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Abstract

In model-free reinforcement learning, the temporal difference method is an important algorithm but
might become unstable when combined with nonlinear function approximations. Bellman residual
minimization with stochastic gradient descent (SGD) is stable but suffers from the double sampling
problem: given the current state, two independent samples for the next state are required, but often
only one sample is available. Recently, the borrowing-from-the-future (BFF) algorithm was intro-
duced in (Zhu et al., 2020) to address this issue for policy evaluation. The main idea is to borrow
extra randomness from the future to approximately re-sample the next state when the underlying
dynamics of the problem are sufficiently smooth. This paper extends the BFF algorithm to action-
value function based model-free control. We prove that BFF is close to unbiased SGD when the
underlying dynamics vary slowly with respect to actions. We confirm our theoretical findings with
numerical simulations.

1. Introduction

Background The goal of reinforcement learning (RL) is to find an optimal policy which maxi-
mizes the return of a Markov decision process (MDP) (Sutton & Barto, 2018). One of the most
common ways of finding an optimal policy is to treat it as the fixed point of the Bellman operator.
Researchers have developed efficient iterative methods such as temporal difference (TD) (Sutton,
1988), Q-learning (Watkins, 1989), and SARSA (Rummery & Niranjan, 1994) based on the con-
traction property of the Bellman operator.

Nonlinear function approximations have recently received a great deal of attention in RL. This
follows the successful application of deep neural networks (DNNs) to Atari games (Mnih. et al.,
2013, 2015), as well as in Alpha Go and Alpha Zero (Silver et al., 2016, 2017). However, when
nonlinear approximations such as neural networks are used, the contraction property of the Bellman
operator may no longer hold. This can in turn result in unstable training of the network. Many
variants and modifications have been proposed to stabilize training. For example, DQN (Mnih. et
al., 2015) and A3C (Mnih. et al., 2016) stabilize ()-learning by using a slowly changing target
network and replaying over past experiences or using parallel agents for exploration; double DQN
reduces instability by using two separate () value estimators, one for choosing the action and the
other for evaluating the action’s quality (van Hasselt et al. , 2015).
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Another way to stabilize RL with a nonlinear approximation is to formulate it as a minimization
problem. This approach is known as Bellman residual minimization (BRM) (Baird, 1995). How-
ever, applying stochastic gradient descent (SGD) to BRM directly suffers from the so-called double
sampling problem: at a given state, two independent samples for the next state are required in or-
der to perform unbiased SGD. Such a requirement is often hard to fulfill in a model-free setting,
especially for problems with a continuous state space.

Contributions In this paper, we revisit BRM for )-value prediction and control problems in the
model-free RL setting. The main assumption is that the underlying dynamics of the MDP can be
written as a discretized stochastic differential equation with a small step size. Note that knowledge
of the dynamics is not required to implement the algorithm. We extend the borrowing-from-the-
future (BFF) algorithm of (Zhu et al., 2020) to action-value based RL. The key idea is to borrow
extra randomness from the future by leveraging the smoothness of the underlying RL problem. We
prove that for both ()-value predition and control problems, when the underlying dynamics change
slowly with respect to actions, the training trajectory of the proposed algorithm is statistically close
to the training trajectory of unbiased SGD. The difference between the two algorithms will first
decay exponentially and eventually stabilize at an error of O(ed, ), where d, is the smallest Bellman
residual that unbiased SGD can achieve and € is the size of the time step in the underlying SDE
discretization.

Related work Our work is inspired by (Zhu et al., 2020), which we extend in four important,
nontrivial ways. First, (Zhu et al., 2020) introduced BFF and proved an approximation theorem
only for policy evaluation with the state value function, while this paper generalizes to state-action
value function Q-evaluation and finds an optimal policy. Second, we generalize the one-step BFF
algorithm to n-step BFF. (See Remark 1.) Third, we observe that BFF-loss from Zhu et al. does
not generalize to Q-evaluation explain the reason for this phenomenon. (See Remark 3 for details.)
Last but not least, we give a much sharper error bound for the difference between BFF and unbiased
SGD. (See Remark 5.)

In (Wang et al., 2017, 2016), the stochastic compositional gradient method (SCGD), a two step-
scale algorithm, is proposed to address the double sampling problem. However, it is not clear how
to apply SCGD to BRM with a continuous state space.

Another way to avoid the double sampling problem in BRM is to consider the primal-dual (PD)
formulation of the minimization problem and view the solution as a saddle point of a minimax
problem. Such methods include GTD and its variants (Sutton, 2008; Sutton et al., 2009; Bhatnagar
et al., 2009; Mahadevan et al., 2011; Liu et al., 2015), and policy gradient methods (Dai et al., 2018;
Wang , 2020). However, when a nonlinear function approximation is used, the minimax is no longer
taken over a convex-concave function. This renders the PD formulation significantly more difficult
than solving the minimization problem directly, and our numerical experiments demonstrate the
instability of the PD method. (See Section 4 for details.)

2. Models and key ideas

2.1. Continuous state space

Working in the model-free RL setting, we consider a discrete-time MDP with a compact continuous
state space S C R%. The action space A C R% can be a compact continuous set or a finite discrete
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set. The transition kernel of the MDP
Ps,8") =P (smi1 = §'|sm = s, am = a) . (1)

denotes the likelihood of transferring from the current state s,,, = s under the current action a,,, = a
to the next state s,,+1 = s’. The immediate reward function r(s’, s, a) specifies the reward if one
takes action a at state s and ends up at state s’. The immediate reward can also be random, in which
case r(s',s,a) represents the expected reward. A policy 7(a|s) gives the probability of taking
action a at state s, i.e., P {take action a at state s} = 7(a|s). For a continuous state space, it is often
convenient to rewrite the underlying transition in terms of the states:

Sm+t+l = Sm + M(Sma am)f + \EUZm- )

where Z,, is a mean-zero noise. This form is particularly relevant when the MDP arises as a dis-
cretization of an underlying stochastic differential equation (SDE), with € as its discretized time
step. We note that Z,,, need not be i.i.d. Gaussian. Our theoretical and numerical results can be
extended to any independent mean-zero noise with the same variance at each time step. In addition,
the diffusion term o can depend on state and action as well. We provide the proof for this case in
Appendix B. Since the extension is trivial and does not affect the theoretical and numerical results,
we stick to a constant diffusion term in the main paper for simplicity. We note that this form is
quite general: it encompasses both deterministic linear differential equations (e.g. (Bradtke , 1993;
Doya., 2000)) as well as cases with a nonlinear drift y(s, a) and stochastic transitions, e.g. (Ped-
ersen , 2017). Throughout the paper, we consider the case where for each state, the variation of
the underlying drift y(s, a) is a priori bounded in the action space, and for each action, the drift is
smooth in the state space. Additionally, we assume the immediate reward (s, s, a) is continuous
in s’, s € S for each action.

Given a trajectory {sy,, am }m>0, the main object under study is the action-state pair value
function (s, a). There are two types of problems: ()-evaluation and QQ-control. ()-evaluation refers
to the prediction of the value function Q7 (s, a) when the policy 7 is given, while Q-control refers
to finding the optimal policy 7, through the maximization of Q™ (s, a) over all possible policies.
For the (0-evaluation problem the state space and action space can be continuous or discrete, while
for the -control problem we mainly consider the case of a finite discrete action space.

Q-evaluation Given a fixed policy m, the value function Q7 (s, a) represents the expected return
if one takes action a at state s and follows 7 thereafter, i.e.,

Q" (s,a) =E Z’Ytr(sm+t+173m+t7am+t) Sm = 8,am = aj,
t>0

where v € (0, 1) is a discount factor. The value function Q™ satisfies the Bellman equation (Sutton
& Barto, 2018) Q™ (s,a) = T™Q™ (s, a), with the Bellman operator T™ defined as

TWQW(Su a) = E[T(Sm+1, Smy am) + ’YQﬂ-(Sm—&—lu am—l—l)’(sm? am) - (37 a)]7 (3)

where the expectation is taken over (Sy,+1, @m+1) When the policy 7 is applied. In the nonlinear
approximation setting, one seeks a solution to (3) from a family of functions Q™ (s, a; ) parameter-
ized by § € Q0 C R%. For example, the function approximation family could be the set of all NNs
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of a given architecture, and 6 specifies the network weights. One way to find Q™ (s, a; 6) is to solve
the following Bellman residual minimization (BRM) problem:

min E  6%(s,a;0 4
0cR (s,a)~p(s,a) ( ) “4)

where p(s, a) is a distribution over S x A and
0(s,a;0) = |T"Q™(s,a;0) — Q7 (s, a;0)| 5)

is the absolute value of the Bellman residual. Note that the expectation in (4) can be taken with
respect to different distributions p. For on-policy learning, it is often the stationary distribution of
the Markov chain. When S and A are discrete, it is also reasonable to choose a uniform distribution
over S x A. Our experience shows that doing so often accelerates the rate of convergence compared
to the stationary measure.

One approach for solving the Bellman minimization problem (4) is to directly apply SGD. The
unbiased gradient estimate to the loss function is

Fm(e) :j(smyamaSm+1;9)v9j(sm7am7S;n+1;0)7 (6)

where (S, an,) is a sample from the distribution p(s, a) and

j(3m7 Amy Sm+1; 0) = r(sm—f—l; Sm, am) + v / Qﬂ(sm—i—lu a; e)ﬂ(a‘smﬁ-l)da - Qﬂ-(sn’m Am; 0)

(N
is an unbiased estimate for the Bellman residual T™ Q™ (S, am) — Q7 (S, am,). If the immediate
reward is random, then the first term becomes a sample of the reward. The second term is an
expectation over the action, which can be replaced by a sample from the policy, i.e. Q(Sm+1, @m+1)
for apmy1 ~ m(a|sm+1). These modifications do not alter the theoretical results in the paper.
Here s, 11 is the next state in the trajectory, while s/, is an independent sample for the next
state according to the transition process. However, in model-free RL, as the underlying dynamics
are unknown, another independent sample s;,, . ; of the next state is unavailable. Therefore, this
unbiased SGD, referred to as uncorrelated sampling (US), is impractical. Even if one can store
the whole trajectory, it is impossible to revisit a certain state multiple times when the state space is
either continuous or discrete but of high dimension. This is the so-called double sampling problem.
One potential solution, called sample-cloning (SC), simply uses s, 41 as a surrogate for s, ;, i.e.
81,41 = Sm+1. However, sample-cloning is not an unbiased algorithm for BRM, and its bias grows
rapidly with the conditional variance of s;,41 on s,, as proved in Lemmas D.1 and D.2.

To address the double sampling problem, (Zhu et al., 2020) introduced the borrowing from the
future (BFF) algorithm. The main idea of the BFF algorithm is to borrow the future difference
ASpm41 = Sm+t2 — Sm41 and approximate the second sample s/, 41 with s, + Asp 1. During
SGD, the parameter 6 is updated based on the following estimate of the unbiased gradient:

A

Fm(e) = j(Sm, Qmy SmA4-15 Q)Vej(sm, Qm, Sm + A5m+1§ 9)7 ®)

where j is a sample of the Bellman residual defined in (7). When the difference between As,,, and
Asp,1 is small, the new s;,, ; is statistically close to the distribution of the true next state. Among
the two versions (gradient based and loss function based) introduced in (Zhu et al., 2020), we adopt
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Algorithm 1 BFF for Q-evaluation

Require: 7: Learning rate
Require: Q™ (s;6) € R4l or Q7(s,a;0) € R: Nonlinear approximation of Q™ parameterized by
Require: j(s,a,s;0) :=r(s,s,a)+~v [ Q™(s,a;0)m(als)da — Q™ (s, a;0)
Require: 6y: Initial parameter vector
Require: sq: Initial state
1: Sample ag from 7(+|sp)

2: Transition to state s; from state sy and action ag

3:m<+0

4: while 60,,, not converged do

5: Sample a,,4+1 from 7(+|Sp41)

6:  Transition to state s,,12 from state s,, 1 and action a@,+1
7T: SA/erl — Sy + (Sm+2 — Sm+1)

8 Fp <+ j(sm, s St 15 01 )V (Sms G, Spyyqs Om)

9: 9m+1 — 0, — 77Fm

100 m<+<m+1

11: end while

the gradient version, detailed in Algorithm 1. We comment on why the loss version is less accurate
in Remark 3.

We prove in Lemma 2 that whether Fisa good approximation of the unbiased estimate F
mainly depends on three factors: 1) the variation of the drift (s, a) over the action space; 2) the
size of the discretized time step €; 3) the size of the discount factor . The smaller these three
elements are, the closer BFF is to US.

Remark 1 [n Algorithm 1, only one future step is used for generating a new sample of sym+1. In
order to reduce the variance of the BFF gradient, it is useful to consider replacing the future step
by a weighted average of multiple future steps. The estimate of the gradient then takes the form

n

Fyrrlz(e) = j(Sm, Amy Sm4+1; 0) Z OéiV@j(Sm, QAmy Sm + A5m+i§ 9) (C)]
=1

with ), o = 1. This comes at the cost of potentially increasing the estimate’s bias.

The only change in implementation as a result of this remark is that line 4 in Algorithm 1 is replaced
by the formula in equation (9).

@-control The BFF algorithm mentioned above can be extended easily to ()-control, i.e., finding
the value function @Q* of the optimal policy 7. @Q* satisfies the Bellman equation Q*(s,a) =
T™Q*(s, a), where T™ is the optimal Bellman operator,

T™Q"(s,a) = E | 7(8m+1, 8my am)] + ymax Q" (sm+1, a3 0)| (8m, am) = (s,a) | , (10)

where the expectation is taken over s,,+1 when the optimal policy 7, is applied. The BRM problem
is the same as (4) but with the absolute value of the Bellman residual (s, a; @) given by

0(s,a;0) = |T™Q*(s,a) — Q*(s,a)|. (11)
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Rather than generating a trajectory offline with a fixed policy, we instead generate a training trajec-
tory online using an e-greedy policy. The algorithm for this case is identical to Algorithm 1, but with
j replaced by j(smv Ams Sm+1; 9) = T(8m+1, Sm am) + ymaxg Q*(sm—i-l, a; 9) - Q*(SWU Am; 0)
This is summarized in Algorithm 2.

Algorithm 2 BFF for Q-control
Require: 7: learning rate
Require: Q*(s;0) € R!Al: nonlinear function approximation of Q* parameterized by 6
Require: j(Sm, Gy SmA4-15 9) - T(Sm—O—la Smy am) + 7 maxg Q*(sm—Ha a; 9) - Q*(Sma Qs 9)
Require: 6y: Initial parameter vector
Require: sq: Initial state

1: Sample ag with an e-greedy policy from Q*(so; 6p)
Transition to state s; from state sy and action ag
m <+ 0
while 6,,, not converged do

Sample a,, 11 with an e-greedy policy from Q*(Sy+1; 0m,)

Transition to state S,,+2 from state s,,41 and action @,

Sma1 < Sm + (Smt2 — Smt1)

Fm — j(sma Amy Sm+15 Qm)vej(sm, Aimyy S;n—H; em)
Om1 < O — nFm

10: m++<m+1

11: end while

R A A R e

Why BFF works We prove in Lemmas D.1 and D.2 that the difference between the SC and US
gradients is O(¢), while the difference between the BFF and US gradients is O(E[0¢]) (see Lemma
2). Although both differences are O(¢), BFF depends on the Bellman residual 6 while SC does
not. As the algorithm proceeds, d approaches 0, causing the difference between BFF and US to
further decrease. On the other hand, the difference between SC and unbiased SGD is always O(e)
as proved in Theorem D.3. This is the high-level reason why BFF outperforms SC. (See Section 4
for numerical comparisons.)

2.2. Discrete state space

The proposed method also works for discrete states in certain settings. A typical example is when the
state space S is a discretization of an underlying continuous state space {)s' and the transition matrix
is smooth in state s and action a. When the state space is discrete, one can view Q € RISIXIAl a5 a
matrix. In this tabular form, one can directly use the previous function approximation framework by
letting Q™ (s, a;0) = ®(s, a) - 0, where ®(s;, a;) € RISXIA! is the matrix with (4, j)-th entry equal
to 1 and all other entries equal to 0. Here § € RISI¥|Al and we take the dot product of the flattened
matrices.

Equivalently, one can also derive the BFF algorithm directly by computing an unbiased estimate
for the gradient of the Bellman residual with respect to (). We will denote the unbiased gradient at
time m by the vector F},, € RISIAl where F,, is indexed by state, action pairs. We first initialize

1. More specifically, a Riemannian manifold endowed with a connection structure
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F,,, to the 0 vector. Then, set
Fr(Smyam) = —7(Sm, Gmy Smt1)-
Finally, for each a € A, set
Fm(5;n+17 a) = W(G‘S;nﬂ)’m(smv Ay Sm+1)-

Here s;, ; is an independent sample of the next step in the trajectory given s,, and a,, and
3 (s s $m1) = (St Sy m) + 3 o Q7 ($m41,@)7(als) — Q7 ($ms ). By replacing
the independent sample s;,, , ; with the BFF approximation s,,, + As,,, we obtain a BFF algorithm
for the tabular case, summarized in Algorithm 3.

Algorithm 3 BFF for Q-evaluation (tabular case)

Require: 7: Learning rate
Require: Q™ € RISXIAl: matrix of Q™ (s, a) values
Require: j(Sma Qm, 5m+1) = r(5m+1a Sm, am) + Za Qﬂ(strl» a)ﬂ(a|s) - Qﬂ(sm, am)
Require: sq: Initial state
1: Sample ag from 7(+|sp)

2: Transition to state s; from state sy and action ag
3: m<« 0

4: while Q™ not converged do

5: Sample a1 from 7(+|Sp41)

6:  Transition to state s,,,2 from state s,, 1 and action a@,+1
T Slﬂ’]ﬁ‘rl < Sm + (Smt2 — Sm+1)

8: [, « 0 c RBSIXIA

9: Fm(Smaam) <~ _j(sm’amasm-i-l)

10. fora € Ado

11: Fo(Shq1,a) < m(als),1)5(Sm, Gmy Sm1)
12:  end for

132 QT+ Q" —nky,

14: m<+m-+1
15: end while

The BFF algorithm for Q-control in the tabular case can be derived similarly. As in equation
(9), one can use multiple future steps to reduce the variance of the gradient in the tabular case as
well. Since we demonstrated this process for Q-evaluation in a continuous state space, we will
demonstrate it for Q-control in this example to showcase its applicability for both policy evaluation
and control. Specializing equation (9) for the tabular case is slightly more computationally involved
than for the general case. As such, we provide the nBFF algorithm for tabular control in Algorithm
4 below. The single-step BFF algorithm for the tabular case (Algorithm 5) can be found in the
appendix.
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Algorithm 4 BFF for Q-control (Multiple-future-step, tabular case)

Require: 7: Learning rate
Require: Q* € RISIXIAl: matrix of Q*(s,a) values
Require: {oy}}_, as in equation (9)
Require: (S, am, Sm+1) = 7(Smi1, Sm, @m) + Yy maxy Q*(Sm1,a) — Q*(Sm, am)
Require: sq: Initial state
1: fort:=0,...,n—1do
2:  Sample a; with an e-greedy policy from Q*(s;; o)
3:  Transition to state s;41 from state s; and action a;
4. end for
5: m<+0
6: while Q* not converged do
7:  Sample a4, With an e-greedy policy from Q*(Sy4n;0m)
8:  Transition to state Sy,4y1 from state Sy,4, and action @, +n
9:  Fy, « 0 € RISIXIA|
10 fork=1...,ndo

11: Stk < Smik—1 T (Smikt1 — Smtk)

12: Fm(sm,am) — Fm(sm,am) — J(Smy @y Smt1)

13: ay,p, < argmax, Q*(s;wrk, a)

14: Fm(s%%? ay i) Fm(sgﬁk, ay ) + i (Smy Gm, Smy1)
15:  end for

16:  Q* < Q* —nk),
17: m<+m-—+1
18: end while

3. Theoretical results

This section states the main theoretical results which bound the difference between BFF and US on
a continuous state space. Recall that the one-step transition is governed by the state dynamics

Sm+1 = Sm + ,U(Sma am)6 + UﬁZmy (12)

where p(s,a) is the drift, Z, is assumed to be normal N (0, [ x4, ), and o is the diffusion coef-
ficient. It is convenient to introduce As;, := Sy+1 — Sm = i(Sm,a)€ + 0/€Z,,. For a discrete
action space A, the drift term {u(s, a)}qea is a family of continuous functions, while for a contin-
uous action space, 1i(s, a) is a continuous function in both state and action.

3.1. Error bound at each step

The following lemma bounds the difference between BFF and US at each step. That is, assuming the
current parameters 6 are the same, Lemma 2 bounds the expected difference between BFF and US
for Q-evaluation and Q-control after one step. See Lemmas A.1 and A.2 for an extension of Lemma
2 to the difference of the variances. The complete proof of Lemma 2 is also give in Appendix A.

Lemma 2 (short version) Suppose that Q™ (s, a;0) and max,cp Q* (s, a; 0) are Lipschitz contin-
uous in 0, and that 0;VgQ™ (s, a; 0) and 0sV g maxgep Q* (s, a;0) are continuous in the state and
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action space. Then the difference between the BFF gradient F and the unbiased gradient F satisfies
E[£3(6)] — E[Fn(8)] =E [8(5m, am: 0) (Csm; 0)e + o(e))] = O(E[d¢]),

where § is the absolute value of the Bellman residual defined in (5), (11) for Q-evaluation and
Q-control respectively. For Q-evaluation, C(sy,; 0) is defined as

C(Sm; 9) =7 (agEaNﬂ(a‘sm) [V@Qﬂ-(sm, a; 9)}) CQ(Sm), (13)
and for Q-control, C(s;,;0) is defined as

C(sm;0) =7~ <8SV9 max Q" (s, a; 9)> Ca(sm) (14)

with Co(sy,) an upper bound for the variation of the drift in the action space: |j(Sm,m+1) —
(S, am)| < C2(8m).

Note that the common factor Cs(s) affects the magnitude of the difference between BFF and
US. That is to say, when the drift changes more slowly with respect to the action, the difference is
smaller and BFF performs better. The sizes of v and € play an important role in determining the
statistical difference between BFF and US as well.

Remark 3 (Zhu et al., 2020) proposed two versions of BFF for policy evaluation. One applies
to the gradient (the same as the approach we take in this paper). The other approach (BFF-loss)
applies the same idea to the loss function by minimizing a biased Bellman residual given by

E[E[J(sma Qmy SmA4-15 9)](5m> Ams Sm + A5m+1; 9)|3m7 am“

with j an unbiased estimate of the Bellman residual defined in (7). However, this method does not
extend to QQ-evaluation. The reason is the following. The gradient of BFF-loss for Q-evaluation is

1 . . . .
iE[E[](Sm—H)Vﬂj (Sm + Asm-i-l) "Sm’ am] + E[v9](5m+l)] (Sm + Asm-i-l) ’Sm’ am“

We omit the first two variables Sy, G, in §(Sm, Gm, Sm+1) to emphasize that the main difference
between BFF and US lies in the next state. From the proof of Lemma A.1/(A.6), given (Sm, ), one
has Voj(sm+Asm+1)—Voj(Sm+1) = O(€). Similarly, we has j(Sm+Asmi1)—J(Smy1) = O(€).
It follows that the difference between the BFF-loss gradient and the true loss gradient is

(BFF-loss gradient) — E[E[j(Sm+1)|5m]VoE[j (Sm+1)|sm]] = O(de + Vyde),

where 6 = E[|j(Sm+1)||Sm, am] is the absolute value of the Bellman residual defined in (5). Since
V4 does not necessarily decrease as the algorithm proceeds (for example, if 6> = 0, i.e., § = 0,
then Vo = 1 is a constant), the bias for BFF-loss in Q-evaluation is still dominated by O(e),
which is similar to the behavior of SC. On the other hand, Lemma 3.1 shows that the difference for
BFF-gradient is O(d€), which will keep decreasing as § decreases. Hence, BFF-gradient performs
better.

The reason for this contrast with (Zhu et al., 2020) is that the state-action value function evalu-
ation in this paper is based on a conditional expectation on state and action, while the state value
function evaluation in (Zhu et al., 2020) is based on a conditional expectation on state alone. When
conditioning only on the state, we have j (S, + Asmi1) — j(8my1) = O(€2). This means that in the
setting of (Zhu et al., 2020), BFF-loss has a difference of only O(e?) from US, which in turn makes
its performance superior to the O(e) bias incurred by SC.
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3.2. Differences of density evolutions

This subsection compares the probability density functions (p.d.f.) for the parameters over the
course of the complete BFF and US algorithms. To simplify the analysis, the p.d.f.s of the two
algorithms are modeled with the p.d.f.s of the continuous stochastic processes. The updates of the
parameter 05 by SGD follows

US: Opt1 =0 — nFn(0r)
BFF: 041 = O, — 1F0n (1)

where Fj, Fk are the estimates of the loss function’s gradient defined in (6) and (8) for US and BFF
algorithm respectively. The above updates can be viewed as a discretization of a function in time
©; = O(t). It is shown in (Li et al., 2017; Hu et al., 2017) that when the learning rate 7 is small,
the dynamics of SGD can be approximated by a continuous time SDE

US: d@t = _E[Fm(e)t)}dt + \/ﬁV[Fm(@t)]dBt 15
BFF: dO; = —E[F},(0y)]dt + /nV[F},(0,)]dB, (1>

for ©—, ~ 0 with an error of O(\/ﬁ), where E and V are expectation and variance taken over
p(s, a), the distribution defined in the loss function (4). Here E[F},(0;)] denotes the true gradient
of the population loss function used in US, and E[F},, (©;)] denotes the biased gradient of the popu-
lation loss used in BFF. For simplicity, we assume V[F,,] = ¢ is constant. Let p(t, §) and p(¢, 0) be
the p.d.f.s of the parameter 6 at step k = t/n for US and BFF, respectively. These p.d.f.s satisfy the

following two equations (Pavliotis, 2014):
US: = Vo [E[Fulp+ gvg - (V[Fulp)| ; (16)
BFE: 9, = V- []E[Fm]ﬁ—i— gvg - (V[Fm]ﬁﬂ . (17)

In addition, we assume 6 € ) with {2 compact. As a result, we need a reflective boundary condition
for the PDEs (16), (17), i.e.

(E[Fm]p v gv (V[Fm]p)) - n’m —0, (E[Fm]ﬁ + gv (V[Fm]ﬁ)) . n‘m —0.

It is not clear whether the compactness assumption can be removed; we leave this question for future
study. In practice, the BFF algorithm still works for unconstrained domains.
We define

CZ(t, 9) =p—p
NE
to be difference of the p.d.f.s for US and BFF. The goal in this section is to analyze how Hd

evolves in time for some specific norm ||-|,.
We introduce the following weighted norm to measure the difference between the p.d.f.s:

‘ j:::u/"JQPiOdQ

where p*° is the steady distribution of US. p®° is obtained by setting the RHS of (16) to be zero.
Since E[Fyn] = VoE(s 4)~,[0% (s, a; 0)], where p(s, a) is defined in the loss function (4) and 6 (s, a; )

d
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is the absolute Bellman residual defined in (5) for Q-evaluation and in (11) for Q-control, it is easy
to check that the steady distribution of US is

)

1 _2
o= e e El0] (18)

2

where Z = [ e 7€ 0% g9 is a normalizing constant. We have reduced our problem to quantifying
112

the evolution of Hd in time, which we accomplish with the following theorem.

Theorem 4 (short version) For sufficiently small n > 0, the difference d of the p.d.f.s for US and
BFF is bounded by

Hcf(t)H* <Cie 9+ 0 (e E[éf]nq‘) V1 —e 2t (19)

where E[02] = ming E[6%] and C1, Ca, C3 are all positive constants.

Remark 5 In (Zhu et al., 2020), the upper bound for HcZ(t) ‘ is O(€?) (see Theorem 4 in (Zhu et

al., 2020)), which is independent of time. In this paper, we give the tighter and more delicate time-
dependent bound of O(e™'+e\/E[62]), where 0. is the smallest residual unbiased SGD can achieve.
This bound tells us that the difference will first decay exponentially and end up at O(eE[d.]), which
gives more information about the evolution of the algorithm compared to (Zhu et al., 2020)’s upper
bound. Notice that in (Zhu et al., 2020), the difference between unbiased SGD and BFF in V -value
evaluation is O(€?), while in Q-value evaluation as in this paper, the difference is O(¢), so the
bound becomes O(eE[d,]) instead of O(€*E[d.]).

The precise version of Theorem 4 is stated in Theorem C.5 of Appendix C, and its proof is also
given in Appendix C. This theorem implies that as the algorithm moves on, the difference between
BFF and US will decay exponentially. After running the algorithm for sufficiently many steps,

the difference will eventually be O (e E[&f]nCR’). As long as E[62] is small, BFF will achieve a

minimizer close to US with an error much smaller than O(¢). Note that if E[62] = 0, the difference
still does not vanish. Instead, the leading order term of the last term in (19) becomes O (en©3+1/2),
which is shown in Corollary C.2 of Appendix C.

The constant C'; depends on the initial p.d.f. of the algorithm. The constant Cj is related to the
shape of E[02](6) in the parameter space. The flatter the shape at the minimizer is, the smaller Cs is.
The constant C'y decreases as 7 decreases, so the first term increases as 1 decreases, while the last
term O(e2E[62]n®3) does the opposite. This suggests that one should set the learning rate ) large at
first, making the exponential decay faster. As the training progresses, n should be reduced to make
the final error smaller.

4. Numerical examples

In each of the settings below, we test the efficiency of learning Q™ via SC and BFF. We use the
generalized version of BFF specified by equation (9). The label nBFF in the plots corresponds to
using the estimate F™ from equation (9); 1BFF corresponds to the standard BFF algorithm (e.g.
Algorithms 1 and 3). In each case, we use the uniform weights a; = 1/n. When applicable, we
also compare to US and PD. (For the full definition of the PD algorithm, see Appendix E.)>

2. Code for reproducing these experiments can be found at https://github.com/zleizzo/bffQ
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4.1. Continuous state space

We consider an MDP with continuous state space equal to the unit circle: S = S* = R/277Z, and
s € S represents the angle of a point on the unit circle. The transition dynamics are

ASpy = ame + 0 Zm/e,

where a,, € A = {£1} is drawn from policy 7 to be defined later and Z,,, ~ N(0,1). We set
€= %—g and o = 0.2. The reward function is 7 (S 41, Sm, @m) = sin(Sm41) + 1.

In the first two experiments, we approximate ()™ with a neural network with two hidden layers.
Each hidden layer contains 50 neurons and cosine activations. The NN takes a state as input and
outputs a vector in RIAl; the i-th entry of the output vector corresponds to Q™ (s, a;). The CartPole

experiment uses a larger network with ReLU activations.

Q-evaluation We first estimate Q™ for the fixed policy 7(a|s) = 1/2 + asin(s)/5. We use a
neural network with two hidden layers to approximate (). Each hidden layer has 50 neurons. The
activations are cos(x) for the hidden layers and identity for the output layer.

The training procedure is as follows. We generate a trajectory of length 10° and run BFF, SC,
and US with batch size M = 50 and learning rate 7 = 0.1. We also train via PD with 8 = = 0.1
and all other hyperparameters identical. We compute the exact () by running US on a trajectory of
length 107. The results are plotted in Figure 1. BFF exhibits superior performance compared to SC
and PD, with only slightly worse performance than the (impractical) US algorithm.

Relative error decay, log scale Q, action 1 Q, action 2
0.00- 16-

\

v
125- — yg )
“

0 2500 5000 7500 10000 12500 15000 17500 20000 0 1 2 3 a 5 6 0 1 2 3 4 5 6

Figure 1: Results of each method for fixed-policy (Q-evaluation. The solid lines are the mean
of five runs and the shaded region denotes the standard error of the mean. The BFF algorithm
performs better than both SC and PD. Changing the number of future steps used to compute the
BFF approximation does not have a large impact on its performance in this case.

@-control In the control case, a fixed behavior policy is used to generate the training trajectory.
At each step, the behavior policy samples an action uniformly at random, i.e. 7(a|s) = 1/2 for all
a € A and s € S. For the simple case we consider here, we found that this fixed policy worked
better for training than an e-greedy policy. Other than this minor difference, the training procedure
is identical to the continuous ()-evaluation experiment (with the same hyperparameters, trajectory
length, etc.).

The results are shown in Figure 2. Again, BFF has comparable performance to SC and outper-
forms both SC and PD.

CartPole We tested the BFF algorithm on the CartPole environment from OpenAl gym (Brock-
man et al. , 2016). It is straightforward to apply BFF to adaptive SGD algorithms such as Adam
(Kingma et al. , 2014) and a version of BFF with Adam is used for this experiment.

1110



BFF IN MODEL FREE CONTROL

Relative error decay, log scale Q, action 1 Q, action 2
— UB 20- —— -

— sC
1BFF 18-
3BFF

i o~ = — . D 16- D
1.0 14-
1. == Exac

0 2500 5000 7500 10000 12500 15000 17500 20000 0 1 2 3 a 5 6 0 1 2 3 4 5 6

Figure 2: Results of each method for ()-control. The solid lines are the mean of five runs and
the shaded region denotes the standard error of the mean. As before, the more accurate gradient
estimate from BFF improves our learned approximation for (). In this case, the variance reduction
obtained from 4 future steps improved BFF’s performance even more, giving results comparable to
US.

We injected a small amount of noise into the environment: the actions correspond to applying a
force of 10 + N (0, 1) to the cart. BFF shows improvement over SC even for very small amounts
of noise (i.e. variance close to 0). In fact, even in the deterministic base environment, we found
that BFF performed better than SC. BFF may promote exploration in some structured way which is
helpful for this environment.

We approximate () with a neural network with a single hidden layer of size 100. The hidden
layer has ReLLU activations. For both BFF and sample-cloning, we train using Adam with the default
settings for 81 and 52 (81 = 0.9, B2 = 0.999). For all of the methods, we use batch size 50 and
experience replay storing the 10,000 most recent experiences in the training trajectory. We train for
200 episodes. We also use an e-greedy approach to generate the trajectory. Initially, we set ¢ = 1
(so the agent acts completely randomly at the beginning of training), and decay e by 0.99 after each
parameter update. We stop decaying € when it reaches 0.1, so there is always some randomness in
our training actions to prevent getting stuck on an ineffective policy.

We tested learning rates in {10~* i=2 for SC and BFF. The initial learning rates for PD were
chosen from {10_k 2:1. The batch size, number of training episodes, reward discount factor, and
epsilon decay rate were constant across the different methods. There was no additional tuning for
BFF. € starts at 1 and is set to max(0.1,0.99¢) at the conclusion of each episode.

For the PD algorithm, We tried fixed values for § and 7, as well as decaying S and n with
different starting values and with the decay recommended in (Wang et al., 2017). The results in
Figure 3 have 8, = 0.1 x k—3/4 and N = 0.1 x k:_l/z, where (3), and 75 denote the parameters used
for the k-th step.

The results are plotted in Figure 3. BFF reaches the max reward (200) faster than SC and
achieves it with greater regularity throughout the training process. In contrast to both of these
methods, the PD method fails to converge even after the extensive hyperparameter search described
above.

4.2. Tabular case

We next consider an MDP with a discrete state space S = {%}Z;g and n = 32. The transition
dynamics are given by

2
As,, = %ame o Zm/e, (20)
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Relative error decay, log scale

200 — sc
— PD ‘\,\/\/\
1BFF

150 — 2BFF
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25

25 50 75 100 125 150 175 200

Figure 3: Reward per training episode for the CartPole experiment. The shaded regions show the
standard error of the mean over 5 trials. BFF is the first to reach the maximum reward and achieves
it more consistently than sample-cloning. It achieves slightly better performance using 2 future
steps (2BFF in the plot). Despite an extensive hyperparameter search, PD was not able to learn an
effective policy.

where a,,, € A = {£1} is drawn from the policy 7(a|s) = 1/2 4 asin(s)/5 and Z,,, ~ N(0, 1),
and the addition is performed in R/27Z. We then set s,,+1 = arg min, g |sp, + As,, — s|. For the
experiment below, c = 1 and ¢ = 1.

(-evaluation The training procedure is as follows. We generate a long trajectory of length 7' =
107 from the MDP dynamics using a fixed policy m(als) = 1 + a%. We use a learning rate
of n = 0.5 and a batch size of 50 for each of the methods. We find the exact matrix Q* by first
forming a Monte Carlo estimate of the transition matrix P based on 50,000 repetitions per entry,
then forming the expected reward vector 12 and solving the Bellman equation based on this estimate
for P.

The results are plotted in Figure 4. In this case, BFF is nearly indistinguishable from training

via US. The PD method achieves comparable performance in the tabular case.

Relative error decay, log scale Q, action 1 . Q, action 2

—
— sc
1BFF
—— SBFF
—

0 25000 50000 75000 100000 125000 150000 175000 200000

Figure 4: Results of each method for fixed-policy ()-evaluation in the tabular case. The solid lines
are the mean of five runs and the shaded region denotes the standard error of the mean. BFF gives
a better estimate for the gradient than SC, leading to improved performance. BFF’s performance
does not change significantly with the number of future steps.

Q-control We find the exact Q* by first running US on a trajectory of length 108 with batch size
1000 and learning rate 0.5 to obtain an approximation QQ!. We then refine Q! by training via US on
a trajectory of length 107 with batch size 10000 and a learning rate of 0.1 to obtain the true Q*. We
confirm the correctness of (* via Monte Carlo (not shown).
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We test each of the methods (US, SC, and BFF) on a trajectory of length 5 x 107 with a learning
rate of 0.5 and a batch size of 100. The results are shown in Figure 5. BFF outperforms SC by
a wide margin and has performance comparable to US. Using a greater number of future steps to
approximate the BFF gradient improved its performance marginally. The PD method also performs
well for the tabular case.

Relative error decay, log scale Q, action 1 Q, action 2
130

100000 200000 300000 400000 500000

Figure 5: Results of each method for ()-control in the tabular case. The solid lines are the mean
of five runs and the shaded region denotes the standard error of the mean. SC is unable to learn
an accurate approximation for (), while BFF’s performance is almost indistinguishable from US.
Using 5 future steps to compute the BFF approximation helped improve its performance slightly.

5. Conclusion

In this paper, we show that BFF has an advantage over other BRM algorithms for model-free RL
problems with continuous state spaces and smooth underlying dynamics. We also prove that the
difference between the BFF algorithm and the uncorrelated sampling algorithm first decays expo-
nentially and eventually stabilizes at an error of O(ed,), where J, is the smallest Bellman residual
that US can achieve.

We remark that the SDE interpretation of the underlying dynamics (i.e. (2)) is not necessary to
apply our algorithms. Similar to the result of Lemma 2, if the underlying transition is smooth in the
state space and the variation of the underlying transition w.r.t. the action space is small, this should
be sufficient for BFF to perform well. We leave the relaxation of this assumption for future study.

There are several interesting directions for future work. For example, the underlying dynamics
of an MDP may exhibit sudden changes at the boundary of the state space. Adapting BFF to work
in these settings is important for improving its practical efficacy. Furthermore, in this paper we have
restricted ourselves to learning a policy indirectly via the @) function. Applying BFF to direct policy
computation methods (e.g. policy gradient) is another promising direction for exploration.
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Appendices
A. Extension and Proof of Lemma 2

Lemma A.1 (Extension of Lemma 2 for (Q-evaluation) Suppoese that Q™ (s, a; 0) is Lipschitz con-
tinuous in the € R% and 0sVeQ" (s, a;0) is continuous in the state space, then the difference
between the gradients of the US and BFF algorithms for Q-evaluation is

E[Fm] — E[F.] =E [0(Sm, am; 0)C(sm; 0)e] + o(e) = O(E[o€]),
where

C(Sm; 0) =7 (88Ea~7r(a\sm) [VGQW(Sma a; 6)}) Cy,

and Cy is an upper bound for the variation of the drift term in the action space |p(Sm, Gm+1) —
1(Smy am)| < Ca. Inaddition, if |E,[Q™ (s, a;0)] — Q(s,a;0)|, |[Ea[VeQT (s,a;0)] — VeQ(s,a;0)
(s, a) — u(s,a’)l, |r(s,s,a)| < C almost surely for s € S,a € A,0 € R%, then the difference
between the variances can also be bounded by

’

>

V[Fm] — V[E,]| = O(e),
where V stands for the variance and

Fp, = j(Sm, Qmy SmA4-15 G)VGj(Sma A, S{m-i,-ﬁ 9)7

Fm = '(va Omy Sm+1; H)ng(sm, Ay Sm + Asm—H; 0)7
3 (8ms @y Smt150m) = 7(Sm+1, Sms Q) +7/Q”(sm+1,a;9)ﬂ(a|sm+1)da — Q" (8m; am;0),
5(37717 Qm; ‘9) =K [j<8m7 Amy Sm4-15 gm)’ Sm, am] .

Note that the above form also works for the discrete action spaces. Specifically, w(a|s)da =

Z 7(a;|s)dq, (a)da in the discrete action space, where 64,(a) is the Dirac delta function.
a; EA

Proof The expectation of the US gradient and the BFF gradient are
E[Fn) = EE[jVoilsms am]],  ElF] = E |E [jV6]|sm am] (A1)

respectively, with j = j(3m7 Gmy Sm4-15 0)’ jl = j(Sm, Gy 3;714_13 9>’j = j(Sm, Gy 3m+A3m+1; 9)

For notational convenience, in what follows we drop the explicit dependence of Q™ on . All of
the gradients V are taken with respect to 6. For ease of exposition, we consider a one-dimensional
state space S. It is straightforward to generalize to the multi-dimensional case. Using a Taylor
expansion, we can expand VQ™ (Sy,+1, a)7(a|sm+1) around VQ™ (s, a)m(a|sy,) by

VQW(Serlv a)ﬂ-(a|5m+1)
=VQ" (s, a)m(alsm) + 0s(VQ™ (sm, a)m(alsm)) Asm + %6§(VQ7T(Sm, a)ﬂ'(alsm))Aszn

+ éag(VQ“(s*, a)w(a!s*))As?’

m)

(A2)
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where s* € (S, Sm+1)- Since Asy, = (1(Sm, am)e + 0 Zmy/€ = O(y/€), the last term of the above
equation is o(e). Substituting As,,, = p(Sm, am)e + 0 Zp /€ yields

Voi' =~ / VQ (spp1,a)m(al s, y1)da — VQ (s, am)

:'y/VQ“(sm,a)ﬂ'(a]sm)da— VQ" (5m,am) + (v/88(VQ”(sm,a)7r(a|,sm))da> (S, am) €

N~

fo f1
+ (7 [ 259G o arntal s o Ziye+ ([ V@ smam(alsnda) o (Zy e+ ofe)
fo fs

(A3)
Similarly, we can expand VQ7 (S, + ASm41,a)m(alSm + Aspy1) around VQ7 (S, a)m(alsy,).
This yields

VQW(Sm—Ha a)ﬂ—(a‘sm—i-l)

=V Q" (sm, a)m(alsm) + Os(VQT (sm, a)m(alsm)) Ay + 02(Q ($m, a)m(alsm)) Aspy iy + o(e).

(A4)
By Taylor expanding (4(Sm+1, @m+1) around (S, am+1) and using the fact that As,, = O(\/€),
we see that

p(Sma1s Gm1) = U(Sms Gmy1) + Ospt(Smy Q1) Dsm + O(AS%@)
= (1(Sm; am+1) + o(1).

Substituting this into the expression for As,,+1 yields

Asmy1 = p(Smi1, Gmi1)€ + 0 Zmp1Ve = (Sm, Gmy1)€ + 0 Zmi1V/e + o(e).

Combining this expression for As,,11 with the Taylor expansion of VQ™, we conclude that
VQj =7 / va(sm + A5m+1a a)?T(CL’Sm + ASerl)da - VQF(SW’ am)

=fo+ (’y / 05 (VQ™ (sm, a)ﬂ(a\sm))da> W(Sm, am+1) € + foZmi1ve + f3Zi 1€+ o(e).

f1
(A.5)
It follows that

Vi— Vi =(h— he+ foZmpr — ZVe+ f3( 200 — (Z3,)%)e + o(e), (A.6)
which implies
E[Fm] = E[E[jVﬂsm, Q]
[EL(Vi'+ (fr = fO)e + fo(Zmir = Zi)Ve + f3( 2 = (Z0)%)e + 0(€)) 5m, aml]
E[

BV 5ms am]] + E [E [ (i = f)e + foZmis = ZoVe+ f5(Zgs = (Zin)2)e +0(6)) lsms ]
(A7)

=E
=E
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Since both j = j(Sm, @m, Sm + 1(Sm,am)e + 0v/€Zy,) and fo = fa(sy,) are independent of
Zm+1, Z1,, we have

E [E [] (fQ(Zerl - Z;n)\/g) |Sm, am” =K [E [jf2|5m, am] E [(Zerl — Z;n)\/asmv am“ =0.
Similarly,
E [E [j (f5(Zns1 = (Z1)*)e) lsms am]] = E [Bljfslsm, am] B [(Zg1 = (Z5))elsm, am]] = 0.

Hence, (A.7) becomes

A~

E[Fn] = E[F,] + E[E[J((fl — f1)e+ 0(€))|sm, am]]

Let Ci(sm) = |[ 0s(VQ™ (sm,a)w(alsm))dal. As [u(sm:am+1) — t(smsam)| < Ca(sm) by
assumption,

E[En] — E[Fn]| < AEIE]jl[510: @m]C1 (1) Ca5m)e] + 0(€) = EISC1 (s1)Calsm)e] + ofe),

which completes the proof for the first part of the lemma.
We now bound the difference of the variance. By the definition of F;,,, F},, in (6), (8), we have

V[Fm] - V[Fm]’
= [BL2((V03)? = (V07)2)] - (ELVoil® - ELiVoi 1),
(A.8)
= |EL*(Vos = Vi) (Ve + Vi) — E[j(Vej — Vi )JE[i(VaJ + Voi')]| -
I I
Using the same approximations of V7, Vgj as in (A.3), (A.5) gives
Voj — Voi' =(f1 = fr)e+ fo( Zm1 — ZL)Ve + f3(Z2 11 — Zin)e + o(e) (A.9)

Voi +Vei' =2fo+ (fi + fo)e + fo(Zms1 + Zo)Ve + f3(Z2 1 + Z12)e + ofe).
It follows that

(Voi)* = (Voi')* = (Voj — Vi) (Voj + Vai")
=2fo(f1 — f1)e + 2fofo(Zms1 — Zh)Ve+ 2fofs(Z2 1 — Z2)e + f3(Z2 1 — ZI2)e + ofe).

Again, using a Taylor expansion, we can approximate j by

j—r—i—’y/Q”wda—Q”%— (337“+’Y/35(Q7r7r)da>“6

g1

9 (A.10)
+ <8s7° + v / 8S(Q”7T)da> 0 Zm\ €+ <8§7’ + v / 832(Qﬂ7r)da) o Z,Zne + o(e),
g2

g3
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where we abbreviate (S, Sm, @m), Q" (Sm, a), 7(a|sm), and p(sm, am) by r,Q™, 7, and pu, re-
spectively. It follows that

j2 = gg + g%Zme +290(g1€ + g2 Zm\/€ + gngle) + o(e).
Then,
I=E [2((V6))* = (Vas)?)]

=E[g¢(2fo(f1 — fi)e + 2fof2(Zms1 — Z)Ve + 2fofs(ZE 41 — ZiP)e + [3(Z2 1 — Z1F)e)
+ 29092 Zm N €(2fo f2(Zm+1 — Zi)V€)] + o(e).

Similar to (A.7), since Z,,+1, Z,, are independent of go, g2, fo, f2, f3, the above equation becomes,
I =2E[g3 fo(f1 — fi)e] + o(e).
Futhermore, plugging (A.9) and (A.10) into I gives,
IT = E[2fogolElgo(f1 — f1)€] + o).

Combining [ and 11, we see that
V[Em)] = VIFy]| = [I = 1| < 2Cov(fogo, go(f1 — f1))e + o(€) < O(e)

as long as the covariance of fgo and go( fl — f1) is bounded. But since fo, go, fl — f1 are all bounded
by the conditions in the second part of the lemma, Cov( fogo, go(f1 — f1)) must be bounded as well.
This concludes the proof. |

Lemma A.2 (Extension of Lemma 2 for (Q-control) Suppose that f(s;0) = max,ca Q*(s,a; )
is Lipschitz continuous in 0 € R% and 0,V f(s;0) is continuous, then the difference between the
gradients in US and BFF for Q)-control is

E[Fm} — E[F] =E[0(8m, am)C(sm; 0)e] + o(e) = O(E[d¢]),
where
C(3m§ 9) = ’Y|8sv6’f(5m; 6)‘02(5m)7

where Co(sy,) is the uppper bound for the variantion of the drift in action space |((Spm,, Gm+1)] —
(s aun)| < C(syn). In addition, if | (5;0) — Q" (5,5 0)], |V £ (5:0) — VoQ" (s, 0:0)].
lu(s,a) — p(s,a’)|, |r(s, s,a)| < C almost surely over s € S,a € A,0 € R%, then

V[En] — V[F]| < O(e).

Here F,y, F,, are the same as in Lemma A.1 with j and 6 replaced by

j(sma Omy Sm+13 0) = T(Serl, Sm, am) + Vmng*(SmH, a; 0) - Q*(Sma am; 9)7
(A11)
5= B [(suur1s S ) + 7 maxQ* (s11,0:6) = Q* (51101 )1,
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Proof
The difference between the two algorithms is

E[F] ~ ElFn] = E [E [§(Voi' = Vo))| smsam] |
where

Jj= j(Sm, Qmy Sm4-15 9)7 Voj' = VQj(Sm, Ay Slm—I—l; 9)7 VHj = VOj(Sma Ams Sm + ASerl; 9)

and
VQJ(Sm,CLm, Sm+1; 9) = V@ maXQ*(5m+1, a/; 9) _ VOQ*(Sm, Um; 9)
a'e

Since we have assumed that f(s;0) = maxgyep Q*(s,a;60) is continuous in s € S and that
Osf(s;0),0%f(s;0) exist almost surely, we can write Vg as

v@j(smy Ams Sm+1; 0) = v&f(sm—‘rl; 0) - VQQ*(SWH Am; 9)
Similarly to the proof of Lemma A.1, we use a Taylor expansion:

v@j, :'YVf(Sm) - VQW(Sma am) +'785vf(5m),u(5ma am) €
fo fi
+905V f(s)0 Zy/€ + 702V f (sm)a” Zime + ole),
— —
f2 g}
V@j :fO + 'YOSVf(Sm),U(Sma aerl) €+ ]L12Zm+1\/E + fBZs—H_le + 0(6)-
h

(A.12)

Using the expressions from (A.12) and the independence between Z/,, Z,,,+1 and j, fo, f3, we see
that

E{Fin) — E[F] =E [E[j(f1 = fi)elsms am]| + o(e)
=YE[E[jOsVo [ (sm) (1(Sms am+1) — (1(Sm, am)) €[ Sm, am]] + o(€).

Let C1(sm;0) = |0sVof(sm)| and by the assumption that |(sp,, Gm+t1) — 1(Sm,y am)| < Ca(Sm),
one has

E[Ey] — E[Fy] < 7E [E(lj][sm, am]C1(sm; 8)Ca(sm)e] + o(e) = E[6C (sn; 6)e] + o(e),

for C'(sy,; 0) defined in the Lemma, which completes the proof for the first part of the lemma.
We next bound the difference of the variance. We have

V[F] = VIF] = E[2(Voj — Vos') (Vo] + Voi')] ~ (ELi(Va] — Voi VEL(Vo] + Voi')])
Substituting the Taylor expansions of Vj’, Vg7 from (A.12), we obtain

3 =1(8m, Sm, am) +7f(5m) = Q" ($m, am) + (057 (sm) + 705 f (sm)) j1 €

-~

g0 91
+ (0s7(8m) + 705 f (8m)) 0 Zm/e + (agr(sm) + Vagf(sm)) 0% Zyme + ole).

92 g3

(A.13)
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Following steps similar to the proof of Lemma A.1, we arrive at
V[Fm] — V[Fn] = O(e),

provided that g, fo, fl — f1 are all bounded. The boundedness of these quantities is precisely the
second set of assumptions in the lemma, so we are done.

[ |
B. Dynamics with diffusion depending on o (s, a,,)
In this section, we will show that if the diffusion of the dynamics depends on o (s, ), i.€.,
Sm+1 = Sm +N(Sm7am)€+0(8m’am)\/gzma (B.1)

the theoretical results in Lemma A.1 and A.2 still hold as long as the diffusion term o (s, an,) is
bounded in the action space.

Lemma B.1 With the same conditions as in Lemma A.l, the difference between the gradients of
the US and BFF algorithms for Q-evaluation is

E[F3n] — E[F] =E [6(sm, ams: 0)C(sms 0)e] + o(€) = O(E[5¢]),
where
C(Sm§ 0) =7 (aSanﬂ(a\sm) [VQQTr(va a; 0)}) CQ(Sm) + (852Ea~7r(a|sm) [VOQﬂ(Sm’ a; 9)]) C4(Sm)7

and Ca(sp,), C4(sm) are upper bounds for the variation of the drift term and diffusion term in the
action space, i.e., |11(Sm, Gmt1) = 1(Sms am)| < Ca(sm), 102 (8my @mr1) =02 (Sm, am)| < Ca(sm).

In addition, if |0(s,a) — 02(s,a’)| < C almost surely for s € S,a,a’ € A, then the difference
between the variances can also be bounded by

V[E] — V[Fn]| = O(e),

Lemma B.2 With the same conditions as in Lemma A.2, the difference between the gradients in
US and BFF for Q-control is

E[Fyn] — E[Fpn] =E [0(5m, am)C(5m; 0)€] + o(€) = O(E[d¢]),
where
C(3m§ 0) = ’Vyasvef(SmQ 0)|02(5m) + ’Y‘aSQVGf(SWﬁ 0)’C4<3m)7

and Co(spm,), Ca(sm) are upper bounds for the variation of the drift and the diffusion in action
space, i.e., |(Smy am+1)] — p(Smyam)| < C2(sm), |0 (Smy am+1)] — 0(Smy am)| < Ca(Sm)-
In addition, if |0 (s, a) — o(s,a’)| < C almost surely for s € S,a,a’ € A, then
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We will provide the proof for Lemma B.1. We omit the proof of Lemma B.2 since they are
similar.

Proof [Lemma B.1]
The dynamics (2) gives

Aspy, = N(Sma am)G + U(Sm; am)Zm\/&
ASm—H = ,U(Sma am-‘,—l)6 + U(5m7 am—&-l)Zm—&—l\ﬁ + 850(3ma am+1)0(3m7 a’rn)Z’ran—l—l6 + 0(€)~

Replacing As,, in (A.2) and As,,+1 in (A.4), Vyj’ and Vyj become

Voj =fo+ frie++ (’y/(?s(VQﬂ(Sm, a)m(al, Sm))da> 0 ($ms am) Z /€

15
n (7 / a?(VQ”<sm7a>w<a|sm>>da> 0 (5 am)(Z1)e + ().
14
Voj =fo+ fre+ (7/as(VQW(vaa)W(aLSm))da) 0 (Sm, Gm+1) Zmt1V/'e

f2
47 [ TQ (s @) (el d) (s 11) Z 16

fa
+ (’y/as(VQ”(sm, a)m(al, sm))da> 050 (8m, Am41)0 (Sms Am) Zi Zmy1€ + 0(€).

fa
(B.2)
Similar to (A.6) - (A.7), we have

E[Fn] = E[E[i(VS' + (V] = V) |5m, am]]
=E[E[j V' [sm, @] +E |E 5 ((Fi = f)e + (FoZinir = BZWVE+ (B2 1 = F5(Z0))e
A faZ! Zmre + 0(6)) |51, amH
=E[Fu] +E [E |j ((fi = e+ (fs = fe+0(0)) [sm,am|
where the last equality is because of the independence between fo and Z,, 41, f} and Z/,, etc. Let
Ci(sm) = |[ 0s(VQ™ (s, a)(alsm))dal, Ca(sm) = | [ O2(VQ (s, a)7(alsm))dal. By the

assumption that |p(Sp, Gm+1) — 1(Sm, am)| < Ca(sm), |02(sm, Amt1) — 02(sm, am)| < Ca(sm),
one has

|E[Fn] — E[Fm]| < 4E[8 (C1(5m)Ca(3m) + Cs(sm)Calsm)) €] + o(e),

which completes the proof for the first part of the lemma.
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We now bound the difference of the variance. Plugging the new approximation (B.2) into (A.9)
yields

Voi —Vei =(fi — f1)e + (f2Zms1 — foZi)Ve+ (f3225 00 — F212)e + faZl, Zmire + o(e)
Voj + Vei =2fo + (f1 + f1)e + (foZmi1 + [LZh)Ve+ (F3Z2 1 + FZ2)e + faZy Zmsre + o(e).
It follows that

(Voj)* — (Voi")? = (Voj — Vei')(Vej + Voi')

=2fo(f1 — f1)e + 2fo(foZms1 — foZb)Ve+ 2f0(F3Z2 1 — FLZ2)e + 2fo faZly Zmire
+(f3Z2 1 — (£5)%(Z1,)P)e + o(e).

The approximation of j is similar to (A.10):

7= g0+ gi€ + ghZme + ghZ2 e + o(e),

7= 98 + (92)* Z3,e + 290(91€ + Gy Zm/€ + g3 Zp€) + 0(e),
where g5, g5 are the same as go, g3 except o depends on Sy, a,,. Plugging these approximations
into (A.8) yields
I=E |7*((Ve))* = (Vei")?)
=Elgs(2fo(fr — fr)e + 2fo(foZmir — 520 )Ve + 2fo(fs 221 — F3Zm)e + 2fofaZy, Zm 1€
+ (32710 — (15)*(Z)7)e) + 29095 ZmN/€(2fo( foZmi1 — F321,)V/E)] + ole)
(22 fo(fr — F1)e +2f0(fs — F)e + (F2 — (f)D)e)] + ole)
and
IT =E[go((f1 — fr1)e + (fz — f3))elE[2g0 fo] + o(e)

Combining I and 11, we see that
V[Fm)] _V[Fm] = |I_II|
<2Cov( fogo, 9o(f1 = 1) + gofs — f3))e + Elgg (f3 — (f5)*))e + o(€) < O(e),

which completes the proof for the second part of the lemma. |

C. Extension and proof of Theorem 4

For the convenience of writing, we let 5 = % be the coefficient of the exponential power of p™°,

and we omit the index m of F,,, I},.
The proof of Theorem 4 (or equivalently, Theorem C.5) is based on Corollary C.2 and Lemma
C.4. Note that although Theorem 4 can only be proved for compact set €2, Corollary C.2 and Lemma
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C.4 holds for both compact set and the whole domain € R% . However, for the case of the whole
domain, one requires an additional assumption for the loss function E[J 2], that is,

1) lim E[6%] > o0 and / e B0%] < oo,

|0] =00

2)  lim (|v1[«:2[52]| — AE[(V}) = +00.

|0]—o0

(C.1)

The above two assumtions can be removed if we only consider § € Q C R% is in a compact set.
These assumptions ensure that the probability measure p> satisfies the Poincare inequality

/ 2p>do < A(B) / (Vf)2p>d, v / fdo =0, (C.2)

where \(/3) is the Poincare constant depending on (3. Typically A(3) becomes smaller as 3 becomes
larger.

The following two lemmas hold for any function §()? on a compact domain § €  C R%, or
on an unbounded domain § € R% if limyg) 0 5(0)? — +oo.

Lemma C.1 Let f(0) = E[6?] and define f. = min f(0). Suppose that f has only finitely many
discrete minimizers, and that all of the minima are strict. Then there exists a constant C (depending
on the Hessian V2 f of f at each of the minimizers) such that for (3 large enough,

/f d9<C<f*5 )+c<5—d“2>

where dy is the dimension of 0.

Proof See Appendix C.1. |

Corollary C.2 Suppose that f(0) has non-strict minima, i.e. minima at which the Hessian is not
strictly positive definite. Define dg, as

dp, = min{number of positive eigenvalues of V£ (6.) : 0, = argmin f(6)}. (C.3)

Then there exists a constant C' (depending on the Hessian N2 f of f at each of the minimizers) such

that o s
/f 0dp < C (ﬂﬁ) +C (5 5 > . (C.4)

Proof The proof of the corollary is similar to the proof of Lemma C.1, so we omit it here. |

Remark C.3 Note that the bound (C.4) depends on dy,, not the parameter dimension dg. When
the dimension of the parameter space is high (i.e. when dy is large), it is more likely that there are
many minima which are flat in some direction (i.e. V2 2/ (8,) is a positive semi-definite matrix at
these minima). In the above, dy, denotes the smallest number of positive eigenvalues of Ve f(6y)

among all minima. As a result, when the dimension dg becomes larger, the upper bound 3~ = does
not necessarily become smaller.
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Furthermore, if f. = 0 (i.e. there exists 0, such that Q™ (s, a; 0..) exactly satisfies the Bellman

equation) then
d9*+2
/f(&)e‘ﬁf(e)de <C (5— > ) .

Lemma C.4 The solution to (16) (i.e. the approximate p.d.f. of US)
_ 200)2
/E[(52] (p(tv 9)00 p ) de < Coe—b(ﬂ)t’
p

where Cy is a constant depending on the initial data (p(0,0) — p>), b(B) = % with Poincare

constant \() and C = sup |Vé(a, s)|. In addition,

a,s

2 d
/ IE[(SQ]p](;;Q)dG < Coe @ 4 0 (E[éf}ﬁ_ 3*) ,

where \(f3) is the Poincare constant defined in (C.2), E[62] = ming E[6%], and dy, is defined in
(C.3) for f = E[62].

Proof See Appendix C.2. |
Based on Corollary C.2 and Lemma C.4, we are now ready to prove the following theorem.

Theorem C.5 The difference d between the p.d.f.s of the US and BFF algorithms is bounded by

) 1—e 9 (C5)

de*
4

| <lp©) = p=I1. e+ 0 40 (emwzw

where \(f3) is the Poincare constant defined in (C.2), b((3) is the same constant as in Lemma C.4,
E[62] = ming E[62], and dy, is defined in (C.3) for f = E[6?].

Proof By subtracting (17) from (16), the difference of the p.d.f. d= p — p satisfies

Bd =V - [E[F]CH gv : (V[F]dﬂ +V. [(E[F] - E[F]) P+ gv : ((V[F] - V[F]) p)} .
(C.6)

Observe that

A

(E[F] — E[F])d + (E[F] - E[F])p
E[50(e)]d + E[50(e)]p.
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Multiplying (C.6) by p%;, then integrating with respect to 6, we have
2 d d .
= _/ PPV (pcx)) -V (poo> d9—/ (E[éO(e)}cH— O(ne)

- [ @0y + 0w ph) - v (,,i) "

1 11
117

1
=0,
5Ot

d vd

)-v(p‘i)w

We proceed by bounding the terms I — I 11 separately. First, note that

) et ) e

where we have used the Poincare inequality (C.2). For the second term, we have

IT <O(e /‘d’ ( ) df + O(en /i (p ) \Y <pi)
2 1 i\l i\I

/() (%))
O(en) / ’ﬁE[éVé]cZ de (Cauchy-Schwartz Inequality)

~ 2
2 1 d
+/ v() p>®dh + O(*n*5?)

Since n?4? = O(1), O(e?n%?%) = O(€?). This yields

+(3+ow) | [V (pi) s,

For the last term, by the Cauchy-Schwarz inequality,

<o [ = [6” i+ / | ( ) peao + 0fen) [ ‘v(})ﬁopw)‘v(;o)
s onc e [ (2) o o ()
o) [Evori a1 [ v(pi) P

s o s [o () e [ ()] o

p>Xdf + —
1127

a?

’
*

df (boundedness ofEd)

<O(e) *°do

d

p>df + O(en) /

<O(e)

peds+ O |

IT <O(e) ||d

de

>°do

16
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Combining the above three terms, we have

<116 _O(m)>/ v (IiO)rpwcze— (;—O(e)>
+O(62)/E[521p 40+ O(e /‘ ( )

As long as €, ) are small enough, and using the fact that V (z%z) = 0, we have

(62)/ [52] d9+0 /‘ (p P )' podo.  (CT)

Setting d = p—p™°, it is easy to see that d also satisfies (16). Multiplying (16) by p% and integrating

with respect to 6, we have
2 2
1 d
Xdh < —= [ [V | —
P=m / ‘ (p“’)

1oy d
gorlalt = [ v (%)

Adding equations (C.7) and (C.8) gives

sor (] + vaiz) <=5 (af + 102 - 3 vz + 00e [ 167 Zas
oot (- vz ety o

Applying Lemma C.4, we have

A2
fat d

*

p>do.

1
—0,
50t

12
d

A
pdo — 3 Ild||? . (C.8)

Q]

o e ([} + haiz) | soreretee v o (i

dg A
2 > ezt

We then integrate the above inequality on both sides to obtain

([l + pacoe)

<e (o) + hao)z) + o + e 2+ 0 e

- 3) (1—e 21,
% ) (1—e 21

as desired. ]

Since d(0) = 0, the above inequality is equivalent to

o <e 12 + oty + 0 e
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C.1. PROOF OF LEMMA C.1

Proof For the unbounded domain, since limg|_, f(¢)) = +oc and limy_,, fe Bf = 0, there
always exists a compact domain Q = {|0| < M} such that

/Rde\Q £(0)e 5 Odp < 0 (f(e*)ﬁ ) +o (s "”)

We can divide € into {€2;}¥_, such there is only one minimizer 6, in each €;, or else f(£2;) = 0.
For this latter case, it is trivial to see that f f(0)e PO = 0.
For the former case, notice that the integral can be separated into two parts,

f( )e B0 gp = / F(0)e 3O qp 4 / F(0)e PO qp.
10—0.|<e Q1\|0—0.|<e
For any ¢ > 0, we can choose ( large enough that the second integral will be smaller than

d
O(B_OTH). Since 6, is a minimizer, V f(0,) = 0 and we have

f(0)e =819 qp
951

- /w e (£(6.) + (6~ 0.7V £(0.)(0 — 0.) + O — 0.]"))

exp (=B1(0.) = B0 — 0.)TV2F(0.)(6 ~ 0.) — BO(0 — 0.*)) db + O(
1) exp(-510) [ e (~B(0 - 0TV 1(0)(6 - 0.)) ds

10—0. <

+ exp(—ﬁf(e*)) / (9 - 0*)Tv2f(9*)(0 - 0*) exp <_B(9 - 0*)Tv2f(9*)(0 - 0*)) do

10—6. <

+ (higher order terms in 3).
(C.9)
We will prove later the higher order terms are all smaller than O(3 e ). Without loss of general-
ity, we assume V2 f(6,) is a diagonal matrix. (If it is not, we can simply perform a change of basis.)
Since 6, is a local minimum, 8&_ f(6.) > 0. Then after making the change of variables § = 6 — 6,
we have

f(0)e PO qp
971

:f(H*)exp(—ﬁf(G*))/Q Hexp (—[j‘agif(e*)@?) dfy - - - df,

+ exp(—ﬂf(g*))/ﬂ (Z 6glf 02) Hexp ( [382 )é?) doy - - - dédg +0(B8~

Since

9;1)'
(C.10)

[ exv (~50%,£(6.)62) db, = Ver (893 £(6.)) 1,

R

[ 8 exv (505, 7(6.)5%) dos = VEr(535,7(6.))*"
R
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we have,

/ Hexp( BO3, (6.)82) dby - - - By, = (2m) 23~/ T (63 £(6.) "

—o(s%);

/ 92Hexp( BOR, F(0.)82) db - dB, = (2230271 (33 £(0.)) " T (63 £ (6.)) /2
J

Plugging the above estimate back to (C.10) and recalling that 6, is the only minimizer in 21, we
have

FO)e 1 Odp <0 (f(6.)8~ %) +0 (5% ) . (C.11)

Q1

Now we will estimate the higher order terms in (C.9),

(higher order terms in (3)

—1(6.)exp(-51(6.)) |

o (—ﬁéTv%f(e*)é) (6—5005'?’) - 1) do

<1 <eBed 1

GTV2£(0.)8 exp (—ﬂéTw f(9*)5) (e*ﬁoﬂém - 1) df

+exp(-65(0.) [

0]<e
<e? maxi{agif(H*)}
+exp(=B1(0.)) | OUA)exp (—p8T V2 (6.)8 — BO(6])) db
‘elga\?,:g—/
se <1

0 (vol({]0| <)) ((e5€3—1) n 53)) .

From the above estimates, we see that as long as ¢ is small enough, the higher order terms are
0*+2 . . e . . .
smaller than O (6 - ) Since we assumed that the number of discrete minimizers is finite, this

completes the proof.
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C.2. PROOF OF LEMMA C.4

Proof Setting d = p — p™, it is easy to see that d also satisfies (16). Multiplying (16) by E[6?] p%
and then integrating with respect to 6, we have

g el
XN
e () - ()
[ (v (2 )) s+ [ [ () it

(0d)” +C'/d0d,u(s a)

dfdu(s,a)

A/

<_ )\/E[éz];loodH 4Ol

Using the fact that 19, |d||? < —X||d]||?, we have

sor | [ Lo+ (S 1) wae] <o ([ o) S0+ a2

A2 d? C
< E[6%]—d6 + 1) |d)*].
<=y | [ (S ) a2
By Grownwall’s inequality,

[ Lo (S ) jawie] < @5 [ [em S+ (5 +1) o]

/E[(s?]d(ifda <e & [/E[éQ]d(?jdG n (f + 1) Hd(O)HZ} .

p p

which completes the first part of the proof.
While the second part of the Lemma is obtained by inserting p? = (d + p™)? < 2d? + 2(p>°)?
into the following equation,

dg +2

/IE[52] ;) de<2/E[52]d;fjd9+2/E[52] df —Coe— St 085,

where Lemma C.1 is applied to the last equality.

D. Difference between SC and US
The SC parameter update is given by

em—l—l = em - T]Fmv Fm = j(sma Am, Sm+1; am)VQj(Sm, Am, Sm+1; Hm)
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The definition of j depends on whether we are doing ()-evaluation or (Q-control:

Q-evaluation:  j(Sm, G, Sm+1;0m) =7 (Sm+1, Sm, Gm) +7/Q“(sm+1,a; O)m(a|sm—1)da
— Q" (Sm; am; 0);
Q-control:  j(Smy Gy Sm+150m) =7 (Sm+1s Sm, m) + 7 max Q" (Sm+1,a;0) — Q™ (S, am; 0).
The expectation of the SC gradient [, at each step is
E[F,,] = E[E[jVej|sm = s, am = d]], (D.1)

which is the gradient of the following loss function

J(6) = %E [E [5%] $m = s, am = a]] . (D.2)

Note that this is not the same as the desired objective function J(6) = JE[(E[j|sy, am])?]-

D.1. DIFFERENCE AT EACH STEP

In Lemmas D.1 and D.2, we prove that the difference between the gradients used in US and SC is
O(e). The constants hidden by the big-O depend on the square of the diffusion 0. In practice, this
means that SC will not converge to a good approximation for Q7.

Lemma D.1 Suppose that Q™ (s, a; 0) is Lipschitz continuous in the € R% and 0,Q™ (s, a; 0),
0sVQ™ (s,a;0), 0sr(s,s,a) are continuous in the state space, then the difference between the
gradients of the US and BFF algorithms for Q-evaluation is

E[Fyn] — E[Fn] =E [C(sm, am)e + o(e)] = O(e),
where

C(va am) = VJZaSEaNﬂ(aBm) [VGQW(Sma a)] (8S’T(sm7 Sm;s am) + ’YasEaNN(cdsm) [Q(Sm7 a)]) = O(G),
(D.3)

In addition, if |Eq[Q™ (s, a;0)] — Q(s, a;0)|, [Eo[VeQ™ (s, a;0)] — VeQ(s,a;0)],|r(s,s,a)| < C
almost surely inV's € S,a € A, € RY, then the difference between the variances is bounded by

[VIEw] = VIF]| < 0(),
where F , F, o are defined in (D.1) (A.1) and (2) respectively.
Proof The proof is similar to the proof of Lemma A.1. Subtracting (A.1) from (D.1) yields
E [Fm - Fm] = E[E[j (Vj — E[V|5m, am]) [$m, am]] (D.4)
By the approximation of Vj in (A.3), we have
Vi = EVilsm, am] =faZmV/e + f3(Z3, = 1)e + o(e).
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Combining this with the approximation of j in (A.10) gives

E [Fm - Fm} = Elga fa€] + o(e)

—E [337" / 3S(VQ”7T)da] o2 + +°E [ / 0.(Q"m)da / 8S(VQ”7r)da] o2 + o(e)

=v0%eR [85anﬂ(a‘sm)[V9Q7r(sm, a)] (aslr(sm, S @m) + YO0sEqrr(afsm) [Q(Sm; a)])] + o(e)
=0(e),

which completes the proof for the first part of the lemma. Next, we bound the difference of the
variance. We have

[VIEw] = VIFw]| = BL2((V5)? — (V5] - (BV)2 - E[VST)
=E[E[ (V) = E[(V5)* s, am]]) [sm ]

Y (D.5)
— (E[E[jV]|$m: am]]* — E[E[j|$m, am]E[V]|$m, am]]?) -
IT
Using the approximations for V3, 7 in (A.3), (A.10), we have
E[(V)?|$m, am] — (V3)?
®
=E[f& + 2fof2ZmV/e + 2fofie + (2fof3 + [3) Z2 € + 0(€)|5m, am)
— (3 + 2fofoZm e + 2fofre + (2fofs + 1) Z2 e + o(e))
= — 2fof2ZmvV/e+ (2fofs + f3)(1 = Z7,)e + o(e);
EUZCMSmJGm]
=E (g3 + 29092Zm /€ + 2g0g1€ + (29093 + 93) Z € + 0(€)) D|$mm, ]
= — 44092 fofae + o(e€).
It follows that
I = —E[E[52Q)|Sm, am]] = 4€E[goga fofa] + ole). (D.6)

Furthermore, we have

E[j|8m, am] =go+ (gl + .93)6 + O(E)’
————
@
E[Vj|8m;am] = fo+ (f1 + f3)e + o(e),
—_——
®
E(@QB)? = (E[gofo] + E[(g0(f1 + f3) + folg1 + g3))e] + o(e€))?
=Elg0/f0]* + 2E[go fo]El(g0(f1 + f3) + fo(g1 + g3))]e + o(e),
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and
E[jVi|sm; am]
@

=E[fogo + fogie + fog2Zm e + fogsZime + frgoe + f290ZmVe + fogaZ} e

+ QOfSZrznf‘smv am] + o(e)
=fogo + (fo(g1 + g3) + go(f1 + f3))e + fagae + o(e)

E[@)? = (E[fogo] + El(folgr + g3) + go(f1 + f3))le + E[ fagale + o(c))’
=E[fog0]” + 2E[fogo]E[(fo(g1 + g3) + g0(f1 + f3))]e + 2E[fogo]E[f2g2)e + o(e).

Combining these shows that

11 = E[@)]* - E[QQ)* = 2E[fogo]E[f2g2]€ + o(e). (D.7)
Finally, substituting (D.6) and (D.7) into (D.5) gives,

V[En] - V[Fm]‘ = 2¢ (2E[fogo f292] — E[fog0]E[f292]) + o(€) = O(e). (D.8)

provided that go, fo, g2, fo are all bounded. The boundedness of these quantities is precisely the
second set of assumptions in the lemma, so we are done.
|

Lemma D.2 Ler f(s;0) = max Q*(s,a;0), suppose that f(s;0) is Lipschitz continuous in 0 €
a’'e
R and 0, f(s;0),0sVef(s;0) is continuous, then the difference between the gradients in US and
BFF for Q-control is
E[F) — E[F) =E [C(Sm, am)e + 0(€)] = O(e),

where

C(Sma am) = ”Ygzasvéf(sm) (as’r(sma Sm, a'm) + '76Sf(sm)) .

In addition, if |f(s;0) — Q*(s,a;0)|,|Vaf(s;0) — VeQ*(s,a;0)|,|r(s,s,a)] < C almost surely
ins€S,ach, 0ecR¥ then

V[Fn] — V[Fn]| < O(e).

From the above lemmas, we see that the magnitude of the difference is related to 9sQ*, 0sVgQ™,
and Jyr. We can control the first two terms through the approximating function space. This implies
that if the reward r(s’, s,a) changes slowly w.r.t. s, then the sample-cloning algorithm for Q-
control performs better.

Proof The proof of this Lemma is almost the same as the one of Lemma D.1, except that f;, g; are
the ones defined in the proof of Lemma A.2, that is, in (A.12), (A.13). Therefore, we omit the proof
here. |
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D.2. DIFFERENCE FOR THE WHOLE PROCESS

The p.d.f. of the parameters during the SC algorithm satisfies the equation
o =V - [EF)p+ 5V - (VIF]p)] . (D.9)
Therefore, the difference of the p.d.f.s d= p — p satisfies

aﬂ:v.@wﬁ+gv(wﬂ@}+v[@mq—mmﬁﬂgv-«wﬂ—va@]

Using this observation, we can prove the following theorem.

Theorem D.3 The difference d of the p.d.f. between US and SC satisfies,

)| e (o) = I, + O () V1 — e,

Unlike the evolution of d in Theorem C.5, the difference between SC and US will eventually decay
dg

to O(e) instead of O(e/E[62]n~ % ). As a result, the error of SC is much larger than that of BFF.

12 12

d|| is similar to the analysis of HdH before applying Lemma C.4. There-
* *

: =4 (62)/d0+0 /‘( )
<= 2] + o ar + o /‘ < )

where d = p — p*°. Combining the above equation with (C.8) and taking d = p — p®°, we have

2o ( i i) <7 (HdH2 - Hd!i) +0(e?)

o o () <

Integrating the above inequality on both sides leads to

(H‘Z@Hj * ”d<t>llf) <e 3! (Hd@Hi + ud<o>ui) L0(2) (1 -3,

fore, similar to (C.7), we have

2
p>do

1 12
=0 ||d
50t

p>do,

Since d(0) = 0, the above inequality is equivalent to,

d)|” <em3 a2 +0 (&) (1 e,
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E. The PD algorithm

The primal dual method transfer the minimization problem to a mimimax problem, that is,
mein mo?x E(sm,am) [5(37717 Am; H)y(smv am; w) - iy(smy am; w)Q]

Therefore SGD applied to the above minimax problem does not have the double sampling problem
anymore. The algorithm updates the parameters in the following way,

Wkt1 = Wk + B(0(Sm, am; Ok)) Vi (Sm, am; Wi) — Y(Sm, am; Wi) Vol (Sms Gm; Wk );
9k+1 = ek - U(Vefs(sm, Am; 9k)y(sm, Amys wk-{—l))-

We usually set y(s, a; w) to be the same model as Q(s, a; 6).

F. Additional algorithm descriptions

The single step ()-control algorithm for the tabular case is given by Algorithm 5.

Algorithm 5 BFF for Q-control (tabular case)
Require: 7: Learning rate
Require: Q* € RISIXIAl: matrix of Q*(s, a) values
Require: (S, am, Sm+1) = 7(Sm+t1, Sm, @m) + vy maxe Q* (Sm1,a) — Q*(Sm, am)
Require: sq: Initial state
1: Sample ag with an e-greedy policy from Q*(so; 6p)

2: Transition to state s; from state sg and action ag

3:m<+0

4: while Q* not converged do

5:  Sample a,,+1 with an e-greedy policy from Q*(Sy,+1;60m)
6:  Transition to state s,,42 from state s,,1 and action a,,+1
7 S;n—i-l < Sm + (Smt2 — Smt1)

8:  Fp, « 0c RBIXA

9:  Fi(Smsam) < —J(Sm, Qmy Smt1)
100 ay, ., + argmax, Q*(s],.,a)
11: Fm(S;nJrl,a:nJrl) <_j(smaa7n7377’b-‘r1)
122 Q* + Q* —nF,

13: m<+< m+1
14: end while
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