior distribution as the regularizer in VAE to improve performance. These
methods include WAE (Tolstikhin et al., 2018), Sliced WAE (Kolouri et al., 2019) and Sinkhorn AE
(Patrini et al., 2019).

Discrete time flow-based methods minimize (28) with the KL divergence loss (Rezende and
Mohamed, 2015; Dinh et al., 2017; Kingma et al., 2016; Kingma and Dhariwal, 2018). Grathwohl
et al. (2019) proposed an ODE flow approach for fast training in such methods using the adjoint
equation (Chen et al., 2018b). By introducing the optimal transport tools into maximum likelihood
training, Chen et al. (2018a) and Zhang et al. (2018) considered continuous time flows. Chen et al.
(2018a) proposed a gradient flow in measure spaces in the framework of variational inference and
then discretized it with the implicit movement minimizing scheme (De Giorgi, 1993; Jordan et al.,
1998). Zhang et al. (2018) considered gradient flows in measure spaces with time invariant velocity
fields. CFGGAN (Johnson and Zhang, 2018) derived from the perspective of optimization in the
functional space is a special form of EPT with the energy functional taken as the KL divergence.
SW flow (Liutkus et al., 2019) and MMD flow (Arbel et al., 2019) are gradient flows in measure
spaces. MMD flow can be recovered from EPT by first choosing L[·] as the Lebesgue norm and then
projecting the corresponding velocity fields onto reproducing kernel Hilbert spaces. However, neither
SW flow nor MMD flow can model hidden low-dimensional structures with the particle sampling
procedure.

SVGD in (Liu, 2017) and the proposed EPT are both particle methods based on gradient flow
in measure spaces. However, SVGD samples from an unnormalized density, while EPT focuses on
generative leaning, i.e., learning the distribution from samples. At the population level, projecting the
velocity fields of EPT with the KL divergence onto reproducing kernel Hilbert spaces will recover
the velocity fields of SVGD. The proof is given in Appendix B.3. Score-based methods in (Song and
Ermon, 2019, 2020; Ho et al., 2020) are also particle methods based on the unadjusted Langevin
flow and deep score estimators. At the population level, the velocity fields of these score-based
methods are random since they have a Brownian motion term, while the velocity fields of EPT are
deterministic. At the sample level, these score-based methods need to learn a vector-valued deep
score function, while in EPT we only need to estimate the density ratios which are scalar functions.

7. Numerical experiments

The implementation details on numerical settings, network structures, SGD optimizers and hyper-
parameters are given in the appendix. All experiments are performed using NVIDIA Tesla K80
GPUs. The PyTorch code of EPT is available at https://github.com/xjtuygao/EPT.

7.1. 2D simulated data

We use EPT to learn 2D distributions adapted from Grathwohl et al. (2019) with multiple modes and
density ridges. The first row in Figure 1 shows kernel density estimation (KDE) plots of 50k samples
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from target distributions including (from left to right) 8Gaussians, pinwheel, moons, checkerboard,
2spirals, and circles. The second and third rows show the KDE plots of the learned samples via EPT
with Pearson χ2-divergence and the surface plots of estimated density ratios after 20k iterations. The
fourth and fifth rows show the KDE plots of the learned sample via EPT with Lebesgue norm of the
density difference. Clearly, the generated samples via EPT are nearly indistinguishable from those of
the target samples and the estimated density-ratio/ difference functions are approximately equal to
1/0, indicating the learnt distributions matches the targets well.

Next, we demonstrate the effectiveness of using the gradient penalty (26) by visualizing the
transport maps learned in the generative learning tasks with the learning targets 5squares and
large4gaussians from 4squares and small4gaussians, respectively. We use 200 particles con-
nected with grey lines to manifest the learned transport maps. As shown in Figure 2(a), the central
squares of 5squares were learned better with the gradient penalty, which is consistent with the
result on the estimated density-ratio in Figure 2(b). For large4gaussians, the learned transport
map exhibited some optimality under quadratic Wasserstein distance due to the obvious correspon-
dence between the samples in Figure 2(a), and the gradient penalty also improves the density-ratio
estimation as expected.
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Figure 1: KDE plots and 3D surface plots for 2D distributions. KDE plots of the target samples are
presented in the first row. The second and third rows show the KDE plots of the learned
samples via EPT with Pearson χ2-divergence and the 3D surface plots of estimated density
ratios after 20k iterations. The fourth and fifth rows show the KDE plots of the learned
sample via EPT with Lebesgue norm of the density difference after 20k iterations.

7.2. Numerical convergence

We illustrate the convergence property of the learning dynamics of EPT on synthetic datasets pinwheel,
checkerboard and 2spirals. As shown in Figure 3, on the three test datasets, the dynamics of both
the estimated LSDR fitting losses in (27) with α = 0 and the estimated value of the gradient norms
EX∼qk [‖∇Rφ(X)‖2] demonstrate the estimated LSDR loss converges to the theoretical value −1.
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(a) Left two figures: Maps learned without gradi-
ent penalty. Right two figures: Maps learned
with gradient penalty.
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(b) Left two figures: Plots of estimated density-
ratios without gradient penalty. Right two
figures: Plots of estimated density-ratios with
gradient penalty.

Figure 2: Learned transport maps and estimated density-ratio in learning 5squares from 4squares,
and learning large4gaussians from small4gaussians.
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(a) Initialization stage: k =
0 to k = 200.
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(b) Decline stage: k = 200
to k = 5, 000.
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(c) Converging stage: k =
12, 000 to k = 20, 000.

Figure 3: The numerical convergence of EPT on simulated datasets. First row: LSDR loss (27) with
α = 0 v.s. iterations on pinwheel, checkerboard and 2spirals. Second row: Estimation
of the gradient norm EX∼qk [‖∇Rφ(X)‖2] v.s. iterations on pinwheel, checkerboard and
2spirals.
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7.3. Benchmark Image Data

Finally, we show the performance of applying EPT to benchmark data MNIST (LeCun et al., 1998),
CIFAR10 (Krizhevsky and Hinton, 2009) and CelebA (Liu et al., 2015) using ReLU ResNets without
batch normalization and spectral normalization. The particle evolutions on MNIST and CIFAR10
without using the outer loop (see Algorithm 2 in Appendix A.1) are shown in Figure 4. Clearly, EPT
can transport samples from a multivariate normal distribution into a target distribution.

Figure 4: Particle evolution of EPT on MNIST and CIFAR10 datasets. As shown in the first row,
initial particles are sampled from a standard normal distribution. The following three
rows show the particle evolution process. The most similar real data (measured with the
Frobenius norm) are also presented for the corresponding generated particles in the last
row.

We further compare EPT using the outer loop with the generative models including WGAN,
SNGAN and MMDGAN. We considered different f -divergences, including Pearson χ2, KL, JS and
logD (Gao et al., 2019) and different deep density-ratio fitting methods (LSDR and LR in Section 4).
Table 1 shows FID (Heusel et al., 2017) evaluated with five bootstrap sampling of EPT with four
divergences on CIFAR10. We can see that EPT using ReLU ResNets without batch normalization
and spectral normalization attains (usually better) comparable FID scores with the state-of-the-art
generative models. Comparisons of the real samples and learned samples on MNIST, CIFAR10 and
CelebA are shown in Figure 5, where high-fidelity learned samples are comparable to real samples
visually.

Table 1: Mean (standard deviation) of FID scores on CIFAR10. The FID score of NSCN is reported
in Song and Ermon (2019) and results in the right table are adapted from Arbel et al. (2018).

Models CIFAR10 (50k)

EPT-LSDR-χ2 24.9 (0.1)
EPT-LR-KL 25.9 (0.1)
EPT-LR-JS 25.3 (0.1)
EPT-LR-logD 24.6 (0.1)
NCSN 25.3

Models CIFAR10 (50k)

WGAN-GP 31.1 (0.2)
MMDGAN-GP-L2 31.4 (0.3)
SN-GAN 26.7 (0.2)
SN-SMMDGAN 25.0 (0.3)
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Figure 5: Visual comparisons between real images (left 3 panels) and generated images (right 3
panels) by EPT-LSDR-χ2 on MNIST, CIFAR10 and CelebA datasets.

8. Conclusion and future work

EPT is a new approach for generative learning via training a transport map that pushes forward a
reference to the target. Because EPT is easy to train, computationally stable, and enjoys strong
theoretical guarantees, we expect it to be a useful addition to the methods for generating learning.
There are two important ingredients in EPT: the velocity field and density-ratio estimation. With
a suitable choice of the velocity and a density-ratio estimation procedure, EPT can recover several
existing generative models such as MMD flow and SVGD. Thus our theoretical results also provide
insights into the properties of these methods. Simulation results on multi-mode synthetic datasets
and comparisons with the existing methods on real benchmark datasets using simple ReLU ResNets
support our theoretical analysis and demonstrate the effectiveness of the proposed method.

Some aspects and results in this paper are of independent interest. For example, density-ratio
estimation is an important problem and of general interest in machine learning and statistics. The
estimation error bound established in Theorem 11 for the nonparametric deep density-ratio fitting
procedure is new. We show that the proposed density-ratio estimators do not suffer from the “curse
of dimensionality” if data is supported on a lower-dimensional manifold. This provides an important
example showing that deep nonparametric estimation can circumvent the curse of dimensionality via
exploring the underlying structure of the data.

EPT is motivated from the Monge-Ampère equation that characterizes the optimal transport map.
As we described in Subsection 3.1, EPT solves a sequence of linearized versions of the Monge-
Ampère equation (8), but not the Monge-Ampère equation itself. The transport maps learned with
EPT are not unique, since different residual maps used for linearization will lead to different gradient
flows. However, they all push forward the reference distribution to the target, albeit along different
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gradient flows. How to consistently estimate the unique Monge-Ampére optimal map when only a
random sample from the target distribution is available remains a challenging and open problem.
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Algorithm 2: EPTv1: Euler particle transport
Input: KI ∈ N∗, s > 0, α > 0 // maximum loop count, step size,

regularization coefficient

Xi ∼ ν, Ỹ 0
i ∼ µ, i = 1, 2, · · · , n // real samples, initial particles

k ← 0
while k < KI do

R̂kφ ∈ arg minRφ
1
n

∑n
i=1[Rφ(Xi)

2 + α‖∇Rφ(Xi)‖22 − 2Rφ(Ỹ k
i )] via SGD

// determine the density ratio

v̂k(x) = −f ′′(R̂kφ(x))∇R̂kφ(x) // approximate velocity fields

T̂ k = 1 + sv̂k // define the forward Euler map

Ỹ k+1
i = T̂ k(Ỹ k

i ), i = 1, 2, · · · , n // update particles

k ← k + 1
end
Output: Ỹ KI

i ∼ µ̃KI , i = 1, 2, · · · , n // transported particles

APPENDIX
In the appendix, we provide the implementation details on numerical settings, network structures,

SGD optimizers, and hyper-parameters in the paper. We give the proofs of the results in Sections 3
to 4. We also show that SVGD can be derived from EPT by choosing an appropriate f -divergence.

Appendix A. Implementation details of numerical experiments

A.1. Algorithm details

We present the details of the basic EPT algorithm without the outer loop in Algorithm 2.

A.2. Additional figures

We provide additional figures on simulated data in this part. Figure A1 includes 2D surface plots to
show the efficiency of deep density-ratio (density-difference) fitting.

A.3. Implementation details, network structures, hyper-parameters

A.3.1. 2D EXAMPLES

Experiments on 2D examples in our work were performed with deep LSDR fitting and the Pearson χ2

divergence. We use the EPTv1 (Algorithm 2) without outer loops. In inner loops, only a multilayer
perceptron (MLP) was utilized for dynamic estimation of the density ratio between the model
distribution qk and the target distribution p. The network structure and hyper-parameters in EPT
and deep LSDR fitting were shared in all 2D experiments. We adopt EPT to push particles from a
pre-drawn pool consisting of 50k i.i.d. Gaussian particles to evolve in 20k steps. We used RMSProp
with the learning rate 0.0005 and the batch size 1k as the SGD optimizer. The details are given in
Table A1 and Table A2. We note that s is the step size, n is the number of particles, α is the penalty
coefficient, and T is the mini-batch gradient descent times of deep LSDR fitting or deep logistic
regression in each inner loop hereinafter. KI indicates the maximum (inner) loop count of EPTv1.

358



EULER PARTICLE TRANSPORT

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

4 4

4

4

4 4
4

4

4 4
4

4

4 4

4

4

4 4
4

4

4 4

4

4

Figure A1: 2D surface plots of the estimated density ratio (the first row) and the estimated density
difference (the second row) after 20k EPT iterations and KDE plots of the corresponding
simulated data (the last row).

Table A1: MLP for deep LSDR fitting.

Layer Details Output size

1 Linear, ReLU 64

2 Linear, ReLU 64

3 Linear, ReLU 64

4 Linear 1

A.3.2. REAL IMAGE DATA

Datasets. We evaluated EPT on three benchmark datasets including two small datasets MNIST,
CIFAR10 and one large dataset CelebA from GAN literature. MNIST contains a training set of 60k
examples and a test set of 10k examples as 28× 28 bilevel images which were resized to 32× 32
resolution. There are a training set of 50k examples and a test set of 10k examples as 32× 32 color
images in CIFAR10. We randomly divided the 200k celebrity images in CelebA into two sets for
training and test according to the ratio 9:1. We also pre-processed CelebA images by first taking a
160× 160 central crop and then resizing to the 64× 64 resolution. Only the training sets are used to
train our models.

Evaluation metrics. Fréchet Inception Distance (FID) (Heusel et al., 2017) computes the
Wasserstein distanceW2 with summary statistics (mean µ and variance Σ) of real samples xs and
generated samples gs in the feature space of the Inception-v3 model (Szegedy et al., 2016), i.e.,
FID = ‖µx − µg‖22 + Tr(Σx + Σg − 2(ΣxΣg)

1
2 ). Here, FID is reported with the TensorFlow

implementation and lower FID is better.
Network architectures and hyper-parameter settings. We employed the ResNet architectures

used by Gao et al. (2019) in our EPT algorithm. Especially, the batch normalization (Ioffe and
Szegedy, 2015) and the spectral normalization (Miyato et al., 2018) of networks were omitted for
EPT-LSDR-χ2. To train neural networks, we set SGD optimizers as RMSProp with the learning
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Table A2: Hyper-parameters in EPT on 2D examples.

Parameter s n α T KI

Value 0.005 50k 0 or 0.5 5 20k

rate 0.0001 and the batch size 100. Inputs {Zi}ni=1 in EPT (Algorithm 1) were vectors generated
from a 128-dimensional standard normal distribution on all three datasets. Hyper-parameters are
listed in Table A3 where KI expresses the maximum inner loop count in each outer loop and KO

shows the maximum outer loop count. Even without outer loops, EPTv1 (Algorithm 2) can generate
images on MNIST and CIFAR10 as well by making use of a large set of particles. Table A4 shows
the hyper-parameters.

Table A3: Hyper-parameters in EPT with outer loops on real image datasets.

Parameter ` s n α T KI KO

Value 128 0.5 1k 0 1 20 10k

Table A4: Hyper-parameters in EPT without outer loops on real image datasets.

Parameter s n α T KI

Value 0.5 4k 0 5 10k

A.4. Learning and inference

The learning process of EPT performs particle evolution via solving the McKean-Vlasov equation
using forward Euler iterations. The iterations rely on the estimation of the density ratios (difference)
between the push-forward distributions and the target distribution. To make the inference of EPTv1
more amendable, we propose EPT based on EPTv1. EPT takes advantage of a neural network to
fit the pushforward map. The inference of EPT is fast since the pushforward map is parameterized
as a neural network and only forward propagation is involved. These aspects distinguish EPT from
score-based generative models (Song and Ermon, 2019, 2020) which simulate Langevin dynamics to
generate samples.

Appendix B. Proofs

B.1. Proofs of the results in Section 3

B.1.1. PROOF OF PROPOSITION 2.

(i) The continuity equation (20) follows from the definition of the gradient flow directly, see, page
281 in (Ambrosio et al., 2008). (ii) The first equality follows from the chain rule and integration
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by part, see, Theorem 24.2 of Villani (2008). The second one on linear convergence follows from
Theorem 24.7 of Villani (2008), where the assumption on λ in equation (24.6) is equivalent to the
λ-geodetically convex assumption here. (iii) Similar to (i) see, page 281 in Ambrosio et al. (2008).
�

B.1.2. PROOF OF THEOREM 5.

(i) Recall L[µ] is a functional on Pa2 (Rm). By the classical results in calculus of variation (Gelfand
and Fomin, 2000),

∂L[q]

∂q
(x) =

d

dt
L[q + tg] |t=0= F ′(q(x)),

where ∂L[q]
∂q denotes the first order of variation of L[·] at q, and q, g are the densities of µ and an

arbitrary ξ ∈ Pa2 (Rm), respectively. Let

LF (z) = zF ′(z)− F (z) : R1 → R1.

Some algebra shows,
∇LF (q(x)) = q(x)∇F ′(q(x)).

Then, it follows from Theorem 10.4.6 in (Ambrosio et al., 2008) that

∇F ′(q(x)) = ∂oL(µ),

where, ∂oL(µ) denotes the one in ∂L(µ) with minimum length. The above display and the definition
of gradient flow implies the representation of the velocity fields vt.

(ii) The time dependent form of (16)-(17) reads

dxt
dt

= ∇Φt(xt), with x0 ∼ q,

d ln qt(xt)

dt
= −∆Φt(xt), with q0 = q.

By chain rule and substituting the first equation into the second one, we have

1

qt
(
dqt
dt

+
dqt
dxt

dxt
dt

) =
1

qt
(
dqt
dt

+∇qt∇Φt(xt))

= −∆Φt(xt),

which implies,
dqt
dt

= −qt∆Φt(xt)−∇qt∇Φt(xt) = −∇ · (qt∇Φt).

By (22), the above display coincides with the continuity equation (20) with vt = ∇Φt = −∇F ′(qt(x)).
�

B.1.3. PROOF OF THEOREM 6.

The Lipschitz assumption of vt implies the existence and uniqueness of the McKean-Vlasov equation
(10) according to the classical results in ODE (Arnold, 2012). By the uniqueness of the continuity
equation, see Proposition 8.1.7 in Ambrosio et al. (2008), it is sufficient to show that µt = (Xt)#µ
satisfies the continuity equation (20) in a weak sense. This can be done by the standard test function
and smoothing approximation arguments, see, Theorem 4.4 in Santambrogio (2015) for details. �
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B.1.4. PROOF OF LEMMA 7

By definition,

F (qt(x)) =

{
p(x)f( qt(x)

p(x) ), L[µ] = Df (µ‖ν),

(qt(x)− p(x))2, L[µ] = ‖µ− ν‖2L2(Rm).

Direct calculation shows

F ′(qt(x)) =

{
f ′( qt(x)

p(x) ), L[µ] = Df (µ‖ν),

2(qt(x)− p(x)), L[µ] = ‖µ− ν‖2L2(Rm).

Then, the desired result follows from the above display and (22). �

B.1.5. PROOF OF PROPOSITION 8.

Without loss of generality let K = T
s > 1 be an integer. Recall {µst t ∈ [ks, (k + 1)s) is the

piecewise constant interpolation between µk and µk+1 defined as

µst = (T k,st )#µk,

where,
T k,st = 1 + (t− ks)vk,

µk is defined in (16)-(18) with vk = vks, i.e., the continuous velocity in (22) at time ks, k =
0, ..,K − 1, µ0 = µ. Under assumption (24) we can first show in a way similar to the proof of
Lemma 10 in Arbel et al. (2019) that

W2(µks, µk) = O(s). (29)

Let Γ be the optimal coupling between µk and µks, and (X,Y ) ∼ Γ. Let Xt = T k,st (X) and Yt be
the solution of (10) with X0 = Y and t ∈ [ks, (k + 1)s). Then

Xt ∼ µst , Yt ∼ µt

and

Yt = Y +

∫ t

ks
vt̃(Yt̃)dt̃.

It follows that

W2
2 (µt, µks) ≤ E[‖Yt − Y ‖22] (30)

= E[‖
∫ t

ks
vt̃(Yt̃)dt̃‖

2
2]

≤ E[(

∫ t

ks
‖vt̃(Yt̃)‖2dt̃)2]

≤ O(s2).
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where, the first inequality follows from the definition ofW2, and the last equality follows from the
the uniform bounded assumption of vt. Similarly,

W2
2 (µk, µ

s
t ) ≤ E[‖X −Xt‖22]

= E[‖(t− ks)vk(X)‖22]

≤ O(s2). (31)

Then,

W2(µt, µ
s
t ) ≤ W2(µt, µks) +W2(µks, µk) +W2(µk, µ

s
t )

≤ O(s),

where the first inequality follows from the triangle inequality, see for example Lemma 5.3 in
Santambrogio (2015), and the second one follows from (29)-(31). �

B.2. Derivation of the results in Section 4.

B.2.1. BREGMAN SCORE FOR DENSITY RATIO/DIFFERENCE

The separable Bregman score with the base probability measure p to measure the discrepancy between
a measurable function R : Rm → R1 and the density ratio r is

Bratio(r,R) = EX∼p[g′(R(X))(R(X)− r(X))− g(R(X))]

= EX∼p[g′(R(X))R(X)− g(R(X))]− EX∼q[g′(R(X))].

It can be verified that Bratio(r,R) ≥ Bratio(r, r), where the equality holds iff R = r.
For deep density-difference fitting, a neural network D : Rm → R1 is utilized to estimate the

density-difference d(x) = q(x)− p(x) between a given density q and the target p. The separable
Bregman score with the base probability measure w to measure the discrepancy between D and d
can be derived similarly,

Bdiff(d,D) = EX∼p[w(X)g′(D(X))]− EX∼q[w(X)g′(D(X))]

+ EX∼w[g′(D(X))D(X)− g(D(X))].

Here, we focus on the widely used least-squares density-ratio (LSDR) fitting with g(c) = (c− 1)2 as
a working example for estimating the density ratio r. The LSDR loss function is

BLSDR(r,R) = EX∼p[R(X)2]− 2EX∼q[R(X)] + 1.

B.2.2. GRADIENT PENALTY

We consider a noise convolution form of Bratio(r,R) with Gaussian noise ε ∼ N (0, αI),

Bα
ratio(r,R) = EX∼pEε[g′(R(X + ε))R(X + ε)− g(R(X + ε))]− EX∼qEε[g′(R(X + ε))].

Taylor expansion applied to R gives

Eε[R(x+ ε)] = R(x) +
α

2
∆R(x) +O(α2).
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Using equations (13)-(17) in Roth et al. (2017), we get

Bα
ratio(r,R) ≈ Bratio(r,R) +

α

2
Ep[g′′(R)‖∇R‖22],

i.e., 1
2Ep[g

′′(R)‖∇R‖22] serves as a regularizer for deep density-ratio fitting when g is twice differen-
tiable.

B.2.3. PROOF LEMMA 10

By definition, it is easy to check

B0
LSDR(R) = Bratio(r,R)−Bratio(r, r),

where Bratio(r,R) is the Bregman score with the base probability measure p between R and r. Then
r ∈ arg minmeasureableRB0

LSDR(R) follow from the fact Bratio(r,R) ≥ Bratio(r, r) and the equality
holds iff R = r. Since

Bα(R) = B0
LSDR(R) + αEp[‖∇R‖22] ≥ 0,

Then,
Bα(R) = 0

iff
B0

LSDR(R) = 0 and Ep[‖∇R‖22] = 0,

which is further equivalent to

R = r = constant (q, p)-a.e. ,

and the constant = 1 since r is a density ratio. �

B.2.4. PROOF OF THEOREM 11

We use B(R) to denote B0
LSDR − C for simplicity, i.e.,

B(R) = EX∼p[R(X)2]− 2EX∼q[R(X)]. (32)

Rewrite (20) with α = 0 as

R̂φ ∈ arg min
Rφ∈HD,W,S,B

B̂(Rφ) =

n∑
i=1

1

n
(Rφ(Xi)

2 − 2Rφ(Yi)). (33)

By Lemma 10 and Fermat’s rule (Clarke, 1990), we know 0 ∈ ∂B(r). Then, ∀R direct calculation
yields,

‖R− r‖2L2(ν) = B(R)−B(r)− 〈∂B(r), R− r〉 = B(R)−B(r). (34)

∀R̄φ ∈ HD,W,S,B we have,

‖R̂φ − r‖2L2(ν) = B(R̂φ)−B(r) (35)

= B(R̂φ)− B̂(R̂φ) + B̂(R̂φ)− B̂(R̄φ)

+ B̂(R̄φ)−B(R̄φ) + B(R̄φ)−B(r)

≤ 2 sup
R∈HD,W,S,B

|B(R)− B̂(R)|+ ‖R̄φ − r‖2L2(ν),
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where the inequality uses the definition of R̂φ, R̄φ and (34). We prove the theorem by upper bounding
the expected value of the right hand side term in (35). To this end, we need the following three
inequalities (36)-(38). First, we show that

E{Zi}ni [sup
R
|B(R)− B̂(R)|] ≤ 4C1(2B + 1)G(H), (36)

where

G(H) = E{Zi,εi}ni

[
sup

R∈HD,W,S,B

1

n

n∑
i=1

εiR(Zi)

]
is the Gaussian complexity ofHD,W,S,B (Bartlett and Mendelson, 2002).

Proof of (36). Let g(c) = c2 − c, z = (x,y) ∈ Rm × Rm,

R̃(z) = (g ◦R)(z) = R2(x)−R(y).

Denote Z = (X,Y ), Zi = (Xi, Yi), i = 1, ..., n with X,Xi i.i.d. ∼ p, Y, Yi i.i.d. ∼ q. Let Z̃i be
an i.i.d. copy of Zi, and σi(εi) be i.i.d. Rademacher random (standard normal) variables that are
independent of Zi and Z̃i. Then,

B(R) = EZ [R̃(Z)] =
1

n
E
Z̃i

[R̃(Z̃i)],

and

B̂(R) =
1

n

n∑
i=1

R̃(Zi).

Denote

R(H) =
1

n
E{Zi,σi}ni [ sup

R∈HD,W,S,B

n∑
i=1

σiR(Zi)]

as the Rademacher complexity ofHD,W,S,B (Bartlett and Mendelson, 2002). Then,

E{Zi}ni [sup
R
|B(R)− B̂(R)|] =

1

n
E{Zi}ni [sup

R
|
n∑
i=1

(E
Z̃i

[R̃(Z̃i)]− R̃(Zi))|]

≤ 1

n
E{Zi,Z̃i}ni [sup

R
|R̃(Z̃i)− R̃(Zi)|]

=
1

n
E{Zi,Z̃i,σi}ni [sup

R
|
n∑
i=1

σi(R̃(Z̃i)− R̃(Zi))|]

≤ 1

n
E{Zi,σi}ni [sup

R
|
n∑
i=1

σiR̃(Zi)|] +
1

n
E{Z̃i,σi}ni [sup

R
|
n∑
i=1

σiR̃(Z̃i)|]

= 2R(g ◦ H)

≤ 4(2B + 1)R(H)

≤ 4C1(2B + 1)G(H),

where, the first inequality follows from the Jensen’s inequality, and the second equality holds since
the distribution of σi(R̃(Z̃i)− R̃(Zi)) and R̃(Z̃i)− R̃(Zi) are the same, and the last equality holds
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since the distribution of the two terms are the same, and last two inequality follows from the Lipschitz
contraction property where the Lipschitz constant of g onHD,W,S,B is bounded by 2B + 1 and the
relationship between the Gaussian complexity and the Rademacher complexity, see for Theorem
12 and Lemma 4 in Bartlett and Mendelson (2002), respectively. Next, we bound the Gaussian
complexity

G(H) ≤ C2B
√

n

DS logS
log

n

DS logS
exp(− log2 n

DS logS
). (37)

Proof of (37). SinceH is negation closed,

G(H) = E{Zi,εi}ni [ sup
R∈HD,W,S,B

1

n

n∑
i=1

εiR(Zi)]

= EZi [Eεi [ sup
R∈HD,W,S,B

1

n

n∑
i=1

εiR(Zi)]|{Zi}ni=1].

Conditioning on {Zi}ni=1, ∀R, R̃ ∈ HD,W,S,B it easy to check

Vεi [
1

n

n∑
i=1

εi(R(Zi)− R̃(Zi))] =
dH2 (R, R̃)√

n
,

where, dH2 (R, R̃) = 1√
n

√∑n
i=1(R(Zi)− R̃(Zi))2. Observing the diameter ofHD,W,S,B under dH2

is at most B, we have

G(H) ≤ C3√
n
E{Zi}ni=1

[

∫ B

0

√
logN (H, dH2 , δ)dδ]

≤ C3√
n
E{Zi}ni=1

[

∫ B
0

√
logN (H, dH∞, δ)dδ]

≤ C3√
n

∫ B
0

√
VCH log

6Bn
δVCH

dδ,

≤ C4B(
n

VCH
)1/2 log(

n

VCH
) exp(− log2(

n

VCH
))

≤ C2B
√

n

DS logS
log

n

DS logS
exp(− log2 n

DS logS
)

where the first inequality follows from the chaining Theorem 8.1.3 in Vershynin (2018), the second
inequality holds due to dH2 ≤ dH∞, in the third inequality we used the relationship between the matric
entropy and the VC-dimension of the ReLU networksHD,W,S,B (Anthony and Bartlett, 2009), i.e.,

logN (H, dH∞, δ) ≤ VCH log
6Bn
δVCH

,

the fourth inequality follows by some calculation, and the last inequality holds due to the upper
bound of VC-dimension for the ReLU networkHD,W,S,B satisfying

VCH ≤ C5DS logS,
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see Bartlett et al. (2019).
The third inequality we is the following. For any two integerM,N , there exists a R̄φ ∈ HD,W,S,B

with widthW = max{8MN1/M + 4M, 12N + 14} and depth D = 9M + 12, and B = 2B, such
that

‖r − R̄φ‖2L2(ν) ≤ C6cLmM(NM)−4/M. (38)

Proof of (38). We use Lemma 4.1, Theorem 4.3, 4.4 and following the proof of Theorem 1.3
in Shen et al. (2019). Let A be the random orthoprojector in Theorem 4.4, then it is to check
A(Mε) ⊂ A([−c, c]m) ⊂ [−c

√
m,
√
mc]M. Let r̃ be an extension of the restriction of r on Mε,

which is defined similarly as g̃ on page 30 in Shen et al. (2019). Since we assume the target r is
Lipschitz continuous with the bound B and the Lipschitz constant L, let ε small enough, then by
Theorem 4.3, there exist a ReLU network R̃φ ∈ HD,W,S,B with width

W = max{8MN1/M + 4M, 12N + 14},

and depth

D = 9M + 12,

and B = 2B, such that

‖r̃ − R̃φ‖L∞(Mε\N ) ≤ 80cL
√
mM(NM)−2/m,

and

‖R̃φ‖L∞(Mε) ≤ B + 3Lc
√
mM,

where, N is a ν− negligible set with ν(N ) can be arbitrary small. Define R̄φ = R̃φ ◦A. Then,
following the proof after equation (4.8) in Theorem 1.3 of Shen et al. (2019), we get our (38) and

‖R̄φ‖L∞(Mε\N ) ≤ 2B, ‖R̄φ‖L∞(N ) ≤ 2B + 3cL
√
mM.

Let DS logS < n, combing the results (35) - (38), we have

E{Xi,Yi}n1 [‖R̂φ − r‖2L2(ν)]

≤ 8C1(2B + 1)G(H) + C6cLmM(NM)−4/M

≤ 8C1(2B + 1)C2B

√
DS logS

n
log

n

DS logS
+ C6cLmM(NM)−4/M

≤ C(B2 + cLmM)n−2/(2+M),

where, last inequality holds since we choose M = log n, N = n
M

2(2+M) / log n, S = n
M−2
M+2 / log4 n,

i.e., D = 9 log n+ 12,W = 12n
M

2(2+M) / log n+ 14. �
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B.3. Proof of the relation between EPT and SVGD

Here we show that SVGD can be derived from EPT.
Proof Let f(x) = x log x in (5). With this f -divergence function, the velocity fields vt =

−f ′′(rt)∇rt = −∇rt(x)
rt(x) . Let g in a Stein class associated with qt.

〈vt,g〉H(qt)

=−
∫

g(x)T
∇rt(x)

rt(x)
qt(x)dx

=−
∫

g(x)T∇ log rt(x)qt(x)dx

=− EX∼qt(x)[g(x)T∇ log qt(X) + g(x)T∇ log p(X)]

=− EX∼qt(x)[g(x)T∇ log qt(X) +∇ · g(x)]

+ EX∼qt(x)[g(x)T∇ log p(X) +∇ · g(x)]

=− EX∼qt(x)[Tqtg] + EX∼qt(x)[Tpg]

=EX∼qt(x)[Tpg],

where the last equality is obtained by restricting g in a Stein class associated with qt, i.e., EX∼qt(x)Tqtg =
0. This is the velocity fields of SVGD (Liu, 2017).
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