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Abstract
The dynamic behavior of RMSprop and Adam algorithms is studied through a combination of
careful numerical experiments and theoretical explanations. Three types of qualitative features are
observed in the training loss curve: fast initial convergence, oscillations, and large spikes in the
late phase. The sign gradient descent (signGD) flow, which is the limit of Adam when taking the
learning rate to 0 while keeping the momentum parameters fixed, is used to explain the fast initial
convergence. For the late phase of Adam, three different types of qualitative patterns are observed
depending on the choice of the hyper-parameters: oscillations, spikes, and divergence. In particular,
Adam converges much smoother and even faster when the values of the two momentum factors are
close to each other. This observation is particularly important for scientific computing tasks, for
which the training process usually proceeds into the high precision regime.
Keywords: Dynamical behavior; Adaptive gradient algorithm; Sign gradient descent; Adam opti-
mizer.

1. Introduction

Adaptive gradient algorithms (Duchi et al., 2011; Tieleman and Hinton, 2012; Kingma and Ba,
2014), in particular RMSprop (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2014),
have demonstrated superior performance in training modern machine learning models, e.g. deep
neural networks. Distinguished from the vanilla gradient descent (GD) or stochastic gradient de-
scent (SGD), adaptive gradient algorithms use a coordinate-wise scaling of the update direction.
The scaling factors are adaptively determined by using the history of past gradients (Duchi et al.,
2011), which makes the understanding and analysis of these algorithms much more challenging.

Recent theoretical efforts (Reddi et al., 2018; Zhou et al., 2018; Xie et al., 2020; Li and Orabona,
2019; Chen et al., 2018) have focused on establishing the convergence of adaptive gradient algo-
rithms. However, these results are still unsatisfactory, since they cannot explain any of the particular
features of these adaptive gradient algorithms. Moreover, all these results require taking the limit
that the learning rate ηt goes to zero, e.g. ηt = 1/

√
t. However, in practice, one usually starts with

a large learning rate and only decays the learning rate several times during the training process. For
the most of iterations, the learning rate is fixed. So it is interesting to see what happens when the
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learning rate is fixed. Figure 1 shows the dynamical behavior of full-batch Adam with a fixed learn-
ing rate for one classification problem and one regression problem, respectively. For both cases, one
can see that the training curve does not behave monotonically even for this full batch setting. Large
spikes keep repeatedly appearing in the late phase of the training.

These spikes may not cause serious problems for typical computer vision and NLP tasks. For
these applications, the data are either highly noisy or very limited, the learning is mainly dominated
by the generalization gap (as shown in the left panel of Figure 1). Typically, a training loss 10−2 ∼
10−3 is sufficient to select a good model. However, for many scientific computing tasks, such
as fitting a target function and numerically solving PDEs, we are more interested in high-precision
solutions. For these problems, the training data are relatively clean and easy to obtain, which reduces
the risk of overfitting. Hence, lower training loss is always desired. The large spikes in the late phase
make it difficult to pick a good stopping time, as shown in the right panel of Figure 1.
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Figure 1: The training curves of full batch Adam. For both cases, the learning rate is fixed to be 0.001 and
(β1, β2) = (0.9, 0.999), the default values in PyTorch and TensorFlow. Left: Classify CIFAR-10
dataset with a fully-connected neural networks. The network has 3 hidden layers with widths
256-256-128. 2 classes are picked from CIFAR-10 with 1000 images in each class. Square loss
function is used. Right: Fit the target function f∗(x) =

∑5
k=1 sin(2πxk) for x ∈ [0, 1]5 with a

fully connected network, whose architecture is 5-100-100-1. 2000 points are uniformly sampled
from Unif([0, 1]5) to form the training set

In addition to the learning rate, adaptive gradient algorithms also use extra hyper-parameters
such as the second-order momentum factor for RMSprop and the first and second order momentum
factors for Adam. Default values of these hyper-parameters are provided in mainstream packages
(e.g. β1=0.9, β2=0.999 for Adam in PyTorch and TensorFlow), which are usually tuned on the
classification problems with cross-entropy loss (Kingma and Ba, 2014). However, they are not
necessarily optimal for regression and scientific computing problems, where the quadratic loss is
used, e.g., the default values can cause the large spikes as shown in Figure 1. One objective of this
paper is to carry out a comprehensive study of how the choice of these hyper-parameters affects the
dynamical behavior.

Contributions In this paper, we provide well-designed experiments to demystify the dynamic
behavior of adaptive gradient algorithms. Specifically, our contributions are summarized as follows.
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1. We identify three types of typical phenomena in the training process of these adaptive algo-
rithms: initial fast convergence (sometimes even super-linear), small oscillations, and large
spikes in the late phase.

2. For RMSprop and Adam, if the learning rate decreases to zero while the momentum param-
eters are fixed, the algorithms converge to the signGD flow. For signGD flow, we prove
the finite-time convergence for objective functions that satisfy the Polyak-Lojasiewicz (PL)
(Polyak, 1963) condition. These arguments together provide a partial explanation of the fast
initial convergence of RMSprop and Adam, which could be the one of reasons behind the
popularity of these algorithms.

3. We show that the large spikes are caused by some instabilities of the algorithm at stationary
points. For RMSprop on simple objective functions, we explicitly write down the limiting
oscillating solution. For Adam, we classify the behavior into three different patterns in the
space of the two momentum factors: the spike regime, the oscillation regime, and the diver-
gence regime. Empirical results show that training is most stable in the “oscillation regime”,in
particular when β1 ≈ β2.

Throughout this paper, all the activation functions are σ(t) = max(0, t), unless explicitly speci-
fied. The quadratic loss is used for all the experiments, including the classification problems. Other
experimental details are described in the caption of each figure.

To make the notations more consistent, from now on we use α to denote the second-order
momentum factor in both Adam and RMSprop, and use β to denote the first-order momentum in
Adam. The conventional notations β1 and β2 for Adam will become β and α, respectively. For
vectors u and v, operations such as u2,

√
u, u/v, and |u| are understood to be element-wise.

2. Preliminaries

2.1. Adaptive gradient algorithms

Adaptive gradient algorithms are a family of optimization algorithms that use a coordinate-wise
scaling of the update direction (gradient or gradient with momentum) according to the history of
gradients. Many adaptive algorithms can be cast to the following form (da Silva and Gazeau, 2018),

mt+1 = ht∇f(xt) + rtmt

vt+1 = pt(∇f(xt))
2 + qtvt

xt+1 = xt − ηt
mt+1√
vt+1 + ε

,

(1)

with different choice of h, r, p, q. In (1), h, r, p, q are scalar functions of t. For example, Ada-
grad (Duchi et al., 2011) is recovered when h, p, q = 1 and r = 0, and RMSprop corresponds to
the case when h = 1, r = 0, p = 1 − α and q = α for some constant α ∈ (0, 1). Viewed from
the dynamics of xt alone, adaptive gradient algorithms usually have a “memory effect” due to the
momentum terms. The strength of the memory depends on the momentum factors (ht, rt, pt, qt) and
the learning rate ηt. Because of their efficiency in training neural network models, these algorithms
are extensively used. We refer readers to (Ruder, 2016) for a more thorough review of existing
adaptive algorithms.
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In this paper, we focus on RMSprop and Adam — the two algorithms that are most widely used
by practitioners. The discrete update rules of these algorithms are

• RMSprop:
vt+1 = αvt + (1− α)(∇f(xt))

2

xt+1 = xt − η
∇f(xt)√
vt+1 + ε

(2)

• Adam:
vt+1 = αvt + (1− α)(∇f(xt))

2

mt+1 = βmt + (1− β)∇f(xt)

xt+1 = xt − η
mt+1/(1− βt+1)√
vt+1/(1− αt+1) + ε

(3)

In (2) and (3), ε is a small constant used to avoid the division by 0. It is usually taken to be 10−8.
In this paper, we mainly focus on the full batch setting, i.e., ∇f(xt) is the full gradient, for

which the dynamical behavior is already rather complex. We also show that our observations of
the full batch setting also apply to the stochastic setting if the batch size is relatively large. The
systematic investigation of the influence of batch size is left to future work.

2.2. Continuous-time limits

RMSProp and Adam can be studied by considering the limiting ordinary differential equations
(ODE) obtained by taking the learning rate η to 0. However, different limiting ODEs are obtained
when the hyper-parameters are scaled differently.

If the momentum factors are kept fixed, then as η → 0, the memory effect diminishes, because in
each discrete iteration we lose the same amount of memory but one iteration occupies a shorter and
shorter time. In this case, the continuous-time limit for both RMSprop and Adam are the following
dynamics

ẋ = − ∇f(x)

|∇f(x)|+ ε
. (4)

Since ε is a small value, this dynamics is close to the signGD flow:

ẋ = −sign(∇f(x)). (5)

Proposition 1 Assume that∇f is bounded and Lipschitz continuous, i.e. there exists constants M
and L such that ‖∇f(x1)‖ ≤ M and ‖∇f(x1) − ∇f(x2)‖ ≤ L‖x1 − x2‖ hold for any x1 and
x2. Let {xηk}, k = 0, 1, 2, · · · be the solution given by algorithm (2) or (3) starting from x0, m0

and v0 ≥ 0, with learning rate η and some fixed α, β ∈ (0, 1) and ε > 0. Let Xη(·) be a piece-wise
constant function of t ∈ [0,∞) that satisfies

Xη(t) = xηk, for t ∈ [kη, (k + 1)η).

In addition, let x(·) be the solution of (4) initialized from x0. Then, for any T > 0, we have

lim
η→0

sup
t∈[0,T ]

‖Xη(t)− x(t)‖ = 0. (6)
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The proof of the proposition is given in the appendix. Figure 2 provides numerical evidence
that RMSprop and Adam are close to signGD in a finite time interval when η is small while α and
β are fixed. The closeness between signGD and RMSprop is also shown in Figure 5 for a synthetic
objective function.

Note that using the signGD method to train neural networks can date back to (Riedmiller and
Braun, 1992), termed as Rprop algorithm. RMSProp was initially proposed as a stochastic version
of Rprop (Tieleman and Hinton, 2012). This type of connection was also investigated for Adam
in (Balles and Hennig, 2018). In contrast, Proposition 1 shows another type of connection: RM-
SProp/Adam converges to signGD flow in the limit η → 0. This connection does not rely on the
stochastic approximation and has not been explored before.

Figure 2: The comparison of the training loss curve between signGD and Adam/RMSprop with different
learning rates for the early phase. The x-axis is the time (learning rate×number of iterations) and
y-axis denotes the training loss. For Adam, β = 0.9 and α = 0.999; for RMSprop α = 0.99.
Learning rate of signGD is 10−5. Experiments conducted on a fully-connected neural network
with three hidden layers with widths be 256− 128− 64. The training data is taken from 2 classes
of CIFAR10 with 1000 samples per class.

On the other hand, if we want to keep the strength of the memory effect fixed, we have to let
α and β go to 1 when η tends to 0. Specifically, let α = 1 − aη and β = 1 − bη, with a and b
being positive constants. Then, it is easy to show that the trajectories of (2) and (3) converge to the
following ODEs (7) and (8), respectively.

• RMSprop flow:
v̇ = a(∇f(x)2 − v)

ẋ = −∇f(x)√
v + ε

(7)

• Adam flow:
v̇ = a(∇f(x)2 − v)

ṁ = b(∇f(x)−m)

ẋ = − (1− e−bt)−1m√
(1− e−at)−1v + ε

(8)
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The following proposition is a simplification of Theorem 3.2 in (Barakat and Bianchi, 2018).
Note that this result actually holds for stochastic RMSprop and Adam algorithms, but we will focus
on the full-batch setting.

Proposition 2 Under the same condition of f in Proposition 1, let {xηk}, k = 0, 1, 2, · · · be the
solution given by algorithm (2) starting from x0 and v0 = 0, with learning rate η and α = 1− aη
for a fixed constant a > 0. Let Xη(·) be a piece-wise constant vector function of t ∈ [0,∞) that
satisfies

Xη(t) = xηk, for t ∈ [kη, (k + 1)η).

In addition, let x(·) be the solution of (7) initialized from x0 and v0 ≥ 0. Then, for any T > 0, we
have

lim
η→0

sup
t∈[0,T ]

‖Xη(t)− x(t)‖ = 0. (9)

Similarly, if α = 1−aη and β = 1−bη for some constants a, b > 0, then the same convergence
statements hold for the solutions of (3) and (8).

As can be seen from (7) and (8), the smaller the value of a and b, the slower the dynamics of v
(and m), and consequently the slower the whole dynamics. Numerical results in Figure 3 confirm
this. However, it is worth mentioning that this difference in convergence speed does not manifest at
the very beginning of the training process. To understand this, consider the dynamics of Adam (8)
with v0 = m0 = 0 and ε = 0. When t� 1, we have

vt ≈ (1− e−at)∇f(x0)
2,

mt ≈ (1− e−bt)∇f(x0).

Hence, we have

ẋ ≈ − (1− e−bt)−1(1− e−bt)∇f(x)√
(1− e−at)−1(1− e−at)∇f(x)2

sign(∇f(x)) ≈ sign(∇f(x0)),

which shows that the initial speed of x does not depend on a and b. Rigorously, we have the
following proposition, whose proof is deferred to the appendix.

Proposition 3 Given the same conditions of f in Proposition 1. Let (x(t),m(t),v(t)) be the
solution of (8) starting from (x0, 0, 0) with ε = 0. Assume |[∇f(x0)]i| > c for some positive
constant c, where [∇f(x0)]i means the i-th element of ∇f(x0). Then, for any τ that satisfies
τ < c3

32M2L
√
d

, we have

‖ẋ(τ) + sign(∇f(x(τ)))‖ < 54M3L
√
d

c4
τ. (10)
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Figure 3: How the values of a and b affect the speed of dynamics. Left: Adam; Right: RMSprop. The
learning rate is 0.001 for all the experiments. The model and training data are the same as Figure 2.
One can see that at the early stage of the training (after a very short period from initialization),
optimizers with larger a and b converge faster.

3. RMSprop and signGD: Fast convergence and oscillation

In this section, we focus on RMSprop. Figure 4 shows the loss curves and trajectories of RMSprop
for a typical multi-layer neural network model. There are three obvious features:

1. Fast initial convergence: the loss curve decreases very fast, sometimes even super-linearly,
at the early stage of the training.

2. Small oscillations: The fast initial convergence is followed by oscillations around the mini-
mum.

3. Large spikes: Spikes are the sudden increase of the loss values, which are followed by an
oscillating recovery. Different from small oscillations, spikes make the loss much larger and
the interval between two spikes is also longer.

We relate the fast initial convergence with the closeness of the RMSprop trajectory to signGD.
For the other two features, we attribute them to the instability at the stationary points.

Fast initial convergence As discussed in the last section, when η tends to 0 while α stays fixed,
RMSprop tends to signGD. So the loss curve of RMSprop and signGD align well during the initial
phase as shown in Figure 2. Figure 5 shows the loss curves of both signGD and RMSprop on a
quadratic objective function. Their behaviors are similar — they both experience fast initial conver-
gence and then the loss stops decreasing. For this reason, we will study the fast initial convergence
of RMSprop with the help of signGD. Under the PL condition, the following proposition shows that
signGD flow can reach the global minimum in finite time.

Proposition 4 Assume that the objective function satisfies the Polyak-Lojasiewicz (PL) (Polyak,
1963) condition: ‖∇f(x)‖22 ≥ µ(f(x)− f(x∗)) for any x. Here x∗ = argminxf(x). Let x(t) be
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Figure 4: The loss curves of training a neural network model on CIFAR-10 dataset with RMSprop.
Model and data the same as Figure 1. The learning rate is 1e-3, and α = 0.99. 2000
iterations are run. Left: The whole training loss curves Right: The training loss of the
last 500 iterations.

Figure 5: The loss curves of signGD (Left) and RMSprop (Right) with varying learning rates for a quadratic
objective function f . Here, f(x) = 1

2x
TAx. A = UUT with U ∈ R10×10 and Ui,j

iid∼ N (0, 1).
For RMSprop, α is fixed to be 0.9.

the solution of the signGD flow (5). Then, we have

f(x(t))− f(x∗) ≤
(√

f(x0)− f(x∗)−
√
µ

2
t

)2

.

The signGD flow will stop within T ≤ 2
√

f(x0)−f(x∗)
µ .

Proof We have

d

dt
f(x(t)) = −〈sign(∇f(x(t))),∇f(x(t))〉 = −‖∇f(x(t))‖1

≤ −‖∇f(x(t))‖2 ≤ −
√
µ(f(x(t))− f(x∗)).
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Hence, we have d
dt

√
f(x(t))− f(x∗) ≤ −

√
µ
2 , which implies

f(x(t))− f(x∗) ≤
(√

f(x0)− f(x∗)−
√
µ

2
t

)2

.

Consider an one-dimensional objective function f(x) = εx2 and the signGD flow starting from
x0 > 0. The signGD flow is given by ẋ(t) = −1, which will stop at T ∗0 = x0. For this example, the
PL constant is µ = ‖∇f(x)‖/f(x) = (2εx)2/(εx2) = 4ε, which leads to the predicted stopping
time T0 = 2

√
x20/(4ε) = x0ε

−1/2. Consequently, the prediction of Proposition 4 is exact when
ε = 1 but becomes very loose when ε � 1 or ε � 1. The intuition is that dynamics of signGD is
actually independent of the curvature ε. This is quite different from gradient descent.

Instability at the stationary points Intuitively, both the small oscillations and the spikes are
caused by the (near) singularity of the dynamics at the stationary points of the objective function.
For adaptive gradient methods, at the stationary points, we have v = 0. Hence, if the dynamics
is linearized around the stationary point, the Jacobian will have very big eigenvalues (at the order
of O(1ε )). For example, linearizing continuous RMSprop (7) around some stationary point (x∗, 0)
gives

ẋ = −∇
2f(x∗)

ε
(x− x∗),

v̇ = −av.

The Jacobian of the above linearized dynamics at (x∗, 0) is[
−∇2f(x∗)

ε 0
0 −aI

]
, (11)

whose eigenvalues are−λ/ε and−a, where λ is any eigenvalue of the Hessian∇2f(x∗). Therefore,
this stationary point is nearly singular. This is not a problem for the continuous dynamics. However,
for the discrete dynamics, the stationary point is unstable unless the learning rate is smaller than
2ε

λmax
� 1. This implies that the discrete dynamics with a learning rate larger than O(ε) cannot

converge to that stationary point, and instead, it may converge to some periodic trajectories or just
oscillate around the stationary point. This analysis also holds for Adam.

Remark 5 A rough way to understand the near singularity at the stationary points is to view the
iterations as a GD with very large learning rate. Specifically, when xt is close to a stationary point,
v is very small, and we have

xt+1 = xt − η
∇f(xt)√
vt+1 + ε

≈ xt −
η

ε
∇f(xt). (12)

Hence, xt does not converge to the stationary point unless λmax(∇2f(xt)) ≤ O(ε), i.e., the land-
scape is extremely flat.
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According the above analysis, oscillations may not happen if the landscape around the stationary
point is sufficiently flat. This happens to be the case of the cross entropy loss function, for which
λmax(∇2f(xt))→ 0 as xt approaches the minimum.

For low dimensional strongly convex objective functions, RMSprop can converge to a 2-periodic
solution. For example, if the objective function is f(x) = 1

2x
2, then the 2-periodic solution is

an oscillation between x = η
2 and x = −η

2 , where η is the learning rate. Figure 6 shows the
convergence to this 2-periodic solution. This gives us a toy example of the small oscillations around
the minimum.

Figure 6: The trajectory of RMSprop for the 1-dimensional quadratic function f(x) = x2

2 for different
values of α. η = 0.01. One sees that all the trajectories eventually converge to the 2-periodic
solution at x = η

2 and x = −η2 .

For more complicated objective functions, such as high-dimensional quadratic function, or the
loss function of neural network models, the RMSprop trajectories show more complicated oscilla-
tion patterns, such as the spikes. We will take a closer look at the large spikes in the next section,
where we see that Adam is also vulnerable to spikes.

4. Adam: performances for different values of a and b

The dynamic behavior of Adam is more complicated than RMSprop since it is influenced by 2
hyper-parameters. Different combinations of α and β (or a and b) can lead to different dynamic
patterns. To rule out the influence of the learning rate, we will consider a and b instead of α and β.
As is mentioned before, α and β are given by a and b through α = 1 − aη and β = 1 − bη. As
we have seen in Proposition 1 , when a and b are sufficiently large compared to η, Adam behaves
like signGD. For relatively small a and b, through extensive numerical experiments, we have found
that there are roughly three different regimes of qualitative patterns in the parameter space (see
Figure 7):

1. The spike regime happens when b is sufficiently larger than a. In this regime, large spikes
appear in the loss curve, which makes the optimization process unstable. By observations,
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Figure 7: The three typical behavior patterns for Adam and the trajectories in the state space of
(‖x‖, ‖m‖, ‖√v‖). η = 0.001. The model and the training data are the same as Figure 2.
The first row shows the loss curve of totally 1000 iterations, the second row shows part of
the loss curve (the last 200 iterations for oscillation and divergence regimes, and 400−800
iterations for the spike regime), the bottom row shows the state space trajectory in the
same period shown in the second row. Left: a = 1, b = 100, large spikes appear in the
loss curve; Middle: a = 10, b = 10, the loss is small and oscillates very fast, and the
amplitude of the oscillation is also small; Right: a = 100, b = 1, the loss is large and
blows up.

spikes do not prevent the algorithm from achieving a small training loss, but they make the
loss curve unstable by frequently driving the training loss to large values.

2. The oscillation regime happens when a and b have similar magnitude (or in the same order).
In this regime, the loss curve exhibits fast and small oscillations. A small and stable loss
curve can be achieved in this regime.

681



MA WU E

3. The divergence regime happens when a is sufficiently larger than b. In this regime, the
loss curve is unstable and usually diverges after a period of training. This regime should be
avoided in practice since the training loss stays large.

In Figure 7, we show one typical loss curve for each regime for a typical neural network model. We
also show typical trajectories in the state space of (‖x‖, ‖m‖, ‖√v‖) for the three regimes. These
trajectories are also qualitatively different for different regimes.

Next, we study the transition between the different regimes and the training loss behavior in
different regimes. To this end, we carried out experiments for a multi-layer neural network model
on the Fashion-MNIST dataset, with different values of a and b until the behavior of the training
loss curve stabilizes. The left panel of Figure 8 shows the heatmap of the average loss value of
the last 1000 iterations. The right panel of Figure 8 shows the classification of the behavior of the
training curve into three different categories (oscillations, spikes, and divergence).

From these figures, we see that in the divergence regime, the training loss does not perform well
(actually in some cases it may even blow up). Hence this regime should be avoided in practice. In
the oscillation regime, the loss values are small and quite robust to the change of hyper-parameters.
Therefore this is the regime that should be preferred in practice. This is the regime when a ≈ b.
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Figure 8: Train a neural network to fit the FashionMNIST dataset with Adam optimizers with varying mo-
mentum factors. The model is a fully connected network of 6 hidden layers and the width of
each layer is 500. The learning rate of is 1e-3. Left: Heatmap of average training loss over the
last 1000 iterations. The loss is shown in the logarithmic scale. a and b range from 0.1 to 100
and are also shown in the logarithmic scale. Right: The classification of the different dynamical
behaviors of the loss curve.

4.1. Training ResNets on CIFAR10

The above investigation suggests that Adam performs better when α ≈ β. Here we provide further
support by considering a more realistic problem: training a ResNet18 (He et al., 2016) on CIFAR10
using stochastic Adam with a large batch size. The results are shown in Figure 9. We see that with
the default parameters (β = 0.9, α = 0.999), there are are large spikes during the late phase of
training. In contrast, when a ≈ b, Adam converges very smoothly and is also faster than using the
default parameters.
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Figure 9: The training loss curve of stochastic Adam on a ResNet18 model and CIFAR-10 dataset. The
learning rate is 1e-3. The red line shows the results of using the default hyper-parameters setting
(β = 0.9, α = 0.999). 1000 samples are taken from each class to form the training dataset. The
network is a standard ResNet18 used in (He et al., 2016) but with number of channels halved. The
batch size is 1000.

4.2. Solving Poisson equation

Consider the Poisson equation with Dirichlet boundary condition

−∆u = f in Ω, u = g on ∂Ω.

Let u(·; θ) denote the parameterized model. Deep Galerkin Method (DGM) (Sirignano and Spiliopou-
los, 2018) looks for the solution that minimizes the following objective function

Î(θ) =
1

nd

nd∑
i=1

(∆u(xi; θ) + f(xi))
2 +

1

nb

nb∑
j=1

(u(x̃j ; θ)− g(x̃j))
2, (13)

where {xi}ndi=1 and {x̃j}nbj=1 are samples uniformly drawn from Ω and ∂Ω, respectively.
Here, we consider two examples:

• Ω = (0, 1)4, f(x) = 0, g(x) = x1x2 + x3x4. In this case, the solution is u∗(x) = x1x2 +
x3x4. u(·; θ) is parameterized using a 3-layer fully-connected networks with the architecture
being 4-200-200-1 and the Tanh activation function is applied.

• Ω = {(x1, x2) : x21 + x22 < 1}, f(x1, x2) = 1, g(x1, x2) = 0. The solution in this case
is u∗(x) = 1

4(x21 + x22 − 1). u(·; θ) is parameterized using a 5-layer fully connected net-
work, whose architecture is 2-10-10-10-10-1. The GELU activation function (Hendrycks and
Gimpel, 2016) is applied.

For each example, we uniformly sample 2000 points in Ω and extra 2000 points on ∂Ω to form the
training set. Figure 10 shows the training curves of Adams with various a’s and b’s. The learning
rate is fixed to be 5e-4. One can see that with the default hyperparameters, Adam inevitably endures
large spikes during the late phase of training. In contrast, when a ≈ b, the training curve becomes
much more stable and faster, although there still exist very small oscillations during the very late
phase of training. It is also expected that Adam performs the worst when a > b.
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(a) Ω = (0, 1)4, f = 0, g(x) = x1x2 + x3x4.
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(b) Ω = {(x1, x2) : x1 + x2 < 1}, f = 1, g = 0
Figure 10: Solving two Poisson equations with the deep Galerkin method (DGM). Adam optimizers with

various a’s and b’s are used to optimize the objective functions. The learning rate is fixed to be
5e-4. Note that the case of a = 2, b = 200 corresponds to the default setting, i.e. β = 0.9, α =
0.999. Left: The dynamics of the objective function of DGM. Right: The dynamics of the
test error. Here the test error is Ex[(u(x; θ)− u∗(x))], which is estimated by the emprical mean
over 10000 extra samples, independently drawn from Unif(Ω).

5. Discussion

In this paper, we reported the results of some systematical investigation on the dynamic behavior
of adaptive gradient algorithms, particularly RMSprop and Adam. Three typical phenomena—fast
initial convergence, small oscillation, and large spikes—are observed and analyzed. The influence
of the choice of the hyper-parameters on the dominant training behavior is also investigated.

It is worth noting that the investigation in this paper focuses on the full-batch setting. However,
the result in Figure 9 provides some evidence to show that the phenomena revealed here should
also be of relevance for the stochastic setting when the batch size is relatively large. The systematic
study of the influence of batch size, especially in the small-batch regime, is left to future work.

There are still many other important open questions. For example, learning rate decay is a
common practice used in training large neural networks. When performing learning rate decay,
usually one does not change the values of α and β. This makes the effective a and b larger, pushing
the optimizer to the signGD-like regime. Another choice is to adaptively tune α, β such that a and
b are kept fixed. It is interesting to see the comparison of the two strategies.

This paper focuses on optimization. For machine learning problems, another important consid-
eration when implementing optimization algorithms is the generalization performance. It has been
reported that the solutions found by adaptive gradient algorithms usually perform a bit worse than
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those found by SGD in terms of generalization (see (Wilson et al., 2017)). The study of generaliza-
tion performance of adaptive gradient algorithms is left to future work.
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Appendix A. Proof of Proposition 1

Here we prove Proposition 1. For that purpose, we show that for any T > 0 and τ > 0, there exists
an ηT,τ , such that as long as η < ηT,τ we have

sup
t∈[0,T ]

‖Xη(t)− x(t)‖ < τ. (14)

In the following we focus on RMSprop. The proof for Adam is similar.
First, let K be a positive integer whose value will be specified later, and let x̃ηk = x(kη). Then,

for xηK and x̃ηK we have

‖xηK − x0‖ ≤ η
K−1∑
i=0

∥∥∥∥ ∇f(xi)√
vi+1 + ε

∥∥∥∥ ≤ η K−1∑
i=0

M

ε
=
ηKM

ε
,

and

‖x̃ηK − x0‖ ≤
∫ Kη

0

∥∥∥∥ ∇f(x(t))

|∇f(x(t))|+ ε

∥∥∥∥ dt ≤ ηKM

ε

Therefore,

‖xηK − x̃ηK‖ ≤
2ηKM

ε
. (15)

Next, for k ≥ K, we have

xηk+1 − x̃ηk+1 = (xηk − x̃ηk) +

(∫ (k+1)η

kη

∇f(x(t))

|∇f(x(t))|+ ε
dt− η ∇f(xηk)√

vk+1 + ε

)
.

Let

∆ =

∫ (k+1)η

kη

∇f(x(t))

|∇f(x(t))|+ ε
dt− η ∇f(xηk)√

vk+1 + ε
,

then

‖xηk+1 − x̃ηk+1‖ ≤ ‖x
η
k − x̃ηk‖+ ‖∆‖. (16)

Next we estimate ‖∆‖. First we have

∆ =

∫ (k+1)η

kη

∇f(x(t))

|∇f(x(t))|+ ε
− ∇f(xηk)√

vk+1 + ε
dt

=

∫ (k+1)η

kη
∇f(x(t))

(
1

|∇f(x(t))|+ ε
− 1√

vk+1 + ε

)
dt+

∫ (k+1)η

kη

∇f(x(t))−∇f(xηk)√
vk+1 + ε

dt

:= I + J.
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For J , we have

‖J‖ ≤ 1

ε

∫ (k+1)η

kη
‖∇f(x(t))−∇f(xηk)‖dt

≤ L

ε

∫ (k+1)η

kη
‖x(t)− xηk‖dt

≤ L

ε

∫ (k+1)η

kη
(‖x(t)− x̃ηk‖+ ‖x̃ηk − xηk‖)dt

≤ L

ε

(
η2M

ε
+ η‖x̃ηk − xηk‖

)
=
ηL

ε
‖x̃ηk − xηk‖+

η2LM

ε2
. (17)

For I , we have

‖I‖ ≤
∫ (k+1)η

kη

∥∥∥∥ |∇f(x(t))|
|∇f(x(t))|+ ε

√
vk+1 − |∇f(x(t))|
√
vk+1 + ε

∥∥∥∥ dt
≤
∫ (k+1)η

kη

∥∥∥∥√vk+1 − |∇f(x(t))|
√
vk+1 + ε

∥∥∥∥ dt
≤ 1

ε

∫ (k+1)η

kη
‖√vk+1 − |∇f(xηk)|‖dt+

1

ε

∫ (k+1)η

kη
‖|∇f(xηk)| − |∇f(x(t))|‖dt (18)

The second term in (18) can be estimated in a similar way as ‖J‖, and it can be bounded by

ηL

ε
‖x̃ηk − xηk‖+

η2LM

ε2
.

For the first term of (18), use the fact that (a− b)2 ≤ a2 − b2 for any a ≥ b ≥ 0, we have

1

ε

∫ (k+1)η

kη
‖√vk+1 − |∇f(xηk)|‖dt

≤ η

ε
‖vk+1 −∇f2(xηk)‖

1
2

=
η

ε

∥∥∥(1− α)∇f2(xηk) + α(1− α)∇f2(xηk−1) + · · ·+ αk(1− α)∇f2(xη0)−∇f2(xηk)
∥∥∥ 1

2

≤ η

ε

(∥∥∥∥∥(1− α)
K−1∑
i=0

αi(∇f2(xηk−i)−∇f2(x
η
k))

∥∥∥∥∥+ 2αKM

) 1
2

≤ 2η3/2MK1/2

ε3/2
+

2ηMαK/2

ε
. (19)

Hence we have

‖I‖ ≤ ηL

ε
‖x̃ηk − xηk‖+

η2LM

ε2
+

2η3/2MK1/2

ε3/2
+

2ηMαK/2

ε
. (20)
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Combining (20) with (17) we get the estimate of ∆:

‖∆‖ ≤ 2ηL

ε
‖x̃ηk − xηk‖+

2η2LM

ε2
+

2η3/2MK1/2

ε3/2
+

2ηMαK/2

ε
. (21)

Hence

‖xηk+1 − x̃ηk+1‖ ≤ (1 +
2ηL

ε
)‖xηk − x̃ηk‖+

2η2LM

ε2
+

2η3/2MK1/2

ε3/2
+

2ηMαK/2

ε
. (22)

Finally, by Gronwall’s inequality, we have

‖xηk − x̃ηk‖ ≤
(

1 +
2ηL

ε

)k−K
‖xηK − x̃ηK‖+

(
1 +

2ηL

ε

)k−K (ηM
ε

+
η1/2MK1/2

ε1/2L
+
MαK/2

L

)

≤
(

1 +
2ηL

ε

)k(2ηKM

ε
+
η1/2MK1/2

ε1/2L
+
MαK/2

L

)
. (23)

We want (23) to hold for t ≤ T , which means for all k ≤ T
η . For these values of k, we have

‖xηk − x̃ηk‖ ≤ e
LT
ε

(
2ηKM

ε
+
η1/2MK1/2

ε1/2L
+
MαK/2

L

)
. (24)

Therefore, for any fixed small value τ > 0, by taking sufficiently large K and sufficiently small η,
we can achieve

‖xηk − x̃ηk‖ ≤
τ

2
, (25)

for any 0 ≤ k ≤ bTη c+ 1. Then, if we further let

η <
τε

4M
,

for any t ∈ [0, T ], let k satisfy t ∈ [kη, (k + 1)η), we have

‖Xη(t)− x(t)‖ ≤ ‖xηk − x̃ηk‖+ ‖Xη(t)− x̃ηk‖+ ‖x(t)− xηk‖

≤ τ

2
+

2ηM

ε
≤ τ. (26)

This completes the proof.

Appendix B. Proof of Proposition 3

By (Barakat and Bianchi, 2018) as well as Proposition 2, the solution of (8) exists, and this solution
is the limit trajectory of discrete Adam algorithm (3) with η → 0 and α = 1 − aη, β = 1 − bη.
Hence, initially we have

dx(0)

dt
= −sign(∇f(x0)).
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By (8), we can solve v and m involving x:

v(t) = a

∫ t

0
ea(s−t)(∇f(x(t)))2ds,

m(t) = b

∫ t

0
eb(s−t)∇f(x(t))ds, (27)

and hence for the equation of x we have

ẋ(t) = −

√√√√ ∫ t
0 e
−asds∫ t

0 e
a(s−t)(∇f(x(t)))2ds

(∫ t
0 e

b(s−t)∇f(x(t))ds∫ t
0 e
−bsds

)
. (28)

Let t∗ be the first time when some element of∇f(x(t)) becomes smaller than c/2, i.e.

t∗ = inf
t

{
[∇f(x(t))]i ≤

c

2
for some i

}
,

then for any t ∈ [0, t∗] we have [∇f(x(t))]i ≥ c/2 for any i = 1, 2, ..., d. This together with (28)
implies

|[ẋ]i| ≤
2M

c
(29)

for any i = 1, 2, ..., d. Then, assume t∗ < c2

4ML , we have

|[∇f(x(t∗))]i| ≥ |[∇f(x(0))]i| − L‖x(t∗)− x(0)‖

> |[∇f(x(0))]i| − L
c2

4ML

2M

c

≥ c− c

2

=
c

2
,

which is contradictory to the definition of t∗. Therefore, t∗ ≥ c2

4ML . Considering c < M , we obtain
τ < t∗.

Next, let

r1(τ) =

∫ τ
0 e

a(s−τ) ((∇f(x(s)))2 − (∇f(x(τ)))2
)
ds∫ τ

0 e
−asds

,

r2(τ) =

∫ τ
0 e

b(s−τ) (∇f(x(s))−∇f(x(τ))) ds∫ τ
0 e
−bsds

.

Then, we have ∫ t
0 e

a(s−t)(∇f(x(t)))2ds∫ t
0 e
−asds

= (∇f(x(τ)))2 + r1(τ),

and ∫ t
0 e

b(s−t)∇f(x(t))ds∫ t
0 e
−bsds

= ∇f(x(τ)) + r2(τ).
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Hence, combining (28), we have

ẋ(τ) = −
√

1

(∇f(x(τ)))2 + r1(τ)
(∇f(x(τ)) + r2(τ)),

and then at τ

‖ẋ + sign(∇f(x))‖ =

∥∥∥∥∥ ∇f(x)√
(∇f(x))2

−
√

1

(∇f(x))2 + r1
(∇f(x) + r2)

∥∥∥∥∥
≤
∥∥∥∥∥∇f(x)

(√
1

(∇f(x))2
−
√

1

(∇f(x))2 + r1

)∥∥∥∥∥
+

∥∥∥∥∥
√

1

(∇f(x))2 + r1
(∇f(x)− (∇f(x) + r2))

∥∥∥∥∥ (30)

To estimate the above terms, we first estimate r1 and r2. For r2, by the Lipschitz property of
the gradient and (29), we have

‖∇f(x(s))−∇f(x(τ))‖ ≤ L‖x(s)− x(τ)‖ ≤ 2ML
√
d

c
|τ − s| ≤ 2ML

√
d

c
τ.

Hence,

‖r2(τ)‖ ≤ 2ML
√
d

c
τ. (31)

For r2, considering

(∇f(x(s)))2 − (∇f(x(τ)))2 = (∇f(x(s))− (∇f(x(τ)))(∇f(x(s)) + (∇f(x(τ)))

and the upper bound for ‖∇f(x)‖, similar to the estimation of r2 we have

‖r1(τ)‖ ≤ 4M2L
√
d

c
τ. (32)

By (31) and (32), we have∥∥∥∥∥∇f(x)

(√
1

(∇f(x))2
−
√

1

(∇f(x))2 + r1

)∥∥∥∥∥
≤M

∥∥∥∥∥
√

(∇f(x))2 + r1 −
√

(∇f(x))2√
(∇f(x))2((∇f(x))2 + r1)

∥∥∥∥∥
= M

∥∥∥∥∥ r1√
(∇f(x))2((∇f(x))2 + r1)(

√
(∇f(x))2 + r1 +

√
(∇f(x))2)

∥∥∥∥∥
≤ 48M3L

√
d

c4
τ, (33)
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where the last line is derived by |[∇f(x)]i| ≥ c
2 , and |[r1]i| < c2

8 which comes from τ < c3

32M2L
√
d

.
On the other hand, we have∥∥∥∥∥

√
1

(∇f(x))2 + r1
(∇f(x)− (∇f(x) + r2))

∥∥∥∥∥ ≤ 6ML
√
d

c2
τ. (34)

Combining (33) and (34), we have

‖ẋ + sign(∇f(x))‖ ≤
(

48M3L
√
d

c4
+

6ML
√
d

c2

)
τ

≤ 54M3L
√
d

c4
τ, (35)

where the second inequality comes from c ≤M . This completes the proof.

692


	Introduction
	Preliminaries
	Adaptive gradient algorithms
	Continuous-time limits

	RMSprop and signGD: Fast convergence and oscillation
	Adam: performances for different values of a and b
	Training ResNets on CIFAR10
	Solving Poisson equation

	Discussion
	Proof of Proposition 1
	Proof of Proposition 3

