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Abstract
In this paper we introduce a provably stable architecture for Neural Ordinary Differential Equations
(ODEs) which achieves non-trivial adversarial robustness under white-box adversarial attacks even
when the network is trained naturally. For most existing defense methods withstanding strong
white-box attacks, to improve robustness of neural networks, they need to be trained adversarially,
hence have to strike a trade-off between natural accuracy and adversarial robustness. Inspired by
dynamical system theory, we design a stabilized neural ODE network named SONet whose ODE
blocks are skew-symmetric and proved to be input-output stable. With natural training, SONet
can achieve comparable robustness with the state-of-the-art adversarial defense methods, without
sacrificing natural accuracy. Even replacing only the first layer of a ResNet by such a ODE block can
exhibit further improvement in robustness, e.g., under PGD-20 (`∞ = 0.031) attack on CIFAR-10
dataset, it achieves 91.57% and natural accuracy and 62.35% robust accuracy, while a counterpart
architecture of ResNet trained with TRADES achieves natural and robust accuracy 76.29% and
45.24%, respectively. To understand possible reasons behind this surprisingly good result, we further
explore the possible mechanism underlying such . We show that the adaptive stepsize numerical ODE
solvers, such as adaptive HEUN2, BOSH3, and DOPRI5, have a gradient masking effect that fails
the PGD attacks which are sensitive to gradient information of training loss; on the other hand, they
cannot fool the CW attack of robust gradients and the SPSA attack that is gradient-free. This provides
a new explanation that the adversarial robustness of ODE-based networks mainly comes from the
obfuscated gradients in numerical ODE solvers with adaptive step sizes. (Source codes: https:
//github.com/silkylove/SONet; https://github.com/yao-lab/SONet)
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1. Introduction

Adversarial robustness is a central object of study in machine learning (Carlini et al., 2019; Zhang
et al., 2019b; Madry et al., 2018; Kolter and Wong, 2018), computer security (Sharif et al., 2016; Meng
and Chen, 2017), and many other domains (Song et al., 2018; Xie et al., 2017; Jia and Liang, 2017).
In machine learning, study of adversarial robustness has led to significant advance in understanding
the generalization (Schmidt et al., 2018; Carmon et al., 2019; Alayrac et al., 2019; Zhai et al., 2019),
interpretability of learning models (Tsipras et al., 2019), and connecting robust statistics (Gao et al.,
2019, 2020). In computer security, adversarial robustness serves as an indispensable component
towards AI safety against adversarial threat, in a range of security-critical systems and applications
such as autonomous vehicles (Eykholt et al., 2018) and biometric authorization (Thys et al., 2019).
The problem of achieving adversarial robustness can be stated as learning a classifier with high test
accuracy on both natural and adversarial examples. The adversarial example is either in the form of
unrestricted transformations, such as rotation and translation of natural examples, or in the form of
perturbations with bounded norms. The focus of this work is the latter setting.

Probably one of the most successful techniques to enhance model robustness is by adversarial
training (Madry et al., 2018; Zhang et al., 2019c). In the adversarial training, the defenders simulate
adversarial examples against current iteration of model and then feed them into the training procedure
in the next round. Despite a large literature devoted to the study of adversarial training, many
fundamental questions remain unresolved. One of the long-standing questions is the interpretability:
although adversarial training is an effective way to defend against certain adversarial examples, it
remains unclear why current designs of network architecture are vulnerable to adversarial attacks
without adversarial training. This question becomes more challenging when we consider the compu-
tational issues. Taking the perspective of Pontryagin Maximum Principle (or Bellman Equation) for
differential games induced by adversarial training, Zhang et al. (2019a) reduces adversarial training
to merely updating the weights of the first layer that significantly reduces the computational cost. Yet
in optimization, adversarial training is notorious for its instability due to the non-convex non-concave
minimax nature of its loss function.

When the “simulated” adversarial examples in the training procedure do not conceptually match
those of attackers, adversarial training can be vulnerable to adversarial threat as well. This is known as
the norm-agnostic setting, and there is significant evidence to indicate that adversarial training suffers
from brittleness against attacks in `2 and `∞ norms simultaneously (Li et al., 2019). Furthermore,
due to an intrinsic trade-off between natural accuracy and adversarial robustness (Tsipras et al., 2019;
Zhang et al., 2019c), adversarial training typically leads to more than 10% reduction of accuracy
compared with natural training.

Stability principle of dynamical systems has been applied to adversarial training to enhance the
robustness. Inspired by the initial value stability of convection-diffusion partial differential equation
and the Feynman-Kac formula of solutions, Wang et al. (2019) designs ResNet ensembles with acti-
vation noise that exhibits improvements in both natural and robust accuracies for adversarial training.
Moreover, motivated by the fact in numerical ODEs that implicit (backward) Euler discretization
has better stability than explicit (forward) Euler discretization that current ResNets exploit, Li et al.
(2020) designs implicit Euler based skip-connections to enhance ResNets with better stability and
adversarial robustness. However, all these studies are limited to adversarial training rather than
natural training.
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In response to the limitations of adversarial training, designing network architecture towards
natural training as robust as adversarial training has received significant attention in recent years.
On one hand, most positive results for obtaining adversarial robustness have focused on controlling
Lipschitz constants explicitly in the training procedure, such as requiring each convolutional layer
be composed of orthonormal filters (Cisse et al., 2017), or restricting the spectral radius of the
matrix in each layer to be small (Qian and Wegman, 2019). These approaches, however, do not
achieve comparable robustness as adversarial training against `∞-norm attacks. On the other hand,
with the introduction of ordinary different equations into neural networks (Chen et al., 2018), the
adversarial robustness for neural ordinary differential equations (ODEs) network architecture have
been attracting rising attention. Yan et al. (2019) found that ODE networks with natural training is
more robust against adversarial examples compared with traditional conventional neural networks,
but the robustness of ODE networks is much weaker than the state-of-the-art result by adversarial
training.

1.1. Our methodology and results

We begin with designing ODE networks analogous to the residual networks. Our ODE network is a
natural extension of the Residual Network: when we solve the ODE system by the explicit (forward)
Euler method, the two types of networks can be made equivalent. Nevertheless, to ensure the output
of our networks to be less sensitive to perturbations in input, we further require our ODE networks
to be stable by design. It has been well known in the dynamical system theory (Callier and Desoer,
1991) that input-output stability is an important property for a system to be insensitive (and even
robust) to input noise and perturbations. We rigorously show that the resulting networks are stable in
the Lyapunov sense, provided that the two weight matrices in each ODE block are skew-symmetric
to each other up to an arbitrarily small damping and the activation function is strictly monotonically
increasing. The design works for both convolutional and fully-connected neural networks.

Our stability analysis naturally leads to a new formulation of network architecture which has
several appealing properties; in particular, it inherits all the benefits of Neural ODE such as parameter-
and memory-efficiency, adaptive computation, etc., and the algorithm achieves comparable robustness
on a range of benchmarks as the state-of-the-art adversarial training methods. To understand possible
reasons behind this surprisingly good result, we further explore possible mechanisms and disclose
the obfuscated gradients caused by adaptive step sizes of numerical ODE solvers.

The main contribution and discovery in this report can be summarized as follows.

• Theoretically, we parametrize ODE networks analogous to the residual networks. Our stability
analysis shows that the ODE system is Lyapunov stable, provided that the activation function
is strictly monotonically increasing and the two weight matrices in the ODE block are skew-
symmetric with each other, up to an arbitrarily small damping factor.

• Algorithmically, inspired by our stability analysis, we propose a new formulation of neural
ODE network architecture, named Stabilized neural ODE Network (SONet). The architecture
is robust to small perturbations as each ODE block is provably stable in the sense of Lyapunov.

• Experimentally, we show that natural training of the proposed architecture achieves non-trivial
adversarial robustness in white-box PGD attacks, and even better than the state-of-the-art
ResNet10 adversarially trained by TRADES under white-box `∞ and `2 PGD20 attacks.
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• Furthermore, a possible interpretation for the adversarial robustness of ODE-based networks
is provided, suggesting that numerical ODE solvers with adaptive step sizes (e.g. adaptive
HEUN2, BOSH3, and DOPRI5) may lead to obfuscated gradients via large error tolerance in
adaptive step size choice, which fails the gradient based attacks like PGD but may not fool
robust gradient attacks like CW and gradient-free attacks like SPSA.

2. Introduction

Before proceeding, we define some notations and formalize our model setup in this section.

2.1. Notations
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Figure 1: Network architecture.

We will use bold capital letters such as W to represent
matrices, bold lower-case letters such as x to represent
vectors, and lower-case letters such as t to represent
scalars. Specifically, we denote by 0 the all-zero vector,
by 1 the all-one vector, by x ∈ Rdin the input vector to
each architecture block, and by z ∈ Rdout the output vec-
tor, where din does not necessarily equal to dout. Denote
by σ(·) the element-wise activation function, and σ′(·)
is its (sub-)gradient. We will frequently use dx(t)/dt to
represent the differential of x(t) w.r.t. the time variable
t. For norms, we denote by ‖ · ‖ a generic norm. Exam-
ples of norms include ‖x‖p, the `p norm of vector x for
p ≥ 1. We will use f1 ◦ f2(·) to represent the composi-
tion of two functions f1(·) and f2(·). Denote by B(x, ε)
a neighborhood of x: {x′ : ‖x−x′‖ ≤ ε}. Throughout the paper, for any given loss function L(f,x)
and data (set) x, we will term the optimization procedure minf maxx′∈B(x,ε) L(f,x′) as adversarial
training and term the optimization procedure minf L(f,x) as natural training.

2.2. ODE Blocks

In the Residual Networks (ResNets, a.k.a. Euler networks) (He et al., 2016), the basic blocks follow
the architecture1 (see Figure 1(a)):

zk+1 − zk
∆t

= σ(W
(1)
k+1xk),

xk+1 − xk
∆t

= σ(W
(2)
k+1zk+1), (1)

zk = 0, ∆t = 1,

where xk and xk+1 are the input and ouput of the k-th ResNet block, zk+1 is the intermediate layer,
and W

(1)
k+1 and W

(2)
k+1 are the weight matrices which represent either the fully-connected or the

convolutional operators. In the Neural ODE, in constrast, Chen et al. (2018) took the limit of the

1. Without loss of generality, we assume the bias term is a zero vector for simplicity, although our analysis works for the
general case as well.
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finite differences over the infinitesimal ∆t and parameterized the continuous dynamics of hidden
units using an ODE specified by a neural network:

xk+1 = fNeuralODE-k(xk; t0) :
dx(t)

dt
= σ(W

(2)
k+1σ(W

(1)
k+1x(t))), x(0) = xk, xk+1 = x(t0),

(2)

where xk is the initial condition of x(t), i.e., the input, and the output xk+1 is the evolution of x(t)
at time t0.

Our study is motivated by the Neural ODE. We focus on a parametric model similar to ResNet
block (1) (see Figure 1(b)):

dz(t)

dt
= σ(W

(1)
k+1x(t)− γz(t)),

dx(t)

dt
= σ(W

(2)
k+1z(t)− γx(t)), (3)

xk+1 = z(t0), x(0) = xk, z(0) = zk,

where xk and zk are the initial conditions of x(t) and z(t), respectively, γ > 0 is a small positive
constant as the damping factor and the output xk+1 is the evolution of z(t) at time t0. When we solve
ODE system (3) by the Euler solver with time step 1 and set γ to be 0, ODE block (3) is equivalent
to ResNet block (1).

Flexibility of parametric model in (4). Compared with the previous Neural ODE (Chen et al., 2018)
defined in (2), which can only deal with the case when the size of input xk is equal to the size of
output xk+1, the parametric model in (3) is able to handle the case when dim(xk+1) 6= dim(xk).
The intermediate layer z(t) can be viewed as an auxiliary layer, which makes our model more
flexible.

3. Stability of ODE Blocks

In this section, we present our stability analysis for ODE system (3) that serves as a guiding principle
in the design of network architecture against adversarial examples. Our analysis leads to the following
guarantee on the stability of the ODE system.

Theorem 1 (Stability of ODE Blocks) Suppose that the activation function σ is strictly monotoni-
cally increasing, i.e., σ′(·) > 0 and positive damping factor γ is small. Let W

(2)
k+1 = −W

(1)>
k+1 . Then

for any implementation of network parameters, the forward propagation (3) is stable in the sense of
Lyapunov; that is, for all δ > 0, there exists a stable radius ε(δ) > 0 such that if ‖x0 − x′0‖ ≤ ε(δ),
we have ‖fODENet-k(x0; t0)− fODENet-k(x′0; t0)‖ ≤ δ for all t0 > 0.

Theorem 1 demonstrates that there exists a universal stability radius ε > 0 (independent of inte-
gration time t0) such that small change of x0 within the ε-ball causes small change of fODENet-k(x0; t0)
for all t0 > 0. In contrast, the continuity in the original design of Neural ODE (Chen et al., 2018)
does not justify the existence of such universal stability radius for all t0 > 0. Our theory shows that
the quantity ‖fODENet(x0; t)− fODENet(x

′
0; t0)‖ does not diverge as t0 grows. So the ODE is robust

w.r.t. its initial condition, the input of the network.
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Intuition behind the stability. Our ODE block (3) has guaranteed stability without any explicit
regularization on the smoothness of its input and output. To see how the skew-symmetric architecture
encourages stability, let us ignore for now the nonlinear activation σ(·) and γ in the ODE block (3)
and consider its linearized version:

d

dt

[
x
z

]
=

[
0 W

(2)
k+1

−W
(2)>
k+1 0

] [
x
z

]
.
= Ak+1

[
x
z

]
, (4)

xk+1 = z(t), x(0) = xk, z(0) = zk.

As the linear system matrix Ak+1 is skew symmetric, one can show that the solution to the above
system is given by Callier and Desoer (1991):[

x(t)
z(t)

]
= Φ

[
x(0)
z(0)

]
,

where the state-transition matrix Φ is an orthogonal matrix ΦΦ> = I. Hence the input-output of the
linearized system is always norm-preserving.

Below we give a formal proof of stability of the ODE block with the nonlinear activation, i.e.
Theorem 1, based on results from system theory (Aström and Murray, 2010).

Proof We observe that Eqn. (3) has an equivalent expression, xk+1 = fODENet(xk; t0):

d

dt

[
x
z

]
= σ

([
0 −W>

k+1

Wk+1 0

] [
x
z

]
− γI

[
x
z

])
,

x(0) = xk, z(0) = zk, xk+1 := z(t0).

Denote by

Ak+1 :=

[
0 −W>

k+1

Wk+1 0

]
.

Note that Ak+1 is a skew-symmetric matrix such that Ak+1 = −A>k+1. So Re[λi(Ak+1)] ≤ 0 for
all i, where Re[·] represents the real part of a complex variable and λi(Ak+1) is the i-th eigenvalue
of matrix Ak+1.

We note that an ODE system is stable if Re[λi(Jk+1)] < 0 (Aström and Murray, 2010), where
Jk+1 is the Jacobian of the ODE:

Jk+1 := ∇[x;z]

(
σ

([
0 −W>

k+1

Wk+1 0

] [
x
z

]
− γI

[
x
z

]))
=: Dk+1(Ak+1 − γI),

where we have defined

Dk+1 := Diag
(
σ′
([
−γ −W>

k+1

Wk+1 −γ

] [
x
z

]))
.

Because σ′(·) > 0, the matrix D
−1/2
k+1 exists. We observe that

Jk+1 ∼ D
1/2
k+1(Ak+1 − γI)D

1/2
k+1,
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where the notation ∼ means the two matrices are similar. Since similar matrices have the same
eigenvalues, for all i, we have

λi(Jk+1) = λi(D
1/2
k+1(Ak+1 − γI)D

1/2
k+1). (5)

For the right hand side in Eqn. (5), Re[λi(Ak+1)] ≤ 0 So Re[λi(Ak+1 − γI)] < 0, and matrix
Dk+1 is positive diagonal. Combining with Eqn. (5), we have Re[λi(Jk+1)] < 0. Thus, we have
‖(x(t), z(t))‖ ≤ ‖(x(0), z(0))‖ and when we set the initial condition z(0) = z(k) = x(k), there
holds ‖x(t)‖ ≤ ‖(x(t), z(t))‖ ≤ ‖(x(0), z(0))‖ ≤

√
2‖x(0)‖ for any t > t0. Alternatively, one

can also achieve ‖x(t)‖ ≤ ‖(x(t), z(t))‖ ≤ ‖(x(0), z(0))‖ = ‖x(0)‖ if we choose initialization
z(0) = 0. Finally, the Lyapunov stability is valid with respect to Euclidean `2-norm. For other
equivalent `p-norms (1 ≤ p ≤ ∞), the result holds up to a constant that depends on the input
dimension. The proof is completed.

Another quantity governing the robustness of a network is its depth. Empirically, deeper networks
enjoy better robustness against adversarial perturbations (Madry et al., 2018). This is probably
because the score function of a ReLU-activated neural network is characterized by a piecewise
affine function (Croce et al., 2018); deeper neural network implies smoother approximation of the
ground-truth score function. Since ODE networks are provable deep limit of ResNets (Avelin and
Nyström, 2019; Thorpe and van Gennip, 2018), the proposed networks implicitly enjoy the benefits
of depth.

4. Architecture Design of ODE Networks

Architecture design of ODE blocks. Theorem 1 sheds light on architecture designs of ODE
blocks. In order for the ODE to be stable w.r.t. its input at the inference time, the theorem suggests
parametrizing ODE network (3) with W

(2)
k+1 = −W

(1)T
k+1 and a strictly increasing activation function.

We name our network SONet, standing for Stabilized ODE Network.
Probably the most relevant work to our design is that of Haber and Ruthotto (2017), where Haber

and Ruthotto (2017) proposed similar skew-symmetric architecture, but for the Euler networks. In
addition, Haber and Ruthotto (2017) discussed the proposed architecture in the context of exploding
and vanishing gradient phenomenon. In contrast, our work sheds light on algorithmic designs for
adversarial defenses which is different to Haber and Ruthotto (2017). We show that a good ODE
solver for problem (3) suffices to imply a robust network to adversarial attacks.

Benefits of skew-symmetric architecture. The skew-symmetric architecture of ODE blocks has
many structural benefits that one can exploit. Change of dimensionality: the introduction of the
auxiliary variable z ∈ Rdout enables us to change the dimension of the input and output vectors;
that is, the input variable x ∈ Rdin may have different dimensions as the output variable z ∈ Rdout .
This is in sharp contrast to the original design of Neural ODE (Chen et al., 2018), where the input
and output vectors of each ODE block must have the same dimension. Parameter efficiency: the
skew-symmetric ODE block has only half number of parameters compared to the ResNet blocks and
the original design of Neural ODE blocks due to parameter sharing. Inference-time robustness: the
established architecture enjoys stability (see Theorem 1). Furthermore, an expected side-benefit of
our design is that it automatically inherits all the benefits of Neural ODE (Chen et al., 2018): memory
efficiency, adaptive computation, invertible normalizing flows, and many others.
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Figure 2: Stabilized neural ODE Network (SONet) architecture example. Both fODENet-k and
fODENet-class are built on our stable ODE block defined in (3).

Construction of robust ODE networks. Our construction of ODE networks builds upon the
architecture design of ODE block (3).

• Feature-extraction block fODENet-k: The feature blocks aim at extracting the feature of each
instance. For the image classification tasks, the operation of multiplying z with Wk+1 in
Eqn. (3) serves as a convolution operator, and correspondingly, WT

k+1 serves as a transposed
convolution (a.k.a. de-convolution) operator which shares a common kernel with Wk+1. The
input and output dimensions din and dout are equal. We set the initial condition zk as xk, the
input of the ODE block.

• Classification block fclass: At the top layer of the network is the classification block which is
characterized by a fully-connected operator, mapping the extracted feature to the confidence
value associated with each class. The matrix Wk+1 parametrizes the weight matrix of the
fully-connected layer and WT

k+1 is its transpose. The input dimension din and the output
dimension dout are equal to the feature size and the number of classes, respectively, so din
might not equal to dout. We set the initial condition zk = z(0) as 1. This is conceptually
consistent with the argument that we have no prior knowledge on the true label of any given
instance.

Our ODE network is therefore a stack of various building blocks:

fODENet(x0; t) := fclass ◦ gpooling ◦ fODENet-L ◦ · · · ◦ fODENet-0 ◦ gchannel-copy(x0), (6)

where x0 is the input instance, L is the number of layers, gpooling represents the average pooling
operator, and gchannel-copy is the “channel-copy” layer which copies x0 along the channel direction in
order to increase the width of the network. The function fODENet : X → RC is the score function
which maps an instance to logits over classes. An example network is shown in Figure 2, this example
consists 5 feature-extraction blocks, a pooling layer and a classification block.

Comparisons with prior work. We compare our approach with several related lines of research in
the prior work. One of the best known algorithms for adversarial robustness is based on adversarial
training. The algorithms approximately solve a minimax problem

min
f

n∑
i=1

{
max

x′
(i)
∈B(x(i),ε)

P(f,x′(i))

}
,
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where x(i) represents the i-th instance, and P(·, ·) is the payoff function between defender and
attacker, which captures the smoothness of model f in an explicit manner; examples of P(f,x′(i))

include robust optimization L(f(x′(i)),y(i)) (Madry et al., 2018) and TRADES L(f(x′(i)),y(i)) +

βL(f(x′(i)), f(x(i))) (Zhang et al., 2019c), where L is the cross-entropy loss and y(i) is the one-hot
label. Prior to ours, random smoothing (Cohen et al., 2019) and stability training (Zheng et al.,
2016) are other techniques towards natural training as robust as adversarial training by adding small
Gaussian noises to the input images. Our work, on the other hand, is paralleled to these two lines of
research as we focus on the network architecture design. The combination of these methods may
further enhance the robustness of learning systems.

Another more related line of research is by network architecture design. Parseval networks (Cisse
et al., 2017) and L2-nonexpansive neural networks (Qian and Wegman, 2019) explicitly bounded the
Lipschitz constant by either requiring each fully-connected or convolutional layer be composed of
orthonormal filters (Cisse et al., 2017), or restricting the spectral radius of the matrix in each layer to
be small (Qian and Wegman, 2019). In complex problem domains, however, the explicit Lipschitz
constraints may negatively affect the expressive power of the networks and overly trade off natural
accuracy against adversarial robustness. Xie et al. (2019) involved non-local mean denoiser in the
architecture design of ResNet. But the model is vulnerable to attcks without adversarial training.
Svoboda et al. (2019) proposed PeerNets, a family of convolutional networks alternating classical
Euclidean convolutions with graph convolutions. Yan et al. (2019) explored robustness properties
of neural ODEs and proposed the time-invariant steady neural ODE (TisODE), which regularizes
the flow on perturbed data. But the model is weak under PGD attacks. In contrast, in this work,
we explore the possibility of enhancing robustness for classic (non-graph) networks with natural
training.

5. Adversarial Robustness under PGD Attacks

In this section, we evaluate the adversarial robustness of our proposed architecture against projected
gradient descent attacks and show the Stablized ODE Block/Net can achieve the state-of-the-art
performance even competitive to adversarial training by TRADES, without losing natural accuracy.
We use Anat(f) to denote the natural accuracy of the model, and Arob(f) to denote the robust
accuracy against adversarial attacks. Additional experiments are provided in Appendix.

5.1. Experimental Setup

We first introduce the experimental setup for datasets, deep neural network architectures, adversarial
attacks and adversarial defense methods.

ResNet: We apply the ResNet with 10 layers as the baseline model, denoted by ResNet10.
Compared with ResNet18 with 2-layer basic block, we use 1-layer basic block for ResNet10. The
first layer of ResNet10 is the convolution layer with Batchnorm (Ioffe and Szegedy, 2015) and ReLU
activation, then followed by four 1-layer residual basic blocks. Within each basic block there are two
convolution layers. Average pooling is applied after the residual blocks and the last layer is a fully
connected layer with softmax.

SONet: We apply our stable skew-symmetric ODE block (defined in Eqn. (3)) as the building
block in the SONet. More specifically, we replace each residual basic block in the ResNet10
architecture with the proposed stable skew-symmetric ODE block. Besides the replaced residual
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blocks, as shown in Figure 2, we replace the same first convolution layer with the stable ODE block
fODENet-0, and replace the last fully connected linear layer with the stable ODE block fODENet-class.

SOBlock: We replace the first convolution layer in ResNet10 above by our proposed skew-
symmetric ODE block (defined in Eqn. (3)) and leave the other parts unchanged.

Additionally, in order to compare the performance of SONet, SOBlock and ResNet with different
number of parameters, we scale the model capacity by changing the input channel from 32 to 64.

Adversarial attacks: For White-Box attacks, we focus on `∞-norm, `2-norm projected gradient
descent (PGD) and CW∞ (Carlini and Wagner, 2017) adversairal attacks to evaluate the adversarial
robustness of different models. For `∞ PGD attack, the update rule is defined as x′i ← ΠB∞(xi,ε)(x

′
i+

η1 sign(∇x′
i
L(f(x′(i)),y(i)))), where ΠB∞(·,·) is the projection operator with respect to `∞-norm, L

is the cross-entropy loss, x′i is initialized as the original input xi, ε is the adversarial perturbation
distance, and η1 is the attack step size. For `2 PGD attack, the update rule is defined as x′i ←
ΠB2(xi,ε)(x

′
i+η1 norm2(∇x′

i
L(f(x′(i)),y(i)))),where ΠB2(·,·) is the projection operator with respect

to `2-norm, and the norm2 is the normalization operator, i.e., norm2(x) = x/‖x‖2. For CW∞
attack, it minimizes c · f(x + δ) + ‖δ‖∞ with respect to δ such that x + δ ∈ [0, 1]n where c > 0
is a suitably chosen constant. For Black-Box attack, we use simultaneous perturbation stochastic
approximation (SPSA) (Uesato et al., 2018) adversarial attack which is one of the most powerful
gradient free attacks and it minimizes mθ(x)y0 − maxj 6=y0 mθ(x)j with respect to x such that
‖x− x0‖∞ < ε where mθ(x)j denotes the output logit for the class j and y0 is the true label. Unless
explicitly stated, on CIFAR10 dataset, we set the perturbation distance ε = 0.031, the attack step
size η1 = 0.003 for `∞ PGD attack, and we set the perturbation distance ε = 0.5, the attack step
size η1 = 0.1 for `2 PGD attack. For CW∞ attack, we set the perturbation distance ε = 0.031, the
max-iterations K = 100. And we apply the ε = 0.031, the number of iterations K = 20 and the
number of samples to be 32 for SPSA attack.

Adversarial training: We use TRADES (Zhang et al., 2019c) as our adversarial training
baselines for comparison. We do not compare with other adversarial training approaches because
TRADES is known as the state-of-the-art defense method which won the NeurIPS 2018 Adversarial
Vision Challange (Brendel et al., 2020). On CIFAR10 dataset, we set the `∞ perturbation distance
ε = 0.031, perturbation step size η1 = 0.007, number of iterations K = 10 for TRADES. For
TRADES, we train two models and set the regularization parameter as 1/λ = 1.0 and 1/λ = 6.0.

Training settings: On CIFAR10 dataset, for all mentioned models, we set the total epoch
T = 350, batch size B = 100, the initial learning rate η = 0.01 (decay 0.1 at 150 and 300 epochs
respectively), and apply stochastic gradient descent (SGD) with momentum 0.9 as the optimizer. No
weight decay is used during training. Unless explicitly stated, for all skew-symmetric ODE blocks,
we set the constant γ in (3) to be 0 and use DOPRI5 solver which is an adaptive solver with 0.1 error
tolerance.

5.2. Projected Gradient Descent (PGD) Attacks

We shall see that our proposed network, SONet, is able to achieve nontrivial `2 and `∞ white-box
PGD robust accuracy on CIFAR10 dataset, only with natrual training. Moreover, SOBlock even
outperforms ResNet10 with TRADES training with regard to both natural accuracy and robust
accuracy on both PGD20 and PGD1000 attacks, although TRADES is able to achieve a better tradeoff
compared with standard adversarial training (Zhang et al., 2019c).
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Table 1: Comparisons between SONet, SOBlock with natural training and ResNet10 with TRADES
under white-box PGD adversarial attacks on CIFAR10 dataset.

Model Channel
Under

which attack
Anat(f)

Arob(f)

ε = 0.031(`∞) ε = 0.5(`2)

SONet 32 PGD20 88.08% 53.67% 57.39%
SOBlock 32 PGD20 90.28% 58.21% 60.25%

ResNet10-TRADES (1/λ = 1.0) 32 PGD20 81.52% 35.26% 57.07%
ResNet10-TRADES (1/λ = 6.0) 32 PGD20 73.69% 43.46% 55.73%

SONet 64 PGD20 89.36% 61.62% 64.08%
SOBlock 64 PGD20 91.57% 62.35% 64.70%

ResNet10-TRADES (1/λ = 1.0) 64 PGD20 82.74% 37.64% 58.97%
ResNet10-TRADES (1/λ = 6.0) 64 PGD20 76.29% 45.24% 57.28%

SONet 32 PGD1,000 88.08% 19.62% 31.75%
SOBlock 32 PGD1,000 90.28% 52.01% 52.79%

ResNet10-TRADES (1/λ = 1.0) 32 PGD1,000 81.52% 33.60% 56.70%
ResNet10-TRADES (1/λ = 6.0) 32 PGD1,000 73.69% 43.30% 55.48%

SONet 64 PGD1,000 89.36% 24.25% 39.79%
SOBlock 64 PGD1,000 91.57% 55.43% 57.37%

ResNet10-TRADES (1/λ = 1.0) 64 PGD1,000 82.74% 35.78% 58.73%
ResNet10-TRADES (1/λ = 6.0) 64 PGD1,000 76.29% 44.70% 56.87%

5.2.1. BETTER ROBUSTNESS OF SONET IN NATURAL TRAINING THAN TRADES
ADV-TRAINING IN PGD20 ATTACKS

Under PGD20 attacks, SONet with natural training achieves better robust accuracy than TRADES-
adversarial training, without sacrificing natural accuracy. The robust accuracy against 20-step PGD
attack is a common metric for evaluating `∞ adversarial robustness (Madry et al., 2018; Zhang et al.,
2019c). We summarize the natural accuracy Anat and robust accuracy Arob under PGD adversarial
attacks on different models in Table 1, where we use PGDk

∗ to denote the k-step iterative PGD attack
within ∗-norm box. The natural accuracy of SONet with 32-channel and 64-channel are 88.08%
and 89.36% respectively, significantly better than that of ResNet10 with 32-channel and 64-channel
deteriorates as 81.52% and 82.74% trained by TRADES (1/λ = 1.0). Under PGD20

∞ attack, our
proposed SONet with 64-channel can achieve 61.62% robust accuracy, which is significantly better
than the corresponding ResNet10 model with TRADES training (both 1/λ = 1.0 and 1/λ = 6.0).

We also evaluate both models against PGD20
2 (`2-norm ε = 0.5) adversarial attack. We can

observe that SONet is robust against PGD20
2 attack, and achieves better robust accuracy than ResNet10

trained by TRADES.

5.2.2. NONTRIVIAL ROBUSTNESS OF SONET UNDER PGD1,000 ATTACKS

In addition to the PGD20 attack, we also conduct PGD attacks with more attack steps to better
approximate the worst-case attacks. The robust accuracy of all the models decreases with more
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attack steps (1,000 step), especially for `∞ attacks. However, SONet can still achieve 24.25% and
39.79% robust accuracy against PGD1,000

∞ and PGD1,000
2 attacks, respectively. Such a decay is worse

than TRADES-adversarial training that achieves robust accuracy at 44.70% (1/λ = 6.0) and 58.73%
(1/λ = 1.0), but is still non-trivial. Therefore, adversarial robustness of SONet deteriorates but is
still nontrivial under further iterative attack steps in PGD1000.

However, a better performance can be achieved by SOBlock below.

5.2.3. IMPROVED ROBUSTNESS OF SOBLOCK AT THE FIRST LAYER THAN FULL SONET

A surprising observation is that by only adopting stablized neural ODE block in the first layer of
ResNet10, SOBlock achieves even better performance than SONet that using all layers as such blocks.
In Table 1, the natural accuracy of SOBlock with 32-channel and 64-channel are 90.28% and 91.57%
respectively while maintains PGD1000

∞ robust accuracy with 52.01% and 55.43% respectively which
is much higher than 43.30% and 44.70% achieved by TRADES (1/λ = 6.0).

SOBlock almost achieves the best performance among nearly in all settings, except for PGD1000
2

attack it has a comparative robust accuracy with TRADES. In addition to achieving such a high
performance in accuracy, SOBlock particularly enjoys much less computational and memory cost
than SONet, that is favoured in applications.

6. Gradient Masking Effect by Adaptive Stepsize

In this section, we further explore the fragility of the adversarial robustness of our proposed ar-
chitecture under the variation of stepsize choices, robust gradient (CW) attacks, and gradient-free
(SPSA) attacks. These results suggest that the adversarial robustness of (stablized) ODE block or
net under PGD attacks is likely due to that adaptive stepsize in numerical integration has a gradient
masking effect. Gradient masking (Papernot et al., 2017; Athalye et al., 2018) is a phenomenon
widely associated with the obfuscation of gradient information in gradient based adversarial attacks,
yet failure under robust gradient and gradient-free attacks, thus giving a false sense of adversarial
robustness.

6.1. Robustness of SOBlock as a result from Adaptive Stepsize in Numerical Integration

To investigate the reason of adversarial robustness of SOBlock under PGD attacks, we conduct an
ablation study on the influence of different order of numerical ODE solvers together with their choice
of step size and error tolerance. We use WRN-34-10 as our base network for SOBlock in this section
in order to obtain better comparison. The experiments below suggest that adversarial robustness of
SOBlock comes from gradient masking effect of adaptive stepsize numerial ODE solvers, including
adaptive Heun, Bosh3, and DOPRI5.

6.1.1. ADVERSIARIAL ROBUSTNESS IS ONLY ASSOCIATED WITH ADAPTIVE STEPSIZE ODE
SOLVERS

In the first experiment, we compared three different choices of ODE solvers: Euler method (first
order, fixed step size h = 1), RK4 (fourth order, fixed step size h = 1), adaptive Heun (second order,
adaptive step size), Bosh3 (third order, adaptive stepsize) and DOPRI5 (fifth order, adaptive step
size, with default error tolerance atol = rtol = tol = 0.1). In Table 2, it shows that all adaptive
stepsize solvers (Heun, Bosh3, and DOPRI5) lead to adversarial robustness of SOBlock against
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Table 2: Comparisons between SOBlock and ODENet with different solver ODE solvers under PGD
adversarial attacks on CIFAR10 dataset.

Model Solver Anat(f)
Arob(f)

PGD20 PGD1000

SOBlock Euler 94.41% 0% 0%
SOBlock RK43/8 rule 92.06% 0% 0%

SOBlock Dopri5(tol=0.1) 94.22% 71.20% 63.20%
SOBlock Dopri5(tol=0.01) 93.98% 64.66% 46.40%
SOBlock Dopri5(tol=0.001) 94.32% 63.87% 46.20%
SOBlock Bosh3(tol=0.1) 92.85% 66.00% 52.84%
SOBlock Bosh3(tol=0.01) 92.30% 67.06% 59.74%
SOBlock Bosh3(tol=0.001) 92.38% 65.03% 55.31%
SOBlock Adaptive Heun(tol=0.1) 92.42% 61.16% 55.84%
SOBlock Adaptive Heun(tol=0.01) 92.43% 63.95% 53.79%
SOBlock Adaptive Heun(tol=0.001) 92.73% 57.68% 45.33%

ODENet Euler 87.04% 0% 0%
ODENet RK43/8 rule 87.78% 0% 0%

ODENet Dopri5(tol=0.1) 87.41% 42.69% 13.14%
ODENet Dopri5(tol=0.01) 87.46% 37.20% 8.36%
ODENet Dopri5(tol=0.001) 87.54% 36.19% 7.75%

PGD attacks, while SOBlocks trained by fixed stepsize solvers Euler and RK4 totally fail under both
PGD20 and PGD1000 in spite of high natural accuracy.

The same phenomenon persists when we change SOBlock to traditional ODENet (Chen et al.,
2018) without using the skew-symmetric stabilization in (4). Altough ODENet slightly drops the
natural accuracy as desired, one can see in Table 2 that robust accuracy of ODENet with both Euler
and RK4 fixed step size solver training totally fails (0%), while adaptive step size solver like DOPRI5
shows nontrivial robust accuracy under PGD20 and PGD1000.

Therefore, adversarial robustness of both ODENet and our stabilized ODE block/net is necessarily
associated with the adaptive stepsize in numerical integrations, rather than the fixed stepsize.

6.1.2. ADAPTIVE STEP SIZES WITH LARGE ERROR TOLERANCE IN DOPRI5 ALLOWS

GRADIENT MASKING

Both RK4 and DOPRI5 are high (fourth or fifth) order numerical ordinary differential equation
methods, where DOPRI5 enjoys a simple error estimate for adaptive stepsize choice (Dormand and
Prince, 1980). In DOPRI5, it uses six function evaluations to calculate both fourth- and fifth-order
accurate solutions, whose difference is taken as the error estimate of the fourth-order solution.
Adaptive stepsize is adopted in DOPRI5 when the error estimate is within the tolerance specified
by absolute error and relative error tolerances (atol, rtol), both set to be tol here (Hairer et al.,
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2008):

err =

√√√√ 1

n

n∑
i=1

(
y1i − ŷ1i

sci

)2

, sci = atoli + max (|y0i| , |y1i|) · rtoli.

Therefore in the second experiment, we investigate the influence of changing error tolerance tol

in DOPRI5. The err is then compared to 1 in order to find an optimal choice, where an order
q = min(p, p̂) solver may choose the optimal step size as hopt = h · (1/err)1/(q+1). For example,
DOPRI5 has q = 4, whence hopt = h · (1/err)1/5; adaptive Heun has order q + 1 = 2, and BOSH3
has order q + 1 = 3. Some care is now necessary for a good implementation: the formula above is
multiplied by a safety factor safety, for example safety = 0.8, 0.9, (0.25)1/(q+1), or (0.38)1/(q+1),
so that the error will be acceptable the next time with high probability. Further, h is not allowed to
increase nor to decrease too fast. For example, we may put

hnew = h ·min
(
ifactor,max

(
safety · (1/err)1/(q+1), dfactor

))
for the new step size. Then, if err ≤ 1, the computed step is accepted and the solution is advanced
with y1 and a new step is tried with hnew as step size. Else, the step is rejected and the computations
are repeated with the new step size hnew . The maximal step size increase ifactor = 10.0 and the
minimial step size decrease dfactor = 0.2 by default.

In Table 2, one can see that reasonably large error tolerance in DOPRI5 increases the robustness
of both SOBlock and ODENet, e.g. PGD20

∞-robust accuracy at 71.20% at tol = 0.1 against 63.87%
at tol = 0.001 for SOBlock and 42.69% at tol = 0.1 against 36.19% at tol = 0.001 for ODENet.
Large error tolerance leads to large perturbations on adaptive stepsize in DOPRI5, e.g. Table 3
shows that increasing tolerance from tol = 0.001 to tol = 0.1 lead to enlarged adaptive stepsize
perturbations from the order of 1e− 3 to 1e− 2.

These phenomena above show that adversarial robustness under PGD attacks is a result from
the adaptive stepsize choice of numerical ODE solvers that perturbs the gradients of loss functions,
where enlarging error tolerance properly may increase the robustness of SOBlocks and ODENets.
Therefore, adaptive step size ODE solvers like DOPRI5 contribute such a kind of gradient masking
against PGD attacks: reasonably large error tolerance in numerical function estimate leads to large
perturbations of gradients that fools the projected gradient descent in attacks. We also note that
over-enlarging error tolerance, especially in low order ODE solvers (adaptive Heun and Bosh3), may
lead to inaccuracies in natural training that eventually drops robust accuracy as well. Hence one
should expect a reasonable choice of error tolerance should depend on a trade-off between fitting
accuracy and gradient masking effect.

6.2. Robust Gradient (CW) and Gradient-Free (SPSA) Attacks

To further justify our reasoning above that the adversarial robustness of SOBlock and SONet is due
to the gradient masking effect of adaptive stepsize numerical ODE solvers, especially DOPRI5, we
further conduct experiments under two sorts of new attacks, CW attack that has robust gradients due
to the use of hinge loss and SPSA attack that is a kind of gradient-free attack.

Table 4 shows that in spite of the impressive robustness under PGD attacks, both SONet and
SOBlock are vulnerable under CW∞ and SPSA attacks, while ResNet10 trained with TRADES
still has relatively strong robustness. Particularly, under CW∞ attack, SOBlock (SONet) with 64
channels has 0% (11.20%) robust accuracy compared with ResNet10 in TRADES training at 39.77%
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Table 3: Adaptive steps with ODENet under different dopri5 tolerances and PGD∞ attack iterations

Solver PGD iterations Adaptive steps

Dopri5(tol=0.1)
1 [0.0, 0.262, 1.0]

100 [0.0, 0.253, 1.0]
1000 [0.0, 0.244, 1.0]

Dopri5(tol=0.01)
1 [0.0, 0.155, 0.827, 1.0]

100 [0.0, 0.150, 0.793, 1.0]
1000 [0.0, 0.149, 0.789, 1.0]

Dopri5(tol=0.001)
1 [0.0, 0.097, 0.423, 1.0]

100 [0.0, 0.096, 0.420, 1.0]
1000 [0.0, 0.094, 0.409, 0.981, 1.0]

Table 4: Comparisons between SONet, SOBlock with natural training and ResNet10 with TRADES
under CW∞ and SPSA adversarial attacks on CIFAR10 dataset.

Model Channel Anat(f)
Arob(f)

CW-Linf SPSA

SONet 32 88.08% 0% 2.50%
SOBlock 32 90.28% 0% 7.64%

ResNet10-TRADES (1/λ = 1) 32 81.52% 37.61% 68.30%
ResNet10-TRADES (1/λ = 6) 32 73.69% 38.92% 63.60%

SONet 64 89.36% 11.20% 15.10%
SOBlock 64 91.57% 0% 11.68%

ResNet10-TRADES (1/λ = 1) 64 82.74% 35.78% 69.97%
ResNet10-TRADES (1/λ = 6) 64 76.29% 39.77% 65.97%

(1/λ = 6); while under SPSA attack, SOBlock (SONet) of 64 channels has 11.68% (15.10%) robust
accuracy compared with TRADES training at 69.97% (1/λ = 1). This provides a support of the
gradient masking by DOPRI5, that fails to fool CW∞ and SPSA attacks which are not as sensitive
to gradients of cross entropy loss as PGD attacks. Hence the gradient masking of adaptive stepsize
gives us a false sense of adversarial robustness in PGD attacks.

7. Conclusions

In this paper, we propose a stabilized neural ODE architecture based on a skew-symmetric dynamical
system with provable Lyapunov stability. We show that such an ODE based network architecture
can achieve some state-of-the-art adversarial robustness with natural training against PGD attacks,
without sacrificing natural accuracy that is suffered by popular adversarial training methods such as
TRADES. To understand this phenomenon, we further explore the possible mechanism underlying
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such kind of adversarial robustness. We show that the adaptive stepsize numerial ODE solvers, such
as adaptive HEUN2, BOSH3, and especially DOPRI5, have a gradient masking effect that fails the
PGD attacks which are sensitive to gradient information of training loss, while they can not fool
the CW attack of robust gradients and the SPSA attack that is gradient-free. This provides a new
explanation that the adversarial robustness of ODE based networks is mainly due to the obfuscated
gradients in numerical ODE solvers with adaptive step sizes.
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