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Abstract
Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measure-
ments, and underlies numerous imaging modalities, such as Coherent Diffraction Imaging (CDI).
A variant of this setup, known as holography, includes a reference object that is placed adjacent to
the specimen of interest before measurements are collected. The resulting inverse problem, known
as holographic phase retrieval, is well-known to have improved problem conditioning relative to the
original. This innovation, i.e. Holographic CDI, becomes crucial at the nanoscale, where imaging
specimens such as viruses, proteins, and crystals require low-photon measurements. This data is
highly corrupted by Poisson shot noise, and often lacks low-frequency content as well. In this work,
we introduce a dataset-free deep learning framework for holographic phase retrieval adapted to
these challenges. The key ingredients of our approach are the explicit and flexible incorporation of
the physical forward model into an automatic differentiation procedure, the Poisson log-likelihood
objective function, and an optional untrained deep image prior. We perform extensive evaluation
under realistic conditions. Compared to competing classical methods, our method recovers signal
from higher noise levels and is more resilient to suboptimal reference design, as well as to large
missing regions of low frequencies in the observations. Finally, we show that these properties carry
over to experimental data acquired on optical wavelengths. To the best of our knowledge, this is
the first work to consider a dataset-free machine learning approach for holographic phase retrieval.

1. Introduction

Phase retrieval is a nonlinear inverse problem that arises ubiquitously in imaging sciences, and has
gained much recent attention (Shechtman et al., 2015). In this work we focus on a practical instance
of the problem that arises in Coherent Diffraction Imaging (CDI). Here, holographic phase retrieval
consists of recovering an image X0 ∈ Rm×n from a set of squared Fourier transform magnitudes

Y = |F (X0 + R0)|2 , (1)

where F denotes an oversampled Fourier transform operator and R0 ∈ Rm×n is a known reference
image whose support does not intersect the support of X0. The known reference image R0 distin-
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Figure 1: The advantage of using a reference for phase retrieval at Np = 1 photon/pixel. Two al-
gorithms, HIO and our HolOpt-P, are applied to reconstruct from Fourier magnitude data
of image alone (classical phase retrieval), and image with reference (holographic phase
retrieval). The setting and reference are given on Figure 2(b). Comparing between algo-
rithms, observe the higher-quality reconstruction when the reference is present. (VIRUS
image courtesy of Ghigo et al. (2008))

guishes holographic phase retrieval from the (classical) phase retrieval setting, where the goal is to
recover X0 from |F (X0)|2 alone. We focus entirely on the holographic version of the problem in
realistic conditions: with high noise levels and missing low-frequency data. The advantage provided
by the holographic reference is briefly illustrated on Figure 1.

In the remainder of this introduction we will situate this problem in the context of Coherent
Diffraction Imaging, review related works, and list our contributions. Section 2 describes our setup
in detail, and Section 3 our reconstruction strategy. In Section 4, we describe extensive experiments
and compare to several baseline methods. Section 5 presents a validation in an optical laser CDI
experiment. Section 6 concludes with a general discussion.

1.1. Holographic Coherent Diffraction Imaging and phase retrieval

Coherent Diffraction Imaging (CDI) is a scientific imaging technique used for resolving nanoscale
scientific specimens, such as viruses, proteins, and crystals (Miao et al., 1999). In CDI, an image
is sought to be reconstructed from X-ray diffraction measurements recorded on a CCD detector
plane. By the far-field approximation of optical theory, these measurements are approximately pro-
portional to the squared magnitude values of the Fourier transform of the electric field within the
diffraction area. Thus, the specimen structure (e.g., its electron density) can be determined, in prin-
ciple, by solving the phase retrieval problem. Holographic CDI is a popular setup to perform CDI
experiments in which the object undergoing diffraction physically consists of a specimen together
with a “reference”, i.e. a portion of the object a priori known. This setup is illustrated in Figure
2. The inclusion of a reference in the CDI setup both enhances the quality of image reconstruc-
tion, and greatly simplifies the analysis and solution of the corresponding phase retrieval problem
(Marchesini et al., 2008; Guizar-Sicairos and Fienup, 2007; Barmherzig et al., 2019).

Nevertheless, holographic CDI remains challenging in practice. Due to the quantum mechanical
nature of photon emission and absorption, CDI measurements are inherently corrupted by Poisson
shot noise. The severity of this noise corruption is inversely proportional to the strength of the
X-ray source in use, which is in turn quantified via Np, the number of photons per pixel reaching
the detector plane. Nanoscale applications of CDI often necessitate imaging in the low-photon
regime, where measurements are highly corrupted by noise. CDI measurements are also typically
lacking low-frequency data, due to the presence of a beamstop apparatus which occludes direct
measurement of these values (He et al., 2015; Latychevskaia, 2019; Barmherzig et al., 2020).
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(a)
(b)

Figure 2: Holographic CDI schematic. The upper portion of the diffraction area contains the spec-
imen of interest X0, and the adjacent portion consists of a known “reference” R0. The
recorded data Y has its low frequencies occluded by a beamstop. (Image courtesy of Sal-
iba et al. (2012).)

The holographic phase retrieval problem is commonly solved by inverse filtering (Gabor, 1948;
Kikuta et al., 1972), which amounts to solving a structured system of linear equations. While
straightforward, this method is not well-suited for noisy data. Wiener filtering (Gorkhover et al.,
2018) is a variant on this method with some denoising ability. Yet Wiener filtering is derived to ac-
count for an additive noise model — an assumption which is not true for Poisson shot noise at low
photon counts, and only holds as an approximation at high photon count levels (Salditt et al., 2020).
Moreover, these methods do not account explicitly for missing low-frequency data, and require a
minimum separation between the specimen and the reference objects, the holographic separation
condition (see Section 4.3). The most popular algorithm for the classical phase retrieval problem
is the Hybrid Input-Output (HIO) algorithm (Fienup, 1978), which is based on an alternating pro-
jection scheme. This method can be modified to the holographic setting by adding an additional
projection step to enforce the reference constraints, which greatly improves the algorithm’s perfor-
mance Barmherzig et al. (2019).

1.2. Related work

Machine learning for inverse problems Increasing research effort has been devoted to addressing
inverse problems, even beyond phase retrieval, with deep learning approaches (see Ongie et al.
(2020) for a recent review). Supervised strategies can be broadly divided into four main categories:
end-to-end methods, (e.g. McCann et al. (2017)), “unrolling” algorithms (e.g. Meinhardt et al.
(2017)), pretrained image denoisers (e.g. Romano et al. (2017)), and learned generative models as
highly informative priors (e.g. Tramel et al. (2016)). All of these approaches require a training set,
containing either matched signal-observation pairs or simply typical signals, with a large number of
data points. The reconstruction improves drastically when this information is available. However,
it is often unrealistic to assume such prior knowledge on the measured signal. Recently, for the
reconstruction of images, it was found that untrained generative neural networks with appropriate
architectures can still be efficient priors (Lempitsky et al., 2018; Heckel and Hand, 2019). By
adjusting their parameters to fit a single output observation, they do not require a training set, and
instead encourage naturalistic images due to architecture alone. In this paper we focus on the last
approach, as it is widely applicable to image data and satisfies our requirement of applicability in a
realistic setting.
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Machine learning for phase retrieval More specifically, several variants of the phase retrieval
problem have received attention in the context of machine learning for inverse problems. Com-
pressive Gaussian phase retrieval, where one observes the amplitude of random complex Gaussian
projections of the signal, is a popular setting in the machine learning community. It is easier than
the Fourier phase retrieval problem and often more amenable to theoretical analysis (see e.g. Aubin
et al. (2020)). For this version of the problem, trained generative models such as Generative Ad-
versarial Networks (Shamshad and Ahmed, 2018; Hand et al., 2018), as well as untrained priors
(Jagatap and Hegde, 2019), were found to be very effective on machine learning toy datasets. An
increasing number of works now consider the more realistic problem of Fourier phase retrieval. Us-
ing pre-trained Gaussian denoisers and iterative algorithms, Deep-prior-based sparse representation
(Shi et al., 2020), prDeep (Metzler et al., 2018) and Deep-ITA (Wang et al., 2020b), are solutions
robust to noise in the case where the corruption is small enough to be approximately Gaussian.
The end-to-end solution investigated by Uelwer et al. (2019) features some robustness to Poisson
shot noise, but struggles to generalize to complicated datasets. Meanwhile, the “physics-informed”
architecture of Goy et al. (2018), which includes information about the data generating process, is
shown to perform well on realistic signals at very low photon counts, but requires a few thousand
training examples. Closer to our work, Wang et al. (2020a) proposed a U-net and Bostan et al.
(2020) tested the deep decoder, both untrained neural networks, for Fourier phase retrieval, but did
not consider the holographic setting. To the best of our knowledge, Rivenson et al. (2018) is the
only proposition considering holography, showing that deep neural networks trained end-to-end on
a dataset of a few hundred images lead to state-of-the-art performance.

Other optimization approaches The use of auto-differentiation for Fourier phase retrieval was
initiated by Jurling and Fienup (2014), while the convenience of deep learning packages was ex-
ploited later (Nashed et al., 2017; Kandel et al., 2019). Thibault and Guizar-Sicairos (2012) derived
conjugate gradients to optimize the likelihood for classical (non-holographic) CDI, following either
the Poisson or the Euclidean metric. Recently, Barmherzig and Sun (2020) pointed at the potential
of likelihood optimization for holographic phase retrieval.

1.3. Our contributions

We address the holographic phase retrieval problem in the low-photon regime using a Poisson maxi-
mum likelihood framework and recent insights in machine learning for inverse problems. Our strat-
egy combines three key ideas: (i) a realistic physical noise model for CDI, (ii) auto-differentiation
and efficient optimization readily available in a package like PyTorch (Paszke et al., 2019), and
lastly (iii) the option to add a neural network prior. We (a) compare these methods to baselines, ex-
ploring several experiment challenges; (b) demonstrate significant improvements at different noise
levels; (c) investigate the impact of missing low-frequency data on our methods, and show that ours
are more robust than baseline methods; (d) investigate the impact of the distance between object
image and reference image on reconstruction quality, showing that our proposed method can easily
deal with distances below the holographic separation condition; (e) vary the oversampling rate of
observation, observing a graceful degradation of reconstruction with decreasing samples; and (f)
perform a comparison of our different methods on an experimental data set in the optical range.
Finally, we (g) provide a Python package1 to run our implementation.

1. https://github.com/marylou-gabrie/deep-phase-retrieval-holo
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2. Holographic CDI Setup

The data generation process mimics the key components of a holographic diffraction experiment as
realistically as possible, namely by including two crucial ingredients: the Poisson shot noise model
and the beamstop occluding low-frequency measurements.

Coherent diffraction imaging Let Z ∈ Rm×n represent a real m × n-pixel image. As ex-
plained in Section 1.1, the recorded CDI measurements can be approximated by the square of the
oversampled Fourier transform magnitude of the object image. Here, we assume an oversampling
factor of two, which is the minimum oversampling factor theoretically required for perfect recon-
struction in the noiseless setting (Hayes, 1982). Let F : Rm×n → C2m×2n be the doubly oversam-
pled discrete Fourier transform operator. F (Z) can be implemented as the discrete Fourier trans-

form of a zero-padded version of Z. Let Z̃ =

(
Z 0

0 0

)
∈ R2m×2n. Then let F (Z) = F(Z̃),

where F is the discrete Fourier transform operator. The intensity distribution at the detector is
defined as I(Z) = |F (Z)|2 (where the absolute value here is understood in the pointwise sense).

Beam stopping A beam stopping mask, or “beamstop”, is defined as B ∈ {0, 1}2m×2n such
that it takes the value 0 in a region of low frequency and 1 everywhere else. The beam-stopped
intensity image can then be written as I(Z)�B, where � represents pointwise multiplication.

Measurement process Let Np > 0 represent the expected mean number of photons incident
per detector pixel. Then (2m × 2n)Np is the expected total number of photons incident on the
detector. The measurement data vector Y ∈ R2m×2n is set to

Y ∼ C

Np
Poisson

(
Np

C
I(Z)�B

)
. (2)

The constant C is equal to the sum of all square Fourier magnitudes over the detector. The
inner normalization constant Np/C ensures that the simulated setting corresponds on average to
the measurement of Np expected photons per pixel. The outer normalization constant is applied to
make Y be of the same order of magnitude as I(Z)�B.

Holography setup We structure Z into an unknown object X , and a known reference R. The
setting we will use throughout this paper is as follows (see also Figure 2). Let X,R ∈ Rm×m,
and set X0 = (X|0m×m|0m×m),R0 = (0m×m|0m×m|R) with X0,R0 ∈ Rm×3m. Then Z =
X0 + R0 = (X|0m×m|R). The region of zeros 0m×m separating object and reference represents
the holographic separation condition. It is not necessary for our proposed methods (see Section
4.3), but required for several baseline methods. Thus to ensure a fair comparison, the separation
setting will be our standard setting.

3. A reconstruction strategy adapted to low-photon CDI

3.1. HolOpt-P and HolOpt-P-DD

We propose to maximize the likelihood of the measurements Y given the underlying image X and
the CDI model above. This objective involves the likelihood of the Poisson-distributed measure-
ments, accounting for the nature of noise in the low-photon regime, as well as the full forward
model (including reference and beamstop): X̂ = arg max

X
log p(Y |X, Np), where the distribution

of Y conditional on X is given by Equation 2. Replacing the expression of the Poisson distribution
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and dropping constants yields

X̂ = arg max
X

∑
ij|(B)ij=1

Yij log I ((X|0m×m|R))ij − I((X|0m×m|R))ij (3)

where the sum is taken only over non-zero entries of the beamstop mask. The optimization of this
objective is performed directly using gradient ascent in PyTorch.

We investigate two strategies. The optimization is done either directly on the pixels of X , as in
Equation 3, or on the parameters of a deep decoder neural network prior encoding X (Heckel and
Hand, 2019). We refer to these two variants as HolOpt-P for holographic Poisson likelihood opti-
mization, and HolOpt-P-DD for holographic Poisson likelihood optimization with a deep decoder.

3.2. The deep decoder

The deep decoder belongs to the class of untrained image priors: neural networks with image-
shaped outputs trained by gradient descent to output one single image. The architecture of the
network imposes an inductive bias favoring natural image statistics. In a sense, the architecture
itself has been trained by decades of engineering in image processing.

Deep decoder architecture The deep decoder essentially consists of an alternation of two oper-
ations — convolutions with filter size of 1×1 pixels, and upsampling by a factor of 2 using bilinear
interpolation. The input is a randomly initialized image of smaller size. In order to end up with
a specific output image size, either the input image size or the number of layers d is adjusted. It
should be noted that pixels are spatially coupled only through the upsampling layers, while the 1×1
convolutions are pixel-wise linear transforms shared among all pixels. This weight-sharing allows
to reduce the number of free parameter to mitigate overfitting (Heckel and Hand, 2019).

Let ci represent the number of channels at layer i and let ϑi ∈ Rci+1×ci×1×1 represent the
convolution kernels at layer i. Denote by convϑi the typical deep learning convolution with ϑi,
by up2 the bilinear upsampling operation, and by relu(x) = x1x>0(x). Then we can define one
component as

blocki := up2 ◦ relu ◦ convϑi

and the full network as
net := blockd ◦ · · · ◦ block1.

For an input image z ∈ R1×c1×κ×λ, let

σ(ϑ, z) = σ(ϑd, . . . , ϑ1, z) = net(z),

where ϑ = (ϑd, . . . , ϑ1) collects all the convolution parameters. For HolOpt-P-DD, we set X =
σ(ϑ, z) and train all ϑi in ϑ. Here the objective can be re-written as

ϑ̂ = arg max
ϑ

∑
ij/(B)ij=1

Yij log I((σ(ϑ, z)|0m×m|R))ij − I((σ(ϑ, z)|0m×m|R))ij . (4)

The reconstructed image is then the output of the deep decoder X̂ = σ(ϑ̂, z) after training on a
single magnitude image Y .

Deep decoder depth In our reconstruction experiments, we observe the number of channels of
the convolutional filters to only marginally change the outcome of the reconstruction, while varying
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Figure 3: Impact of depth of a deep decoder prior on the reconstruction illustrated on VIRUS. Left:
Relative reconstruction mean squared errors and structure similarity indices with ground
truth as a function of depth. Right: Best reconstruction out of 4 runs.

the depth of the prior trades off precision of the reconstructed edges and finer details (shallower)
with spatial regularity (deeper). To fine-tune a specific reconstruction it can be useful to adjust this
parameter, e.g. to limit the fitting power of the model at high noise levels, as pointed out by Heckel
and Hand (2019), yet its impact is much more subtle than that of depth. We observe that the
scaling of the distribution of the random input vector z does not have a significant impact on the
reconstructions. Following the heuristic of Heckel and Hand (2019), z was drawn from a uniform
distribution between 0 and 0.1. Using different scalings seem to be compensated for by the training
of convolutional layer weights, which were initialized with the PyTorch default.

In Figure 3, we illustrate the impact of depth by reporting errors and reconstructed images
of the VIRUS as a function of depth for different noise levels in the setting of the experiment
presented in Section 4.1 below. Visually, deeper decoders render smoother images. This is a direct
consequence of the upsampling layers which correlates the neighboring pixels. The deeper the
decoder, the smaller the latent representation z and the less independent the output pixels. At high
noise levels (Np = 1) the smoothing reduces the reconstruction error estimated using Euclidean
distance. Perceptually however, the smoothing is only beneficial to some extent, and a practitioner
would likely prefer a shallow network. At lower noise levels (Np = 10), the excess of depth can be
spotted directly in the reconstruction error as we observe a dip in the curve.

4. Experiments

Data Our strategy is demonstrated on the following datasets. SET12 is a dataset consisting of
12 images used as a traditional benchmark in image processing, here resized to 128 × 128 pixels,
while BIO10 , resized to 256× 256 pixels, contains 10 more realistic biological samples (these two
datasets are available with the paper code). We also consider the COIL100 dataset (Nene et al.,
1996) which contains 100 objects on a black background with 128 × 128 pixels. We explicitly
zero-out the background such that the support of the objects is not perfectly known. In contrast to
non-holographic phase retrieval, a good reference should disambiguate the position of the sample
within the frame. Hence, COIL100 allows us to test the robustness of the different algorithms to
reference design. All images are converted to gray scale, and examples are presented in Figure 15
of the Appendix.

Benchmark setup The strategy proposed in this work is compared against three algorithms
for holographic CDI: inverse filtering, Wiener filtering and Hybrid Input-Output modified for holo-
graphic phase retrieval, here referred to as HIO-Holo. We further augment HIO-Holo by selecting
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Figure 4: Comparing reconstructions across algorithms and noise levels on a sample image from
SET12 (CAMERA, top), a sample image from BIO10 (VIRUS, middle) and a sample
image from COIL100 (bottom) with a binary random reference and without beamstop.
Figure 16 presents 3 more images. Corresponding SSIM scores can be found in Figure 5.
To improve contrast black and white are set respectively to first and last (99th) percentile
of all pixels within each image. This convention is adopted for all visuals in the paper.
Revision: Results with TV regularization where added.
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Figure 5: Reconstruction scores (SSIM) for SET12 (left), BIO10 (center), and COIL100 (right) as
a function of the photon count Np with a binary random reference and without beamstop.
Corresponding reconstruction MSEs and residual observations MSEs are given in Figure
17 of the Appendix. Results with TV regularization where added.

the best residual reconstruction over all iterations, to give it the fairest possible chance in our com-
parison. As discussed in Section 1.2, there is no comparable machine learning method that can
be used here as a benchmark. However, we test variants of HolOpt-P and HolOpt-P-DD, termed
HolOpt-S and HolOpt-S-DD respectively, in which mean squared error (MSE) is optimized instead
of the Poisson likelihood. At high photon counts (low noise), Poisson noise is well-approximated
by Gaussian noise and the two objectives are expected to perform similarly. However, their differ-
ence becomes significant at lower photon counts (high noise). The benefits of taking into account
the Poisson nature of the noise are shown in experiments below. We also test variants with total
variation (TV) regularization, a common strategy in image reconstruction.

Hyperparameters Without access to a ground truth, the selection of hyperparameters of any of
the compared algorithms inevitably relies on heuristics. The heuristic adopted here is to tune the
hyperparameters by visual inspection on one of the specimens of each dataset at each noise level,
and leave these parameters fixed for all subsequent specimens. This would correspond to determin-
ing parameters once for each specific experimental setup. Practitioners are encouraged to proceed
similarly choosing preferably the specimen for which they have the strongest prior knowledge for
the hyperparameter selection. In Section 4.5 we propose a direction to formalize this procedure
based on statistics of collection of images.

For gradient descent, we use the Adam optimizer (Kingma and Ba, 2015) and learning rates
varying between 0.01 and 0.1, depending on the loss and prior. Maximum number of iterations
is also fixed depending on noise level and the reconstruction at the best magnitude residual value
along the iterations is retained as the final reconstruction. Deep decoder parameters are gathered
in Table 1 which also includes number of steps in the gradient descent. Some early stopping was
found beneficial in order to avoid overfitting at high noise levels. As a result we adapt the number
of iterations to the photon count. TV regularization coefficients are chosen at the highest possible
value that yields good visual reconstruction and does not deteriorate the final residual error. Selected
values ranged between 102 and 103.

Evaluation Algorithms are compared in terms of Structural Similarity Index (SSIM) Wang
et al. (2004). Comparisons in terms of relative reconstruction error — Euclidean distance between
the reconstructed X̂ and ground truth specimen X normalized by the `2-norm of X — and relative
residual error — understood as the Euclidean distance between the observations Y and the noiseless
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output of the forward model for a specimen X̂ normalized by the `2-norm of Y — are also reported
in the Appendix. Errors are averaged over images of each dataset as well as a few different random
seeds for BIO10 and SET12 to increase the statistics of the small datasets. Error bars correspond to
standard deviations.

4.1. Noisy reconstruction with and without the deep decoder

In a first series of experiments, we examine the robustness to noise of HolOpt-P and HolOpt-P-
DD and their TV variants. We set the reference R to a m × m binary array with entries 0 or 1
sampled uniformly and independently, a reference design generally very favorable to the recon-
struction (Candès et al., 2015; Marchesini et al., 2008). No beamstop mask is included.

Figure 4 shows a clear qualitative improvement of Poisson likelihood optimization methods over
the baselines as noise increases (observed consistently over the different datasets, see also Figure 16
in the Appendix). In Figure 5, HolOpt-P-DD consistently reaches higher SSIM scores in the noise
range Np = 1 to Np = 100 across datasets. For SET12 and COIL, which both feature images
with large constant regions, the TV regularized version HolOpt-P-DD-TV yields the best SSIMs.
At very low noise Np = 1000, the ordering of the methods varies, yet visual inspection confirms
that all algorithms perform similarly and well, except for HolOpt-S-DD combining squared loss and
deep decoder (see discussion below). On the other hand, at Np = 0.1, little information is left for
the algorithms to retrieve: all methods reconstruct images with SSIM scores close to 0.1, visually
failing in different ways.

Among the variants of HolOpt, we observe the following trends. The reconstruction loss and
visual quality of the samples are in almost all cases better with HolOpt-P than with HolOpt-S,
validating our adoption of the most realistic noise model and Poisson likelihood objective. The
difference between MSE and Poisson likelihood objectives is most drastic when including the deep
decoder prior. In particular, the MSE loss sometimes leads to artifacts in the images reconstructed
by HolOpt-S-DD (see Figures 4 and 16 in Appendix B).

Thus, we focus only on the Poisson likelihood objective going forward. Regarding the use of
a deep decoder, we distinguish several performance regimes for our method. At low noise (Np '
1000 to 100), there is no need for regularization by a deep decoder, and HolOpt-P-DD achieves
reconstructions of similar quality to HolOpt-P. Here, the SSIM is typically slightly worse with a
deep decoder than without (except for COIL images). Including a prior is not harmful, but often
unnecessary. At higher levels of noise, the denoising power of the deep decoder is beneficial. These
observations are in accordance with the intuition that a prior helps when information is scarce, but
is less helpful when observations of high quality are available.

Focusing on visuals, Figures 4 and 16, we observe that the relative performances of HolOpt-P-
TV, HolOpt-P-DD and HolOpt-P-DD-TV are image dependent. The deep decoder usually allows
better contrast. TV regularization smooths constant backgrounds, but sometimes also erases details
(see e.g. the writing of the COIL box). Adding TV regularization to the deep decoder can hurt
(COIL box, Np = 10 ) or help (COIL box, Np = 1). In the next experiments we focus on the
behavior of HolOpt-P and HolOpt-P-DD, noting that a practitioner should also check for improve-
ments with a TV regularization tuned to their setup.
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Finally, we note that training the deep decoder incurs an additional computational cost. For our
implementations, HoloOpt-P-DD is about 3 times slower than the classical HIO-Holo, an acceptable
slow-down in scientific imaging applications, if traded with reconstruction improvement.2
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Figure 6: An example reconstructed image from COIL dataset as a function of beamstop area frac-
tion a for fixed photon countNp = 1. See also Figure 26 in the Appendix for a differently
scaled visualization.

4.2. Reconstructing with missing low frequencies

As discussed in Section 2, a universal feature of CDI experiments is a beamstop which obscures
low-frequency magnitudes. In Wiener and inverse filtering, one simply sets the missing magnitudes
to zero (Guizar-Sicairos and Fienup, 2007), whereas HIO-Holo can be made agnostic to the miss-
ing magnitudes.We show here that our optimization-based methods can effectively incorporate an
arbitrary beamstop in the forward model, as defined in Equation 3. Moreover, we expect and in-
deed observe that the deep decoder prior can be particularly useful in compensating for the missing
magnitudes.

We evaluate our methods HolOpt-P and HolOpt-P-DD at several noise levels and beamstop
sizes, example reconstructions and SSIMs plots for COIL100 are in Figures 25 and 7 respectively.
Supplemental plots for all datasets and noise levels are available in Figures 22-35 of the Appendix,
including mean-squared error, which corroborate the trends observed here. We consider square
beamstop masks centered at the 0 frequency, identified by their area fraction a: the fraction of the
total measured magnitudes which are lost (visualized in Figure 22 of the Appendix).

We find that both HolOpt-P and HolOpt-P-DD vastly outperform HIO-Holo, Wiener and inverse
filtering at near-all noise levels, test images, and beamstop area fractions. The advantage in terms
of SSIM of the deep decoder prior is image-dependent: HolOpt-P-DD yields most significantly
improved SSIM relative to HolOpt-P on BIO10 at low photon counts, and at all noise levels for
COIL100, but makes little difference in SSIM on the SET12 dataset (see Figure 7). Yet visually,

2. We report computational costs for runs on an NVIDIA Tesla V100SXM2 GPU reconstructing a 128×128 pixel image:
HIO-Holo (1000 iterations) ∼27s, HoloOpt (2500 iterations) ∼3s and HoloOpt-P-DD (2-layer) (2500 iterations)
∼92s. Inverse filtering and Wiener filtering running times are negligible. Running times have not been optimized.
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Figure 7: Reconstruction SSIM as a function of beamstop area fraction. Baseline methods are run
for 5 trials per image while for tractability our methods are run 1 trial each on COIL100.
Average SSIM and one standard deviation error bars are shown. The leftmost datapoints
correspond to no missing data, i.e. formally a = 0 at the leftmost points. See Figure 23
for a comparision over all datasets.

as in Figure 25, the reconstructions via HolOpt-P-DD on all datasets have enhanced contrast and
details relative to HolOpt-P; furthermore, both HolOpt-P and HolOpt-P-DD visually outperform
baselines. We note that even at settings where baselines achieve higher SSIM, notably with largest
beamstop size and low photon counts on the COIL100 dataset, visual inspection of Figures 25
and 30 illustrate that no method performs recognizable reconstruction at this beamstop size; the
supposed improvement thus appears to be an idiosyncrasy of the SSIM3. In sum, the performances
of our methods smoothly degrade with increasing fraction of missing magnitudes a, and enable
reconstructions with lower error (Figure 7) and visually improved features (Figure 25) relative to
baselines. This provides powerful evidence that our method can enable refined reconstructions given
even large fractions of lost magnitude data at the highest noise levels.

4.3. Robustness to reference separation

The separation distance between the specimen and the reference limits the smallest resolution that
can be achieved (Salditt et al., 2020), and thus would ideally be minimized. For a specimen of
size m ×m pixels, the holographic separation condition dictates that inverse filtering and Wiener
filtering require a full separation (X|0m×m|R). In contrast, our approach only requires that the
forward model be differentiable, which is the case for any reference placement.

Here, we explore signal-reference association of the form (X|R|0m×m), where R is a random
binary block of small size: it is non-zero only on a box of size 0.1m × 0.1m with uniformly and
independently chosen entries in {0, 1}, and the box position is varied between experiments. No
beamstop is included. Figure 8 displays example reconstructions for Np = 10 and Np = 1 and
Figure 9 reports achieved SSIM scores as a function of the relative specimen-reference separation
for the three datasets and multiple level of noises. The only applicable baseline is HIO-Holo, illus-
trating the challenging nature of this setting.

For the three compared methods, the quality of the reconstruction depends slightly on the sepa-
ration, only HIO-Holo at 0 separation generates clearly poorer images. Visually, HIO-Holo yields

3. We note that the performance of Wiener and inverse filtering suffers at small beamstop sizes due to the “ringing”
effect of low frequencies, an effect which occurs regardless of the method for filling the low magnitudes. Evident as
a striping effect in Figure 25, this explains the occasional increase in SSIM with increasing beamstop size evident in
Figure 7.
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Figure 8: Reconstructions for photon countsNp = 10 (left) andNp = 1 (right) with a 0.1m×0.1m
binary random reference as a function of the relative separation. A separation of 0.5
implies that the left-most non-zero pixel of the reference is 0.5n pixels away form the
image. See Figure 19-18 in Appendix for Np = 100 and Np = 0.1 and different samples.

the less sharp images and HolOpt-P-DD is almost always the best algorithm. Without the deep
decoder, HolOpt-P reconstructions are also of good quality but sometimes show less contrast. The
neural network prior makes a difference in particular at high levels of noise and on COIL100 im-
ages, for which the deep decoder captures well the solid black background. These observations
are consistent with the average SSIM, but we note that the variance across images in the dataset
can be significant. At very high noise Np = 0.1 photon/pixel, HIO-Holo has better SSIM scores
than HolOpt-P methods, yet this is arguably the limit of reconstruction possibilities for any of the
methods (SSIM < 0.2 and visuals in Figure 18).

Overall, this more challenging experimental setting confirms the efficiency of our proposed
method, allowing reconstruction even if the holographic separation condition is broken. Moreover,
a deep decoder prior provides clear benefits even over direct optimization in certain cases.

4.4. Varying the oversampling rate

In a last experiment, we consider yet another challenge for reconstruction by lowering the oversam-
pling rate of the observation. For oversampling factors larger or equal to 2, the inverse problem
can be solved exactly in the absence of noise (Hayes, 1982). In the presence of noise, increased
oversampling is all the more beneficial, as collecting more information can compensate for the noise
corruption. We test how our methods perform relative to HIO-Holo for oversampling ratios around
the critical value of 2. Note that inverse and Wiener filtering are not well-defined for oversampling
rates smaller than 2. Figures 10 and 11 display results for a well-separated binary reference and
without beamstop at Np = 10 photon/pixel (see Appendix B.4 for identical figures at Np = 1). All
images reconstructed by HolOpt-P-DD are visually superior to images reconstructed by HIO-Holo
at oversampling factors both smaller and larger than 2. HolOpt-P-DD also produces sharper images
than HIO-Holo, although sometimes with less contrast. This phenomenology is largely captured by
the SSIM.

4.5. Selecting hyperparameters using group statistics

In order for systematic hyperparameter selection to be practically useful, it is required that it can be
performed without access to the ground truth image sought to be reconstructed from measurements.
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Figure 9: Reconstruction SSIM for decreasing photon counts Np as a function of the relative sep-
aration (see caption of Figure 8). Similar plot for all datasets is given in Figure 20.
Corresponding MSEs are plotted in Figure 21 of the Appendix.

For a reconstructed image or a group of reconstructed images with unknown ground truth stem-
ming from a specific hyperparameter setting, an idea is to quantify the extent to which the recon-
structions look in-distribution or expected with respect to the general class of images under inves-
tigation. We propose to do this using the Fréchet Inception Distance (FID, Heusel et al. (2017)).
Since the distribution of natural images is extremely high-dimensional and complicated, it needs
to be approximated. This can be done by selecting a collection of images, extracting features, and
using the statistic of the features on the collection to model a Gaussian distribution. The feature ex-
traction should ideally be Gaussianizing, contracting for images within the collection and mapping
non-images, out-of-distribution samples, to outlying points.

As a proof of concept, we study parameter selection on the COIL100 data set using features from
a pretrained VGG16 convolutional neural network (Simonyan and Zisserman, 2015). Let fVGG(x)
denote the function returning last-layer logits from a pretrained VGG16 network4. In order to create
a suitable image distribution, we divide the COIL100 dataset into two halves. The first 50 images
will serve as an image prior, and the second half will be used to perform hyperparameter selection
without ground truth. We compute

µprior =
1

50

50∑
i=1

fVGG(xi), Σprior =
1

49

50∑
i=1

(fVGG(xi)− µprior)(fVGG(xi)− µprior)
T . (5)

For a given hyperparameter setting, let x̂i, i = 51, . . . , 100 be the reconstructed images. Analo-
gously to the computation of the prior distribution parameters, we compute

µrecon =
1

50

100∑
i=51

fVGG(x̂i), Σrecon =
1

49

100∑
i=51

(fVGG(x̂i)− µrecon)(fVGG(x̂i)− µrecon)T . (6)

The Gaussians defined by (µprior,Σprior) and (µrecon,Σrecon) can now be compared using the
Wasserstein 2-distance between distributions, which reduces to

dprior, recon = ‖µprior − µrecon‖2 + trace(Σprior + Σrecon − 2
√

ΣpriorΣrecon). (7)

Using this distance, we can evaluate reconstructions with different hyperparameter settings and
select the one with the smallest distance to the collection of prior images.

4. We use the one available in the torchvision python package
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Figure 10: Reconstructed images for samples from SET12, BIO10 datasets with varying oversam-
pling factors (numbers above each column) at Np = 10 photon/pixel. See Figure for a
figure incuding COIL images.
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Figure 11: Average SSIM scores for SET12, BIO10 and COIL100 with varying oversampling fac-
tor at Np = 10 photon/pixel. Errors bars represent standard deviations.
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Figure 12: Evaluation of deep decoder depth selection using Fréchet Inception Distance (FID) to a
natural image prior. Different colors represent different noise levels. The unhashed bars
represent Fréchet Inception Distance, and the hashed bars represent MSE error com-
pared to ground truth. Asterisks are placed at the decoder depth representing minimal
FID and minimal MSE error. They correspond for all noise levels. Reconstruction ex-
amples at the selected decoder depths are shown on the right. While Np = 100 shows
sharp reconstructions at depth 4, the noisyNp = 1.0 leads to selection of depth 6, which
blurrs the finer features but preserves the shape.
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Figure 13: Reconstructions from experimental data. Further details on the experimental setup and
methods can be found in Appendix A.

We exemplify this strategy for setting depth of deep decoders. Figure 12 shows FIDs to the
natural image prior for different depths at two different noise levels. For a given noise level, the FID
is minimal at the same decoder depth as the MSE with ground truth. We have thus created a model
selection heuristic that can select the decoder depth leading to minimal squared reconstruction error.
While these statitics offer a promising direction of systematic hyperparameter selection, the FID
evaluated here exhibits the same selection biases as MSE (e.g. privileging low-frequency accuracy
over high frequencies). A practitioner may prefer shallower networks, as in the experiments from
the sections above.

5. Optical Laser Coherent Imaging Experimental Data

In this section, we evaluate HolOpt-P and HolOpt-P-DD, with and without TV regularization, on
the experimental data used in Guizar-Sicairos and Fienup (2008), obtained with permission from
the authors. In this experimental setup, a slide printed with the CAMERA image and an adja-
cent triangular reference object were exposed to a collimated wave from a He-Ne laser (632.8 nm
wavelength), and the resultant Fourier intensity pattern was measured. As this was not an X-ray
experiment, no beamstop was necessary. We refer to Guizar-Sicairos and Fienup (2008) for precise
experimental details and to Appendix A for detail of our methods. We compare variants of HolOpt-
P to baselines of Wiener filtering, inverse filtering, and HIO-Holo.5 The results are shown in Figure
13. HolOpt-P produces superior reconstructions, with the qualitative best by either HolOpt-P or
HolOpt-P-DD TV. Those produced by the Wiener and inverse filtering baselines have important arti-
facts; that of HIO-Holo looks better than the former two, but still suffers from significant shadowing
artifacts in the upper and lower left corners. We also observe that TV-regularization alone noticeably
smooths out the horizon line, effectively removing it, while the addition of a deep decoder prevents
this phenomenon.

6. Discussion and Conclusion

In this paper, we have shown that recent progress at the intersection of machine learning and in-
verse problems can yield highly successful algorithms which also account for realistic experimental
challenges. Our novel optimization framework for holographic phase retrieval improves on state-of-
the-art reconstruction, even in the most difficult experimental settings and without external training
data. Untrained image priors are confirmed to be powerful tools, especially when a significant

5. While the HERALDO method can yield sharper reconstructions, it is not directly comparable to the techniques
presented here. In particular, HERALDO requires specific assumptions on the reference geometry and uses a tailored
reconstruction operator for each new reference shape, whereas our method is one-size-fits-all (Guizar-Sicairos and
Fienup, 2007).
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amount of information is missing from the measured data due to low photon counts, beamstop-
obscured frequencies and small oversampling. Due to its practicality and flexibility, we believe our
methodology should prove valuable for practitioners. We confirm the success of our approach on
the experimental data in the optical range. For reasons of data availability, we leave an evaluation of
the method on X-ray holographic CDI to future work. Finally, our framework is easily adaptable to
different variants of the problem — even the mathematically distinct non-holographic setting — and
should enable similarly improved reconstruction with other imaging modalities than Holographic
CDI, such as optical holography (He et al., 2015), magnetic holographic imaging (Hu et al., 2019),
and ptychography (Wen et al., 2012).
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Stefano Marchesini, Sébastien Boutet, Anne E. Sakdinawat, Michael J. Bogan, Sǎa Bajt, Anton
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Figure 14: Reconstruction from experimental data. (a) Measurements (1024 × 1024 pixels), (b)
Reference positioning (512× 512 pixels), (c) Full reconstruction for HolOpt-P-DD-TV
(512× 256 pixels)

Noise Np = 1000 Np = 100 Np = 10 Np = 1 Np = 0.1

SET 12 d2 c128 d3 c128 d2 c128 d1 c128 d1 c128
COIL100 d2 c128 d2 c128 d2 c128 d1 c128 d1 c128
BIO10 d3 c128 d3 c128 d2 c128 d2 c128 d2 c128
# iterations 10000 10000 5000 2500 1250

Table 1: Depth, number of channels, and number of optimizer steps used for the deep decoder in
all experiments.

Appendix A. Optical Laser Coherent Imaging Experiment Details

We follow the same preprocessing steps on the raw data as in Guizar-Sicairos and Fienup (2008):
namely, averaging over multiple exposures and frames, removing detector artifacts, and attenuating
higher frequencies. The 1024 × 1024 processed magnitude measurements are displayed in Figure
14(a). Considering an oversampling ratio equal to 2, we assume half of a 512 × 512-pixel frame
known, including the triangular reference, and reconstruct the remaining half. The deep decoder
includes 3 layers and 256 channels. Figure 13 presents a zoom taken on the CAMERA image
reconstructed close to the top left corner of the frame for each methodm (see Figure 14(c) for the
full frame on the example of HolOpt-P-DD-TV).

Appendix B. Additional information for numerical experiments

In this section we provide additional figures for experiments presented in the main text as well as hy-
perparameters settings. Figure 15 display sample images of the three datasets used for experiments.
Table 1 gathers deep decoder hyperparameters selected.
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Figure 15: Example images from datsets used in the experiments of this paper: SET12 (128x128
pixels), BIO10 (256x256 pixels) and COIL100 (128x128pixels)

B.1. Noisy reconstruction experiment

Figures 16 and 17 present results for the experiment described in 4.1 of the main text. The superior
visual quality of our algorithms is confirmed on samples form BIO10 and COIL100. In Figure 17
we compare methods in terms of residual `2 error minimization and MSE. These measure appear
less informative of the perceived similarity of ground truth and reconstructed images than SSIM. In
particular, it should be observed that the residual error reflects performance neither perceptually nor
according to the other error metrics.

B.2. Robustness to separation experiment

Figure 18, similar to 8, displays visual of the reconstruction as a function of the separation between
sample and reference for two additional noise levels. in Figure 21 we report MSEs averaged over
the datasets as a function of the separation. Observations on the ordering of the methods and de-
pendence with separation are comparable with the observations drawn from SSIM plots in the main
text.

B.3. Missing low-frequencies (beamstop) experiment

We now visualize the beamstop area fractions tested in Section 4.2 (see Figure 22), as well as
show analogous plots to Figures 25 for all three test images and for all remaining noise levels,
Np = 10, 100, 1000 (Figures27-35). Figure 24 also plots all settings using `− 2 errors.

In Figure 26, for completeness we replicate exactly the reconstructions of Figure 25 with an al-
ternate image scaling technique. In particular, we map colors to pixel values according the absolute
minimum and maximum value per reconstruction, instead of the more nuanced quantile approach of
the main body (done to maintain fairness in intensity comparisons between methods). Hints of the
underlying images are newly visible in the worst reconstructions, particularly in Wiener and inverse
filtering, but the relative quality of the competing methods is wholly unchanged.

B.4. Oversampling experiment

To complement results in the main text, Figure 36 displays reconstruction MSEs as a function of
the oversampling rate as a function of the oversampling rate of the observations at Np = 10. Figure
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Figure 16: Comparing reconstructions across algorithms and noise levels on a sample of images
from SET12, BIO10 and COIL100 with a binary random reference and without beam-
stop. Same as Figure 4. Results with TV regularization were added.
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Figure 17: Relative mean squared errors on the reconstructions and residual mean squared error
averaged over the datasets. These are different metrics from the SSIM scores presented
in Figure 5 to analyze the results of the experiment presented of Section 4.1. Results
with TV regularization where added.
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Figure 18: Reconstructed images as a function of the relative separation as described in caption of
Figure 9. Images correspond to the best of 10 runs in terms of residual error.
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Figure 19: Reconstructions for photon counts Np = 10 (left) and Np = 1 (right) with a 0.1m ×
0.1m binary random reference as a function of the relative separation. A separation of
0.5 implies that the left-most non-zero pixel of the reference is 0.5n pixels away form
the image.
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Figure 20: Reconstruction SSIM for decreasing photon counts Np as a function of the relative sep-
aration (see caption of Figure 19).
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Figure 21: Reconstruction errors for decreasing photon counts Np with a 0.1m × 0.1m binary
random reference as a function of the relative separation. A separation of 0.5 implies
that the left-most non-zero pixel of the reference is 0.5n pixels away form the image.
Dashed lines corresponds to best run out of the 10 runs in terms of residual error.
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a =0e+00 a =5e-05 a =1e-04

a =5e-04 a =1e-03 a =5e-03

a =1e-02 a =5e-02 a =1e-01

Figure 22: Examples of the measured magnitudes corresponding to varying beamstop area fractions
for the first image of SET12, CAMERA, with Np = 10.

38 and Figure 39 focus on the noise level Np = 1 photon / pixel and are similar to Figures already
given at Np = 10.
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Figure 23: Reconstruction SSIM as a function of beamstop area fraction. Baseline methods are run
for 5 trials per image across all datasets, while for tractability our methods are run for
2 trials each on BIO10 and SET12, and 1 trial each on COIL100. Average SSIM and
one standard deviation error bars are shown. The leftmost datapoints correspond to no
missing data, i.e. formally a = 0 at the leftmost points.
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Figure 24: Reconstruction errors on all three datasets (one per row, as indicated by the leftmost row
levels) as a function of beamstop area fraction. Errors and error bars are computed as
in Figure 5. The leftmost datapoints at a = 1e−6 correspond to no missing data, i.e.
a = 0 at the leftmost points.
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Figure 25: An example reconstructed image from each of the SET12, BIO10, and COIL datasets,
respectively, as a function of beamstop area fraction a for fixed photon count Np = 1.
See also Figure 26 for a differently scaled visualization.
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Figure 26: Figure 25 scaled without quantiles. An example reconstructed image from each of the
SET12, BIO10, and COIL datasets, respectively, as a function of beamstop area fraction
a for fixed photon count Np = 1.
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Figure 27: Reconstructed SET12 image with varying beamstop at Np = 10 photons.
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Figure 28: Reconstructed SET12 image with varying beamstop at Np = 100 photons.
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Figure 29: Reconstructed SET12 image with varying beamstop at Np = 1000 photons.
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Figure 30: Reconstructed COIL image with varying beamstop at Np = 10 photons.
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Figure 31: Reconstructed COIL image with varying beamstop at Np = 100 photons.
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Figure 32: Reconstructed COIL image with varying beamstop at Np = 1000 photons.

38



H
IO

-H
ol

o

Ground Truth a =0e+00 a =5e-05 a =1e-04 a =5e-04 a =1e-03 a =5e-03 a =1e-02 a =5e-02 a =1e-01

W
ie

n
er

F
ilt

.
In

ve
rs

e
F

ilt
.

H
ol

O
p

t-
P

H
ol

O
p

t-
P

-D
D

Figure 33: Reconstructed BIO10 image with varying beamstop at Np = 10 photons.
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Figure 34: Reconstructed BIO10 image with varying beamstop at Np = 100 photons.
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Figure 35: Reconstructed BIO10 image with varying beamstop at Np = 1000 photons.

1.25 1.5 1.75 2.0 2.25 2.5 2.75
oversampling

10−3

10−2

10−1

X
re

co
ns

tr
uc

ti
on

er
ro

r SET12

1.25 1.5 1.75 2.0 2.25 2.5 2.75
oversampling

10−2

10−1

X
re

co
ns

tr
uc

ti
on

er
ro

r BIO10

1.25 1.5 1.75 2.0 2.25 2.5 2.75
oversampling

10−1

100

X
re

co
ns

tr
uc

ti
on

er
ro

r COIL100

HIO-Holo HolOpt-P HolOpt-P-DDHIO-Holo HolOpt-P HolOpt-P-DDHIO-Holo HolOpt-P HolOpt-P-DD

Figure 36: Reconstruction `2-errors for SET12, BIO10 and COIL100 with varying oversampling
factor at Np = 10 photon/pixel. Corresponding SSIM and visuals are displayed in
Figures 11 and 10.
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Figure 37: Reconstructed images for samples from COIL100 with varying oversampling factors
(numbers above each column) at Np = 10 photon/pixel. Same as Figure 10.
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Figure 38: Reconstructed images for SET12, BIO10 and COIL100 with varying oversampling fac-
tors (numbers above each column) at Np = 1 photon/pixel.
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Figure 39: Reconstruction SSIM and `2-errors for SET12, BIO10 and COIL100 with varying over-
sampling factor at Np = 1 photon/pixel. Corresponding visuals are displayed in Figure
38.
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