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Abstract
Conservation laws are critical to our understanding of the physical world. Numerical solution of
hyperbolic conservation laws has been a very important and challenging task with some difficul-
ties such as nonphysical solutions, solution discontinuities and shock wave capturing, and a large
amount of conventional numerical solvers of finite difference, finite volume and discontinuous
Galerkin types have been developed in the past decades. Along with the booming and great suc-
cess of deep learning in computer vision and natural language processing, many excellent works
also have emerged for their application to PDE related scientific problems in recent years. In this
paper, we propose a deep learning method for solving scalar hyperbolic conservation laws. More
specifically, we design a neural network model in the unsupervised fashion, called “IFNN”, based
on a special implicit form for the solution of the problem. The proposed IFNN does not directly
process the target PDEs, instead it deals with the nonlinear equations characterizing implicitly the
solution of the PDEs. Numerical experiments and performance comparisons of our IFNN with the
well-known PINN are performed on two well-known problems under various boundary conditions,
the inviscid Burgers’ equation and the Lighthill-Whitham-Richards (LWR) model for traffic flow,
and the results show that IFNN can significantly outperform PINN in capturing the shock waves.
Keywords: Scalar conservation laws, implicit form, deep learning, neural network

1. Introduction

Along with the fast advance of computational power (especially GPUs) and the explosive growth of
usable data, deep learning has achieved great success in the past decades in many fields (Krizhevsky
et al., 2012; He et al., 2016; Ioffe and Szegedy, 2015; Devlin et al., 2019; Sutskever et al., 2014),
such as computer vision, natural language processing, gaming, fraud detection and data mining. In
recent years, the deep learning techniques also have been applied to mathematical and scientific
computation problems, and a large number of remarkable works have emerged on learning and
predicting solutions of partial differential equations (E and Yu, 2018; Han et al., 2018; Raissi and
Karniadakis, 2018; Raissi et al., 2018; Sirignano and Spiliopoulos, 2018; Berg and Nystrom, 2018;
Raissi et al., 2019; Sun et al., 2020). Although there exist a lot of mature traditional methods for
solving PDEs, such as finite element method, finite difference method, and finite volume method,
the deep learning based methods provide a completely new perspective through the use of neural
networks. The first attempt of numericallly solving PDEs using neural networks can be traced back
at least to the late last century (Lee and Kang, 1990), where the approximate solution is modeled
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through the Hopfield neural network. However, due to the limitation of computational resource
back that time, it unfortunately did not attract much attention of researchers. Currently there are
two major ways to use deep learning for numerical solutions of PDEs.

The first way is to convert the PDEs into their equivalent variational forms and then solve them
using deep learning approaches. The pioneering work is the deep Ritz method proposed by E and Yu
(2018), followed by a series of researches (Liao and Ming, 2019; Müller and Zeinhofer, 2020; Wang
and Zhang, 2020; Chen et al., 2020). The deep Nitsche method (Liao and Ming, 2019) extended
the deep Ritz method to deal with essential boundary conditions without extra computational costs.
(Chen et al., 2020) carried out the comparison study for elliptic problems with different boundary
conditions, including Dirichlet, Neumann, Robin, and periodic boundary conditions by using the
deep Ritz and the deep Galerkin methods (Sirignano and Spiliopoulos, 2018), and observed that the
deep Galerkin method works better for problems with smooth solutions while the deep Ritz method
works better for problems with low-regularity solutions. Based on the deep Ritz Method, Wang and
Zhang (2020) proposed a mesh-free method to solve the interface problems, where two challenging
interface problems, including an elliptic PDE with a discontinuous and heterogeneous diffusion
coefficient and a linear elasticity equation with discontinous strees tensor, were investigated. In
terms of theoretical analysis, Müller and Zeinhofer (2020) obtained the convergence of the deep Ritz
method with respect to a regularized Dirichlet energy towards the solution of the Poisson problem,
in which ReLU is used as the activation function,

Another way is to use neural networks to directly deal with the original PDEs, and the most rep-
resentative work is the physical informed neural network (PINN) proposed by Raissi et al. (2019),
where the PDE residual is incorporated into the loss function as a regularizer, thereby constrain-
ing the space of admissible solutions. PINNs have been successfully applied to solve various PDE
problems, such as classic time-independent or time-dependent PDEs, fractional PDEs (Pang et al.,
2019), and stochastic PDEs (Zhang et al., 2020). It should be noted that the original PINN uses the
residual of PDEs as the loss function, which is called the “soft constraint”. Different from the soft
constraints, (Berg and Nystrom, 2018; Sun et al., 2020) proposed some “hard constraints” to make
the output of the neural networks satisfy the boundary and initial conditions precisely. However,
for high-dimensional problems, especially for time-dependent problems, the amount of data sam-
pling tends to become huge, which makes the training of PINN difficult, even intractable. In order
to overcome this issue, the parallel PINNs have been proposed by Jagtap et al. (2020) and Meng
et al. (2020), where the solution area was firstly divided into several subregions, and then respective
neural networks for different subregions were trained in parallel. In addition, a series of excellent
works (Yang and Paris, 2019; Liu et al., 2020, 2021) about uncertainty quantifications on PDEs by
using PINNs emerged recently.

Although the deep Ritz method and PINN have achieved great success, they still exhibit poor
performance in handling problems with strong discontinuous solutions, such as hyperbolic conser-
vation laws. For example, when they are used to tackle Burgers’ equation, an additional viscous
term is usually added to ensure certain smoothness of the solution (Raissi et al., 2019), i.e., produce
a viscous solution as the approximation of the original soltuion. On the other hand, if the viscous
term vanishes or the viscosity coefficient is very small, both the deep Ritz method and PINN be-
come very hard to train and fail to capture the shock waves. A deep reinforcement learning method
was recently proposed by Wang et al. (2020) to solve 1D scalar conservation laws. Other than these,
no much work has been done on solving the conservation law using deep learning techniques.
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In this paper, we propose a deep learning method for solving scalar conservation laws, called
“IFNN”, which is based on the fact the solution of scalar conservation laws can be expressed alter-
nately in an implicit form. Through extensive numerical tests and comarisons, we demonstrate that
the proposed IFNN can significantly outperform PINN in capturing the shock waves. The rest of
our paper is organized as follows. The problem setting, the architecture, the data sampling strategy
and the loss function for our IFNN are illustrated in Section 2, and numerical experiments in 1D
and 2D are conducted and discussed in Section 3, followed by concluding remarks in Section 4.

2. Implicit form neural network for solving scalar hyperbolic conservation laws

2.1. Problem settings

Let x = (x1, · · · , xd)T ∈ Rd and f = (f1, · · · , fd)T ∈ Rd, the scalar hyperbolic conservation law
can be formulated as follows :{

ut +∇ · f(u) = 0, (x, t) ∈ Rd × (0, T ],

u(x, 0) = ϕ(x), x ∈ Rd.

(1a)

(1b)

where u is unknown function defined in Rd. There may not exist a classical continuous solution for
the above equation even if the initial value is smooth, which often causes difficulty to its numerical
solution. An implicit form for the solution of (1) also can be formulated as

u = ϕ(x− f ′(u)t), (2)

where f ′ denotes the velocity

f ′(u) = (f ′
1(u), · · · , f ′

d(u))
T . (3)

In practice, we are often interested in the equation (1) defined in a finite domain Ω ⊂ Rd, and
assume that the boundary condition is imposed by either the Dirichlet type as

u(x, t) = gdb(x, t), (x, t) ∈ ∂Ω× (0, T ], (4)

or the Neumann type as

∂u

∂n
(x, t) = gnb(x, t), (x, t) ∈ ∂Ω× (0, T ], (5)

or the periodic type (for rectangular domains only). We will construct a deep feedforward network,
“IFNN” (implicit form neural network), to learn the solution of (1) in the unsupervised fashion.
In particular, the loss function for training of the proposed IFNN is based on the implicit form (2)
instead of the original equation (1).

2.2. Network architecture

The architecture of IFNN is shown in Figure 1 by using a two-dimensional problem setting for
illustration. The vector (x, t) is fed as the input to the network, and the layer is connected to D− 1
hidden layers and an output layer, which form a fully-connected neural network of depth D. Letting
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nk be the number of neurons in the k-th layer, each hidden layer recieves an input vk−1 ∈ Rnk−1

from the previous layer output and transforms it to

ℓk(v
k−1) = W kvk−1 + bk, (6)

where W k ∈ Rnk×nk−1 and b ∈ Rnk . The nonlinear activation function σ(·) is applied to each
component of the transformed vector before sending it to the next layer, except the last hidden layer.
The network thus is a composite of sequence of nonlinear functions:

u(x, t; Θ) = (ℓD ◦ σ ◦ ℓD−1 · · · ◦ σ ◦ ℓ1)(x, t), (7)

where the operator ◦ denotes the composition and Θ = {W k, bk}Dk=1 represents the trainable
parameters in the network. In addition, to make the network easier to train, a skip connection is
added between each pair of two adjacent hidden layers of our IFNN, which is shown in Fig. 2.
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Figure 1: The architecture of the proposed IFNN in a two-dimensional problem setting.

..input. hidden layer. activation. activation. +. output

Figure 2: The skip connection between two adjacent hidden layers in the proposed IFNN.

2.3. The sampling strategy and loss function

To train the network (7), we first need a set of sampling points with respect to (x, t). In this paper, we
use the Latin Hypercubic Sampling (LHS) (Raissi et al., 2019) to generate the point set D, and then
split it into three parts DIC = D∩(Ω×{0}), DBC = D∩(∂Ω×(0, T ]), and DIM = D\(DIC∪DBC).
The proposed IFNN is then trained by minimizing the following loss function:

L(Θ) = LIM(Θ) + λ1LIC(Θ) + λ2LBC(Θ), (8)

where

LIM(Θ) =
1

|DIM|
∑

(x,t)∈DIM

[
u(x, t; Θ)− ϕ(x− f ′(u)t)

]2
,

LIC(Θ) =
1

|DIC|
∑

(x,t)∈DIC

[u(x, t; Θ)− ϕ(x)]2.

(9)

(10)
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Regarding the loss from the boundary conditions, we define

LBC(Θ) =
1

|DBC|
∑

(x,t)∈DBC

[u(x, t; Θ)− gdb(x, t)]
2 (11)

for the cased of Dirichlet boundary condition (4) and

LBC(Θ) =
1

|DBC|
∑

(x,t)∈DBC

[
∂u

∂n
(x, t; Θ)− gnb(x, t)

]2
(12)

for the case of Neumann boundary condition (5). For the case of periodic boundary condition over
a rectangular domain Ω, we set

LBC(Θ) =
1

|DBC|
∑

(x,t)∈DBC

[
u(x, t; Θ)− u(x′, t; Θ)

]2
, (13)

where x′ is the symmetric point of x in the opposite boundary side of Ω. Note that LIM(Θ) denotes
the residual computed based on the implicit form (2), LIC and LBC measure the initial and boundary
errors, respectively, λ1 and λ2 are two hyperparameters for balancing the three terms.

3. Numerical experiments

Our IFNN is implemented using PyTorch and we use 6 hidden layers with 20 neurons per each
hidden layer for all tests if not stated otherwise. Adam optimizer is used to train the network and
the number of epochs is set as 25000. The learning rate is initially set to 0.001, and then adjusted
with a decay rate of 0.7 per 3000 epochs. The hyperparamters λ1 and λ2 in (8) are both chosen as 1.
Several scalar conservation laws examples, including the inviscid Burgers’ equation and the LWR
model for traffic flow problem, are investigated to demonstrate the performance of IFNN. For the
purpose of comparison, we also train and test the PINN with the same network architecture.

3.1. 1D inviscid Burgers’ equation

By choosing d = 1 and f(u) = u2/2 in (1), we have the 1D inviscid Burgers’ equation:{
ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = ϕ(x), x ∈ R.
(14)

It is one of the most important PDEs in the theory of conservation laws and often used to model the
momentum transfer in fluids with uniform density and pressure. However, the nonlinear hyperbolic
nature of the equation (14) may produce shock over time, even if the initial condition is smooth.

Shock wave (I) In this case, we choose Ω = [−1, 1], the initial value ϕ(x) as a step function:

ϕ(x) =

{
1, x 6 0,

0, x > 0,
(15)
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and the Dirichlet boundary condition u(−1, t) = 2 for t ∈ (0, 1]. The solution u is constant along
the projected characteristic curves given by

x = ϕ(r)t+ r =

{
t+ r, r < 0,
r, r > 0,

(16)

which is shown in Fig. 3-(a). Obviously, the weak solution of (14) is discontinuous across certain
curve x = ξ(t) but smooth on either side of this curve , and it satisfies the Rankine-Hugoniot jump
condition

ξ′(t) =
f(u−)− f(u+)

u− − u+
=

u− + u+

2
=

1

2
. (17)

Therefore, the curve of discontinuity is given by x = t/2, and the weak soution of (14) in this case
can be formulated as follows:

u(x, t) =

{
1, x < t/2,

0, x > t/2.
(18)

(a) shock wave (I) (b) shock wave(II) (c) rarefaction wave

Figure 3: Projected characteristic curve (gray line) and the curve of discontinuity (blue line) of the
inviscid Burgers’ equation (14) with different initial conditions.

It is known that the training of PINN (without adding an extra viscous term) is quite difficult
when the solution has strong discontinuities. We first consider the effect of the network’s architec-
ture on the prediction accuracy of IFNN, and the corresponding results are listed in Table 1 (IFNN
with skip connection is used), from which we see that with the increase of network’s depth and
width, the prediction accuracy of IFNN gets better. To compromise the network’s complexity with
the prediction performance, we choose 6× 20 as our network architecture as stated at the beginning
of this section. Next, we consider the effect of the size of the training set, and we find from Fig. 4
that with the increase of the size of the training set, the prediction error decreases until the size of
the set DIM reaches about 10000, and then the continuous increase of the data set does not improve
the prediction accuracy. Then, we take the hyperbolic tangent (tanh) as the activation function for
both the proposed IFNN and PINN and the corresponding loss curves from the training process are
presented in Fig. 5, which shows that the training of IFNN, with or without the skip connection,
is much easier than that of PINN, and the skip connection used in our IFNN does further help to
achieve even smaller loss. Therefore, we use IFNN with the skip connection (abbreviated as IFNN)
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to conduct all the following tests. The relative L2 errors of the solutions predicted by IFNN and
PINN with different activation function are reported in Table 2, from which we can see that no
matter what kind of activation function is selected, the performance of IFNN is always better than
PINN, and moreover, tanh works significantly better than the other two for both IFNN and PINN
in this case. A more detailed assessment of the predicted solutions is shown in Fig. 6. From the
top panel of Fig. 6 we see that the predicted solution by IFNN is essentially in agreement with
the reference solution in the whole spatial-temporal domain, and the comparison results from the
bottom panel of Fig. 6 show our IFNN can capture the shock very well for all times, while the PINN
does not especially when t = 0.25, 0.5.

Table 1: Relative L2 errors of the predicted solutions by IFNN with skip connection with different
number of hidden layers (#l) and neurons per each layer (#n).

#l
#n

10 20 30

2 5.76× 10−2 2.33× 10−2 9.23× 10−3

4 8.91× 10−3 2.72× 10−3 6.71× 10−4

6 2.97× 10−3 2.50× 10−4 2.32× 10−4

Figure 4: The effect of the size of training set on the prediction accuracy of IFNN.

(a) IFNN w skip (b) IFNN w/o skip (c) PINN

Figure 5: The loss curves of IFNN, including the total loss and each of its terms during the training
for the 1D inviscid Burgers’ equation (14) – Shock wave (I).
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(a) reference solution (b) predicted solution by IFNN (c) predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure 6: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the 1D inviscid Burgers’ equation (14) – Shock wave (I).

Table 2: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the 1D inviscid Burgers’ equation (14) – Shock wave (I).

Model
Activation

tanh sin ReLU

PINN 1.17× 10−1 1.54× 10−1 1.05× 100

IFNN 2.53× 10−4 6.63× 10−2 8.01× 10−2

Shock wave (II) Next we choose Ω = [−1, 3/2], the initial condition ϕ(x)

ϕ(x) =


2, x 6 −1/2,

1, −1/2 < x 6 1/2,

0, x > 1/2,

(19)

and the Neumann boundary condition u′(−1, t) = u′(3/2, t) = 0 for t ∈ (0, 3/2]. The exact
solution u is constant along the projected characteristic curves

x = ϕ(r)t+ r =


2t+ r, r < −1/2,
t+ r, −1/2 < r < 1/2,
r, r > 1/2,

which is shown in Fig. 3-(b). By using Rankine-Hugoniot jump condition, there exist two curves of
discontinuity x = (3t− 1)/2 and x = (t+ 1)/2 when t < 1, and after which these two curves will
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merge into one x = t. Therefore, the weak solution of (14) in this case can be formulated as:

u(x, t) =



2, t < 1, x < (3t− 1)/2,

1, t < 1, (3t− 1)/2 < x < (t+ 1)/2,

0, t < 1, x > (t+ 1)/2,

2, t > 1, x < t,

0, t > 1, x > t.

(20)

The comparison results shown in Fig. 7 still exhibit the superiority of IFNN over PINN in
dealing with the solutions with multiple discontinuities. Again the predicted solution by IFNN is
essentially in agreement with the reference solution in the whole spatial-temporal domain while the
PINN does not capture the shock well. The relative L2 errors of the predicted solutions by IFNN
and PINN using different activation functions are reported in Table 3. Again tanh is still preferred
for both IFNN and PINN among the three activation functions.

(a) reference solution (b) predicted solution by IFNN (c) predicted solution by PINN

(d) t = 0.5 (e) t = 0.75 (f) t = 1.25

Figure 7: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the 1D inviscid Burgers’ equation (14) – Shock wave (II).

Rarefaction wave In this case we take Ω = [−1, 1], the initial condition

ϕ(x) =

{
0, x 6 0,

1, x > 0.
(21)
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Table 3: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the 1D inviscid Burgers’ equation (14) – Shock wave (II).

Model
Activation

tanh sin ReLU

PINN 0.73 1.04 1.12
IFNN 5.41× 10−3 7.69× 10−3 2.43× 10−2

and the boundary condition u(−1, t) = 2 for t ∈ (0, 5/2]. The corresponding projected character-
istic curve is

x =

{
t, r < 0,

t+ r, r > 0,
(22)

It is shown in Fig.3-(c), from which we find there is a region where the information is not enough
to define the solution. If no additional conditions is provided, the equation (14) may have multiple
solutions. To determine a physical solution, the entropy condition

f ′(u−) > ξ′(t) > f ′(u+),

must be satisfied, which leads to

u(x, t) =


0, for x < 0,

x/t, for 0 6 x 6 t,

1, for x > t.

(23)

Such type of solution is called a rarefaction wave. The comparison results of IFNN and PINN are
presented in Fig. 8 and Table 4. It is clear that both IFNN and PINN can produce the accurate
results meeting the entropy conditions automatically without any additional constraints, implying
that both of them can capture the continuous solutions very well.

Table 4: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the 1D inviscid Burgers’ equation (14) -Rarefaction wave.

Model
Activation

tanh sin ReLU

PINN 2.89× 10−3 7.56× 10−3 9.10× 10−3

IFNN 4.13× 10−3 6.65× 10−3 7.32× 10−3

With sinusoidal initial data Now we consider the 1D inviscid Burgers’ equation (14) with Ω =
[0, 1], the smooth initial condition ϕ(x) = sin(2πx) and the periodic boundary condition u(0, t) =
u(1, t) for t ∈ (0, 1]. In this case, the exact solution can not be expressed explicitly, and we use a
traditional finite volume method (“Godunov” scheme) with fine grid to obtain the reference solution
on a fined-enough mesh. The comparison results of IFNN and PINN are presented in Fig. 9. We
observe that the IFNN produces the satisfactory predictions which are in excellent agreement with
the finite volume solution, while the PINN fails to capture the shock completely. The relative L2

errors of the predicted solutions by IFNN and PINN using different activation functions are reported
in Table 5. In this case, ReLU is preferred for IFNN among the three activation functions.
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(a) reference solution (b) predicted solution by IFNN (c) predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure 8: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the 1D inviscid Burgers’ equation (14) – Rarefaction wave.

Table 5: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the 1D inviscid Burgers’ equation (14) with sinusoidal initial data.

Model
Activation

tanh sin ReLU

PINN 0.42 0.74 1.23
IFNN 3.72× 10−3 3.54× 10−3 1.02× 10−3

3.2. 2D inviscid Burgers’ equation

By choosing d = 2 and f = (u2/2, u2/2)T in (1), we obtain the 2D inviscid Burgers’ equation{
ut + u(ux1 + ux2) = 0, x ∈ R2, t > 0,

u(x, 0) = ϕ(x), x ∈ R2.
(24)

We choose Ω = [0, 1]× [0, 1], the initial condition

ϕ(x) =

{
1, x ∈ [0, 1/2]2,
0, otherwise,

(25)

and the boundary condition

u(0, x2, t) =

{
1, x2 < (t+ 1)/2, t ∈ [0, 1],
0, otherwise,

(26)
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(a) reference solution (b) predicted solution by IFNN (c) predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure 9: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the 1D inviscid Burgers’ equation (14) with sinusoidal initial data.

u(x1, 0, t) =

{
1, x1 < (t+ 1)/2, t ∈ [0, 1],
0, otherwise,

(27)

Then the exact solution is given by

u(x, t) =

{
1, x ∈ [0, (t+ 1)/2]2, t ∈ (0, 1],
0, otherwise.

The reference solution and the predicted solution at different times by IFNN are shown and com-
pared in Fig. 10, from which we see that IFNN still predict the solution and capture the 2D shock
waves very well.

3.3. LWR model

In addition to inviscid Burgers’ equation, we also investigate the scalar conservation laws for mod-
eling the traffic flow problem, i.e., the Lighthill-Whitham-Richards (LWR) (Lighthill and Whitham,
1955; Richards, 1956) model. The LWR model can be obtained from (1) by choosing d = 1 and
f(u) = u(1− u), and equivalently we obtain{

ut + [u(1− u)]x = 0, x ∈ R, t > 0,
u(x, 0) = ϕ(x), x ∈ R, (28)

where u represents the density of cars on a road and u ∈ [0, 1]. When u = 0, there are no car on the
road, and the road is completely full when u = 1.

12
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(a) Reference solution

(b) Predicted solution by IFNN

Figure 10: Comparison results between the reference solution and the predicted solution by IFNN
for the 2D inviscid Burgers’ equation (24).

Traffic jams In this case, we choose Ω = [−1/2, 1/2], the initial condition

ϕ(x) =

{
1/2, x < 0,

1, x > 0,
(29)

and the Dirichlet boundary condition u(−1/2, 0, t) = 1/2 for t ∈ (0, 1]. For this case, the equation
(28) describes the traffic state during traffic jams (Ketcheson et al., 2020) and a traveling shock
appears. The comparison results shown in Fig. 11 and Table 6 exhibit the superiority of IFNN
over PINN in agreement with the reference solution in the whole spatial-temporal domain and in
capturing the traveling shock. In addition, tanh significantly outperforms sin and ReLU as the
activation function for both IFNN and PINN.

Traffic light turning green Next we consider the LWR model (28) describing the traffic state
when the traffic light turns green, and in this case, we choose Ω = [−1, 1], and the initial condition

ϕ(x) =

{
1, x < 0,
0, x > 0,

(30)

and the Dirichlet boundary condition u(−1, t) = 1 for t ∈ (0, 1]. In the case of traffic light turning
green the solution is continuous like the rarefaction wave. The comparison results of IFNN and
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(a) Reference solution (b) Predicted solution by IFNN (c) Predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure 11: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the LWR model (28) – the case of traffic jams.

Table 6: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the LWR model (28) – the case of traffic jams.

model
activation

tanh sin ReLU

PINN 1.25× 10−3 2.73× 10−1 4.18× 10−1

IFNN 6.12× 10−3 1.32× 10−2 5.17× 10−2

PINN are presented in Fig. 12 and Table 7. It is clear that both IFNN and PINN can approximate
the continuous solution very well, just like the case of the rarefaction wave. Among the three
activation functions, tanh still performs the best but not significantly for both IFNN and PINN.

Table 7: Relative L2 errors of the predicted solutions by IFNN and PINN with different activation
functions for solving the LWR model (28) – the case of traffic light turning green.

model
activation

tanh sin ReLU

PINN 1.31× 10−3 3.26× 10−3 8.10× 10−3

IFNN 5.80× 10−3 7.47× 10−3 6.71× 10−3
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(a) Reference solution (b) Predicted solution by IFNN (c) Predicted solution by PINN

(d) t = 0.25 (e) t = 0.5 (f) t = 0.75

Figure 12: Comparison results between the reference solution and the predicted solutions by IFNN
and PINN for the LWR model (28) – the case of traffic light turning green.

4. Conclusion

In this paper, we have proposed a fully-connected neural network with skip connection, “IFNN”,
for solving the scalar conservation laws. The essential difference between our IFNN and PINN lies
the choice of the loss function. IFNN takes the implicit form of the solution to formulate one of
the essential terms for the loss function while PINN directly uses the residual of the original PDE.
Extensive numerical experiments in 1D and 2D show that our IFNN is superior to PINN in capturing
shock waves while their performance are comparable for the continuous solution cases. In addition,
the training of IFNN is also much easier than that of PINN since it need not to use automatic
differentiation for calculations of differential operators. On the other hand, IFNN requires the target
PDEs to have the specific implicit form for their solutions, thus the scope of its feasibility may not
be as wide as PINN. It would be interesting in our future research to explore the use of IFNN in
more application fields such as PDE-based uncertainty quantification and inverse problems.
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