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Abstract

We introduce reinforcement learning (RL) formulations of the problem of finding the ground state
of a many-body quantum mechanical model defined on a lattice. We show that stoquastic Hamilto-
nians — those without a sign problem — have a natural decomposition into stochastic dynamics and a
potential representing a reward function. The mapping to RL is developed for both continuous and
discrete time, based on a generalized Feynman—Kac formula in the former case and a stochastic
representation of the Schrddinger equation in the latter. We discuss the application of this mapping
to the neural representation of quantum states, spelling out the advantages over approaches based
on direct representation of the wavefunction of the system.

Keywords: Quantum Mechanics, Feynman—Kac Formula, Optimal Control, Reinforcement Learn-
ing

1. Introduction

Finding the ground state of a quantum mechanical system involves finding the lowest eigenvalue of
the Hamiltonian operator that describes the system. For many body systems, this is a problem that
grows exponentially harder as the number of particles increases, and finding tractable approaches
has been the principal computational challenge of quantum mechanics since its inception.

When studying a non-relativistic system of electrons and nuclei, a natural starting point is
a realistic Hamiltonian in continuous space with Coulomb interactions. Often, however, model
Hamiltonians are used instead: for example, the singularity of the Coulomb potential describing the
electron-ion attraction is often replaced with a less singular pseudopotential in quantum chemistry
calculations. Another type of simplification, more common in strongly correlated physics, is to
study lattice models where particle locations are discretized. Although less realistic, this simplifica-
tion often allows the treatment of larger systems where qualitative different thermodynamic phases
become apparent.

In recent years, progress in deep learning has opened up new fronts to attack the many body
problem by parameterizing the wavefunction describing the ground state using neural networks
(e.g. Carleo and Troyer (2017); Choo et al. (2019); Pfau et al. (2019)). In this work we introduce
a new neural approach to lattice models using an alternative formulation based on Reinforcement
Learning (RL), in which the optimal policy matches a stochastic process describing the ground state
probability distribution. Barr et al. (2020) applied the same perspective to continuum models using
the Feynman—Kac formula and tools of stochastic calculus. We will present the analogous theory
for the lattice case, and introduce algorithms to learn the optimal policy in this setting.
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Our formulation draws together concepts from many-body physics, control theory, and re-
inforcement learning. The next Section introduces the necessary background, before Section 3
presents the RL formulation of quantum states. Section 4 describes the application of this formula-
tion to the neural representation of quantum states, before we present our conclusions in Section 5.

2. Theoretical Background

In this Section we will introduce the models to be studied and two stochastic representations: in con-
tinuous time using a generalized Feynman—Kac formula, and in discrete time using the Schrodinger
equation directly. We then describe the class of linearly solvable Markov decision problems intro-
duced in Todorov (2006), which form the basis of our mapping to RL. The connections between
RL and quantum physics are well established in the case of continuous state spaces: see Barr et al.
(2020) and references therein.

2.1. Models

For illustration purposes, we restrict ourselves to the simplest family of lattice models describing a
system of N spins taking values Z; = +1. ' The Hamiltonians act on the 2/V-dimensional space
C? ® C?® - - - C? and are expressed in terms of Pauli spin matrices {X;, Y;, Z;}

0 1 0 —i 10
Xi_<1 0)2. Y_<z 0>i Zi_(o —1>i )

acting on spin ¢. We consider two examples, the transverse field Ising model

Hying = —J Y _ZiZ; —hY_X;, )
and the XXZ model
Hxxz=—Y [JZiZ; + JL (X:X; + YiY;)], 3)
(4.9)
where (i, j) denotes a sum over nearest neighbors on the lattice. The case J = J, is known as the
XXX or Heisenberg model (Auerbach, 2012).

2.2. Connection to stochastic dynamics

Particular limits of the above models can be described in terms of stochastic dynamics. We illustrate
this connection in the case of the XXX model by observing that in the space of two neighboring
spins

0 0 0 O
0 -1 1 0

[ZiZj + Xin + Y;ifj] —1= 0 1 -1 0 @
0 0 0 O

ij
This may be interpreted as a transition rate matrix for a Markov process with transitions ce <— eo,
where filled and empty circles represent spin up and spin down states. Apart from an additive

1. The term lattice gas is sometimes used, where the interpretation is that sites in the lattice are either occupied or empty.

370



GROUND STATES OF QUANTUM MANY BODY LATTICE MODELS VIA REINFORCEMENT LEARNING

constant, the operator —Hxxx for J > 0 is then a transition rate matrix of the symmetric simple
exclusion process, describing a lattice gas of diffusing particles (Figure 1).

=Isgp
N

—HXXX:JZ[ZiZj+Xin+E1/j—1]+JN. (5)
(1,5

A valid transition matrix has columns summing to zero; by symmetry of the Hamiltonian this is also
true for the rows. The ground state of Hxxx corresponds to the dominant (maximal) eigenvector of
the transition matrix with eigenvalue 0. This eigenvector describes a uniform distribution of particle
configurations.

When J # J, the Hamiltonian no longer has a simple stochastic interpretation, having the form

Hxxz = —I'sgp +V, (6)

where V' is diagonal but not constant. Hamiltonians of this form are called stoguastic, and we will
refer to the Markov process defined by I' as the passive dynamics, for reasons that will become
clear. In terms of the matrix elements of the Hamiltonian, the potential is Vg = V' (s)dss, where

V(s)=Hss+ > Hgg. (7
s'#£s

Moreover, note that (6) implies that Hyy < 0 for s # s'.
As a second example, consider Higjng, Which is stoquastic for 4 > 0 with very simple transition
rates
Fss = h, (3)

if the two spin configurations s and s’ differ at only one site (Figure 1). From Equation (7), the
potential is

V(S) - - Z Isys + Hss
s'#s

= —hN —J)  sis;.
(i.g)

A key property of stoquastic Hamiltonians is the following: if the passive dynamics is ergodic,
then the ground state wavefunction is positive (Bravyi, 2015). This is a consequence of the Perron-
Frobenius theorem, and explains why stoquastic Hamiltonians are ‘free of the sign problem’: the
ground state wavefunction does not change sign.

2.3. Feynman-Kac formula

For a stoquastic Hamiltonian, a representation of the ground state in terms of the passive dynamics
exists, in the form of the Feynman—Kac formula. Although this is more familiar in the context
of continuous state spaces where the underlying stochastic dynamics is Brownian motion, we will
require a discrete analog.
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Figure 1: Transitions in the simple exclusion process (above) and the Ising model (below). In the
simple exclusion process, a transition is a move of a particle to a non-occupied (white)
lattice site. For the Ising model, a transition is a flip of spin up (black) to spin down
(white) or the other way around.

First, note that the ground state ¢ of the Hamiltonian is the asymptotic solution of the imaginary
time Schrodinger equation
Opp(t) = —Hep(t) ©)

o(t) — e Folypg as t — oo, where Ej is the ground state energy (Goldberg and Schwartz, 1967).

The Feynman—Kac formula gives the solution of the imaginary time Schrodinger equation with
a terminal condition at some time ¢ + 7T'. For a stoquastic Hamiltonian with passive rates I' and
potential V', the Feynman—Kac formula states that the solution at the earlier time ¢ can be expressed
as an expectation (Rogers and Williams, 2000)

t+T
olort) = [ow (= [ Vst ) elorer.t+7)]. (10)
t

Here ¢(s;7,t + T) is the terminal condition, and the expectation is over trajectories following the
passive dynamics I starting at s; at time . Since ((s;,t) = e~ 0l (s;) is an exact solution of the
imaginary time Schrodinger equation, the Feynman—Kac formula implies

oo =B [ (= [ (Vs +E)at ) an(oner)]. an

In (11) the role of the potential is to modify the measure over trajectories relative to that of the
passive dynamics. It is perhaps not obvious, but nonetheless true, that the modified measure de-
scribes the trajectories of a different Markov process. In Section 3.1, we formulate the problem of
learning the Markov process that correctly describes the trajectories in the Feynman—Kac formula
as a Reinforcement Learning problem.
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2.4. Stochastic representations of the Schrodinger equation

The Feynman—Kac formula gives a natural stochastic representation of the ground state in terms
of a continuous time Markov chain. As discussed in Neirotti and De Oliveira (1996), the ground
state of a stoquastic Hamiltonian can also be characterized by the stationary state of a discrete
time Markov chain. Inspired by this result, we give two stochastic representations of the time-
independent Schrodinger equation

> Hsswo(s') = Eopo(s). (12)

For stoquastic Hamiltonians, the ground state wavefunction ¢ is the unique positive eigenfunction.
For the first representation, fix C' > maxg Hgs. For any such constant, we can rewrite the
Schrodinger equation (12) as

1

eo(8) = G | (€~ Has)po(s) = > Hsrpol(s) | - (13)
s'#s

Since C' > max Hgs and H,y < 0 for 8’ # s, we can turn this into a stochastic representation

o(s) = Z(s)

= E s]. 14
G~ Bo wepriley P 4

Here the transition probabilities p; (s’|s) are

C—-H VA '=
pilslls) = § ( ~Hu) [ 5 = (1s)
_Hss’/Zl(S) S 7é3
Wlth Zl(s) - C - HSS - ZSI#S HSS/'
For the second representation, we rewrite the Schrodinger equation slightly differently as
1
p0(8) =~ > Hsgpo(s) (16)
Hss - EO 8%
S
This leads to the stochastic representation
Z2(S) /
§) = ———"— s a7
(PO( ) Hgs — Eg s'~pa(-|s) [900( )]
0 s=s
po(s'|s) = (18)
—Hgg/Zo(8) s #s
with Z(s) = — > s/#s Hss- Note that in this second formulation the system always changes state

at each step of the process. In both cases, the formulation requires knowledge of the ground state
energy L.
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2.5. Linearly solvable reinforcement learning problems

The stochastic formulation of the Schrodinger equation given in the previous section may be rein-
terpreted as a linearly solvable Markov decision problem of the type introduced in Todorov (2006).

Todorov considers the maximum entropy reinforcement learning paradigm, where stochastic
policies are encouraged by complementing the reward function r(s,a) with the entropy of the
policy relative to some reference policy p.” As is usual in RL, a problem setting can be summarized
and studied by its Bellman equation. Two examples of (soft) Bellman equations are

U*(s) = R* + log GNE.‘S) [exp (r(s,a) + U*(a(s)))] (19a)
U*(s) = log a~£%-|s) [exp (r(s,a) + U*(a(s)))] - (19b)

Here 7 (s, a) is the reward following the action a in the state s and R* is a constant describing the
average reward of the optimal policy. U™ is the optimal state-value function and p is the reference
policy. Information implicitly contained in these soft Bellman equations is the objective function
and time horizon. While (19a) describes an infinite time horizon, (19b) describes a problem with
terminal states. Both consider an undiscounted setting where the objective function is simply the
sum (or average) of received rewards.

Todorov (2009) showed that for action-independent rewards, both soft Bellman optimality equa-
tions (19a) and (19b) can be transformed into linear equations. Consider action-independent rewards
r(s,a) = r(s). The key is an exponential transformation to the ‘desirability’ z of a state

z(s) = exp(U*(s)). (20)

By simply exponentiating the soft Bellman optimality equations (19a) and (19b), we obtain

) =@ B [a(a(s)], Cla)
2(s)=e® B [z(a(s))], (21b)
a~p(:|s)

which are indeed linear equations for the desirability z. Note that the introduction of discounting
results in nonlinear equations, breaking the connection with the Schrodinger equation.

3. Reinforcement learning for quantum ground states

Our first contribution is to show how to transform the stochastic representations of Sections 2.3
and 2.4 to reinforcement learning problems. The key step is a logarithmic transformation that trans-
forms the stochastic representation into a Bellman equation, and represents the inverse of Todorov’s
approach.

2. For details see Appendix A.
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3.1. Transforming the Feynman-Kac representation

The Feynman—Kac representation of the ground state Equation (11) may be formulated as a contin-
uous time RL problem. In this section, we give an idea of the proof, see Appendix B for details.
Consider a small time step At for the Feynman—Kac characterization of the ground state (11)

po(se) = e DAHEAE [po(s14 1)) + O(AL?). (22)

Comparison with (21a) gives a reward (s) = —V(s)At. Furthermore, the ground state wavefunc-
tion takes the role of the desirability z, so that we can make the identification

logpo(s) = U™(s). (23)

This identification is visualized in Figure 2 as a Bellman backup diagram. Taking the continuous
time limit, this leads to the following maximum entropy RL problem. The control is provided by
transition rates I'? that drive a continuous time Markov chain for the state s; of the system. We seek
the optimal rates I'*

I'* = argmax R (24)
o
1 T
Re— lim ~ E U (V(st)+7-[(st))dt], 25)
T—00 T S0:T 0

where the entropy term H is given by

e _
H(sy) = Z (r&_,s, T o +T% log <F8ﬁ5>> , (26)

st— s’
s'4sy t

and I';_, o denotes the passive dynamics of the system

—Hgy
P = » ® # s (27)
/

ZS’#S HSS/ S =S8

The expectation in the objective (25) is over trajectories sg.7 following the parameterized dynamics
.

The optimal policy strikes a balance between steering towards states s with low potential energy
V (s) and staying close to the passive dynamics I" of Equation (27). In physical terms, the objective
(25) minimizes the sum of potential energy V'(s) and kinetic energy . The optimal rates I'*
reproduce the Feynman—Kac measure on the space of trajectories . Note that (25) involves an ex-
pectation over the parameterized Markov process. In the case of continuous state spaces, optimizing
this expectation is straightforward using the reparameterization trick. The discrete case requires a
different approach as described below.

3.2. Transforming the Schrodinger representations

In a similar way, the stochastic representations of the Schrodinger equation from Section 2.4 can be
mapped to RL in discrete time. The linear equations for the desirability Equations (21a) and (21b)
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U*(s) = log ¢o(s)

Softmax

Figure 2: The Feynman—Kac formula seen as a Bellman backup diagram.

will be identified with the stochastic representations Equations (14) and (17) of the Schrodinger
equation.
The first representation Equation (14) maps to the soft Bellman equation Equation (19a) i.e.

U*(s)=R*+1log E [exp(r(s)+U*(a(s)))]. (28)

a~pi(-|s)
The identification is log po(s) = U*(s) as before, but now with reward function
r(s) = log Zi(s) (29)

and R* = —log(C — Ep). Therefore, the ground state problem is also equivalent to a discrete time
RL problem with an infinite time horizon.
The second representation (17) maps to the soft Bellman equation (19b)

U*(s) = log aNPIQE(.‘S) [exp (r(s) + U"(a(s)))] (30)
with reward 7
r(s) = log <HS52(—S)EQ> . (31)

This Bellman equation describes a RL problem with terminal states. In this type of RL problem,
there is no fixed time horizon, but exploration stops when one of terminal states is reached. The re-
ward is the total received until the terminal state is reached, which means terminal states necessarily
have state-value U* = 0.

We are free to choose the terminal states. Choosing a terminal state, i.e. setting U*(s) to zero, is
equivalent to forcing o(s) = 1 because of the logarithmic transformation U* = log ¢. Therefore,
a choice of terminal state entails a choice of normalization for the wavefunction. A natural candidate
for the terminal state is the classical ground state, i.e. the state s for which Hgg is minimal. Another
choice that could be advantageous computationally is a state s with minimum symmetry. This is
because states s and s’ that are related by a symmetry (such as translation) must obey ¢o(s) =
©0(8’), so that choosing a minimum symmetry state gives you many other terminal states for free.
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4. Application: neural quantum states

In this section, we describe how our mapping of the ground state problem to RL leads to new opti-
mization techniques for neural quantum states. Usually, the quantum wavefunction is parameterized
by a neural network ¢(s) = NN(s). In contrast, almost all deep reinforcement learning algorithms
obtain a neural approximation of either the state-value function U*(s) or the action-value function
Q" (s, a). Given a neural approximation of the state-value function U*(s), we immediately obtain
a neural approximation of the ground state wavefunction

¢o(s) = exp(U™(s)) (32)

because this is the transformation (23) we used to derive the reinforcement learning formulations.

Given a neural approximation of the action-value function Q*(s, a), we can also obtain a neural
quantum state. For this we use the following relation between the state-value function U* and the
action-value function Q*

U*(s) =log E [exp(Q*(s,a))]. (33)

ar~p(:|s)
Therefore, a neural approximation of Q* gives a neural approximation of the ground state wave-
function

po(s) = E [exp(Q7(s,a))]. 34

a~p(-|s)

4.1. Advantages of reinforcement learning neural quantum states

Most papers on Neural Quantum States use either Variational Monte Caro (e.g. Han et al. (2019);
Hermann et al. (2020); Kessler et al. (2019); Saito (2017)) or Stochastic Reconfiguration (e.g. Choo
et al. (2019); Nomura et al. (2017); Pfau et al. (2019)) to optimize neural quantum states. Our
optimization method using reinforcement learning could be preferable for the following reasons.

Firstly, our approach needs less data for one update step. For example, Variational Monte Carlo
needs to calculate the variational energy for each update step. This means that, given a parametrized
wavefunction ¢, samples s o< (2 need to be produced and the so-called local energy

H(p 1 /
—_— = — E Hss"P 35
0 (S) SO(S) — (S ) ( )

needs to be averaged over these samples. Therefore, for each update step, new samples need to
be generated, and for each sample, the neural wavefunction ¢ needs to be evaluated O (V) times,
where N is the number of spins in the system. In contrast, in a Q-learning approach, the action-
value function () can be optimized using off-policy pairs of states s and actions a. The fact that
only pairs of states and actions are needed means that the neural action-value function () only
needs to evaluated O(1) times per sample s. The fact that off-policy data can be used means that
generated samples can be reused for different update steps. So one update step can be completed
more efficiently using our reinforcement learning approach.

Secondly, our approach can more efficiently produce samples from the neural ground state. To
see this, note that such samples are usually generated using the Metropolis—Hastings algorithm. In
the Metropolis—Hastings algorithm, the proposal distribution of moves greatly influences its speed
of convergence. All reinforcement learning algorithms produce a policy that prefers states of high
state-value. In our formulation, that translates to a policy that points towards states of high ground
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state probability. In the next section, we show how this leads to a more efficient proposal distribu-
tion.

4.2. Experiments

To demonstrate the application to neural quantum states, we consider the two-dimensional trans-
verse Ising model (Equation (2)). Training details can be found in Appendix C and the code at
https://github.com/WillemGispen/Lattice-QuaRL .

We use Soft Q-learning (Haarnoja et al., 2018) with discrete space adaptations (Christodoulou,
2019) to approximate the optimal action-value function Q* with a convolutional neural network.
As described before, this leads via (34) to a neural representation of the ground state wavefunction.
One advantage of Christodoulou’s discrete space adaptations is that all action-values Q*(s, a) for a
specific state s are obtained with one neural network call, so that the neural quantum state (34) may
be calculated simply by weighting the sum of this output.

For square lattices up to 6 x 6, we can compare the variational energy of our optimized wave-
functions with exact diagonalization (Hamer, 2000). The numerically exact ground state energy of
the 6 x 6 square Ising model, at h = 1 and J = 0.32758, is Fy = —1.06375 (Hamer, 2000). All
our methods come within 0.1% of this value, obtaining —1.0628(0.09%), —1.0632(0.05%), and
—1.0633(0.04%) for the continuous, non-terminal, and terminal states formulations, respectively.
These errors should not be viewed as the limits of each method, but purely as a demonstration that
each method can obtain the ground state with reasonable accuracy.

To produce samples from the ground state, we use Metropolis—Hastings with a variety of pro-
posal distributions. The standard proposal distribution is uniform: a single random spin flip is pro-
posed per Metropolis—Hastings step. Using our learned action-values, we can instead propose single
spin flips according to exp(Q(s, a)). Finally, we can sample multiple spin flips from exp(Q(s, a))
and propose to flip those all at once.

To quantify how efficiently the different proposal distributions sample our optimized 6 x 6 Ising
wavefunctions, we measure the autocorrelation of the potential energy. This autocorrelation decays
approximately exponentially « exp(—t/7). Sampling single spin flips from exp(Q(s, a)) instead
of uniformly approximately halves 7. Sampling 6 spin flips from exp(Q(s, a)) results in a 6x
speedup of 7. Sampling 10 spin flips from exp(Q(s,a)) for a 10 x 10 Ising model (trained with
the terminal states method) results in a 10x speedup of 7. These ‘speedups’ refer to comparisons
with a single uniformly generated spin flip and are comparable for all our methods. Although our
measurements of 7 are only rough indications for the true autocorrelation or mixing times, they
suggest the following: sampling v/N spin flips from exp(Q(s,a)) for an Ising system with N
spins may reduce autocorrelation/mixing times from O(N) to O(v/N). Anyhow, it seems clear
that using exp(Q(s, a)) to propose spin flips can signicantly reduce autocorrelation/mixing times.
This could be particularly beneficial when autocorrelation/mixing times are long, such as for large
systems or when random actions have very low acceptance rates.

5. Conclusion

In this paper we have introduced three different reinforcement learning formulations of the problem
of finding the ground state of a quantum lattice model, as summarized in Table 1.

Even before doing extensive experiments, we can note some relative advantages and disadvan-
tages of the different RL formulations. Firstly, discrete time RL settings are more commonly studied

378


https://github.com/WillemGispen/Lattice-QuaRL

GROUND STATES OF QUANTUM MANY BODY LATTICE MODELS VIA REINFORCEMENT LEARNING

Basis ‘ Time Time horizon =~ Reward
Feynman-Kac formula | Continuous Infinite V(s)
Schrodinger equation | Discrete Infinite log 71 (s)
Schrodinger equation | Discrete Terminal states log <Hf§7(—s%10)

Table 1: Overview of the three different reinforcement learning formulations of the ground state
problem.

than continuous time ones, so it is easier to find efficient RL algorithms to solve the discrete time
formulations. A disadvantage of the third formulation is that the reward contains the ground state
energy Fj. Still, an estimate for the ground state energy may be obtained from the variational en-
ergy, which must be calculated anyway for validation purposes. Moreover, sparse terminal states
are challenging, although they can be dealt with (Agostinelli et al., 2019).

Future experiments will explore the performance of our three approaches relative to each other
and existing neural representations of quantum states. As well as being the basis of methods in their
own right, the learned process described by the rates I'y could be used for importance sampling of
the Feynman—Kac formula, which will be optimal (i.e. with zero variance) for I'y = I'*.
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Appendix A. Maximum entropy reinforcement learning

This section is based on Galashov et al. (2019); Haarnoja et al. (2017); Sutton and Barto (2018);
Todorov (2009).

The usual reinforcement learning objective of maximizing average reward leads to deterministic
policies. This can lead to instabilities in reinforcement learning algorithms. One attempt to alleviate
this is to extend the reward with a term that promotes policies that are as random as possible. This
strategy leads to the theory of maximum entropy reinforcement learning. For reinforcement learning

problems, the advantages range from improved stability, exploration, and transfer learning (Levine,
2018).
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Consider an reinforcement learning agent using a stochastic policy 7. This means that the agent,
observing state s, chooses action a with probability 7(a|s). The entropy regularization is ensured
by complementing the reward (s, a) with an entropy term

r(s,a) = (s, a) + aH(r([s)|[p(|s))- (36)

Here « is called the ‘temperature’: it controls the importance of the entropy term. H(m(-|s)||p(+|s))
is the relative entropy> of the policy 7 with respect to some reference policy p

dm dm
H(xw(-|s)||p(:|s)) =— E [10 <> a,s} 37
(m(-|8)llp(-[s)) ot a8\ ap (als)
and fﬁ;f((ff;q)) is the Radon—-Nikodym derivative of 7 with respect to p. Although the temperature o
is an important parameter in maximum entropy reinforcement learning, o = 1 is fixed by our
requirement that the Bellman equation maps to a linear Schrodinger equation (Todorov (2009)).
Thus, for an infinite time horizon, the entropy-regularized objective is to maximize

T : 1 d
R"= lim = E

T—oo T so.T

r(se, ar) +H(7T(-|8t)!|p('|8t))] (38)
t=0
where the expectation is over trajectories sg.7 of the policy .

The value function U* and the action-value function Q)* are changed accordingly. Therefore,
the usual Bellman optimality equations are replaced by their ‘soft’ counterparts: the soft Bellman
optimality equations (again for the example of an infinite time horizon)

U*(s) = R* + log IE( lexp (r(s,a) + U"(a(s)))] (39a)
a~p(-

|s
Q*(s,a) = R*+r(s,a)+1log E lexp (Q*(a(s),a’))] (39b)
a/~p(-|a(s))
where the expectations are according to the reference policy p. The constant R* describes the
average reward of the optimal policy. When there are terminal states, these soft Bellman optimality
equations become

U*(s) =log GNE'M lexp (r(s,a) + U*(a(s)))] (40a)
Q*(s,a) =r(s,a) + log a'~p%E-C\a(s)) [exp (Q* (a(s), a’))] (40b)

When the reference policy is uniform, it is easier to see how these are the ‘soft’ version of the
usual Bellman optimality equations: in this case we recognize the LogSumExp function which can
be interpreted as a soft version of the maximum function.

Finally, it is instructive to see the relation between the optimal action-value function Q* and
the optimal policy 7*. Usually, the action is selected that has the maximum action-value, i.e. the
argument of the maximum is used. In maximum entropy reinforcement learning, the optimal policy
follows instead from the soft argument of the maximum, i.e.

exp(Q*(s, a))
Ea’wp(-\s) [exp (Q*(S7 a’,))] .

3. The negative relative entropy is also called the Kullback-Leibler (KL) divergence, and this regularization strategy is
therefore sometimes called KL-regularization. If the reference policy p is uniform, then the relative entropy reduces
to the Shannon entropy.

4D

m*(als) =
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Appendix B. Proof of Reinforcement Learning Interpretation of Feynman-Kac
Formula

In this section, we prove the assertions in Section 3.1. For clarity, we begin by repeating the
Feynman—Kac representation of the ground state (11)

t+T
©vo(st) :I% [exp (—/ (V(sy) — Ep) dt’) cp0(3t+T)} ) (42)
t
For a small time step 7' = At, this implies
vo(s) = I% [exp(—(V(s) — Ep)At + O(AtQ))goo(st+At)] (43)
= ¢r(e) A Epo(sera))] + O(At?) (44)

where the reward is defined as
r(s) = =V (s)At. (45)

B.1. Definition of the action space

Although (44) already looks very similar to Todorov’s linear equation for the desirability (21a), we
still have to rewrite the expectation over paths of length At in terms of actions. That is, we replace
the expectation over trajectories [P with an expectation with respect to a ‘passive policy’ pa¢(+|s).
This passive policy is a discrete time approximation of the path measure PP.

To define the policy, we first clarify what the available actions are. An action is either a move to
another state s’ # s with Hgg # 0, or the trivial action ag of doing nothing, i.e. ag(s) = s. Since
P is characterized by the transition rates I' (27), the passive policy becomes

r At
pAt(a|S) _ s—a(s) a 7£ (07} (46)
1-— er—m(s)At a = qg.
With this definition of the passive policy pa¢, we can further rewrite (44) as
po(s) = e"BITRAL R pg(a(s))] + O(AR). (47)

a~pa¢(:|s)

B.2. Soft Bellman optimality equation

We recognize this as the same equation as Todorov’s linear equation for the desirability (21a).
Therefore, if we define the state-value function U*(s) = log ¢o(s), we get the soft Bellman opti-
mality equation (19a)

U*(s)=R*+1log E [exp(r(s) +U"(a(s)))] (48)

a~pac('|s)

with R* = FEyAt, which is illustrated in Figure 2. Therefore, using a small time step At, the
Feynman—Kac formula is approximately equivalent to a reinforcement learning problem with dis-
crete time steps At, an infinite time horizon and reward function r(s) = —V (s)At.
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B.3. The continuous time limit

In continuous time, the actions taken by an agent cannot be specified by a policy. The reason is
simple: the probability of taking an action in infinitesimal time is zero. Therefore, the control of an
agent is specified with transition rates instead. Todorov (2009) shows how to perform the continuous
time limit in continuous state spaces. We extend this argument to discrete state spaces.

In continuous time, the control is specified by transition rates I'? instead of a policy. For a small
discrete time step At, the transition rates and policy are related by

r? At+O(At? if a # ao,
WG(a‘S) _ s—a(s) , ( ) ) : 7& 0 (49)
1- ZI‘S_W(S)AH—O(At ) ifa = ay.
Comparing with (46), we see that the passive policy of course corresponds to ' =T,
Next, we compute the relative entropy
0 0 0 Fe 4 2
H(7(|s)llpac(-]s) = At Y <PHS, -1% ., +1% _log (f)) +O(A?).  (50)
s—s’

s'#s

Now we can take the limit At — 0. We arrive at a continuous time reinforcement learning problem,
where the goal is to find the transition rates I'? that maximize the objective (25).

Appendix C. Training details

Table 2 lists the hyperparameters we used in all our experiments. Training follows the Soft Q-
learning algorithm (Haarnoja et al., 2017) with adaptions for discrete action spaces by Christodoulou
(2019). In contrast with Christodoulou (2019), for simplicity we use only two neural networks:
Q = NN(f) and a target Q = NN(f). The policy is derived from Q* following (41). For the
continuous time formulation, we use the discrete time approximation described in Appendix B.2
with a timestep At = 10~%. This is because Soft Q-learning is not directly suitable for continuous
time reinforcement learning.

To keep the architecture of the neural networks as simple as possible, we used a convolutional
neural network with half-padding, so that the shape of the input is preserved. For a 6x6 Ising model,
this means that the output of the neural network is also a 6x6 array of real numbers, representing
the action-value of flipping the spin at that lattice site. For the continuous and non-terminal formu-
lations, however, we also need the action-value of the trivial action ag, i.e. not flipping any spin
ao(s) = s. From the relation Q*(s,a) = R* 4 r(s) + log po(a(s)) and the Schrodinger equation
(17), it follows that

exp (@ (s.a0)) =~ 3 Hewrexp(Q(5,)

aF#ag

so that we do not need to represent Q(s, ag) separately. For this trick, we need an estimate of the
ground state energy, and this is obtained from the energy validation of the wavefunction following
from ). This does not result in extra computation: the energy validation (done every 20 episodes)
needs to be done to keep track of training progress anyway.

Initial states are generated by randomly selecting half the spin sites and designating those spin
up, the others spin down. Training starts after the replay buffer has been filled completely with
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Parameter Value
optimizer Adam (Kingma and Ba, 2017)
learning rate 1073
learning rate decay % 0.99 every 10 episodes
batch size 4096
replay buffer size 65536
target update interval 20
hidden layers 3
convolutional channels 64
convolutional kernel size 3
convolutional stride 1
convolutional padding circular, 1
nonlinearity ReLU

Table 2: Hyperparameters

experiences (states, actions, rewards, new states) following a uniform policy (i.e. every action has
equal probability). For the terminal states formulation, we choose the entirely magnetized states to
be terminal. Although these states are then terminal in the sense that U* = 0, regeneration of initial
states is unnecessary.

Every training episode, one batch of experiences is generated and saved to the replay buffer,
after which one batch of experiences is sampled from the replay buffer D. Then that batch is
used to do one gradient step. The loss used in the gradient step derives from the soft Bellman
optimality equation for Q*. For the continuous time and non-terminal states formulation, the loss is
the variance of the soft Bellman residue (Sutton and Barto, 2018)

Vars gp [Q(s, a) —r(s) —log E

a'~p(-|a(s))

[exp (@(a(s%a/))]} ,

i.e. the variance of the soft Bellman equation (39b). Note that the target network @ is used in the
exponential, and that the constant R* disappears. For the terminal states formulation, it is the mean
squared error (Sutton and Barto, 2018)

E

s,a~D

(Q(s,a) —r(s)—log E

2
o0 (Qla(s).a) ] ,

a/~p(-|a(s))
i.e. the mean squared error of the soft Bellman equation (40b). The subscripts s, a ~ D indicate
that these losses are computed using batches sampled from the replay buffer D. In contrast, the
expectations inside the logarithm can be computed exactly, since one neural network call outputs
Q(a(s),a’) for all @’ and the transition probabilities p(-|a(s)) are known.

Training is done for 2000/4500/4500 episodes for the continuous/non-terminal/terminal formu-
lations respectively, taking around 20-40 minutes on a 12 GB GPU.
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