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Abstract
Neural Tangent Kernel (NTK) theory is widely used to study the dynamics of infinitely-wide deep
neural networks (DNNs) under gradient descent. But do the results for infinitely-wide networks
give us hints about the behavior of real finite-width ones? In this paper, we study empirically when
NTK theory is valid in practice for fully-connected ReLU and sigmoid DNNs. We find out that
whether a network is in the NTK regime depends on the hyperparameters of random initialization
and the network’s depth. In particular, NTK theory does not explain the behavior of sufficiently
deep networks initialized so that their gradients explode as they propagate through the network’s
layers: the kernel is random at initialization and changes significantly during training in this case,
contrary to NTK theory. On the other hand, in the case of vanishing gradients, DNNs are in the
the NTK regime but become untrainable rapidly with depth. We also describe a framework to
study generalization properties of DNNs, in particular the variance of network’s output function,
by means of NTK theory and discuss its limits.
Keywords: Deep Neural Networks (DNN), Neural Tangent Kernel (the NTK)

1. Introduction

Deep neural networks (DNNs) have gained a lot of popularity in the last decades due to their success
in a variety of domains, such as image classification (Krizhevsky et al., 2012), speech recognition
(Hannun et al., 2014), playing games (Mnih et al., 2013), etc. Consequently, there has been a
tremendous interest in the theoretical properties of DNNs: expressivity (Montufar et al., 2014),
optimization (Goodfellow et al., 2014) and generalization (Hardt et al., 2016). However, many
aspects of DNNs, in particular their surprising generalization properties, still remain unclear to the
community (Zhang et al., 2016).

To study theoretical properties of DNNs, numerous recent papers have considered them in the
infinite-width limit. In particular, there is a line of research which shows that untrained fully-
connected networks of depth L and widths M1, . . . ,ML with weights and biases initialized ran-
domly as

Wl
ij ∼ N (0, σ2

w/Ml),b
l
i ∼ N (0, σ2

b ) (1)

behave as Gaussian processes (GP) in the infinite-width limit (for any l ∈ [1, L],Ml → ∞) (Lee
et al., 2017; Matthews et al., 2018; Novak et al., 2018). These GPs are then fully described by a so-
called Neural Network Gaussian Process (NNGP) kernel, and a number of publications have studied
properties of this kernel depending on the network’s depth and initialization hyperparameters (Poole
et al., 2016; Schoenholz et al., 2016). These works developed a mean field theory formalism for NNs
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and identified that there exist two situations – depending on hyperparameters (σ2
w, σ

2
b ) – in which

signal propagation through the network differs substantially: ordered and chaotic phases, which
correspond to vanishing and exploding gradients. However, these results only concern untrained
randomly initialized networks.

There have also been recent successes in the theory of trained infinitely wide DNNs. In par-
ticular, it has been shown that the evolution of NN’s output during gradient flow training can be
captured by a so-called Neural Tangent Kernel (NTK) Θt (Jacot et al., 2018; Arora et al., 2019;
Yang, 2020):

df t(x)

dt
= − 1

S

∑
s=1,...S

Θt(x, xs) · [f t(xs)− ys],

Θt(xi, xj) = ∇wf t(xi)T∇wf t(xj), w = {Wl,bl}l=1,...L,

(2)

where f t(x) is the network’s output on x at time t and D = {(xs, ys)}s=1,...S is the training set. In
general, the NTK changes during training time t and the dynamics in (2) is complex. However, as
layers’ widths tend to infinity with fixed depth, it can be shown that the NTK stays constant during
training and equal to its initial value:

Θt(xi, xj) = Θ0(xi, xj). (3)

Moreover, the NTK at initialization converges to a deterministic kernel Θ∗ in the same limit:

Θ0(xi, xj) −−−−→
Ml→∞

Θ∗(xi, xj). (4)

These two results allow to dramatically simplify the analysis of DNNs behavior, as the dynamics in
(2) becomes identical to kernel regression and the ODE has a closed-formed solution.

However, some recent papers argue that the success of DNNs cannot be explained by their be-
havior in the infinite-width limit (Chizat et al., 2019; Hanin and Nica, 2019). One justification for
this view is that no feature learning occurs when (3) and (4) hold, as the NTK stays constant during
training and depends only on the parameters at initialization. Moreover, the NTK becomes com-
pletely data-independent in the infinite-depth limit, which suggests poor generalization performance
(Xiao et al., 2019). That is why, to study properties of real DNNs, it is important to understand when
and if NTK theory can be applied to finite-width NNs.

1.1. Contribution

Our aim in this work is to understand when the inferences of NTK theory (3) and (4) hold
for real NNs depending on hyperparameters (σ2

w, σ
2
b , L,M) and what this implies for the existing

theoretical results about DNNs based on NTK theory. The contributions of our work are as follows:

• NTK variance at initialization. We study empirically when the NTK is approximately de-
terministic at initialization for finite-width fully-connected ReLU and tanh networks with
different hyperparameters (σ2

w, σ
2
b , L,M). Our results suggest that, depending on the ini-

tialization hyperparameters (σ2
w, σ

2
b ), there is a phase in the hyperparameter space where the

NTK is close to deterministic for any depth L, so (4) holds. However, there is also a phase
where the NTK variance grows with L/M , so (4) does not hold for deep networks. Follow-
ing the terminology from Poole et al. (2016), we will call these phases ordered and chaotic,
respectively.

869



CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

• NTK change during training. We also empirically study changes in the NTK matrix during
gradient descent training for ReLU and tanh networks. Our results show that, in the ordered
phase, the relative change in the NTK matrix norm caused by training is small and does not
increase with L, so (3) holds. However, in the chaotic phase the NTK matrix change during
training is large and grows with depth L. This implies that (3) does not hold, i.e. DNNs
initialized in the chaotic phase do not behave as NTK theory suggests.

• NTK theory approach for generalization. Some recent publications analyze properties of
the NTK and draw conclusions about DNNs’ generalization thereof (Xiao et al., 2019; Geiger
et al., 2020). Other authors argue that the behavior of networks in the NTK regime is trivial
and does not yield good generalization properties, that are however observed for DNNs in
practice (Chizat et al., 2019). We show how to compute data-independent variance of the
network’s output when it evolves according to NTK theory. However, given our empirical
results for when NTK theory is applicable, we discover that these findings do not explain the
behavior of finite-width networks in most of the hyperparameters space (σ2

w, σ
2
b , L,M).

1.2. Related work

This work adds to the line of research that studies the correspondence between finite- and
infinite-width DNNs. In particular, the difference between theoretical (infinite-width) and empirical
(finite-width) NTK. In this section, we survey the prior results in this direction and position our
contribution within them.

A number of papers have studied the convergence of the empirical NTK at initialization to the
theoretical NTK. The first fundamental result of NTK theory is that the NTK converges to a deter-
ministic limit asM goes to infinity (Jacot et al., 2018). The following work proved a non-asymptotic
bound on minimalM required to guarantee this convergence in case of ReLU networks (Arora et al.,
2019). This bound on M depends on the depth as O(L6log(L)), therefore L/M is always small for
deep networks when the bound holds. Then, a recent theoretical work improved this result in a spe-
cial case of ReLU networks with initialization (σw = 2, σb = 0) by showing the precise exponential
dependence of the NTK variance at initialization on L/M (Hanin and Nica, 2019). That is, (4) does
not hold for such networks when L/M is bounded away from zero. However, the proofs given in
the paper are not immediately generalizable for different activation functions and different initial-
ization parameters. Thus, there is still no solid understanding of the NTK randomness depending on
the choice of a network. Therefore, in Section 3, we empirically study the randomness of the NTK
at initialization for ReLU and tanh networks with a variety of hyperparameters (M,L, σw, σb)
and observe the precise dependence on 1) the position of initialization (σw, σb) in either ordered or
chaotic phase, 2) depth-to-width ratio L/M in the chaotic phase.

Changes of the NTK matrix during gradient descent training have also been analyzed in the
literature mostly as a function of M . In particular, it has been proven (Huang and Yau, 2020) and
shown experimentally (Lee et al., 2019) that the change of the NTK matrix during gradient descent
training is bounded by O(1/M) when the depth L is fixed. For ReLU networks with initialization
(σw = 2, σb = 0) it has also been proven that the change of the NTK in a gradient descent step
depends exponentially on L/M (Hanin and Nica, 2019). We add to these results in Section 4 by
investigating the NTK changes during training for two activation functions and hyperparameters
(σw, σb, L).
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A different line of research has also studied the theoretical (infinite-width) NTK as a function
of depth and initialization parameters (Xiao et al., 2019; Hayou et al., 2019). These contributions
found that the spectrum of infinite-width NTK behaves differently in ordered and chaotic phases.
The authors also showed that the infinite-depth limit of the theoretical NTK (when first the limit
M → ∞ is taken with fixed L and then L → ∞) yields trivial performance and cannot explain
properties of finite DNNs. These papers showed that both in ordered and chaotic phases the NTK
approaches its trivial limit exponentially in L, and only in the border between phases (EOC) this
convergence is sub-exponential. However, the setting of these contributions requires L/M values to
be small, therefore they do not explain how the randomness of NTK and its changes during training
impact the results. Our work shows that in the chaotic phase and at the EOC the NTK does not
behave as its theoretical limit when L/M is bounded away from zero, therefore we cannot draw
conclusions about such DNNs based on the theoretical NTK.

In generalization research, the recent trend is double descent – the phenomenon that highly
overparametrized models, including DNNs, tend to generalize surprisingly well (Belkin et al., 2018;
Nakkiran et al., 2019; Belkin et al., 2019; Hastie et al., 2019). The recent developments in the the-
ory of double descent showed that overparametrized linear models reach low generalization error
because, counterintuitively, their variance decreases when the number of parameters increases be-
yond the number of samples (Hastie et al., 2019). However, there is still no double descent theory
for DNNs, which are significantly more theoretically complex than linear models. In Section 5, we
studied the variance of DNNs’ output with the simplifications of NTK theory, which can be seen as
the first step into this direction.

2. Mean field approach for wide neural networks

A number of recent papers used the mean field formalism to study forward- and backpropagation
of signal through randomly initialized DNNs (Poole et al., 2016; Schoenholz et al., 2016; Karakida
et al., 2018; Yang and Schoenholz, 2017). We first describe this approach and show how ordered
and chaotic phases, which correspond to vanishing and exploding gradients, arise from it.

Suppose there is a fully-connected feed-forward neural network initialized randomly as in (1)
with hidden layers’ widths M1, . . .ML. Forward propagation through the network is given by

xl(xs) = φ(hl(xs)), hl(xs) = Wlxl−1(xs) + bl, l = 1, . . . L,

x0(xs) = xs, s = 1, . . . S,

where φ is the activation function, xl are activations, hl are pre-activations in each layer l, and
D = (X,Y ) = {(xs, ys)}s=1,...S is a dataset.

Consider variances ql(xs) := E[(hli(xs))
2] of the pre-activations in each layer for a given input

vector xs. The mean field theory approach assumes that hli(xs), i = 1, . . .Ml are i.i.d Gaussian,
so by central limit theorem in the limit of M → ∞, the variance can be seen as a sum over dif-
ferent neurons in the same layer ql(xs) = 1

Ml

∑Ml
i=1(hli(xs))

2. Then it can be computed through a
recursive relation:

ql(xs) = σ2
w

∫
Dz · φ(

√
ql−1(xs)z)

2 + σ2
b , (5)

where the average over numerous neurons in layer l − 1 is replaced by an integral over a Gaussian
distribution Dz = dz√

2π
e−z

2/2. Then the variance of activations q̂l(xs) := E[(xli(xs))
2] is given by
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q̂l(xs) =

∫
Dz · φ(

√
ql(xs)z)

2. (6)

In the same fashion, Poole et al. (2016) derive a recursive map for the correlation between pre-
activations of two different inputs and the correlation between activations of two different inputs,
denoted correspondigly ql(xs, xr) := E[hli(xs)h

l
i(xr)] and q̂l(xs, xr)] := E[xli(xs)x

l
i(xr)]:

qlsr(xs, xr) = σ2
w

∫
Dz1Dz2 · φ(u1)φ(u2) + σ2

b ,

q̂l−1
sr (xs, xr) =

∫
Dz1Dz2 · φ(u1)φ(u2),

u1 =
√
ql−1(xs)z1, u2 =

√
ql−1(xr)[c

l−1
sr z1 +

√
1− (cl−1

sr )2z2],

cl−1
sr =

ql−1(xs, xr)√
ql−1(xs)ql−1(xr)

.

(7)

The gradients of the network are given by the backpropagation chain:

∂f

∂Wl
ij

= δliφ(hl−1
j ),

∂f

∂bli
= δli,

δli =
∂f

∂hli
= φ

′
(hli)

∑
j

δl+1
j Wl+1

ji ,

where we omitted the dependence on input xs for simplicity. With an additional assumption that
weights in forward- and backpropagation are drawn independently, i.e. φ(hlj) and δli are indepen-
dent, Schoenholz et al. (2016) derived a recursive relation for the variance of the backpropagated
errors pl(xs) := E[

∑
i(δ

l
i(xs))

2]:

pl(xs) = σ2
wp

l+1(xs)
Ml+1

Ml+2

∫
Dz[φ

′
(
√
ql(xs)z)]

2. (8)

And for the corresponding correlation between backpropagated errors of two different input vectors
plsr(xs, xr) := E[

∑
i(δ

l
i(xs)δ

l
i(xr))]:

plsr(xs, xr) = σ2
wp

l+1
sr (xs, xr)

Ml+1

Ml+2

∫
Dz1Dz2 · φ

′
(u1)φ

′
(u2),

u1 =
√
ql(xs)z1, u2 =

√
ql(xr)[c

l
srz1 +

√
1− (clsr)

2z2],

clsr =
qlsr(xs, xr)√
ql(xs)ql(xr)

.

(9)

Note that for certain activation functions, e.g. ReLU and erf, the integrals in (5), (6), (7), (8) and
(9) can be taken analytically. One can refer to Appendix E for these analytical expressions.

We can now introduce, following the notation from Poole et al. (2016) and Schoenholz et al.
(2016), a quantity that controls the backpropagation of variance pl(xs):

χl1 = σ2
w

∫
Dz[φ

′
(
√
qlz)]2,

pl = pl+1 · χl1,
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where we assumed that the network’s width is constant, i.e. Ml+1/Ml+2 = 1. Then χ1 also controls
the propagation of the gradients at initialization:

E[(
∂f0(xs)

∂Wl
ij

)2] = E[(δli)
2]E[(φ(hl−1

j ))2] ∝ pl(xs).

In particular, when the initialization parameters are such that χl1 < 1 in all the layers, the gradients
vanish, and when χl1 > 1 the gradients explode. These two situations are referred to as ordered and
chaotic phases correspondingly, and the border between these phases defined by χl1 = 1 is called
edge of chaos (EOC) initialization. Several authors suggest that networks should be initialized near
EOC to allow deeper signal propagation (Hayou et al., 2018; Schoenholz et al., 2016).

In the next two sections of the paper, we test empirically how different parameters of random
initialization (σ2

w, σ
2
b ), as well as network’s architecture (M,L), impact the behavior of the empiri-

cal NTK Θt. Our observation is that for finite-width networks chaotic and ordered phases give rise
to very different behavior of the empirical NTK as compared to the theoretical NTK, which has not
been considered in the community before to the best of our knowledge.

3. NTK variance at initialization

First we aim to verify empirically when the theoretical result (4) that the NTK is deterministic
at initialization in the infinite-width limit holds for finite-width NNs. Following Hanin and Nica
(2019), we computed the ratio E[Θ0(x, x)2]/E2[Θ0(x, x)] ∈ [1,∞) to study the distribution of the
NTK. When the NTK at initialization is close to deterministic, its distribution is similar to a delta
function around its mean and the value of the ratio is close to one. On the other hand, when this
ratio is bounded away from one, the NTK’s variance is comparable to its mean value and therefore
cannot be disregarded.

One can see the results of our experiments for fully-connected ReLU and tanh networks with
constant width M in Figure 1. We observe that when σ2

w is small enough (ordered phase), the
NTK variance is small and does not increase with depth L, implying that (4) holds for any depth
and NTK theory can be used to study NNs initialized in this way. However, for large σ2

w (chaotic
phase) the variance grows significantly with L, hence for very deep networks in this phase (4)
does not hold. At the EOC, the variance of the NTK is a fraction of its mean even for very deep
networks, so NTK theory can approximate the average behavior of networks initialized near EOC,
but the random effects may still be significant. One can also see that as M grows, the vertical red
region gets narrower, i.e. the transition becomes sharper. This is consistent with the fact that the
theoretical border between vanishing and exploding gradients is sharp and computed in mean field
theory (Section 2) by taking the limit M → ∞. These results are similar for ReLU and tanh
networks, taking into account that the theoretical boundary between phases — given by χl1 = 1 and
indicated by the dashed line in the figures — is located at larger σ2

w values for sigmoid networks.
One also observes that the NTK variance is small for sufficiently shallow NNs with any σ2

w value.
Such shallow networks were mostly considered in recent empirical studies on behavior of wide NNs
under gradient descent (Lee et al., 2019). It is thus important to note, that such empirical results
may be invalid for much deeper networks, depending on the initialization parameters.

Moreover, when depth L is fixed and width M increases, the the NTK variance decreases in
the chaotic phase, which supports the hypothesis that the variance depends on the ratio L/M .
To examine this dependence on L/M in more detail, we present Figure 2. It shows the ratio
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Figure 1: Ratio
E[Θ0(x, x)2]

E2[Θ0(x, x)]
for fully-connected a) tanh, b) ReLU networks of constant widths

M = 50, 100, 200, 500, in all the experiments σ2
b = 1. The expected values for each set

of parameters are calculated by sampling 200 random initializations of the network. The
NTK is computed using TensorFlow automatic differentiation. The dashed line shows
the theoretical border between ordered and chaotic phases (χl1 = 1) for the given hy-
perparameters. In the black zone, the ratio is close to one, i.e. the NTK at initialization
Θ0 has low variance and can be considered a deterministic variable. In the red zone, the
NTK standard deviation is comparable with its mean. In the blue zone, the NTK standard
deviation is greater than its mean, so the NTK is not deterministic and cannot be replaced
by its mean.

874



CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

0 25 50 75 100
L

20

21

22

23a)
(σ2
w,σ2

b )= (1,1)
σ=64
σ=128
σ=256
σ=512
σ=1024

0 25 50 75 100
L

20

21

22

23

(σ2
w,σ2

b )= (1.5,1)

0 25 50 75 100
L

20

21

22

23

(σ2
w,σ2

b )= (2,0)

0 25 50 75 100
L

20

21

22

23

(σ2
w,σ2

b )= (3,1)

0.0 0.2 0.4
L/σ

20

21

22

23b) σ=64
σ=128
σ=256
σ=512
σ=1024

0.0 0.2 0.4
L/σ

20

21

22

23

0.0 0.2 0.4
L/σ

20

21

22

23

0.0 0.2 0.4
L/σ

20

21

22

23

Figure 2: Dependence of ratio
E[Θ0(x, x)2]

E2[Θ0(x, x)]
on L/M with different initialization parameters and

width values for ReLU networks. Both rows show the same curves plotted against a)
depth L, b) ratio L/M . The expectations are computed by sampling 200 random initial-
izations of the network.

E[Θ0(x, x)2]/E2[Θ0(x, x)] for a wider range of M values for four different initialization param-
eters sets: (σ2

w, σ
2
b ) ∈ [(1, 1), (1.5, 1), (2, 0), (3, 1)]. Each curve is plotted against both L and L/M .

We notice that in the ordered phase (σ2
w = 1 and σ2

w = 1.5) the ratio is close to 1, does not grow
with L/M and decreases with M . In this phase, the NTK converges to its deterministic limit with
increasing M regardless of the L value, which is the expected behaviour within NTK theory. How-
ever, in the chaotic phase (σ2

w = 3) the ratio grows exponentially as a function of L/M . This
observation gives a precise scaling for minimal M values required to assume that the NTK of a net-
work with a given depth L is deterministic at initialization, which improves the previous asymptotic
result in Jacot et al. (2018) and the bound on required M in Arora et al. (2019). In case of ReLU
networks and initialization (σ2

w, σ
2
b ) = (2, 0), Hanin and Nica (2019) theoretically showed that the

E[Θ0(x, x)2]/E2[Θ0(x, x)] ratio is indeed exponential in L/M , but their analysis is not trivially
generalizable for different activation functions and initialization parameters. Our experiments con-
firm these findings in the special case but also show that changing initialization parameters impacts
the behaviour of the the NTK variance significantly.

We also checked if the value of σ2
b impacts the NTK variance behavior at initialization signifi-

cantly. In Appendix D, we provide figures showing the NTK variance with different σ2
b values. We

observed that lower σ2
b values yield narrower boundary between the two phases identified in Figure

1, but the general picture stays similar.
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4. NTK change during training

In this section we present the numerical experiments that we conducted to check whether the sec-
ond result of NTK theory (3) holds, i.e. whether the empirical NTK of finite-width ReLU and
tanh networks stays approximately constant during training with gradient descent. We trained
networks with a variety of hyperparameters (σ2

w, σ
2
b , L) and measured the relative change of NTK’s

Frobenious norm ‖Θt −Θ0‖F /‖Θ0‖F that occurs during training. The results for tanh and ReLU
networks are in Figures 3a and 4a. In Figures 3b and 4b, we also plotted the minimal losses that the
networks reached in the experiments.

We draw the following conclusions from the experiments’ results:

• Phase transition for empirical NTK. For both ReLU and tanh networks, the NTK behav-
ior during training changes significantly around the theoretical border between chaotic and
ordered phases.

• Chaotic phase. In the chaotic phase, the relative change in the NTK matrix norm is signifi-
cant and increases with depth L, so one cannot assume that the kernel stays constant during
training for deep networks. However, for very shallow networks the NTK at initialization
may still be a good approximation for the NTK after training. In the previous section we also
saw that the NTK matrix of shallow networks in the chaotic phase is close to deterministic
at initialization, which shows that NTK theory approximates only shallow networks in the
chaotic phase.

• Ordered phase. In the ordered phase, the relative change in the NTK matrix norm is small
throughout training for any depth. We saw in the previous section that the NTK is also close
to deterministic at initialization in this phase. It follows that in the ordered phase finite-width
DNNs behave as NTK theory suggests even when depth L is large.

• EOC. There is a region close to the border between phases where the change in the NTK
norm is larger than in the ordered phase but still remains way below 1 for deep networks.
We also saw in the previous section that in this region the standard deviation of the NTK is
lower than its mean value for deep networks. Thus, NTK theory can approximate behavior
of deeper networks in case of EOC initialization in comparison to the chaotic phase, but the
effects of randomness and change during training may still play a significant role.

• Trainability. Networks become untrainable with depth much faster in the ordered phase than
in the chaotic phase. In our experiments, networks in the ordered phase with L = 20 already
mostly cannot reach low training loss values. This is consistent with the results on trainability
provided in Xiao et al. (2019).

We thus have discovered two regions in the hyperparameters space (σ2
w, σ

2
b , L,M) where both state-

ments of NTK theory (3) and (4) hold: the ordered phase with any depth L and the chaotic phase
where the L/M ratio is low. For other choices of architecture and initialization, our experiments
suggest that finite-width networks do not behave according to NTK theory.

Note that the networks in Figures 3a and 4a take different number of training steps to reach
their final loss values. Somewhat counterintuitively, we observe that the networks which take more
iterations to train show mostly small changes in the NTK matrix norm. To provide more insight
about the NTK dynamics during different stages of training, we also include figures that show
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Figure 3: a) Relative change in the NTK norm
‖Θt −Θ0‖F
‖Θ0‖F

for tanh networks of widthM = 256

trained by gradient descent with MSE loss on a subset of MNIST (128 samples). The
dashed line indicates the theoretical border between ordered and chaotic phases (χl1 = 1).
We used early stopping when the loss did not decrease by at least 10−7 in 100 consecu-
tive steps, otherwise the number of training steps was limited by 105. The learning rate is
constant and equals 10−5 for all the networks, which is chosen so that, for all the hyper-
parameters, it does not exceed the theoretical maximal learning rate for wide networks
derived in Karakida et al. (2018). b) Minimal loss value that the networks managed to
reach in our experiments. Networks in the red area are untrainable with the given learning
rate, networks in the blue area are trainable.
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Figure 4: a) Relative change in the NTK norm
‖Θt −Θ0‖F
‖Θ0‖F

for ReLU networks of widthM = 256

trained by gradient descent with MSE loss on a subset of MNIST (128 samples). The
dashed line indicates the theoretical border between ordered and chaotic phases (χl1 = 1).
We used early stopping when the loss did not decrease by at least 10−7 in 100 consecu-
tive steps, otherwise the number of training steps was limited by 105. The learning rate is
constant and equals 10−5 for all the networks, which is chosen so that, for all the hyper-
parameters, it does not exceed the theoretical maximal learning rate for wide networks
derived in Karakida et al. (2018). b) Minimal loss value that the networks managed to
reach in our experiments. Networks in the red area are untrainable with the given learning
rate, networks in the blue area are trainable.
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changes in the NTK matrix norm as a function of the number of training steps, as well as figures
with changes of the NTK for different M values, in Appendix D.

5. NTK theory approach for generalization

If the NTK stays constant during training (3), then the dynamics in (2) are identical to kernel re-
gression with kernel Θ0. In such dynamics, the output function of a network that is trained until
convergence (t→∞) by gradient flow with MSE loss is given by:

f t=∞(x) = Θ0(x,X)Θ0(X)−1Y + f0(x)−Θ0(x,X)Θ0(X)−1f0(X), (10)

where Θ0(X) is the kernel matrix of all the pairs of inputs in X = [xs]s=1,...S , i.e. Θ(X) =
[Θ0(xs, xr)]s,r=1,...S , and Θ(x,X) = [Θ0(x, xs)]s=1,...S and f0(X) = [f0(xs)]

T
s=1,...S . One can

refer to Arora et al. (2019) or Lee et al. (2019) for the derivation of this equation. If the NTK is
also deterministic at initialization (4), then the only variables in (10) that are random with respect
to the network’s parameters at initialization w0 are f0(x) and f0(X), which greatly simplifies the
analysis of the generalization properties of f t=∞.

Let us denote R(x) := Ew0,D[(f t=∞(x) − ytrue)
2] – the expected error on an arbitrary test

point x, given that the initialization is random. Then we can write the bias-variance decomposition
as follows:

R(x) = V ar(f t=∞(x)) +Bias(f t=∞(x)),

where

V ar(f t=∞(x)) = Ew0,D[(f t=∞(x)− Ew0,D[f t=∞(x)])2],

Bias(f t=∞(x)) = Ew0,D[(Ew0,D[f t=∞(x)]− ytrue)2].

Then NTK theory allows us to analyze the variance term to characterize the generalization error
of the network Ex[R(x)]. To do so, first let us show how distributions of the terms in (10) can be
characterized by the mean field theory quantities introduced in Section 2. First of all, the distribution
of the network’s output at initialization is given directly by the definitions of qL and qLsr. Hence, the
following lemma is immediate.

Lemma 1 The variance of the output function f0 of a randomly initialized network and the covari-
ance of outputs on two different input vectors are given by:

E[(f0(x))2] = E[(hLi (x))2] = qL(x),

E[f0(xs)f
0(xr)] = E[hLi (xs)h

L
i (xr)] = qLsr(xs, xr).

Recall that the NTK is composed of gradients as Θ0(xs, xr) = ∇wf0(xs)
T∇wf0(xs) and its ex-

pected values are therefore proportional to the variances of gradients, considered in Section 2. Then,
assuming that the the NTK matrix at initialization is deterministic and equal to its expected value,
we can express it through quantities ql, pl, qlsr, p

l
sr by the following lemma.
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Figure 5: κ2 as a function of depth for a) erf, b) ReLU networks. The colorbar shows the initial
value of the covariance between inputs xTs xr ∈ [0, 1]. For both activation functions,
(σ2
w, σ

2
b ) values are chosen to lie in ordered and chaotic phases and at the border between

them.

Lemma 2 For a fully-connected network with widths Ml = αlM, l = 0, . . . L (where M0 is the
input dimension), deterministic the NTK matrix on a sample X = {xs}s=1,...S at initialization is
given by:

Θ∗(X) = αM
(
Λ +O(1/M)

)
,

Λ =


κ1(x1) κ2(x1, x2) . . . κ2(x1, xS)

κ2(x1, x2) κ1(x2) . . .
. . . κ2(x1, xS−1)

κ2(x1, xS) . . . κ2(x1, xS−1) κ1(xS)

 ,

κ1(x) =

L∑
l=1

αl−1

α
q̂l−1(x)pl(x), κ2(xs, xr) =

L∑
l=1

αl−1

α
q̂l−1
sr (xs, xr)p

l
sr(xs, xr),

where α =
∑L−1

l=1 αlαl−1.

We give a proof for this lemma in Appendix A. We note that the same statement is also proven in
Karakida et al. (2018) as a part of Theorem 3.

We can also notice that κ1 and ql depend only on the norm of input x, so for normalized inputs
they become data-independent. On the other hand, κ2 and qlsr depend on covariances of points in
the dataset and therefore are data-dependent. However, it has also been observed in Poole et al.
(2016) that both ql and qlsr converge to their data-independent limits with depth. Let us denote their
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Figure 6: κ1/κ2 ration as a function of depth for a) erf, b) ReLU networks. The colorbar shows
the initial value of the covariance between inputs xTs xr ∈ [0, 1]. For both activation
functions, (σ2

w, σ
2
b ) values are chosen to lie in ordered and chaotic phases and at the

border between them.

data-independent means by q̄l and q̄lsr respectively. Then we can also write data-independent means
p̄l and p̄lsr for the backpropagated errors, as well as ˆ̄ql and ˆ̄qlsr for the activations. This leads to data-
independent κ̄1 =

∑L
l=1

αl−1

α
ˆ̄ql−1p̄l and κ̄2 =

∑L
l=1

αl−1

α
ˆ̄ql−1
sr p̄lsr. We also notice that the changes

in κ2 that come from the changes in covariance are small with respect to its mean value κ̄2 for ReLU
and erf networks1. Note that for these two activation functions, we can take the integrals in (5),
(7), (8) and (9) analytically (see Appendix E) and calculate κ2 for different values of the inputs’
covariance, which is shown in Figure 5 for ordered and chaotic phases and at the border between
them. Therefore, we can write the NTK as a sum of its data-independent part and a data-dependent
perturbation:

Θ∗(X) = Θ̄∗(IS + ε(X)),

Θ̄∗ = αM
(
(κ̄1 − κ̄2)IS + κ̄21S1

T
S

)
.

We note that this result about the structure of the NTK is consistent with the analysis of Xiao et al.
(2019), where the authors study the NTK at large depths.

From the structure of Θ∗, one can see that its condition number depends on the ratio κ1/κ2:
when its value is high, the NTK matrix is well-conditioned, and when the ratio approaches 1 the
matrix becomes close to degenerate. Figure 6 shows κ1/κ2 ratio as a function of depth for erf
and ReLU networks in ordered and chaotic phases and at the border between them. One can see

1. We expect tanh-networks that we studied empirically in other sections to behave similar to erf-networks.
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from the graphs that the NTK matrix is well-conditioned in the chaotic phase and ill-conditioned in
the ordered phase. Ill-conditioned NTK also implies that the maximum learning rate which allows
to train the network is small (Xiao et al., 2019; Karakida et al., 2018). Therefore networks in the
ordered phase rapidly become untrainable with depth, which is consistent with our observations in
Section 4.

The following theorem characterizes the dependence of the variance of the output function
f t=∞(x) on the data-independent part of the NTK.

Theorem 3 Suppose a network evolves according to NTK theory under gradient flow and is fully
trained (t→∞) on a dataset of size S. Suppose also that the NTK matrix is well-conditioned. Then
the variance of its output is characterized by:

V ar(f t=∞(x)) ≈ (1 +
A2

S
)(q̄L − q̄Lsr) + (A− 1)2q̄Lsr,

where A = A(κ1, κ2) = S
κ̄1/κ̄2+(S−1) .

We give a proof for this result in the Appendix B. In the next paragraphs, we analyze the behavior
of the given variance expression and the applicability of the theorem in different situations:

• Ordered phase. One can notice that in the ordered phase A(κ1, κ2) converges to 1 rapidly
with depth, as κ̄1/κ̄2 → 1. This implies V ar(f t=∞(x)) ∝ q̄L − q̄Lsr, i.e. the variance is
small and decreases with depth. However, the NTK is also ill-conditioned, therefore small
data-dependent changes can cause significant changes in the output function. Thus, the data-
independent estimate for variance given by NTK theory does not explain the behavior of
DNNs in the ordered phase and it is important to take into account data-dependent effects.

• Chaotic phase. In the chaotic phase, the NTK is well-conditioned for any depth. However,
only networks with depth to width ratio L/M ≈ 0 behave as NTK theory suggests under
gradient flow in the chaotic phase according to our experiments. As we saw in the previ-
ous sections, the NTK changes significantly during training and is random at initialization
for deep networks, therefore the expression for the output function after training (10) does
not hold. The ratio κ̄1/κ̄2 increases with depth in the chaotic phase, so A(κ1, κ2) decreases,
and q̄L is much larger than q̄Lst (Poole et al., 2016). Therefore the data-independent variance
V ar(f t=∞(x)) ∝ q̄L is high and proportional to the variance of outputs of a randomly ini-
tialized network. This is consistent with observations in Chizat et al. (2019) and Xiao et al.
(2019). Thus, NTK theory can explain poor generalization, which shallow wide networks in
the chaotic phase display. However, deeper networks may have very different behavior due
to randomness at initialization and changes during gradient descent training, so they require
more investigation.

• EOC. At EOC, the conditioning of the NTK as a function of depth is similar to the chaotic
phase: κ̄1/κ̄2 grows with depth, hence the kernel is well-conditioned. However, at EOC q̄L

is smaller than in the chaotic phase (Poole et al., 2016). This implies that networks initialized
close to EOC generalize better than networks in the chaotic phase and at the same time remain
trainable at large depths. We observed in the previous sections that at the border between
phases NTK theory gives an approximation of network’s average behavior even for deep
networks, but the finite-width effects can still be significant and should be considered.
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6. Conclusions and future work

In this work, we have shown that NTK theory does not generally describe the training dynamics of
finite-width DNNs accurately. Only relatively shallow networks and deep networks in the ordered
phase, i.e. initialized with small σ2

w, behave as NTK theory suggests under gradient descent. The
analysis of the data-independent variance of the output function based on NTK theory shows that
it is proportional to the output variance at initialization qL in the chaotic phase and at EOC. This
result is not surprising, in a sense that it does not explain how training effects NNs’ performance.
It would provide more insight into networks’ behavior if we could understand the data-dependent
changes in the NTK, which are significant for deep networks in the ordered phase and at EOC, and
study how these changes impact the output function. To study deep networks in the chaotic phase
and at EOC, it is also essential to account for randomness in the NTK matrix at initialization and its
changes during training, which cannot be done within NTK theory. Thus, an entirely new conceptual
viewpoint is required to provide a full theoretical analysis of DNNs behavior under gradient descent.
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Appendix A. Lemma 2

By definition, each component of the NTK matrix is a scalar product of network’s gradient vectors:

Θ0(X) = [∇wf0(xs)
T∇wf0(xr)]xs∈X,xr∈X .

In Section 2 we show for the network’s gradients that

E
[
(
∂f0(x)

∂Wl
ij

)2
]

= E[(δli)
2]E[(φ(hl−1

j ))2] =
1

Ml
pl(x)q̂l−1(x),

E
[
(
∂f0(x)

∂bli
)2
]

= E[(δli)
2] =

1

Ml
pl(x),

and similarly

E
[∂f0(xs)

∂Wl
ij

∂f0(xr)

∂Wl
ij

]
= E[δli(xs)δ

l
i(xr)]E[φ(hl−1

j )(xs)φ(hl−1
j )(xr)]

=
1

Ml
plsr(xs, xr)q̂

l−1
sr (xs, xr),

E
[∂f0(xs)

∂bli

∂f0(xr)

∂bli

]
= E[δli(xs)δ

l
i(xr)] =

1

Ml
plsr(xs, xr).
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Thus, we get the following expression for non-diagonal elements of the NTK:

Θ0(xs, xr) =
∑
i,j,l

[∂f0(xs)

∂Wl
ij

∂f0(xr)

∂Wl
ij

]
+
∑
i,l

[∂f0(xs)

∂bli

∂f0(xr)

∂bli

]
=
∑
l

MlMl−1E[δli(xs)δ
l
i(xr)]E[φ(hl−1

j )(xs)φ(hl−1
j )(xr)]

+
∑
l

MlE[δli(xs)δ
l
i(xr)]

=
∑
l

αl−1Mplsr(xs, xr)q
l−1
sr (xs, xr) +

∑
l

plsr(xs, xr)

= αM
(∑

l

αl−1

α
plsr(xs, xr)q

l−1
sr (xs, xr) +O(1/M)

)
= αM(κ2(xs, xr) +O(1/M))

Similarly, we get the expression for diagonal elements of the NTK matrix:

Θ0(x, x) = αM(κ1(x) +O(1/M)),

which gives the statement of the lemma.

Appendix B. Theorem 3

Recall the formula of the output function after training:

f t=∞(x) = Θ0(x,X)Θ0(X)−1Y + f0(x)−Θ0(x,X)Θ0(X)−1f0(X).

As initialization of the network’s parameters w0 is centered Gaussian, the expectation of the output
at initialization is equal to zero:

Ew0 [f0(x)] = 0, Ew0 [f0(X)] = 0S .

Then if the NTK is deterministic at initialization we can write the expectation as follows:

Ew0 [f t=∞(x)] = Ew0 [Θ0(x,X)Θ0(X)−1Y ] = Θ∗(x,X)Θ∗(X)−1Y

because neither Y nor Θ∗ are random with respect to the initialization parameters.
To obtain the variance of output, we also need to write the expected values of all the terms of

squared f t=∞. First, by Lemma 1:

Ew0 [(f0(x))2] = qL(x).

Then,

Ew0 [(Θ0(x,X)Θ0(X)−1Y )2] = (Θ∗(x,X)Θ∗(X)−1Y )2 = E2
w0

[f t=∞(x)].
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And

Ew0 [(Θ0(x,X)Θ0(X)−1f0(X))2]

= tr(Ew0 [f0(X)f0(X)T ]Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1)

= tr(K(X)Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1),

where

K(X) =


qL(x1) qLsr(x1, x2) . . . qLsr(x1, xS)

qLsr(x1, x2) qL(x2) . . .
. . . qLsr(x1, xS−1)

qLsr(x1, xS) . . . qLsr(x1, xS−1) qL(xS)

 .
K(X) is the NNGP matrix, which characterizes the Gaussian process of a randomly initialized
network. Finally:

Ew0 [f0(x)Θ0(x,X)Θ0(X)−1f0(X)] = Θ∗(x,X)Θ∗(X)−1Ew0 [f0(x)f0(X)]

= Θ∗(x,X)Θ∗(X)−1qLsr(x,X),

where qLsr(x,X) = [qLsr(x, xs)]
T
s=1,...S . The other terms are equal to zero. Moreover, we can see

that terms of variance with Y cancel each other.
We now recall that Θ∗(X) = Θ̄∗(IS + ε(X)) and Θ̄∗ = αM

(
(κ̄1 − κ̄2)IS + κ̄21S1

T
S

)
. Then

we can invert Θ̄∗ by Woodbury identity:

Θ̄∗ −1 =
1

αM(κ̄1 − κ̄2)

(
IS −

κ̄2

κ̄1 + (S − 1)κ̄2
1S1

T
S

)
We assumed that the NTK matrix is well-conditioned, so the change in the Θ̄∗ −1 caused by the
perturbation term is relatively small and we can write Θ∗ −1(X) = Θ̄∗ −1(IS + ε̃(X)). Then we
can also approximate the above expectation as follows:

Θ∗(x,X)Θ∗(X)−1qLsr(x,X) ≈ κ̄2

(κ̄1 − κ̄2)
1
T
S

(
IS −

κ̄2

κ̄1 + (S − 1)κ̄2
1S1

T
S

)
qLsr(x,X)

=
κ̄2

(κ̄1 − κ̄2)

(
1− κ̄2S

κ̄1 + (S − 1)κ̄2

)
1
T
Sq

L
sr(x,X)

=
S

(κ̄1/κ̄2 + (S − 1))
〈qLsr(xs, x)〉s=1,...S ,

tr(K(X)Θ∗(X)−1Θ∗(x,X)TΘ∗(x,X)Θ∗(X)−1)

≈ κ̄2
2

(κ̄1 − κ̄2)2
(1− κ̄2S

κ̄1 + (S − 1)κ̄2
)2tr(K(X)1S1

T
S )

=
S2

(κ̄1/κ̄2 + (S − 1))2
(

1

S
〈qL(xs)〉+ (1− 1

S
)〈qLsr(xs, xr)〉).

Taking expectation of the above expressions over a random dataset D, which is independent to
random initialization w0, we get
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Ew0,D[f0(x)Θ0(x,X)Θ0(X)−1f0(X)] =
S

κ̄1/κ̄2 + (S − 1)
EX [〈qLsr(xs, x)〉]

=
S

κ̄1/κ̄2 + (S − 1)
q̄Lsr,

Ew0,X [(Θ0(x,X)Θ0(X)−1f0(X))2] =
S2

(κ̄1/κ̄2 + (S − 1))2
·

· EX(
1

S
〈qL(xs)〉+ (1− 1

S
)〈qLsr(xs, xr)〉)

=
S2

(κ̄1/κ̄2 + (S − 1))2

( 1

S
q̄L + (1− 1

S
)q̄Lsr

)
.

Putting everything together, we get

Ew0,X [(f t=∞lin (x))2]− Ew0,X [f t=∞lin (x)]2 ≈ q̄L − 2
S

κ̄1/κ̄2 + (S − 1)
q̄Lsr

+
S2

(κ̄1/κ̄2 + (S − 1))2

( 1

S
q̄L + (1− 1

S
)q̄Lsr

)
.

Denoting A =
S

κ̄1/κ̄2 + (S − 1)
, we can rewrite the above expression as

V ar(f t=∞(x)) ≈ (1 +
A2

S
)(q̄L − q̄Lsr) + (A− 1)2q̄Lsr.

Appendix C. Effects of biases on the NTK variance at initialization

Figure 7 shows the dependence of the NTK variance at initialization on σ2
b . One can see that lower

σ2
b values yield narrower boundary between the two phases, but the general picture stays similar to

the one in Figure 1.

Appendix D. Additional experiments on the NTK change during training

Here we provide additional figures on changes of the NTK during gradient descent training.
Figures 8 and 9 show changes in the NTK matrix norm as a function of the number of train-

ing steps for tanh and ReLU networks, respectively. One can see how the NTK changes after
10, 102, 103 and 104 training steps. The findings from these figures are similar to the analysis we
provided in Section 4: the NTK behaviour changes significantly around the border between ordered
and chaotic phases. One can also see that for deep networks in the chaotic phase the NTK changes
significantly already in the early stages of training, while networks in the ordered phase display very
low changes in the NTK norm for a long time.

Figures 10 and 11 show the effects of the network width on the changes of the NTK matrix
during training. We provide experiments for M = 128, 256, 512. One can see that, as expected in
NTK theory, higher M values overall result in smaller changes of the NTK. However, with all the
width values, one can see the transition from ordered to chaotic phase, which gets more pronounced
with the network’s depth.
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Figure 7:
E[Θ0(x, x)2]

E2[Θ0(x, x)]
ratio for fully-connected a) tanh, b) ReLU networks of width M = 100

for different σb values. The dashed line shows the theoretical border between ordered and
chaotic phases (χl1 = 1) for the given hyperparameters. For tanh networks the location
of the border between phases depends on σ2

b , while for ReLU networks it is the same for
all the σ2

b values.
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Figure 8: Relative change in the NTK norm ‖Θt − Θ0‖F /‖Θ0‖F for tanh networks after a) 10,
b) 102, c) 103, d) 104 gradient descent steps. The training parameters are the same as in
Figure 3.
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Figure 9: Relative change in the NTK norm ‖Θt − Θ0‖F /‖Θ0‖F for ReLU networks after a) 10,
b) 102, c) 103, d) 104 gradient descent steps. The training parameters are the same as in
Figure 4.
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Figure 10: Relative change in the NTK norm ‖Θt −Θ0‖F /‖Θ0‖F for tanh networks of width
a) M = 128, b) M = 256, c) M = 512 in the end of training. The training parameters
are the same as in Figure 3.
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Figure 11: Relative change in the NTK norm ‖Θt −Θ0‖F /‖Θ0‖F for ReLU networks of width
a) M = 128, b) M = 256, c) M = 512 in the end of training. The training parameters
are the same as in Figure 4.
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Appendix E. Analytical relations for integrals in Section 2

E.1. ReLU networks

ReLU activation function is defined by

φ(x) =

{
x x > 0,

0 x ≤ 0.

Then to obtain analytical expressions for ql and qlsr we can take the following integrals, which
appear in (5) and (8): ∫

Dz · φ(az)2 = a2/2,∫
Dz · [φ′

(az)]2 = 1/2,

Then we immediately get

ql =
σ2
w

2
ql−1 + σ2

b ,

pl−1 =
σ2
w

2
pl

Ml

Ml+1
.

Similarly, to get analytical expressions for qlsr and plsr, we can take the integrals in (7) and (9):∫
Dz1Dz2 · φ(az1)φ(bz1 +

√
a2 − b2z2) =

a

2π
(
√

1− c2 + cπ/2 + c arcsin(c)),∫
Dz1Dz2 · φ

′
(az1)φ

′
(bz1 +

√
a2 − b2z2) =

1

2π
(π/2 + arcsin(c)),

where c = b/a, to obtain the following expressions:

qlsr =
σ2
w

2π
ql−1(

√
1− c2 + cπ/2 + c arcsin c) + σ2

b ,

pl−1
sr =

σ2
w

2π
pl

Ml

Ml+1
(π/2 + arcsin c),

where c = ql−1
st /ql−1.

Then, to compute the values of ql, qlst, p
l and plst in all the layers, we only need to set the

following initial conditions: q0 = 1 when data is normalized, q0
st ∈ [0, 1] is the covariance between

two inputs, pL = pLst = 1 as the output depends linearly on the activations in the last layer.

E.2. Erf networks

Error function, which is a kind of sigmoid functions, is defined by

φ(x) =
2√
π

∫ x

0
e−t

2
dt.

894



CAN WE TRUST NEURAL TANGENT KERNEL THEORY?

Then, same as for ReLU activation, we analytically take the integrals from (5) and (8):∫
Dz · φ(az)2 =

2

π
arctan

a2√
a2 + 1/4

,∫
Dz · [φ′

(az)]2 =
2

π

1√
a2 + 1/4

to obtain expressions for ql and pl:

ql =
2σ2

w

π
arctan

ql−1√
ql−1 + 1/4

+ σ2
b ,

pl−1 =
2σ2

w

π
pl

1√
ql−1 + 1/4

Ml

Ml+1
.

And similarly we take the integrals in (7) and (9):∫
Dz1Dz2 · φ(az1)φ(bz1 +

√
a2 − b2z2) =

2

π
arctan

2b√
(1 + 2a)2 − 4b2

,∫
Dz1Dz2 · φ

′
(az1)φ

′
(bz1 +

√
a2 − b2z2) =

4

π

1√
(1 + 2a)2 − 4b2

,

to obtain the analytical expressions for qlsr and plsr:

qlsr =
2σ2

w

π
arctan

2

√
ql−1
sr√

(1 + 2
√
ql−1)2 − 4ql−1

sr

+ σ2
b ,

pl−1
sr =

4σ2
w

π
pl

Ml

Ml+1

1√
(1 + 2

√
ql−1)2 − 4ql−1

sr

.

And the initial conditions can be specified in the same way as for the ReLU networks in the previous
subsection.
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