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Abstract
We consider the phase retrieval problem, in which the observer wishes to recover a n-dimensional
real or complex signal X? from the (possibly noisy) observation of |ΦX?|, in which Φ is a matrix of
size m× n. We consider a high-dimensional setting where n,m→∞ with m/n = O(1), and a
large class of (possibly correlated) random matrices Φ and observation channels. Spectral methods
are a powerful tool to obtain approximate observations of the signal X? which can be then used as
initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and
unify previous results and approaches on spectral methods for the phase retrieval problem. More
precisely, we combine the linearization of message-passing algorithms and the analysis of the Bethe
Hessian, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal
spectral methods for arbitrary channel noise and right-unitarily invariant matrix Φ, in an automated
manner (i.e. with no optimization over any hyperparameter or preprocessing function).
Keywords: Phase retrieval, spectral methods, message-passing algorithms.

1. Introduction

1.1. Setting of the problem and related works

In the phase retrieval problem, one aims to recover an unknown signal X? ∈ Kn (K = R or C) from
mmeasurements {yµ}, which are noisy observations of |ΦX?| (the modulus is applied element-wise),
with Φ ∈ Km×n a (random) sensing matrix. This model arises in a large set of problems ranging
from signal processing Fienup (1982); Unser and Eden (1988); Drémeau et al. (2015) to statistical
estimation Candès et al. (2015); Jaganathan et al. (2015), optics, X-ray crystallography, astronomy
or microscopy Shechtman et al. (2015), where detectors can often only measure information about
the amplitude of signals, and lose all information about its phase. Phase retrieval is also a textbook
example of a learning problem with a highly non-convex loss landscape Netrapalli et al. (2015); Sun
et al. (2018); Hand et al. (2018).

The majority of algorithms developed to solve this problem are based either on semi-definite
programming relaxations Candes et al. (2015); Waldspurger (2018); Goldstein and Studer (2018)
or on more direct non-convex optimization procedures, e.g. Wirtinger flow Candès et al. (2015) or
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approximate message-passing Schniter and Rangan (2014); Mondelli and Venkataramanan (2021)
to name a few. In general, these optimization methods require an “informed” initialization X̂, i.e.
that is positively correlated with the signal X?. The privileged class of algorithms to obtain such
initializations in a computationally cheap manner are spectral methods, i.e. estimates given by
the principal eigenvector of an appropriate matrix constructed from the sensing matrix Φ and the
observations {yµ}Mondelli et al. (2020); Luo et al. (2019); Ma et al. (2021).

In the present work, we consider a high-dimensional limit (or thermodynamic limit in the
statistical physics language), in which n,m → ∞ with α ≡ m/n = Θ(1). In this limit, a great
amount of work is present both in the statistical physics and in the information theory literature
for different assumptions on the matrix Φ. The asymptotic optimal performances in a large class
of problems including phase retrieval were conjectured using the non-rigorous replica method of
statistical physics in Kabashima (2008); Takahashi and Kabashima (2020), and these results were
extended and partly proven in Barbier et al. (2019); Maillard et al. (2020). Specifically for the phase
retrieval problem, the limits of weak-recovery were analyzed for Gaussian matrices Φ in Lu and Li
(2020); Mondelli and Montanari (2019); Luo et al. (2019), and for column-unitary Φ in Ma et al.
(2021); Dudeja et al. (2020b,a). In this work we derive the optimal spectral methods for a more
generic assumption of right orthogonal (or unitary) invariance, that is we assume:

Hypothesis 1 (Matrix ensemble) For every O ∈ U(n) (or O(n) in the real case), the following

equality holds in distribution Φ
d
= ΦO. We assume that the spectral measure of Φ†Φ/n weakly

converges (a.s.) to a deterministic probability measure ν and we designate 〈f(λ)〉ν ≡
∫
ν(dλ)f(λ)

the linear statistics of ν.

We assume to have access to a factorized prior distribution P0 used to generate X?, with zero mean
and variance ρ=EP0 [|x|2]>0, as well as the “channel” distribution Pout(y|z), giving the probability
of the observations conditioned on the value of ΦX?. The observations are therefore generated as:

Yµ ∼ Pout

(
·
∣∣∣ 1√
n

n∑
i=1

ΦµiX
?
i

)
, 1 ≤ µ ≤ m. (1)

Eq. (1) defines the very general class of Generalized Linear Models (GLMs). The present work covers
a wide class of phase retrieval problems, in which we assume that Pout(y|z) is a function of |z|2, and
in which the prior distribution P0 is also symmetric: P0(x)=P0(|x|). The knowledge of P0, Pout

allows us to discuss the so-called “Bayes-optimal” estimator: although somewhat restrictive this
knowledge allows for many insightful theoretical studies. The information-theoretic and algorithmic
limits of the models described by eq. (1) have been rigorously analyzed in Barbier et al. (2019);
Maillard et al. (2020). The Bayes-optimal estimation can be summarized in the study of the posterior
probability of x given the observations Y and the sensing matrix Φ:

P (x|Y,Φ) ≡ 1

Zn(Y)

n∏
i=1

P0(xi)
m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

n∑
i=1

Φµixi

)
. (2)

The logarithm of the normalization (1/n) lnZn(Y) is usually called the free entropy in the statistical
physics terminology. We will generically denote by 〈·〉 the average with respect to the posterior
probability (2) of x. A key role in this paper will be played by the algorithmic weak recovery
threshold, called αWR,Algo, defined in such a way that for α < αWR,Algo all known polynomial-time
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estimators are uncorrelated with the signal X?, while for α > αWR,Algo, there exists estimators that
recover a finite fraction of the signal in polynomial time. This algorithmic weak recovery threshold
depends on the spectral distribution of the matrix Φ and of the specific form of the output channel
distribution. Interestingly, it only depends on the prior distribution P0 via its variance ρ. Its derivation
has been presented in Maillard et al. (2020), where it was shown that αWR,Algo is the only solution
to the equation:

α =
〈λ〉2ν
〈λ2〉ν

(
1 +

[ ∫
dy

∣∣∣ ∫KDβz (|z|2 − 1) Pout

(
y
∣∣√ρ〈λ〉ν

α z
)∣∣∣2∫

KDβz Pout

(
y
∣∣√ρ〈λ〉ν

α z
) ]−1)

. (3)

In this equation, we let β ∈ {1, 2}, with K = R if β = 1 and K = C if β = 21. We introduced the
standard Gaussian measure on K as Dβz ≡ (2π/β)−β/2 exp(−β|z|2/2)dz. Note that in eq. (3), the
integrated quantity and the averages 〈·〉ν depend on α, so that this is actually an implicit equation
on αWR,Algo. An important algorithmic question is to characterize the class of polynomial-time
algorithms that can achieve weak recovery above the predicted threshold.

The (generalized) vector approximate message-passing (G-VAMP) algorithm Rangan et al.
(2017); Schniter et al. (2016) has been shown to achieve the threshold in Maillard et al. (2020).
Furthermore, it has been conjectured to achieve the optimal polynomial-time recovery for rotationally
(unitarily) invariant matrices, i.e. satisfying Hypothesis 1. However this algorithm is rather sensitive
to the assumptions of the model, that often do not hold in real data: thus, its applications to real
problems are somewhat limited. It is therefore of great interest to investigate more robust and
computationally even cheaper algorithms that could achieve similar performances. A natural class
of such algorithms are spectral methods. Their output can be used as informative initializations for
local gradient-based optimization algorithms, and can induce a jump in the accuracy achieved at a
reasonable computational cost. Such techniques have already been applied e.g. in optical systems
Valzania et al. (2021). In the context of phase retrieval, the performance of these spectral methods has
been rigorously analyzed for Gaussian Lu and Li (2020); Mondelli and Montanari (2019); Luo et al.
(2019) and unitary Ma et al. (2021); Dudeja et al. (2020a); Dudeja and Bakhshizadeh (2020) sensing
matrices. For Gaussian sensing matrices, Mondelli et al. (2020) also shows how to optimally combine
such spectral methods with simple linear estimators, improving even further the performance.

The main goal of the present paper is to design optimal spectral methods for the phase retrieval
problem in the aforementioned limit, for the very generic class of sensing matrices of Hypothesis 1.
Most importantly, in contrast to the previous aforementioned works our approach is completely
automated, in the sense the spectral methods we derive are (conjectured to be) optimal without the
need for optimization over additional parameters. The constructiveness of our approach gives more
weight to this optimality conjecture, as we do not restrict to a specific family of spectral methods.

We construct and unify three different approaches for the design of such algorithms, for any
sensing matrix satisfying Hypothesis 1: (a) a “pedestrian” optimization of the preprocessing function
(the approach of the aforementioned previous works), (b) the linearization of message-passing
algorithms, and (c) a Bethe Hessian analysis. In short we show that (a) is just a shifted version of
(c); (c) automatically uses the optimal preprocessing function in (a); and two eigenvalues of (b) (the
dominant one and a peculiar one) have an exact correspondence with the top eigenvalue of (a).
1The integrals on C are effectively defined as integrals over R2.
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1.2. Main results

In most previous approaches Lu and Li (2020); Mondelli and Montanari (2019); Luo et al. (2019);
Ma et al. (2021), the design of spectral methods for the phase retrieval problem was restricted to
consider spectra of matrices of the type:

M(T ) ≡ 1

n

m∑
µ=1

T (yµ)ΦµiΦµj . (4)

These matrices are functions of a (bounded) preprocessing function T . It was previously shown
for Gaussian i.i.d. matrices Φ Lu and Li (2020); Luo et al. (2019) and for random column-unitary
matrices Φ Ma et al. (2021); Dudeja et al. (2020a) that the optimal transition and reconstruction
errors in the class of spectral methods described by eq. (4) is attained by the following functions:

T ?Gaussian(y) ≡ ∂ωgout(yµ, 0, ρ)

1 + ρ∂ωgout(yµ, 0, ρ)
, T ?Unitary(y) ≡ ∂ωgout(yµ, 0, ρ/α)

1 + ρ
α∂ωgout(yµ, 0, ρ/α)

. (5)

In eq. (5) we introduced the function gout, defined as:

gout(yµ, ω, σ
2) ≡ 1

σ2

∫
K dx e−

β

2σ2
|x−ω|2 (x− ω) Pout(yµ|x)∫

K dx e−
β

2σ2
|x−ω|2 Pout(yµ|x)

. (6)

In particular, this implies1:

∂ωgout(yµ, 0, σ
2) = − 1

σ2
+

1

σ4

∫
K dx e−

β

2σ2
|x|2 |x|2 Pout(yµ|x)∫

K dx e−
β

2σ2
|x|2 Pout(yµ|x)

. (7)

Our first result is a conjecture, that generalizes the above two results and gives the optimal spectral
method for any phase retrieval problem of the type of eq. (1) which satisfies Hypothesis 12:

Conjecture 2 For any right-rotationally (or unitarily) invariant matrix Φ satisfying Hypothesis 1,
the optimal (in terms of both weak-recovery transition and achieved reconstruction error) spectral
method belongs to the class of eq. (4), and is attained by:

T ?(y) ≡ ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

.

Before detailing further our results, let us explicit two important consequences of Conjecture 2:

• Note that one can always assume the global scaling Tr[Φ†Φ]/n2 → 〈λ〉ν = α, as it can be
absorbed into the channel Pout

3. The optimal spectral method (in terms of weak-recovery threshold
and achieved correlation) is then given by T ?(y) = ∂ωgout(yµ, 0, ρ)/(1 + ρ∂ωgout(yµ, 0, ρ)).
Remarkably, this optimal function does not depend on the spectrum of the sensing matrix Φ, nor

1In the complex case, this is the “Wirtinger” derivative ∂zf(z) ≡ (∂xf(z)− i∂yf(z))/2.
2Note that Conjecture 2 is compatible with the results of eq. (5). Indeed, for Gaussian i.i.d. matrices, one has 〈λ〉ν = α,
while for random column-unitary matrices, 〈λ〉ν = 1.

3This scaling is chosen to match the one of Gaussian i.i.d. matrices.
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on the sampling ratio α. The universality of the method is striking when one compares the optimal
performances achievable both information-theoretically and by message-passing algorithms that
are both heavily dependent on the spectrum of the sensing matrix and the sampling ratio α, as
analyzed in Maillard et al. (2020). Universality also has deep consequences for phase retrieval
practitioners: when using a spectral initialization for a non-convex optimization algorithm, she/he
does not have to take into account the details of the correlations in Φ to construct an optimal
spectral method. Although our conjecture requires Hypothesis 1, this assumption can possibly be
partially loosened as numerically explored in Section 3.

• Importantly, Conjecture 2 claims optimality of our method among all spectral methods that one
can construct from the data Φ and the observations {yµ}. As we will see, it turns out that this
optimal method belongs to the class of eq. (4), but our derivation is fully constructive and did not
assume anything on the form of the spectral method. We believe this is an important improvement
of our work with respect to the previous analysis of spectral methods in phase retrieval, which
always assumed the method to be in the class of eq. (4). In this sense, our work also confirms the
validity of this restriction.

Our second main result, which is linked to Conjecture 2, is the reconciliation of different constructions
of spectral methods. In particular, we develop two automated approaches to design optimal spectral
methods for the phase retrieval problem.

• The first approach arises as a linearization of the Generalized Vector Approximate Message Passing
(G-VAMP) algorithm Schniter et al. (2016); Rangan et al. (2017). Similar techniques to obtain
efficient spectral methods were already investigated in community detection Krzakala et al. (2013),
phase retrieval with Gaussian and column-unitary matrices Mondelli and Montanari (2019); Ma
et al. (2021), and in the spiked matrix problem Aubin et al. (2020b) to name a few. Here we extend
this method to real and complex phase retrieval with a sensing matrix satisfying Hypothesis 1. We
call M(LAMP) (for Linearized-AMP) the corresponding matrix. It is given by:

M(LAMP) ≡ ρ〈λ〉ν
α

( α

〈λ〉ν
ΦΦ†

n
− 1m

)
Diag(∂ωgout(yµ, 0, ρ〈λ〉ν/α)). (8)

The aforementioned existing works used the principal eigenvector û of this matrix to construct the
spectral estimator as x̂LAMP ∝ Φ†Diag(∂ωgout(yµ, 0, ρ〈λ〉ν/α))û. Interestingly, we will see that
this estimator achieves the optimal recovery threshold but sub-optimal performance. In Section 2.3,
we show that the optimal estimator can also be derived from the spectrum of M(LAMP) but that it
is “hidden” inside the bulk of M(LAMP).

• Our second approach leverages the Thouless-Anderson-Palmer (TAP) formalism of statistical
physics Thouless et al. (1977), using the results of Maillard et al. (2019). The TAP approach
consists in studying the posterior distribution of eq. (2) by “tilting” it in a controllable manner: this
allows to study a modified posterior distribution in which the first and second moments of all xi
are fixed. These moments become then variables of the free energy associated with this modified
posterior distribution: this is called the TAP free energy in the statistical physics language. When
weak recovery of the signal is impossible, this free energy possesses a global minimum in the
completely uninformative point in which the estimator is the vector m = 0. On the other hand,
when weak recovery is possible, the optimal estimator corresponds to the global minimum of the
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TAP free energy with m 6= 0. However ws we will see the point m = 0 always remains a stationary
point of the TAP free energy. Moreover, a spectral method used for initializing a non-convex
optimization algorithm can be based solely on the observations (i.e. on Φ and {yµ}), and therefore
can not exploit any physical information other than the one present in the uninformative point.
When this point is locally stable, we therefore expect all polynomial-time algorithms not to be able
to achieve weak recovery. This conjecture has been proven in some cases, e.g. in Mondelli et al.
(2020) for Gaussian Φ, in Dudeja et al. (2020b) for unitary Φ, and in Maillard et al. (2020) for
a large class of right-rotationally invariant Φ. On the other hand, linear instability of the m = 0
point implies that there should exist a minimum of the TAP free entropy with positive correlation
with the signal, and which corresponds to the optimal estimator. With this picture in mind, it is
natural to conjecture that the optimal spectral estimator is the dominant unstable direction of the
uninformative fixed point, i.e. the smallest eigenvalue of the Hessian. Indeed, this is the most
informative direction that one can obtain solely by a local analysis of the m = 0 point. The
Hessian of the TAP free energy at the uninformative point is also denoted Bethe Hessian. Notably,
this Bethe Hessian has been investigated in the context of community detection Saade et al. (2014).
This leads to another method, called M(TAP), which is (up to a shift) the method M(T ?) given in
Conjecture 2:

M(TAP) ≡ −1

ρ
1n +

1

n

m∑
µ=1

∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

ΦµiΦµj . (9)

Let us now briefly outline the structure of the paper. In Section 2, we unify three different approaches
to construct optimal spectral methods for the phase retrieval problem. The first one, based on
linearizing the vector approximate message passing is studied in Section 2.1, In Section 2.2 we
consider a second approach, based on the Bethe Hessian. Remarkably, as we show in Section 2.3,
for any channel distribution and sensing matrix Φ, this method coincides exactly with the third
approach, which consists in simply generalizing a spectral method that has been proven to be optimal
for Gaussian Luo et al. (2019) and unitary Dudeja et al. (2020b) sensing matrices, see eq. (5). We
relate the performance of these different approaches, and show that they allow to conjecture the
optimal spectral method, summarized in Conjecture 2. In Section 3, we give numerical evidence to
support our claims. We give the performance of the spectral methods we derived in phase retrieval,
for noiseless and Poisson-noisy observations. We also show that our methods perform very well even
by allowing more structure in the sensing matrix than assumed in Hypothesis 1, by considering for
example randomly subsampled DFT, Hadamard or DCT matrices1.

Notations - Before presenting the technical aspects of our work, we introduce some notations.
Recall that β = 1, 2 for respectively real and complex variables. Uβ(n) denotes the orthogonal (or
unitary) group. For x, y ∈ K, we define x · y ≡ xy if K = R and x · y ≡ Re[xy] if K = C.

2. Spectral methods, message-passing algorithms and TAP approach

2.1. Linearized vector approximate message passing

In this section, we describe the vector approximate message-passing algorithm for the phase retrieval
problem with sensing matrices satisfying Hypothesis 1. The algorithm was first stated in Rangan
1Note that the universality of linearized approximate message passing algorithms for a Gaussian prior and different
ensembles of column-orthogonal matrices was analyzed recently in Dudeja and Bakhshizadeh (2020).
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Algorithm 1: Generalized Vector Approximate Message Passing

Data: The sensing matrix Φ/
√
n = USV†, the outputs {yµ}mµ=1, a number of iterations T .

Result: An estimate x̂ of X?.
Randomly initialize all variables.

for t = 1, · · · , T do
(Denoising x) (Denoising z ≡ 1√

n
Φx)

x̂t1 = gx1(Tt1, γt1) ẑt1 = gz1(Rt
1, τ

t
1)

vt1 = 1
βn

∑n
i=1 ∂Tigx1(Tt1, γt1) ct1 = 1

βm

∑m
µ=1 ∂Rµgz1(Rt

1, τ
t
1)

Tt2 = 1
vt1

x̂t1 − Tt1 Rt
2 = 1

ct1
ẑt1 − Rt

1

γt2 = 1
vt1
− γt1 τ t2 = 1

ct1
− τ t1

(Estimation of x) (Estimation of z)
x̂t2 = gx2(Tt2,Rt

2, γ
t
2, τ

t
2) ẑt2 = gz2(Tt2,Rt

2, γ
t
2, τ

t
2)

vt2 =
〈

1
τ t2λ+γt2

〉
ν

ct2 = 1
α

〈
λ

τ t2λ+γt2

〉
ν

Tt+1
1 = 1

vt2
x̂t2 − Tt2 Rt+1

1 = 1
ct2

ẑt2 − Rt
2

γt+1
1 = 1

vt2
− γt2 τ t+1

1 = 1
ct2
− τ t2

end
return x̂T1

et al. (2017) for the compressed sensing problem, and later generalized in Schniter et al. (2016)
to any GLM described by eq. (1). It makes use of the SVD decomposition of Φ, that we write as
Φ/
√
n = USV†. The full iterations of the algorithm are detailed in Algorithm 1. We used some

auxiliary functions, defined below: gx1(T, γ)i ≡ EP0(γ,−Ti)[x], gx2(T,R, γ, τ) ≡ T
γ + VSᵀ

(γ
τ + SSᵀ

)−1(U†R
τ −

SV†T
γ

)
,

gz1(R, τ)µ ≡ E
Pout

(
yµ,

Rµ
τ
, 1
τ

)[z], gz2(T,R, γ, τ) ≡ USV†gx2(T,R, γ, τ).
(10)

We denoted P0(γ, λ) the probability distribution with density proportional to P0(x)e−
βγ
2
|x|2−βλi·x,

and Pout(yµ, ωµ, b) the one with density proportional to Pout(yµ|z)e−
β|z−ωµ|2

2b .

2.1.1. THE TRIVIAL FIXED POINT

In Algorithm 1, one can use the Bayes-optimality hypothesis to derive the following relation (see for
instance eq. (107) of Kabashima et al. (2016)):

1

m

m∑
µ=1

E
Pout

(
yµ,

(Rt1)µ

τt1
, 1

τt1

)[∣∣z − (Rt1)µ
τ t1

∣∣2] =
1

τ t1
. (11)

Informally, eq. (11) expresses that the estimated variance of z, defined as τ t1, is equal to the mean
square difference between z and the estimation of z (being Rt

1/τ
t
1) under the estimated posterior.

Recall that we assumed that P0 is symmetric with ρ ≡ EP0 [|x|2] and that Pout(y|z) only depends on
|z|2. Using eq. (11) along with this hypothesis, it is easy to see that Algorithm 1 admits the following
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fixed point, that we call “trivial” as it is completely uninformative:
γ1 = 0, γ2 = ρ−1, v1 = ρ, v2 = ρ
x̂1 = T1 = 0, x̂2 = T2 = 0, τ1 = α/(ρ〈λ〉ν), τ2 = 0
c1 = ρ〈λ〉ν/α, c2 = ρ〈λ〉ν/α, ẑ1 = R1 = 0, ẑ2 = R2 = 0.

(12)

2.1.2. LINEARIZATION AROUND THE FIXED POINT

We can now linearize Algorithm 1 around the fixed point given by eq. (12). We begin by showing
that the first order variations of all the variances and inverse variances parameters are negligible, and
we detail this derivation in Appendix D.1. This will greatly simplify our linearization around the
trivial fixed point, as we can focus solely on the vector parameters. For clarity, we restrict here to the
real case β = 1, while the derivation in the complex case is provided in Appendix A. We write the
linearization of Algorithm 1 as (all derivatives are taken at the fixed point of eq. (12)):

δx̂t1 = ∇Tgx1δTt1, δẑt1 = ∇Rgz1δRt
1, δTt2 = 1

ρδx̂t1 − δTt1,
δx̂t2 = ∇Tgx2δTt2 +∇Rgx2δRt

2, δẑt2 = ∇Tgz2δTt2 +∇Rgz2δRt
2,

δRt
2 = α

ρ〈λ〉ν δẑt1 − δRt
1, δTt+1

1 = 1
ρδx̂t2 − δTt2, δRt+1

1 = α
ρ〈λ〉ν δẑt2 − δRt

2.
(13)

The derivatives of the auxiliary functions of eq. (10) at the trivial fixed point of eq. (12) are: ∂Tj [(gx1)i] = ρ δij , ∂Tj [(gx2)i] = ρ δij , ∂Rν [(gz1)µ] = δµνEPout

(
yµ,0,

ρ〈λ〉ν
α

)[z2],

∂Rµ [(gx2)i] = ρ
(Φ†)iµ√

n
, ∂Ti [(gz2)µ] = ρ

Φµi√
n
, ∂Rν [(gz2)µ] = ρ

(ΦΦ†)µν
n .

(14)

Plugging eq. (14) in eq. (13) yields, with v(yµ) ≡ E
Pout

(
yµ,0,

ρ〈λ〉ν
α

)[z2]:


δx̂t1 = ρδTt1, δẑt1 = Diag({v(yµ)})δRt

1, δTt2 = 1
ρδx̂t1 − δTt1,

δRt
2 = α

ρ〈λ〉ν δẑt1 − δRt
1, δx̂t2 = ρδTt2 + ρΦ†√

n
δRt

2, δẑt2 = ρ Φ√
n
δTt2 + ρΦΦ†

n δRt
2,

δTt+1
1 = 1

ρδx̂t2 − δTt2, δRt+1
1 = α

ρ〈λ〉ν δẑt2 − δRt
2.

(15)

These equations imply δTt2 = 0. The equations can then simply be closed on δRt
1:

δRt+1
1 =

( α

〈λ〉ν
ΦΦ†

n
− 1m

)[ α

ρ〈λ〉ν
Diag({v(yµ)})− 1m

]
δRt

1. (16)

As shown in Appendix A, we obtain the same equation in the complex case. Interestingly, v(yµ) can
be linked to the function ∂ωgout, simply by eq. (7): ∂ωgout(yµ, 0, σ

2) = −σ−2 + σ−4v(yµ).

2.1.3. THE LAMP SPECTRAL METHOD

The Linearized-AMP (LAMP) spectral method is based on eq. (16), and consists in taking the largest
eigenvalue and corresponding eigenvector of the m×m matrix:

M(LAMP) ≡ ρ〈λ〉ν
α

( α

〈λ〉ν
ΦΦ†

n
− 1m

)
Diag(∂ωgout(yµ, 0, ρ〈λ〉ν/α)).
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Note that M(LAMP) is not a Hermitian matrix, so “largest” eigenvalue means here eigenvalue of
largest real part. If û is the eigenvector of M(LAMP) associated to this largest eigenvalue, then one
can construct a corresponding estimate x̂ using the relations of eq. (15), as:

x̂ ≡
Φ†
[

α
ρ〈λ〉ν Diag({v(yµ)})− 1m

]
û∥∥∥Φ†[ α

ρ〈λ〉ν Diag({v(yµ)})− 1m
]
û
∥∥∥√nρ. (17)

Surprisingly, and as we will see in more details in Sections 2.3 and 3, this spectral method achieves
the optimal weak-recovery threshold but only sub-optimal performance compared to M(T ?). There
is, however, a way to recover the optimal performance from M(LAMP) by considering an eigenvalue
equal to 1 (and thus “hidden” inside the bulk) which appears when weak recovery is possible.

2.2. The Bethe Hessian approach

2.2.1. THE TAP FREE ENTROPY

In this section we detail a statistical-physics based constructive approach to derive the optimal spectral
method for the phase retrieval problem. We consider the so-called Thouless-Anderson-Palmer (TAP)
Thouless et al. (1977) free entropy of the system, that we denote fTAP(Y,Φ,m, σ). The idea of this
approach is to constrain the posterior probability of eq. (2) to satisfy the first and second moment
constraints 〈x〉 = m, 〈‖x− 〈x〉‖2〉 = nσ2, and to study the free entropy of this “tilted” probability
distribution. This provides a dual perspective on the posterior distribution (also called Gibbs measure),
by considering the landscape of fTAP. For clarity we will drop the dependency of fTAP on Y,Φ. Of
particular interest are the maxima of this free entropy, corresponding to pure states in the statistical
physics language. It is known that the fixed points of the optimal algorithm for this problem, i.e.
generalized vector approximate message-passing (see Section 2.1), are in exact correspondence with
the local maxima of the TAP free entropy. This is shown in Maillard et al. (2019), in which the TAP
free entropy for rotationally-invariant generalized linear models is also derived1. By maximizing as
well on the variance parameter σ2, it yields, up to On(1) terms:

fTAP(m) = sup
σ≥0

sup
g∈Km
r≥0

extr
ω∈Km
b≥0

extr
λ∈Kn
γ≥0

[β
n

n∑
i=1

λi ·mi +
βγ

2n

(
nσ2 +

n∑
i=1

|mi|2
)
− β

n

m∑
µ=1

ωµ · gµ

− βb

2n

( m∑
µ=1

|gµ|2 − αnr
)

+
1

n

n∑
i=1

ln

∫
K
P0(dx)e−

βγ
2
|x|2−βλi·x (18)

+
α

m

m∑
µ=1

ln

∫
K

dh(
2πb
β

)β/2Pout(yµ|h)e−
β|h−ωµ|2

2b +
β

n

n∑
i=1

m∑
µ=1

gµ ·
(Φµi√

n
mi

)
+ βF (σ2, r)

]
.

Here the notation extrγ f(γ) means that one should solve the corresponding saddle-point equation
∂γf(γ) = 0, and the function F is defined as:

F (x, y) ≡ inf
ζx,ζy>0

[ζxx
2

+
αζyy

2
− α− 1

2
ln ζy −

1

2
〈ln(ζxζy + λ)〉ν

]
− 1

2
lnx− α

2
ln y − 1 + α

2
.

1The results of Maillard et al. (2019) stand in the real case, but can be straightforwardly generalized to complex variables.
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One can write the saddle-point equations associated to eq. (18), called the TAP equations:

mi = EP0(γ,λi)[x], σ2 = 1
n

n∑
i=1

EP0(γ,λi)[|x−mi|2],

gµ = gout(yµ, ωµ, b), r = 1
m

m∑
µ=1

{
|gµ|2 + 1

b − EPout(yµ,ωµ,b)

[∣∣h−ωµ
b

∣∣2]},
ωµ + bgµ =

n∑
i=1

Φµi√
n
mi, b = − 2

α∂rF (σ2, r), γ = −2∂σ2F (σ2, r).

(19)

2.2.2. THE TRIVIAL FIXED POINT

It is easy to see that the TAP equations (19) admits a trivial fixed point at m = 0 (corresponding to a
local maximum of fTAP). At this point, the parameters are σ2 = ρ, g = ω = λ = 0, γ = r = 0,
b = ρ〈λ〉ν/α. This uses in particular a known consequence of the Bayes-optimality, that relates
the variance parameter b to the mean squared difference between the true ΦX? and its estimate, see
Kabashima et al. (2016)1: 1

m

∑m
µ=1 EPout(yµ,ωµ,b)[|h− ωµ|2] = b. The derivation of the fixed point

also uses the behavior of F (σ2, r) at small r, computed in Appendix D.2:

F (σ2, r) = −〈λ〉νrσ
2

2
+
σ4r2

4α
[α〈λ2〉ν − (1 + α)〈λ〉2ν ] + σ6r3G(rσ2), (20)

with G(x) a continuous bounded function in x = 0.

2.2.3. THE SPECTRAL METHOD

A natural way to design a spectral method for this inference problem is to consider the Hessian
of −fTAP at this trivial fixed point, as we expect a descending informative direction to appear in
its spectrum at the weak recovery threshold. As we show in Appendix B, this procedure leads to
consider the n× n matrix:

M(TAP) ≡ −n
β
∇2fTAP(0) = −1

ρ
1n +

1

n

m∑
µ=1

∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

ΦµiΦµj .

2.3. Unification of the approaches

We now detail our main claims and results concerning the spectral methods we just derived.

The optimal spectral method and the Bethe Hessian

Very importantly, as opposed to previous approaches, our derivation is constructive: we start from the
fully-explicit expression of the TAP free entropy given in eq. (18) and simply compute its Hessian at
the trivial fixed point. From the statistical physics literature (as we detailed in Section 1.2), we expect
that the optimal spectral method will be given by the largest eigenvalue (and associated eigenvector)
of this Hessian. The result of our computation of this Hessian was given in eq. (9). Importantly, this
implies that the optimal spectral method that can be built from the data Φ and the observations {yµ}
belongs to the class of methods given by eq. (4). Our conjecture therefore also gives weight to many
previous analysis of spectral methods for phase retrieval, which only studied spectral methods of the
type of eq. (4) Lu and Li (2020); Mondelli and Montanari (2019); Luo et al. (2019); Ma et al. (2021).
1This relation is equivalent to eq. (11), which states it for AMP iterations rather than the solutions of the TAP equations.
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Relating linearized-AMP and the Bethe Hessian

Our derivation of M(LAMP) is constructive as well, and in this sense fundamentally differs from the
L-AMP algorithms designed in Ma et al. (2021) to assess the performance of other spectral methods.
We start by a proposition, proven in Appendix D.3, which relates the eigenpairs of the two methods.

Proposition 3 Without loss of generality, we assume 〈λ〉ν = α. Let zµ ≡ ∂ωgout(yµ, 0, ρ〈λ〉ν/α),
and (λLAMP, v) be an eigenpair of M(LAMP). Assume that λLAMP + ρzµ 6= 0 for all µ = 1, · · · ,m.
Then Φ†Diag(zµ)v 6= 0, and we let x̂ ∝ Φ†Diag(zµ)v with ‖x̂‖2 = n. Moreover:{ 1

m

m∑
µ=1

ρzµ
λLAMP + ρzµ

ΦµΦ
†
µ

}
x̂ = x̂.

Conversely, let x be an eigenvector of M(TAP) with norm ‖x‖2 = n, with associated eigenvalue
λTAP. We define u ≡ Diag[(1 + ρzµ)−1]Φx/

√
n. Then one has:

M(LAMP)u = u + ρλTAPDiag(1 + ρ∂ωgout(yµ, 0, ρ))u.

Moreover, if λTAP = 0, eq. (17) applied to u yields the same performance as the TAP estimator.

By considering λLAMP = 1 and λTAP = 0, one immediately deduces two important consequences
of Proposition 3 and the definitions of the methods (cf. eqs. (8),(9)):

• The appearance of an unstable direction, in the spectrum of M(TAP) (i.e. a positive eigenvalue)
and of M(LAMP) (i.e. an eigenvalue with real part greater than 1), occurs at a common threshold
(i.e. the weak-recovery threshold, given by eq. (3)).

• An eigenvalue 0 appears in the spectrum of M(TAP) if and only if an eigenvalue 1 appears in the
spectrum of M(LAMP). These two eigenvalues therefore correspond to marginal stability of the
linear dynamics. Moreover, the two estimators associated to these eigenvalues are identical, i.e.
M(LAMP) contains the optimal estimator. Importantly, this estimator is different from the largest
eigenvector of M(LAMP), which reaches only suboptimal performance as we will see in Section 3.

3. Numerical experiments and perspectives

In this section, we numerically assess our predictions and compare the performance of the spectral
methods on various problems. In Section 3.1, we consider the recovery of a randomly generated
signal with different right-rotationally invariant sensing matrix ensembles. In Sec. 3.2, we illustrate
the transition phenomena in the spectra of M(TAP) and M(LAMP), which raise interesting random
matrix theory questions. Finally, in Section 3.3, we validate our predictions for the recovery of
a natural image with various matrix ensembles. We numerically verify that all our conclusions
derived for random signals still hold in this setting. The numerical code used to generate all figures
is available in the supplementary material.
Another spectral method – In the figures, we sometimes consider another spectral method, called
M(MM). It is obtained by naively considering the preprocessing function of Mondelli and Mon-
tanari (2019), which was shown to achieve the optimal transition for Gaussian sensing matrices.
More precisely, we have (assuming ρ = 1 and 〈λ〉ν = α): TMM(y) ≡ ∂ωgout(y, 0, 1)/

[√
2α
β +

∂ωgout(y, 0, 1)
]
. In particular note that at α = β/2, we have TMM = T ?, so that TMM indeed

achieves the optimal weak-recovery transition for Gaussian matrices, for which αWR,Algo = β/2.
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Figure 1: Mean squared error achieved by our spectral methods and a naive version of the spectral
method of Mondelli and Montanari (2019) for real column-orthogonal sensing matrices and
a noiseless channel. We give the performance on uniformly sampled column-orthogonal
matrices as well as randomly subsampled Hadamard matrices. The simulations were done
using m = 8192, and the error bars are taken over 10 instances.

3.1. Performance of the spectral methods

We show the performance of the spectral methods to recover a random signal in three different cases,
that we briefly describe:

• In Fig. 1, we consider noiseless real phase retrieval (i.e. sign retrieval), with uniformly sampled
column-unitary sensing matrices. We also show that our conclusions transfer to randomly sub-
sampled Hadamard matrices, validating the conclusions of Dudeja and Bakhshizadeh (2020).

• In Fig. 2(a)subfigure we consider noiseless real phase retrieval when the sensing matrix is a
product of two Gaussian i.i.d. matrices. This setup can for instance be interpreted as Gaussian
phase retrieval in which the signal is drawn from a known generative prior, similarly to the analysis
of Aubin et al. (2020a). Importantly, it is not covered by any previous analysis of the spectral
methods, emphasizing the generality of the framework of Hypothesis 1.

• In Fig. 2(b)subfigure, we compare our results in noiseless and noisy settings. More precisely, we
consider complex phase retrieval with a Gaussian sensing matrix, and either a noiseless channel or
a Poisson observation channel with intensity Λ > 0:

Pout(y|z) = e−Λ|z|2
∞∑
k=0

δ(y − k)
Λk|z|2k

k!
.

This latter channel is particularly relevant for optical applications, in which the detector can be
modeled as being affected by a Poisson noise. In both cases, we find that all our conclusions on
the optimality of the M(TAP), and on the link between M(LAMP) and M(TAP), still hold.
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(a) Product of two real i.i.d. Gaussian sensing matrices with a size ratio γ ∈ {0.5, 1.0, 2.0}. The
simulations were done using m = 10000, and error bars are taken over 10 instances.

(b) Complex Gaussian matrix, in noiseless phase retrieval and in Poisson-noise phase retrieval
with Λ = 1. The simulations were done using m = 10000 (noiseless case), 12000 (Poisson
case), and the error bars are taken over 10 (noiseless case), 5 (Poisson case) instances.

Figure 2: Mean squared error achieved by the different spectral methods in two different settings.

3.2. Transition phenomena in the spectra

We illustrate the weak-recovery transition in the spectra of the different methods. Precisely, we
confirm the following claims of Section 2.3:

• Both M(LAMP) and M(TAP) have a largest eigenvalue (in real part) that detaches from the bulk for
α > αWR,Algo, given by eq. (3).

• In the regime in which weak-recovery is possible, the largest eigenvalue of M(TAP) approaches
0 as n → ∞. The associated eigenvector achieves optimal correlation with the signal (among
spectral methods) as n→∞.

• M(LAMP) gives two estimators that are positively correlated with the signal for α > αWR,Algo.
The first one corresponds to its largest eigenvalue in real part, and achieves worse correlation than
the largest eigenvector of M(TAP). The second one corresponds to an eigenvalue inside the bulk
(but isolated from the other eigenvalues) that approaches 1 as n → ∞, and achieves the same
optimal performance as the estimator given by M(TAP).

We verify these claims for different values of α, below and above the weak-recovery threshold,
in complex Gaussian phase retrieval with Poisson-noise, in Fig. 3. We complete this analysis in
Appendix C, by considering noiseless phase retrieval and more values of α in Fig. 6, and product of
complex Gaussian matrices and structured signals in Fig. 7.
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Figure 3: Transition in the spectra of M(LAMP) (left) and M(TAP) (right) for a complex Gaussian Φ
and a Poisson channel with Λ = 1. For α > αWR,Algo = 2, we indicate the approximate
overlap q corresponding to the the relevant eigenvalues.

Remark – In the shown figures there is a very small discrepancy between the overlaps achieved by
the principal eigenvector of M(TAP) and the eigenvector of M(LAMP) with eigenvalue 1. This is due
to the fact that the subplots of Fig. 3 (and similarly for Fig. 6) are generated with different instances
of the matrix Φ and signal X?.
On the performance of the spectral methods – When weak recovery is possible the largest
eigenvalue of M(TAP) concentrates on 0 as we noticed. However, the spectrum of M(TAP) also
contains many very large negative eigenvalues. In practice, we use an inverse iteration method to
quickly estimate the associated eigenvector. We use a similar approach for M(LAMP), using inverse
iterations to estimate the eigenvector with eigenvalue 1, and usual power iterations for the largest
eigenvalue.

3.3. Real image reconstruction

As a final analysis, we numerically investigate our predictions for the reconstruction of a natural
image. For comparability, we consider the image of The Birth of Venus already used in Mondelli
and Montanari (2019); Ma et al. (2021). Although this signal is not i.i.d., we will see that all
our previous conclusions, numerically investigated in Sections 3.1,3.2, transfer to this case. We
consider a noiseless phase retrieval channel and different sensing matrices Φ: multiple ensembles of
column-unitary matrices (which partly reproduces the analysis of Ma et al. (2021)) and a product
of two complex Gaussian matrices with aspect ratio γ = 1. In particular we consider partial DFT
matrices, introduced in Ma et al. (2014, 2021), which are an ensemble of column-unitary matrices
obtained from the usual DFT matrices. Namely, there are defined for m ≥ n as Φ/

√
n = FSP, with

F ∈ Cm×m a DFT matrix, S ∈ Rm×n containing n columns (randomly taken) of the identity matrix
1m, and P a diagonal of random phases. In Fig. 4, we give the MSE obtained by the different spectral
methods and these two matrix ensembles. We also give examples of the images recovered by the
algorithms. Eventually, despite the fact that the signal (and possibly the matrix as well) is structured,
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Figure 4: Mean squared error achieved by the different spectral methods for the recovery of a natural
image in noiseless phase retrieval. We consider column-unitary matrices Φ (both uniformly
sampled and partial DFT matrices, left) and the product of two complex Gaussian matrices
with aspect ratio γ = 1 (right). We reduced each dimension of the original 1280 × 820
image by a factor 20 (left) or 10 (right), and we average the MSE over 5 instances and the
3 RGB channels (which are recovered independently).

we still observe the same transition phenomena in the spectra of M(TAP) and M(LAMP), as shown
in the supplementary material, in Fig. 7. Namely, we still observe that the optimal estimator is
associated with marginal stability of both spectral methods, while the largest eigenvalue of M(LAMP)

is associated to a non-optimal estimator.
Let us also illustrate how this spectral method can be combined with a subsequent local op-

timization algorithm. We use the spectral estimator as the initialization point to running vanilla

gradient descent on the square loss L(x) ≡ 1
2m

∑m
µ=1

{∣∣ (Φx)µ√
n

∣∣2 − ∣∣ (ΦX?)µ√
n

∣∣2}2
. This allows to

already obtain a perfect recovery of the image for α = 4, as shown in Fig. 5. In Appendix C.2 we
expand this analysis by showing the MSE achieved by the gradient descent procedure. In particular,
we confirm that combining the gradient descent with the spectral initialization allows to reach perfect
recovery at finite α, which is not possible with the “vanilla” spectral methods.

3.4. Perspectives

Our analysis raises interesting open questions, both from the random matrix theory and the statistical
physics viewpoint.

• First, we notice that the optimal estimator is always associated with marginal stability, both
in M(LAMP) and M(TAP). A clear understanding of this marginal stability (which was already
observed in Ma et al. (2021) in the column-unitary case) is still lacking. Moreover, the principal
eigenvector of the matrix M(LAMP) is associated to an unstable direction, thus dominating the
dynamics of the linearized-AMP. However its achieved correlation is smaller than the one achieved
by the marginally stable, optimal, eigenvector. We also noticed that the eigenvectors of M(TAP)
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Figure 5: Reconstruction of a real image in noiseless phase retrieval with partial DFT matrices. We
reduce the image size from 1280×820 to 128×82. We compare, for three different values
of α, the estimators of M(T ?) (top line) and the estimator obtained by running a gradient
descent procedure starting from the estimator of M(T ?) (bottom line). We recover the 3
RGB channels with independent instances of the sensing matrix.

do not contain any information about this suboptimal estimator1. This blindness of M(TAP) to the
principal eigenvector of M(LAMP) is very puzzling from a theoretical point of view. Indeed, as
shown in Maillard et al. (2019) and reminded in Section 2.2.1, the stationary limit of G-VAMP
(Algorithm 1) is in exact correspondence with the stationary point equations of the TAP free
entropy. One would therefore expect the two spectral methods M(LAMP) and M(TAP) to contain
the same physical information on the system. Finally, the different qualitative behaviors of the two
methods (instability of M(LAMP) a opposed to marginal stability of M(TAP)) only deepens this
puzzle, and understanding this disparity is an interesting open problem.

• Importantly, our analysis is essentially not rigorous (hence the use of conjectures). An interesting
perspective would be to establish rigorously our statements, in similarity with what is proven
in Dudeja et al. (2020a) on the analysis of Ma et al. (2021) for column-unitary matrices. This
would require a random matrix theory analysis of the “BBP”2 transition in matrices of the form
of eq. (9), which is, to the best of our knowledge, lacking in the generic rotationally-invariant
case. Another approach would be to use the (rigorously known) state evolution (SE) of AMP,
which allows to track its asymptotic performance. This approach was considered in Ma et al.
(2021); Dudeja and Bakhshizadeh (2020): importantly, this method also provides analytically the
asymptotic performance of the spectral method, which is not derived in the present work.

• Another important perspective is to apply our methods in real-world settings in which the way the
data and the signal are generated is not necessarily known. Our analysis of a real image (cf Fig. 4)

1In particular, this is an important distinction between our L-AMP constructive derivation and the L-AMP algorithms of
Ma et al. (2021), which are designed to match the spectral methods of the type M(T ): in the latter, it was shown that the
L-AMP estimator always matched the one of the spectral method.

2i.e. the appearance of a largest eigenvalue detached from the bulk of the other eigenvalues, as α increases. It was first
rigorously analyzed in Baik et al. (2005) for spiked Gaussian matrices.
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suggests that having a structured prior distribution does not harm our conclusions. The influence
of a so-called “mismatched” setting in the channel distribution (i.e. when the data is generated
with a distribution P 0

out and inferred with a different distribution Pout) is however less clear, and
we leave it for future work.
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spiked matrix model with generative priors. IEEE Transactions on Information Theory, 2020b.
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Appendix A. Linearized Approximate Message Passing in the complex case

In the complex case, we write the linearization of Algorithm 1 as:

δx̂t1 = ∇Tgx1(0, 0)δTt1 +∇T̄gx1(0, 0)δTt1,
δẑt1 = ∇Rgz1(0, ρ−1)δRt

1 +∇R̄gz1(0, ρ−1)δRt
1,

δTt2 = 1
ρδx̂t1 − δTt1, δRt

2 = α
ρ〈λ〉ν δẑt1 − δRt

1,

δx̂t2 = ∇Tgx2(0, 0, ρ−1, 0)δTt2 +∇Rgx2(0, 0, ρ−1, 0)δRt
2,

δẑt2 = ∇Tgz2(0, 0, ρ−1, 0)δTt2 +∇Rgz2(0, 0, ρ−1, 0)δRt
2,

δTt+1
1 = 1

ρδx̂t2 − δTt2, δRt+1
1 = α

ρ〈λ〉ν δẑt2 − δRt
2.

(21)

Recall that here ∂z, ∂z̄ are the usual Wirtinger derivatives. Since the functions gx2, gz2, defined in
eq. (10), are obviously holomorphic, we did not include their derivative ∂z̄ as it is trivially zero.
Moreover, we assumed that P0(z), Pout(y|z) are functions of |z|2 (i.e. spherical symmetry), which
defined our phase retrieval problem. Starting from the definition of eq. (10), this implies that

∂Tigx1(0, 0) = 2
(
EP0 [z2]− EP0 [z]

)
= 0,

in which the last equality is a consequence of the spherical symmetry. In the same way, one obtains
∇R̄gz1(0, ρ−1) = 0. We can then compute, as in the real case (cf eq. (14)):

∂Tj [(gx1(0, 0)i] = ρ δij ,

∂Rν [gz1(0, ρ−1)µ] = δµνEPout(yµ,0,ρ〈λ〉ν/α) ≡ δµνv(yµ),

∂Tj [gx2(0, 0, ρ−1, 0)] = ρ δij ,

∂Rµ [gx2(0, 0, ρ−1, 0)i] = ρ(VSᵀU†)iµ = ρ
(Φ†)iµ√

n
,

∂Ti [gz2(0, 0, ρ−1, 0)µ] = ρ
Φµi√
n
,

∂Rν [gz2(0, 0, ρ−1, 0)µ] = ρ
(ΦΦ†)µν

n .

(22)

The derivation of the real case then straightforwardly transfers to the complex case, and we reach
eq. (16) in the complex case, as claimed.

Appendix B. The Hessian of the TAP free entropy

B.1. The derivatives of the parameters at the trivial fixed point

We start from the relations of eq. (19). Let us differentiate them with respect to m(a)
i , for any

a ∈ {1, β} and i ∈ {1, · · · , n}. We denote Pµout ≡ Pout(yµ, ωµ, b). We get after tedious calculations
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the cumbersome equations (valid for any m) :

δijea = β
{
− 1

2

∂γ

∂m
(a)
i

(EP0(γ,λj)[x|x|
2]− EP0(γ,λj)[x]EP0(γ,λj)[|x|

2]) (23a)

−EP0(γ,λj)

[
x
(
x · ∂λj

∂m
(a)
i

)]
+ EP0(γ,λj)[x]EP0(γ,λj)

[
x · ∂λj

∂m
(a)
i

]}
,

∂σ2

∂m
(a)
i

=
1

n

n∑
j=1

[
− 2m

(a)
j δij + β

{
− 1

2

∂γ

∂m
(a)
i

(EP0(γ,λj)[|x|
4]− (EP0(γ,λj)[|x|

2])2) (23b)

+EP0(γ,λj)

[
|x|2
(
x · ∂λj

∂m
(a)
i

)]
− EP0(γ,λj)[|x|

2]EP0(γ,λj)

[
x · ∂λj

∂m
(a)
i

]}]
,

∂gµ

∂m
(a)
i

=
1

b

∂ωµ

∂m
(a)
i

+
∂b

∂m
(a)
i

{
b−2EPµout [h− ωµ] (23c)

+
β

2b3
(
EPµout [(h− ωµ)|h− ωµ|2]− EPµout [h− ωµ]EPµout [|h− ωµ|

2]
)}

− β
b2

(
EPµout

[
(h− ωµ)(h− ωµ) · ∂ωµ

∂m
(a)
i

]
− EPµout [h− ωµ]EPµout

[
(h− ωµ) · ∂ωµ

∂m
(a)
i

])
,

∂r

∂m
(a)
i

=
1

m

m∑
µ=1

{
2gµ ·

∂gµ

∂m
(a)
i

− b−2 ∂b

∂m
(a)
i

+
1

b2
EPµout

[
(h− ωµ) · ∂ωµ

∂m
(a)
i

]
(23d)

+
∂b

∂m
(a)
i

{
2b−3EPµout [|h− ωµ|

2] +
β

2b4
(
EPµout [|h− ωµ|

4]−
(
EPµout [|h− ωµ|

2]
)2)}

+
β

b3

(
EPµout

[
|h− ωµ|2(h− ωµ) · ∂ωµ

∂m
(a)
i

]
− EPµout [|h− ωµ|

2]EPµout
[
(h− ωµ) · ∂ωµ

∂m
(a)
i

])}
,

∂γ

∂m
(a)
i

= −2
[ ∂σ2

∂m
(a)
i

∂2
σ2F (σ2, r) +

∂r

∂m
(a)
i

∂2
σ2,rF (σ2, r)

]
, (23e)

∂ωµ

∂m
(a)
i

− ∂b

∂m
(a)
i

gµ − b
∂gµ

∂m
(a)
i

=
Φµi√
n

ea, (23f)

∂b

∂m
(a)
i

= − 2

α

[ ∂σ2

∂m
(a)
i

∂2
σ2,rF (σ2, r) +

∂r

∂m
(a)
i

∂2
rF (σ2, r)

]
. (23g)

Here we denoted ea = 1 if K = R, and (ea)b = δab if K = C. In particular, taken at the trivial fixed
point, these equations can be greatly simplified, using the value of the parameters at this point, the
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symmetries of the channel and prior, and the development of the F function, cf eq. (20):

δijea = −βEP0

[
x
(
x · ∂λj

∂m
(a)
i

)]
, (24a)

∂σ2

∂m
(a)
i

=
−β
2

∂γ

∂m
(a)
i

(EP0 [|x|4]− (EP0 [|x|2])2), (24b)

∂gµ

∂m
(a)
i

=
α

ρ〈λ〉ν
∂ωµ

∂m
(a)
i

− βα2

ρ2〈λ〉2ν
EPout(yµ,0,ρ〈λ〉ν/α)

[
h
(
h · ∂ωµ

∂m
(a)
i

)]
, (24c)

∂r

∂m
(a)
i

=
2α2

ρ2〈λ〉2ν
∂b

∂m
(a)
i

(24d)

∂γ

∂m
(a)
i

= 〈λ〉ν
∂r

∂m
(a)
i

, (24e)

∂ωµ

∂m
(a)
i

− ρ〈λ〉ν
α

∂gµ

∂m
(a)
i

=
Φµi√
n

ea, (24f)

∂b

∂m
(a)
i

=
〈λ〉ν
α

∂σ2

∂m
(a)
i

− ρ2

2α2
[α〈λ2〉ν − (1 + α)〈λ〉2ν ]

∂r

∂m
(a)
i

. (24g)

We used eq. (29) and eq. (11) (from the derivation of M(LAMP)) to simplify the equation involving
the derivative of r. One can already notice the very interesting fact that the variance scalar parameters
and the vector parameters are decoupled ! Moreover, it is easy to see that the equations on the
variance parameters can be closed to:

∂σ2

∂m
(a)
i

= −ρ
2(1 + α)(〈λ2〉ν − 〈λ〉2ν)

β〈λ〉2νVarP0 [|X|2]

∂σ2

∂m
(a)
i

.

This equation is of the type ∂
m

(a)
i

σ2 = −t∂
m

(a)
i

σ2, with t > 0, and thus we have

∂σ2

∂m
(a)
i

=
∂γ

∂m
(a)
i

=
∂r

∂m
(a)
i

=
∂b

∂m
(a)
i

= 0. (25)

Moreover, from eq. (24), we can obtain as well the derivatives of the vector parameters at the trivial
fixed point: 

∂λj

∂m
(a)
i

= −δij
ρ

ea, (26a)

∂gµ

∂m
(a)
i

=
α

ρ〈λ〉ν

[
1− α

ρ〈λ〉ν
EPout(yµ,0,ρ〈λ〉ν/α)[|h|2]

] ∂ωµ
∂m

(a)
i

= −∂ωgout(yµ, 0, ρ〈λ〉ν/α)
∂ωµ

∂m
(a)
i

, (26b)

∂ωµ

∂m
(a)
i

=
ρ〈λ〉ν
α

∂gµ

∂m
(a)
i

+
Φµi√
n

ea. (26c)
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These equations can easily be solved as:

∂λj

∂m
(a)
i

= −δij
ρ

ea, (27a)

∂ωµ

∂m
(a)
i

=
Φµi√
n

1

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

ea, (27b)

∂gµ

∂m
(a)
i

= −Φµi√
n

∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

ea. (27c)

B.2. The expansion of the free entropy

We start from eq. (18):

fTAP(m) =
β

n

n∑
i=1

λi ·mi +
βγ

2n

(
nσ2 +

n∑
i=1

|mi|2
)

+
αβ

m

m∑
µ=1

ωµ · gµ

− βb

2n

( m∑
µ=1

|gµ|2 − αnr
)

+
1

n

n∑
i=1

ln

∫
K
P0(dx)e−

βγ
2
|x|2−βλi·x

+
α

m

m∑
µ=1

ln

∫
K

dh(
2πb
β

)β/2Pout(yµ|h)e−
β|h−ωµ|2

2b − β

n

n∑
i=1

m∑
µ=1

gµ ·
(Φµi√

n
mi

)
+ βF (σ2, r).

At the trivial fixed point, we obtain by differentiating this expression twice (using the form of the
trivial fixed point and eq. (25)):

∂2fTAP

∂m
(a)
i ∂m

(b)
j

=

2β

n
δijδab

∂λ
(a)
i

∂m
(a)
i

+
αβ

m

m∑
µ=1

[ ∂ωµ
∂m

(a)
i

· ∂gµ
∂m

(b)
j

+
∂ωµ

∂m
(b)
j

· ∂gµ

∂m
(a)
i

]
+ βρδijδab

( ∂λ(a)
i

∂m
(a)
i

)2

− βρ〈λ〉ν
m

m∑
µ=1

∂gµ

∂m
(a)
i

· ∂gµ
∂m

(b)
j

− β

n

m∑
µ=1

{ 1√
n

∂(Φµigµ)(a)

∂m
(b)
j

+
1√
n

(Φµj∂gµ)(b)

∂m
(a)
i

}
+
α

m

m∑
µ=1

[
− βα

2ρ〈λ〉ν
∂2b

∂m
(a)
i ∂m

(b)
j

+
βα2

2ρ2〈λ〉2ν
∂2b

∂m
(a)
i ∂m

(b)
j

EPout(yµ,0,ρ〈λ〉ν/α)[|h|2]
]

+
βα2

mρ〈λ〉ν

m∑
µ=1

( ∂ωµ

∂m
(a)
i

)
·
( ∂ωµ

∂m
(b)
j

){ α

ρ〈λ〉ν
EPout(yµ,0,ρ〈λ〉ν/α)[|h|2]− 1

}
.

715



OPTIMAL SPECTRAL METHODS IN PHASE RETRIEVAL

We then use eq. (27) and eq. (11), to simplify slightly the result:

n

β

∂2fTAP

∂m
(a)
i ∂m

(b)
j

=
−1

ρ
δijδab +

m∑
µ=1

[ ∂ωµ
∂m

(a)
i

· ∂gµ
∂m

(b)
j

+
∂ωµ

∂m
(b)
j

· ∂gµ

∂m
(a)
i

]
− ρ〈λ〉ν

α

m∑
µ=1

∂gµ

∂m
(a)
i

· ∂gµ
∂m

(b)
j

−
m∑
µ=1

{ 1√
n

∂(Φµigµ)(a)

∂m
(b)
j

+
1√
n

(Φµj∂gµ)(b)

∂m
(a)
i

}
+

m∑
µ=1

( ∂ωµ

∂m
(a)
i

)
·
( ∂ωµ

∂m
(b)
j

)
∂ωgout(yµ, 0, ρ〈λ〉ν/α).

We also used eq. (7) to make ∂ωgout appear in the last term. As is clear from this last equation and
eq. (27), the dependency on a, b of the result will fully be determined by the quantity (Φµiea)·(Φµjeb).
For β = 1, this is simply equal to ΦµiΦµj . For β = 2, this can be represented as a 2× 2 matrix:

{
(Φµiea) · (Φµjeb)

}
a,b=1,2

=

(
Re[ΦµiΦµj ] −Im[ΦµiΦµj ]

Im[ΦµiΦµj ] Re[ΦµiΦµj ]

)
.

This is just the usual matrix representation of the complex number ΦµiΦµj . Following this represen-
tation, we can formally write n ∂2fTAP

∂mi∂mj
as an element of K ! This yields:

n

β

∂2fTAP

∂mi∂mj
=
−1

ρ
δij +

m∑
µ=1

ΦµiΦµj

n

∂ωgout(yµ, 0, ρ〈λ〉ν/α)

1 + ρ〈λ〉ν
α ∂ωgout(yµ, 0, ρ〈λ〉ν/α)

.

Appendix C. Additional numerical experiments

C.1. The transition in the spectra

In this section, we present two additional numerical experiments illustrating the weak-recovery
transition in the spectra of M(TAP) and M(LAMP). These figures are very similar to Fig. 3 in the
main text. Namely, in Fig. 6, we consider noiseless phase retrieval with a complex Gaussian matrix,
and in Fig. 7 we consider noiseless phase retrieval with a product of two complex Gaussian matrices,
and a real image signal, detailed in Section 3.3.

C.2. The performance of the spectral initialization used in gradient descent

In this section, we show the MSE achieved by a combination of our spectral methods and a gradient
descent procedure for the recovery of the real image shown in Fig. 5. The results are given in
Fig. 8. The gradient descent procedure allows a significant improvement of the performance when
the spectral method already achieves reasonably low error. In particular, it is able to reach perfect
recovery at finite α, which is not possible via the vanilla spectral methods.

Appendix D. Some technicalities
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(a) M(LAMP) (b) M(TAP)

Figure 6: Transition in the spectrum of M(LAMP) and M(TAP) for a complex Gaussian Φ and a
noiseless phase retrieval channel. For α > αWR,Algo = 1, we indicate the approximate
overlap q corresponding to the relevant eigenvalues.

(a) M(LAMP) (b) M(TAP)

Figure 7: Transition in the spectra of M(LAMP) and M(TAP) for Φ being the product of two complex
Gaussian matrices, and a noiseless phase retrieval channel, for the recovery of a natural
image. For α > αWR,Algo = 0.5, we indicate the approximate overlap q corresponding to
the relevant eigenvalues.

D.1. The linear variations of the scalar parameters

For any quantity r, we write δr its linear variation around the trivial fixed point. One obtains the
following set of equations, using the symmetry of P0 and Pout:

δvt1 = −β
2 δγ

t
1

∫
K P0(dx) [|x|4 − ρ2], δγt2 = − 1

ρ2
δvt1 − δγt1,

δct1 = β
2

[
ρ2〈λ〉2ν
α2 − 1

m

m∑
µ=1

∫
K dz |z|4 Pout(yµ|z) e

− βα|z|
2

2ρ〈λ〉ν∫
K dz Pout(yµ|z) e

− βα|z|
2

2ρ〈λ〉ν

]
δτ t1, δτ t2 = − α2

ρ2〈λ〉2ν
δct1 − δτ t1,

δvt2 = −ρ2δγt2 − ρ2〈λ〉νδτ t2, δγt+1
1 = − 1

ρ2
δvt2 − δγt2,

δct2 = − 〈λ〉να ρ2δγt2 −
ρ2

α 〈λ
2〉νδτ t2, δτ t+1

1 = − α2

ρ2〈λ〉2ν
δct2 − δτ t2.

(28)
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Figure 8: Mean squared error achieved for the reconstruction of a real image in noiseless phase
retrieval with partial DFT (left) and product of Gaussians (right) sensing matrices. We
compare the performance of the vanilla spectral methods and of a gradient descent proce-
dure initialized at the spectral estimator. The image size was reduced from 1280× 820 to
128× 82. The error bars are taken over 3 instances for each of the 3 RGB channels.

Note that the linear variations of these scalar variance parameters do not depend on the variations of
the vector parameters of Algorithm 1. Differentiating eq. (11) with respect to τ t1 and taking it at the
trivial fixed point implies:

1
m

∑m
µ=1

[∫
K dz |z|4 Pout(yµ|z) e

− βα
2ρ〈λ〉ν

|z|2

∫
K dz Pout(yµ|z) e

− βα

2ρ〈λ〉ν |z|2
−
{∫

K dz |z|2 Pout(yµ|z) e
− βα

2ρ〈λ〉ν
|z|2

∫
K dz Pout(yµ|z) e

− βα

2ρ〈λ〉ν |z|2

}2]
=

2ρ2〈λ〉2ν
βα2

. (29)

Using this relation, one obtains from eq. (28) that δct1 = −δτ t1ρ2〈λ〉2ν/α2, which then implies
δτ t2 = 0. Similarly, it follows easily by the remaining equations that all the variations in eq. (28)
must be zero.

D.2. The expansion of F (x, y) around y = 0

We describe here the behavior of F (x, y) as x > 0 and y → 0+. Let us write the equations satisfied
by ζx, ζy: 

〈 ζy
ζxζy + λ

〉
ν

= x, (30a)

α− 1

ζy
+
〈 ζx
ζxζy + λ

〉
ν

= αy. (30b)

As y → 0+, this implies necessarily that ζy → +∞, and one finds easily that ζy ∼ 1/y, ζx ∼ 1/x.
We now turn to the next order variations, that we write as:

ζy = y−1 + c1 +O(y),

ζx =
1

x
+ c2y +O(y2).
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We use eq. (30) to compute c1 = −x 〈λ〉ν /α and c2 = −〈λ〉ν . We can then develop the logarithmic
potential:

1

2
〈log(ζxζy + λ)〉ν = −1

2
log y − 1

2
log x− x

2α
〈λ〉ν y +O(y2).

Developing the other terms involved in F (x, y) is straightforward and yields:

F (x, y) = −xy
2
〈λ〉ν +O(y2). (31)

One can push this analysis to the next order, and finds in the exact same way, from eq. (30):

ζy =
1

y
−
x 〈λ〉ν
α

+
x2

α2

[
α 〈λ2〉ν − (1 + α) 〈λ〉2ν

]
y +O(y2),

ζx =
1

x
− 〈λ〉ν y +

x

α

[
α 〈λ2〉ν − (1 + α) 〈λ〉2ν

]
y2 +O(y3).

This yields for F (x, y):

F (x, y) = −
〈λ〉ν

2
xy +

x2

4α

[
α 〈λ2〉ν − (1 + α) 〈λ〉2ν

]
y2 +O(y3),

which concludes our analysis.

D.3. Proof of Proposition 3

Let us recall the two spectral methods M(TAP), M(LAMP). Without loss of generality, we assume
〈λ〉ν = α. Recall that we defined zµ ≡ ∂ωgout(yµ, 0, ρ). We let Z = Diag(zµ). We can thus write:

M(LAMP) = ρ
(ΦΦ†

n
− 1m

)
Z, (32a)

M(TAP) = −1

ρ
1n +

1

n
Φ†

Z
1m + ρZ

Φ. (32b)

We start by the first claim. By definition of (λLAMP, v), we have

ρ
ΦΦ†

n
Zv = (ρZ + λLAMP)v. (33)

Since we assumed λLAMP + ρzµ 6= 0 for all µ, this implies that Φ†Zv 6= 0, and we thus let

x̂ ≡ Φ†Zv
‖Φ†Zv‖

√
n.

Multiplying eq. (33) by Φ†Z(λLAMP + ρZ)−1 on both sides, we directly reach the sought result:{ 1

n
Φ†

ρZ
λLAMP + ρZ

Φ
}

x̂ = x̂.

719



OPTIMAL SPECTRAL METHODS IN PHASE RETRIEVAL

We move on to the second claim. Let x ∈ Kn be an eigenvector of M(TAP) with norm ‖x‖2 = n,
with associated eigenvalue λTAP. We let:

u ≡ 1m

1m + ρZ
Φ√
n

x.

And we can then easily compute:

M(LAMP)u = ρ
(ΦΦ†

n
− 1m

) Z
1m + ρZ

Φ√
n

x,

=
ρΦ√
n

[
M(TAP) +

1

ρ
1n

]
x− ρZu,

= ρλTAP
Φ√
n

x +
Φ√
n

x− ρZu,

M(LAMP)u = u + ρλTAP(1m + ρZ)u. (34)

At α = αWR,Algo, the largest eigenvalue of M(TAP) concentrates on 0, which corresponds to the
onset of marginal instability of the trivial local maximum. As one can see from eq. (34), this
implies that M(LAMP) also possesses an eigenvalue equal to 1 at α = αWR,Algo, indicating marginal
instability as well. To put it shortly, the two spectral methods have the same weak recovery threshold.
Moreover, eq. (34) implies that for any α ≥ αWR,Algo, if M(TAP) has en eigenvalue that concentrates
on 0 as n → ∞, then M(LAMP) has a corresponding eigenvalue concentrating on 1, and with the
same performance. Indeed, as described in eq. (17), the estimator associated to M(LAMP) will be
given by:

x̂LAMP ∝
Φ†√
n

Zu =
Φ†√
n

Z
1m + ρZ

Φ√
n

x̂TAP,

in which x̂ is an eigenvector of M(TAP) with eigenvalue 0. Therefore, we reach that x̂LAMP ∝ x̂TAP,
and these two vectors are thus equal as they are both normalized.
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