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Abstract
In stochastic optimization problems using noisy zeroth-order (ZO) oracles only, the randomized
counterpart of Kiefer-Wolfowitz-type method is widely used to estimate the gradient. Existing al-
gorithms generate the randomized perturbation from a zero-mean unit-covariance distribution. In
contrast, this work considers the generalization where the perturbations may have non-isotropic
covariance matrix constructed from the ZO queries. We propose to feed the Hessian-inverse ap-
proximation into the covariance of the random perturbation, so it is dubbed as Hessian-Aided Ran-
dom Perturbation (HARP). HARP collects two or more (depending on the specific estimator form)
zeroth-order queries per iteration to form approximations for both the gradient and the Hessian.
We show the almost surely convergence and derive the convergence rate for HARP under stan-
dard assumptions. We demonstrate, with theoretical guarantees and numerical experiments, that
HARP is less sensitive to ill-conditioning and more query-efficient than other gradient approxima-
tion schemes with isotropic-covariance random perturbation. 1

Keywords: stochastic optimization, simultaneous perturbation, gradient-free methods, Hessian
approximation

1. Introduction

Stochastic approximation (SA) is a class of recursive procedures to locate roots of equations in
the presence of noisy measurements, see Spall (2005, Chaps. 3–8) for details. When only noisy
zeroth-order (ZO) oracle is available (see Larson et al. (2019) for a comprehensive review), it is
common practice to generate deterministic perturbation (Kiefer and Wolfowitz, 1952; Blum, 1954)
or random perturbation (Ermol’ev, 1969; Katkovnik and OY, 1972; Spall, 1992) in finding extrema.
SA methods that utilize ZO oracle only have regained their popularity in evolutionary strategy (as
an alternative to reinforcement learning) (Salimans et al., 2017; Mania et al., 2018) and adversar-
ial image attack (Kurakin et al., 2016; Carlini and Wagner, 2017). To the best of our knowledge,
majorities of the existing random-perturbation-based methods generate the perturbation from a dis-
tribution with a mean of zero and a covariance of identity of scalar matrix, which enforce that every
component of the perturbation vector is of the same magnitude on average and is independent with
all other components. The resulting gradient estimate may not be robust to scaling and correlation
of different parameters, and the non-robust estimation may further slow down the optimization pro-
cess. Therefore, this work establishes the theoretical guarantee for the SA procedure using random
perturbation with non-identity covariance. Specifically, we feed the Hessian inverse approximation
into the perturbation covariance, so the newly-proposed method is dubbed as Hessian-aided random

1. Part of the work was presented at the 12th International Workshop—a venue that does not have publication proceed-
ings—on “Optimization for Machine Learning” as a part of the NeurIPS 2020 conference.
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perturbation (HARP). HARP exhibits faster and more stable convergence performance other SA
algorithms in ill-conditioned problems, for which we provide both the theoretical analysis and the
numerical illustration (via universal image attack).

We now describe the problem setting. Let θ ∈ Rd concatenate all the adjustable model param-
eters. Let the system stochasticity be represented by the random variableω ∈ Ω, whose underlying
distribution P is generally unknown. Consider finding the minimizer for a twice-differentiable
bounded-from-below loss function L(·) : Rd 7→ R:

θ∗ ≡ arg min
θ∈Rd

L(θ) , where L(θ) ≡ Eω∼P [`(θ,ω)] . (1)

In (1), the loss function L(·) : Rd 7→ R measures the underlying system performance, and the ran-
dom variable `(·, ·) : Rd×Ω 7→ R evaluated at (θ,ω) represents a noisy observation of L(θ) when
one realization ofω ∼ P is drawn from Ω. Besides, the evaluation of the noisy ZO queries `(θ,ω)
is generally expensive. Under this setting, we implement the generic stochastic approximation (SA)
algorithm:

θ̂k+1 = θ̂k − akĝk(θ̂k) , k ≥ 1 , (2)

where θ̂k denotes the recursive estimate at the kth iteration, ĝk(θ̂k) represents the estimate for
the gradient g(θ̂k), and ak > 0 is the stepsize. Let us focus on the following gradient estimation
scheme using two ZO queries per iteration:

ĝk(θ̂k) =
`(θ̂k + ck∆k,ω

+
k )− `(θ̂k − ck∆k,ω

−
k )

2ck
mk(∆k) , (3)

where ck represents the differencing magnitude, the d-dimensional random perturbation vectors ∆k

is assumed to be drawn from a distribution with 0-mean and Σ−1
k -covariance, and the mapping

mk(·) : Rd 7→ Rd is odd. The details will be discussed momentarily.
As for the statistical structure betweenω+

k andω−k , two classical scenarios are considered. The
first one where ω+

k and ω−k are independent and identically distributed will be termed as IID. The
antithesis of IID, whereω+

k = ω−k , will be referred to as “common random number” (CRN), and it
typically arises in simulation-based optimization.

1.1. Prior Work on Gradient Estimation Using ZO Queries

The generic form for gradient estimate in (3) subsumes random direction stochastic approxima-
tion (RDSA) (Ermol’ev, 1969; Ermoliev, 1983) with ∆k being uniformly distributed on the unit
spherical surface and mk(∆k) = d∆k, smoothed functional stochastic approximation (SFSA)
(Katkovnik and OY, 1972) with ∆k being standard multivariate normally distributed and mk(∆k) =
∆k, simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992) with each compo-
nent of ∆k being Rademacher distributed and mk(∆k) = ∆k, and many other variants. Overall,
majorities of SA schemes enforce the covariance matrix Σ−1

k � 0 for the random perturbation ∆k

to be the identity matrix or a scalar matrix. Although the randomized scheme (3) exists for a long
time and demonstrates numerical advantages over FDSA (Kiefer and Wolfowitz, 1952), theoreti-
cal foundation regarding the optimal choices of ∆k is lacking and extra caution is required in its
implementation.

We propose a novel algorithm dubbed as Hessian-aided random perturbation (HARP). The
choice of feeding Hessian approximation into Σk is motivated by mitigating the shortcomings of
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Σk = I in Section 2.1, analyzed theoretically through proving the almost surely convergence and
convergence rate in Section 4.2, and demonstrated through two numerical experiments in Section 5.
Previously, in both stochastic optimization (Spall, 2000) and deterministic optimization, the Hes-
sian approximation is applied in parameter update only. HARP adaptively changes the covariance
Σ−1

k of the perturbation ∆k using Hessian approximation, so that one can conveniently handle the
issues pertaining to the scaling and correlation of different parameters, see Section 2.1. Compared
with prior algorithms using unit-covariance random perturbation, HARP exhibits faster and more
stable convergence performance, especially in ill-conditioned problems.

Maheswaranathan et al. (2018) considers a non-isotropic Σk, yet it is built upon the assumption
that both ZO and first-order queries are accessible—which is no longer derivative-free/black-box.
Ye et al. (2018) shares some similarities with us in terms of leveraging the Hessian estimate to
achieve faster convergence. The results therein have to be interpreted carefully: the random per-
turbation ∆k affects both the gradient and the Hessian estimates at every iteration, yet the proofs
ignore the randomness lying in the Hessian estimate.

1.2. Overview and Contribution

The remainder of this paper is organized as follows. Sect. 2 conveys the motivation behind adding
structures to the covariance matrix for the random perturbation and presents implementation details
of HARP. Sect. 4 provides theoretical justification (including the a.s. convergence and the rate
of convergence) for (2) under IID noise. Sect. 5 illustrates the numerical performance of HARP
and other ZO algorithms. Sect. 6 includes some concluding remarks and envisions some future
directions. Before proceeding, let us outline the key contributions.

• We present a general framework of gradient estimation techniques and prove its theoretical
properties (including almost surely convergence and rate of convergence). Its ZO queries
per-iteration may range from one to four based on Zhu (2021), depending on the structure of
the perturbation sequence. This framework unifies existing methods in Sect. 1.1 where the
mapping mk(·) in (3) is deterministic. This framework allows us to explore new possible
ways of constructing perturbation and design new algorithms beyond the existing ones by
allowing mk(·) to be random and measurable with respect to the information available up till
time k.

• We propose a new algorithm called “Hessian-Aided Random Perturbation” (HARP). The
choice of feeding Hessian approximation into Σk is driven by our theoretical analysis in
Section 4 and demonstrated in our numerical experiments in Section 5. Previously, in both
stochastic optimization (Spall, 2000) and deterministic optimization, the Hessian is applied in
parameter update only. HARP adaptively changes the covariance Σk of the perturbation ∆k

using Hessian approximation, so that one can conveniently handle the issues pertaining to the
scaling and correlation of different parameters, see Section 2. Theory and numerical exper-
iments show that HARP outperforms other gradient approximation schemes whose random
perturbation has an identity/scalar covariance matrix, especially for ill-conditioned problems.

2. Motivation and Pseudo-Code

Let us provide the motivation for HARP here and then present the pseudo code.
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2.1. Why Use Non-Isotropic Covariance Σ−1 for Random Perturbation ∆?

Prior work summarized Section 1.1 enforce Σk = I . Let us illustrate the potential setback while
estimating the gradient in (3) via SPSA/SFSA scheme with Σ−1 = Σ = I and m(∆) = ∆. The
RDSA algorithm where Σ is a scalar matrix can be similarly discussed.

2.1.1. DIFFERENT SCALINGS ON INDIVIDUAL DIRECTIONS

One salient feature of Σ = I is equal diagonal elements. Note that each diagonal element of
Σ−1/2 linearly impacts the absolute value of the corresponding component of ∆. Consequently,
the resulting SPSA/SFSA estimate ĝ(θ̂) will subsequently perturb every component of θ̂ in (2) by
the same magnitude on average. Naturally, feeding Hessian estimate into Σ arises from generating
gradient estimate that is robust to different scalings on each direction of the underlying loss function.

Suppose we try to minimize L(θ) = (100θ2
1+θ2

2) whose optimum is the origin. For illustration,
suppose the initial estimate θ̂ = [1, 1]T , the differencing magnitude c = 0.1, and we get to observe
noise-free loss function for the moment.

SPSA uses independent Rademacher-distributed random perturbation ∆SPSA, whose four equally-
likely possible values are [1, 1]T , [1,−1]T , [−1,−1]T , [−1, 1]T . The expectation of the gradient es-
timate E∆SPSA [ĝSPSA(θ̂)] equals the true gradient g(θ̂) = [100, 1]T now that noise-free ZO queries
are accessible. However, the Euclidean norm of its covariance matrix Var∆SPSA [ĝSPSA(θ̂)] is in the
order of 104. SFSA using ∆SFSA ∼ N (0, I) also gives an unbiased gradient estimate, but the
corresponding covariance matrix’s magnitude is twice as large as that for SPSA for this example.

HARP (algorithm details to appear) draws ∆HARP from a distribution with 0-mean and a co-
variance Σ = Ĥ(θ̂)−1, where Ĥ(θ̂) represents the estimate for the Hessian function H(θ) ≡
∇2L(θ) evaluated at θ̂. Let us defer the discussion on estimating Ĥ(·) and suppose H(·) is
perfectly recovered for the moment. Letting ∆HARP = [H(θ̂)]−1/2∆SPSA and m(∆HARP) =
H(θ̂)∆HARP is a valid choice. Note that any distributions satisfying C.2 to appear are welcomed,
as they will on average impose 10% of the change magnitude in θ2 onto that of θ1. Predictably, the
resulting estimator ĝHARP(θ̂) is unbiased too. Nonetheless, the covariance matrix of ĝHARP(θ̂) has
a Euclidean norm of 2× 102, which is smaller than 104 for SPSA/SFSA.

2.1.2. CORRELATION ACROSS DIRECTIONS

Another salient feature of Σ = I is zero off-diagonal elements. It immediately follows that the
perturbations along all the components of ∆ are independent with each other. Fortunately, feeding
Hessian estimate into Σ innately helps in generating gradient estimate that is robust to various
correlations between different components of the parameter.

Say, the loss function of interest becomes L(θ) = (100θ2
1 + θ2

2 + θ1θ2) with an extra cross-
term, and θ̂ and c stay the same. Similarly, we have unbiased gradient estimator ĝSPSA(θ̂) and
ĝHARP(θ̂). However, the covariance magnitude of the former is around 4 × 104 while the latter is
around 8× 102.

2.1.3. HARP

The aforementioned contrived example explains that we can reduce the variance of the gradient
estimator ĝ(θ̂) in (3) by also estimating Hessian matrix on the fly. The gain from the gradient-
estimation side can be further propagated to a gain from the optimization perspective. With a more
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reliable (in terms of smaller variance) gradient estimator, we can expect and prove that HARP can
reduce the variance of the parameter estimate θ̂ generated from (2).

2.2. Algorithm Development

Though 2.1.3 lays out the main motivation of HARP—reducing the variance of ĝk(θ̂k) in gradient
estimation and subsequently reducing the variance of θ̂k in stochastic optimization—there are a
few gaps need to be handled before we carry out the intuitive idea of injecting Hessian estimate into
perturbation covariance.

i) The Hessian information has to be estimated in black-box problem. Fortunately, there are
prior work on estimating Hessian using ZO oracles. The deterministic-perturbation strategy
in Fabian (1971) uses O(d2) ZO queries per iteration. The randomized-perturbation scheme
in Spall (2000) uses four ZO queries per iteration, and Bhatnagar and Prashanth (2015) uses
three ZO queries (but the Hessian estimate involves multiple contrived constants). Zhu (2021)
extends these estimators with the aid of Stein’s Identity. All the Hessian estimation Ĥ(θ̂) is
computed recursively based on the gradient estimate ĝ(θ̂) after collecting ZO queries.

To form a Fk-measurable second-order approximation, HARP is comprised of two recur-
sions, a natural form inspired by 2SPSA Spall (2000) is

Ĥk =
{
mk(∆̃k)[mk(∆k)]T + mk(∆k)[mk(∆̃k)]T

}
¯̀
k/(4ck c̃k) . (4)

In (4), ck and c̃k are the differencing magnitudes, the d-dimensional random perturbation
vectors ∆k and ∆̃k are drawn from a distribution with 0-mean and Σ−1

k -covariance, the
mapping mk(·) : Rd 7→ Rd is odd, and `k = `(θ̂k + ck∆k + c̃k∆̃k,ω

+,+
k ) − `(θ̂k +

ck∆k,ω
+
k )− `(θ̂k − ck∆k + c̃k∆̃k,ω

−,+
k ) + `(θ̂k − ck∆k,ω

+
k ).

Inspired by Zhu (2021) (5) provides another estimator when ∆k is drawn from multivariate
standard normal distribution and mk(·) is an identity mapping. For succinctness, write the
noisy ZO queries `±k ≡ `(θ̂k ± c∆k,ω

±
k ) and `k ≡ `(θ̂k,ωk), and write the observation

noise ε±k ≡ `±k − L(θ̂k ± c∆k) and εk ≡ `k − L(θ̂k). Depending on the number of noisy
ZO queries per iteration, we have several possible Hessian estimates Zhu (2021):

Ĥk =


c−2
k `+

k [mk(∆k)∆T
k − I] , (5a)

c−2
k (`+

k − `k)[mk(∆k)∆T
k − I] , (5b)

(2c2
k)−1(`+

k + `−k )[mk(∆k)∆T
k − I] , (5c)

(2c2
k)−1(`+

k + `−k − 2`k)[mk(∆k)∆T
k − I] . (5d)

ii) A valid covariance matrix has to be positive-definite, i.e., Σ � 0. However, due to the
randomness ω in (1), there is no guarantee that the random matrix Ĥ(θ̂) can be a valid
covariance matrix a.s. To ensure positive-definiteness of the covariance matrix, we impose
a mapping f(·) from Rd×d to the set of symmetric and positive definite matrices at every
iteration. The straightforward form for f(·) is the Levenberg-Marquardt method: f(H) =
H + ηI for η larger than the smallest eigenvalue of the input matrix H . Another possible
mapping is f(H) = (HTH+ηI)1/2 for small η > 0 (say, 10−6), which can be implemented
in O(d2) FLOPs (Zhu et al., 2020), where the matrix square root is the unique positive-definite
square root (implementable via sqrtm in MATLAB).
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Overall, we propose to solve the stochastic optimization problem (1) using the recursion (2)
to mitigate i)–ii), where the gradient estimate ĝk(θ̂k) takes the form in (3) where the perturbation
covariance Σk is computed as below:{

Σk = fk(Hk) , (6a)

Hk+1 = Hk − wk(Hk − Ĥk) , (6b)

for k ≥ 0 with weights wk > 0. To handle i), (6b) produces estimate for H(·) through a weighted
average of the seen Hessian estimates Ĥk’s. The weights wk governs the smoothing rate for Hessian
estimate and

∑
k w

2
kc
−4
k < ∞ is crucial to ensure the convergence of (1). For H0 = I , the

early iteration of HARP resembles the randomized-perturbation strategy reviewed in Sect. 1.1.
Responding to ii), (6a) imposes a positive-definite mapping on the recursive Hessian estimate Hk.
Zhu et al. (2020, Algorithms 1–2) provides a way to achieve O(d2) FLOPs. Other forms of fk(·)
satisfying conditions in Spall (2000) also work.

The implementation procedure for HARP using estimator (5) is summarized in Algorithm 1.
This special case requires ∆k is drawn from multivariate standard normal distribution and mk(·)
is an identity mapping. For other general distribution of ∆k, additional hyper-parameter c̃k and
random perturbation ∆̃k are required per (4).

Algorithm 1 A Special Case of Hessian-Amended Random Perturbation

Input: initialization θ̂0, Ĥ0 = I , Σ0 = I , and coefficients ak, ck, wk for 0 ≤ k ≤ K.
1: set iteration index k = 0.
2: for k = 0, 1, · · ·K do

generate ∆k from a distribution with mean-0 and a covariance of Σ−1
k per (6a) and com-

pute mk(∆k) = Σk∆k.
collect two ZO queries `±k and estimate ĝk(θ̂k) via (3).
update parameter θ̂k via (2).
estimate Ĥk via (5) and update Hk via (6b). . We may collect `k is if (5d) is used.
end

Output: terminal estimate θ̂K .

2.3. Notation Convention

Matrix and vector operations Let A ∈ Rd×d be a matrix and let x ∈ Rd be a vector. ‖x‖ returns
the Euclidean norm of x, ‖x‖∞ returns the infinity norm of x, and ‖A‖ returns the spectral norm
of A. If A is real-symmetric, λmin(A) and λmax(A) return the smallest and the largest eigenvalues
of A. The binary operator ⊗ represents the Kronecker product.

Probability and SA conventions Let Fk represent the history of the process (2) until the kth
iteration:

Fk = {θ̂0, · · · , θ̂k; ∆0, · · · ,∆k−1;ω±0 , · · · ,ω
±
k−1} . (7)

Note that the precise definition of Fk may vary, depending on the estimator forms (5) and the
corresponding ZO queries. Furthermore, let Ek(·) denote the conditional expectation E[ ·| Fk].
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Miscellaneous notation IE represents the indicator function of a logical expression E. In addi-
tion to g(θ) ≡ ∇L(θ) ∈ Rd×1 and H(θ) ≡ ∇2L(θ) ∈ Rd×d, we also let ∇3L(θ) ∈ R1×d3 (as a
row vector) represent the third-order derivative of L(·) evaluated at θ.

3. Performance Metric

Before analyzing HARP listed in Algorithm 1, let us discuss the metric that evaluates the algorithm
performance.

3.1. Convergence Mode

Now that all randomness in θ̂k stemming from Ω × Ω∆, it is standard practice to measure the
algorithmic performance of the recursions (2) by showing

θ̂k converges almost surely (strongly) to θ∗ , (θ̂k
a.s.−→ θ∗) , (8)

or

θ̂k converges to θ∗ in mean-squared sense , (θ̂k
m.s.−→ θ∗) . (9)

Robbins and Monro (1951) gave conditions for (8) whereas Blum (1954) for (9)2. We will prove
(8) in Section 4.

3.2. Rate of Convergence

When either (8) or (9) is shown, finding the rate of convergence naturally follows. The asymptotic
root-mean-squared (RMS) error [E(‖θ̂k − θ∗‖)2]1/2 of the underlying estimate θ̂k is a sensible
measure of the distance between the θ̂k and θ∗ average across all sample paths. Therefore, we aim
to find the smallest upper bound τ∗ such that kτ0/2(θ̂k − θ∗) = OP (1) for all τ0 ≤ τ∗, which is
formalized as: {

maxS τ ,

s.t. random sequence (θ̂k − θ∗) is OP (k−τ/2) ,
(10)

where the hyperparameter set S includes all the controllable stepsizes, and both τ and OP (1) are
functions of S . Thanks to the algorithmic form (2), the decomposition (18), and Billingsley (2008,
Sect. 27), the constraint in (10) always takes the following form:

k
τ/2(θ̂k − θ∗)

dist.−→ N (µ,B) for finite µ,B � 0 , (11)

where dist.−→ represents “convergence in distribution,” and (τ,µ,B) are functions of S . When (11)
holds and [kτ/2(θ̂k − θ∗)] is uniformly integrable for any τ ≤ τ∗, (9) holds. The RMS error is
asymptotic to limk→∞[E(‖θ̂k − θ∗‖2)]1/2 = k−τ/2[‖µ‖2 + tr(B)].

2. Neither (8) nor (9) implies the other (Billingsley, 2013, Chap. 5). Both (8) and (9) imply convergence in probability
and convergence in distribution.
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3.2.1. FURTHER REMARKS ON RMS

To minimize the RMS, it makes more sense to perform

min
S

{
k−

τ/2
[
‖µ‖2 + tr(B)

]}
, (12)

as opposed to (10). When k is small, the finite constant [‖µ‖2 +tr(B)] that are hidden from the big-
O notation O(k−τ/2) can be dominating. For sufficiently large k, the effect of the scaling coefficients
dies down, and (12) reduces to (10). Sections 4.1–4.2 show that the solution to (10) is

τ∗ =

{
2/3 , for IID noise , (13)

1 , for CRN noise , (14)

when L(·) is is non-quadratic3 and three-times4 continuously differentiable.

3.2.2. ITERATION AND QUERY COMPLEXITY

The complexity analysis for (2) is straightforward when the RMS metric (12) is in use. To achieve

ε-accurate estimate θ̂k s.t. [E(‖θ̂k − θ∗‖2)]
1/2 ≤ ε , (15)

the the average desired number of iteration is

{[‖µ‖2+tr(B)]/ε}2/τ
∗

=

{
O(ε−3) , IID noise ,
O(ε−2) , CRN noise .

(16)

3.3. Other Forms of “Convergence” Rate

Nesterov and Spokoiny (2017, Sect. 4) uses the following notion

ε-accurate estimate θ̂k s.t. E[L(θ̂k)− L(θ∗)] ≤ ε , (17)

as opposed to (15), and (17) is popular for analyzing ZO algorithms (Ghadimi and Lan, 2013).
Let us offer a few remarks on the differences between (15) and (17). First of all, the resultant
“convergence” rate under the notion (17) require non-decaying rate. Zhu (2020, Chap. 4) points out
that θ̂k will not converge to θ∗ in standard statistical sense (either a.s. or m.s. in Subsection 3.1)
when ak 6→ 0. In fact, there is no “convergence” per se Zhu and Spall (2020), as θ̂k will be
“random-walking” within a neighborhood of θ∗ even for sufficiently large k Zhu and Spall (2018).
Second, Nesterov and Spokoiny (2017); Ghadimi and Lan (2013) and all the subsequent work on ZO
algorithms require additive CRN noise, and the corresponding analysis can not be generalized to the
general CRN noise case discussed in Section 4.2, not to mention the IID noise case in Section 4.1.
Third, the complexity result (Nesterov and Spokoiny, 2017, Eq. (59)) does not reveal the eigen-
structure of H(·) under certain smoothness assumption. On the contrary, B in (11) conveys all
the eigen-information of H(θ∗), as we shall see momentarily. It makes more sense that the RMS
should be larger for ill-conditioned problems compared with well-conditioned problems. Last but

3. For a quadratic function L(·), τ∗ = 1 for both IID and CRN noise.
4. For a function L(·) that is p-times continuously differentiable for odd p, the fastest rate for the RMS is O(k−(p−1)/2p),

which goes to O(k−1/2) as p→∞ (Fabian, 1971).
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not least, [E(‖θ̂k −θ∗‖2)]1/2 ≤ ε implies E[L(θ̂k)−L(θ∗)] ≤ ε′, but generally not the other way
around.

Overall, the notion (17) and the analysis in Nesterov and Spokoiny (2017); Ghadimi and Lan
(2013) are useful when (i) additive CRN noise scenario is possible, and (ii) the experimenter aims to
report an acceptable output within the neighborhood of θ∗ given a limited iteration/query complex-
ity. In fact, the non-decaying gain does provide better performance under a budget-limited context
(Zhu and Spall, 2020, 2016). Finally, it is advisable to use “concentration” and “concentration rate”
Kushner and Yin (2003, Chaps. 7–8).

4. Convergence Result

4.1. IID Scenario

Although all estimators in (5) has bias term decreasing at the same rate, we use (5d) which has
the smallest covariance matrix Zhu (2021). For clarity, this section analyzes ĝk in (3) (using two
ZO queries) and Ĥk in (5d) (using three ZO queries). Besides, we focus on the uncontrolled
noise scenario where ω±k ,ωk are i.i.d., frequently encountered in datastream for online learning.
O(k−1/3) in terms of root-mean-square (RMS) error [E(‖θ̂k − θ∗‖2)]1/2 is the fastest rate possible
for ak = O(k−1), ck = O(k−1/6),

∑
k w

2
kc
−4
k <∞, when L(·) is thrice continuously differentiable

and is not quadratic. The difference between Algorithm 1 and prior work in Sect. 1.1 lies in the
covariance of the resulting estimate.

As pointed out in Subsection 3.2.1, not only the rate itself but also the scaling coefficient play
a role in the algorithmic performance. This section first show the a.s. convergence of the estimate
θ̂k generated from (2) when the covariance of the perturbation sequence may be varied, and then
discuss the impact of the perturbation covariance on the finite constant [‖µ‖2 + tr(B)].

4.1.1. ORDER OF BIAS AND VARIANCE OF ĝk(θ̂k)

Let us first discuss the bias-variance trade-off in ĝk(θ̂k) for IID noise. Several assumptions are im-
posed on the underlying loss function L(·), the procedure to generate random perturbation ∆k,
especially the Fk-measurable covariance matrix Σk, and the observation noise ε±k ≡ `(θ̂k ±
ck∆k,ω

±
k )− L(θ̂k ± c∆k) and εk ≡ `(θ̂k,ωk)− L(θ̂k).

Assumption A.1 (Loss Function) Assume that there exists some K, such that for k ≥ K, L(3)(θ)
evaluated for all θ in an open neighborhood of θ̂k exists continuously and ‖L(3)(θ)‖∞ ≤ D1

almost surely (a.s.).

Assumption A.2 (Perturbation) Assume that the perturbation sequence {∆k} are independently
distributed with a mean of 0 and a covariance matrix Σ−1

k . Meanwhile, the mapping mk(·) is
an odd function. Moreover, both ∆k and mk(∆k) are independent of θ̂k. Finally, assume that

Ek[mk(∆k)∆k]
a.s.
= I and Ek[‖∆k‖6‖mk(∆k)‖2]

a.s.
≤ D2 uniformly for all k.

Assumption A.3 (Noise) Assume E[ε+
k − ε

−
k

∣∣ θ̂k,∆k]
a.s.
= 0, and E[ (ε+

k − ε
−
k )2
∣∣ θ̂k,∆k]

a.s.
≤ D3

uniformly for all k.

Remark 1 For example, mk(∆k) = Σk∆k is a valid choice to enableEk[mk(∆k)∆T
k ]

a.s.
= I for

all k. Alternatively, we may generate independent and identically distributed (i.i.d.) sequence {δk}
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from a zero-mean and unit-covariance distribution, and then let ∆k = Σ
−1/2
k δk and mk(∆k) =

Σ
1/2
k δk. Also note that Ek[‖∆k‖6‖mk(θ̂k)‖2] being bounded implies all the lower-moments are

bounded.

A.1 and A.3 are assumptions imposed on the underlying loss function and the stochasticity,
which we are not aware of in blackbox optimization, yet they are fundamental so that the resulting
estimators make sense. On the contrary, C.2 is some verifiable conditions that the experimenter can
control. Let us first discuss the asymptotically unbiasedness of both the gradient estimator and the
Hessian estimator. Note that ĝk(θ̂k) in (2) can be thought of as an estimate of g(θ̂k) and can be
rewritten as:

ĝk(θ̂k)

= g(θ̂k) +Ek[ĝk(θ̂k)− g(θ̂k)] + {ĝk(θ̂k)−Ek[ĝk(θ̂k)]}
≡ g(θ̂k) + βk(θ̂k) + ξk(θ̂k) , (18)

where βk(θ̂k) represents the bias of ĝk(θ̂k) as an estimator of g(θ̂k), and ξk(θ̂k) represents the
noise term.

Lemma 1 When assumptions A.1, A.2, and A.3 hold,

βk(θ̂k)
a.s.
=

c2
k

12
Ek

{
[L(3)(θ

+
k ) + L(3)(θ

−
k )](∆k ⊗∆k ⊗∆k)mk(∆k)

}
, (19)

ξk(θ̂k)
a.s.
=

(ε+
k − ε

−
k )

2ck
mk(∆k) + [mk(∆k)∆T

k − I] g(θ̂k)

+
c2
k

12
[L(3)(θ

+
k ) + L(3)(θ

−
k )](∆k ⊗∆k ⊗∆k)mk(∆k)− βk(θ̂k), (20)

where θ
±
k is some convex combination of θ̂k and (θ̂k ± ck∆k). Overall, the magnitude of the

bias term Ek‖βk(θ̂k)‖ is O(c2
k), and the second-moment of the noise term Ek[‖ξk‖2] is O(c−2

k ).
Besides, the Hessian estimator (5d) satisfies Ek(Ĥk)

a.s.
= H(θ̂k) + O(c2

k) and Ek(‖Ĥk‖2)
a.s.
=

O(c−4
k ).

Discussion on A.1 The O(c2
k) bias and O(c−2

k ) variance in Lemma 1 remain valid when the
“three-times continuously differentiablility” in A.1 is changed to “twice-continuously differen-
tiablility and Lipschitz Hessian.” Under such condition, we may still obtain Ek‖βk(θ̂k)‖ = O(c2

k)

and Ek[‖ξk(θ̂k)‖] = O(c−2
k ).

4.1.2. ALMOST SURELY CONVERGENCE

With the gain sequence properly weighting the bias and variance in gradient and Hessian estimators,
we can establish the almost surely convergence θ̂k

a.s.−→ θ∗ as k →∞.

Assumption A.4 (Iterate Boundedness and ODE Condition) Assume ‖θ̂k‖
a.s.
< ∞ for all k. Also

assume that θ∗ is an asymptotically stable solution of the differential equation dx(t)/dt = −g(x),
whose solution under initial condition x0 will be denoted as x( t|x0). Moreover, let D(θ∗) ≡
{x0 : limt→∞ x( t|x0) = θ∗}. Further assume that θ̂k falls within some compact subset of D(θ∗)
infinitely often for almost all sample points.
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Assumption A.4’ (Unique Minimum) Assume that θ∗ is the unique minimizer such that sup{‖θ‖ :
L(θ) ≤ L(θ∗) +C1} <∞ for every C1 > 0, inf‖θ−θ∗‖>C2

[L(θ)−L(θ∗)] > 0 for every C2 > 0,
inf‖θ−θ∗‖>C3

‖g(θ)‖ > 0 for every C3 > 0. Moreover, there exists some K, such that for k ≥ K,
H(·) satisfies ‖H(θ)‖∞ < D4 for all θ in an open neighborhood of θ̂k a.s.

Assumption A.5 (Stepsize) ak > 0, ck > 0, ak → 0, ck → 0,
∑

k ak =∞,
∑

k a
2
kc
−2
k <∞.

Theorem 1 (Almost Surely Convergence) Under the assumptions A.1, A.2, A.3 (as in Lemma 1),
along with A.4 and A.5, we have θ̂k

k→∞−→ θ∗ a.s. and Hk
k→∞−→ H(θ∗) a.s.

Theorem 1’ (Almost Surely Convergence) Under A.1, A.2, A.3, along with A.4’ and A.5, we have

i) ‖θ̂k‖
a.s.
< ∞ for all k.

ii) θ̂k
k→∞−→ θ∗ a.s. and and Hk

k→∞−→ H(θ∗) a.s.

Discussion on A.4 and A.4’ First of all, note that neither A.4 nor A.4’ implies the other. More-
over, H(·) being strongly convex is a sufficient condition for both A.4 and A.4’. Nonetheless,
strong convexity is not a necessary condition for either A.4 and A.4’. Therefore, both Theorem 1
and Theorem 1’ imply a.s. convergence when L(·) is strongly convex, but they also imply the
a.s. convergence result for functions that are more complicated beyond strongly convex functions.
Kushner and Clark (1978, pp. 40–41) discusses why the iterate-boundedness in A.4 may not not a
restrictive condition and could be expected to hold in most applications.

4.1.3. ASYMPTOTIC NORMALITY

Additional assumptions are needed to facilitate the weak convergence result.

Assumption A.6 (Additional Conditions on Perturbation and Noise) Assume that there exists a
Σ � 0 such that Σk

k→∞−→ Σ. There exists some C4 > 0 such that Ek[‖mk(∆k)‖2+C4 ]
a.s.
< ∞ and

E[ (ε+
k − ε

−
k )2+C4

∣∣ θ̂k,∆k]
a.s.
< ∞ uniformly for all k. Finally, H(θ∗) � 0.

Remark 2 Note that under IID scenario for the observation noise, we haveE[ (ε+
k − ε

−
k )2
∣∣ θ̂k,∆k]→

2Var(`(θ∗,ω)) a.s., where the variance is taken over ω ∈ Ω. This is due to θ̂k
a.s.−→ θ∗ shown

Theorem 1 and ck → 0 assumed in A.5.

We now show the rate of convergence of HARP in Algorithm 1. According to A.5, we use
ak = a/kα and ck = c/kγ for k ≥ 0, where α ∈ (1/2, 1] , and γ ∈ (0,α − 1/2). Granted, there are
other forms for stepsizes (ak, ck). However, they do not necessarily provide improved rates (Sacks,
1958). Before stating Theorem 2, we introduce extra notations. Let τ = α−2γ and τ+ = τ·I{α=1}.
Let Γk = aH(θk) with θk being some convex combination of θ̂k and θ∗, tk = −akτ/2βk(θ̂k),
and vk ≡ −ak−γξk(θ̂k).

Theorem 2 (Asymptotic Normality) Assume A.1, A.2, A.3, A.4 or A.4’, A.5, and A.6 hold. Pick
a > τ+/[2λmin(H(θ∗))] and α ≤ 6γ, we have

k
τ/2(θ̂k − θ∗)

dist.−→ N (µ,B) , (21)
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where (µ,B) satisfies the linear system (22) and the Lyapunov equation (23) respectively:
(Γ− τ+I/2)µ = t , (22)

(Γ− τ+I/2)B + B(ΓT − τ+I/2) =
a2Var[`(θ∗,ω)]

2c2
Σ . (23)

In (22–23), Γ = limk→∞ Γk = aH(θ∗), the Var[`(θ∗,ω)] and Σ are defined in Remark 2 and
A.6 respectively, and

t = lim
k→∞

tk = −ac2

6
I{α=6γ}E[L(3)(θ∗) · (∆⊗∆⊗∆) ·m(∆)] , (24)

where ∆ is 0-mean and Σ−1-covariance.

Remark 3 Bartels and Stewart (1972) provides the explicit solution to (23):

B =
a2Var[`(θ∗,ω)]

2c2

∫ ∞
0

et(
τ+I/2−Γ)Σet(

τ+I/2−ΓT )dt . (25)

4.2. CRN Scenario

This section considers the CRN noise scenario, where the fastest rate O(k−1/2) for RMS is achieved
when α = 1 and γ > 1/4. Here, the bias-variance trade-off as arising in Lemma 1 no longer applies,
see Lemma 2, whence Section 4.2 has a faster convergence rate compared to Section 4.1. The
previous assumption on the noise is now changed for the CRN scenario.

Assumption A.3’ (CRN) ωk(= ω+
k = ω−k ) are i.i.d. and are independent from Fk. Let g(·, ·) :

Rd × Ω 7→ Rd be the partial derivative of `(θ,ω) w.r.t. θ. Assume that ‖g(θ,ω)‖∞ ≤ D5

uniformly for all θ and a.s. for allω.

Lemma 2 (Second Moment of ĝk(θ̂k)) When A.1, A.2, and A.3’ hold,

Ek{‖ĝk(θ̂k)2‖} a.s.
= E‖g(θ̂k,ωk)‖2 + o(1)

a.s.
=

∫
ω∈Ω
‖g(θ̂k,ω)‖2dP(ω) + o(1) . (26)

The a.s. convergence result is similar to Theorem 1 or Theorem 1’. The corresponding proofs
are similar using Lemma 2. We turn to finding the convergence rate directly. Before stating The-
orem 3, we define some notations. Let α+ ≡ α · I{α=1}. Let Γk = aH(θk) with θk being some
convex combination of θ̂k and θ∗, tk = −akα/2βk(θ̂k), and vk = −aξk(θ̂k).

Theorem 3 (Asymptotic Normality) Assume A.1, A.2, A.3’, A.4 or A.4’, A.5, A.6. Pick a >
α+/[2λmin(H(θ∗))] and α < 4γ, we have

k
α/2(θ̂k − θ∗)

dist.−→ N (0,B) , (27)

where B satisfies
(Γ− α+I/2)B + B(ΓT − α+I/2) = a2Σ . (28)

Here, Γ = limk→∞ Γk = aH(θ∗), and Σ has elements

Σi,j = I{i=j}

∫
ω∈Ω
‖g(θ∗,ω)‖2dP(ω) + I{i 6=j}

∫
ω∈Ω

[g(θ∗,ω)]i[g(θ∗,ω)]jdP(ω) , (29)

where [g(θ∗,ω)]i denotes the ith component of g(θ∗,ω).
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Recall that in IID scenario, (21) involves a nonzero µ when the fastest rate O(k−1/3) is achieved
at (α,γ) = (1, 1/6). On the contrary, in the CRN scenario, the mean in (27) is zero when the fastest
rate O(k−1/2) is achieved whenever (α,γ) = (1, > 1/4).

Remark 4 The asymptotic result shows that the covariance structure Σk(→ Σ) for ∆k no longer
impacts the asymptotic normality (rate of convergence). Instead, the moments of g(θ∗,ω) takes
over given the assumed differentiablility of the random function `(θ,ω) in A.3’.

4.3. Comparison Between HARP and SPSA

Let us see what happens when Σk → Σ = H(θ∗). Let us write out (25) in Remark 3 for α < 6γ.
Let the eigen-decomposition of H(θ∗) be PΛP T , for orthogonal matrix P and diagonal matrix
Λ = diag(λ1, · · · , λd). Then B in (23) equals PMP T , where the (i, j)th elements of M is

mi,j =
a2Var(`(θ∗,ω))

2c2
(P TΣP )i,j(aλi + aλj − τ+)−1 .

For all the algorithms listed in Subsection 1.1, with Σk = I , the trace of the covariance term is
asymptotic to

a2Var[`(θ∗,ω)]

2c2

d∑
i=1

(2aλi − τ+)−1 , (30)

whereas HARP in Algorithm 1, with Σk = Ĥk →H(θ∗), gives

a2Var[`(θ∗,ω)]

2c2

d∑
i=1

1

2a− τ+/λi
. (31)

Note that both (30) and (31) diverge when any one of the eigenvalues of H(θ∗) is close to zero.
Nonetheless, (31) is smaller than (30) when λi � 1 for some 1 ≤ i ≤ d, under which circum-
stance the iteration complexity (16) of HARP can be better than that of SPSA—at the cost of two
additional ZO queries per iteration, see the last line in Algorithm 1.

5. Numerical Illustration

We now present two empirical examples to demonstrate the fast optimization and the wide applica-
bility of HARP.

5.1. Synthetic Problem: Skew-Quartic Function

Section 4.3 demonstrates that HARP performs better under ill-conditioned problem. This synthetic
example uses the skew-quartic function in Spall (2000) as the true loss L(·) in (1). The corre-
sponding Hessian has one single large eigenvalue and (d − 1) close-to-zero eigenvalues. This loss
function is poorly-conditioned. The noisy loss observation `(θ,ω) in (1) is the true loss corrupted
by an i.i.d. N (0, 1) random noise. We use d = 20 and initialize θ̂0 within [−20, 20]d. We use
ak = a/(k+1+A)α with α = 0.602 and A equals 10% of the iteration number, ck = c/(k+1)γ with
γ = 0.101. Number of replicates is 25 (i.e., all the plots below are averaged performance over 25
replications). The corresponding implementation details ca be found at the attached code. The al-
gorithm we compare against is SPSA (Spall, 1992), which has comparable/better performance than
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other algorithms reviewed in Section 1.1. During the implementation, both SPSA and HARP use
exactly four ZO queries each iteration, so the query complexity aligns with the iteration complexity.
We see from Figure 1 that that HARP with Σk = Ĥk outperforms SPSA with Σk = I for the
ill-conditioned problem of minimizing a skew-quartic function.

Figure 1: Performance of SPSA and HARP in terms of normalized distance ‖θ̂k−θ∗‖/‖θ̂0−θ∗‖ aver-
aged across 25 independent replicates, and both algorithms use four ZO queries per iteration. The
underlying loss function is the skew-quartic function with d = 20, and the noisy observation is
corrupted by a N (0, 1) noise.

5.2. Universal Image Attack As A Finite-Sum Problem

We consider the problem of generating black-box adversarial examples universally for I > 1 images
(Chen et al., 2017; Cheng et al., 2018) using zeroth-order optimization methods. We consider the
constrained problem 

minθ L(θ) ≡ κ‖θ‖22︸ ︷︷ ︸
≡L1(θ)

+
1

I

I∑
i=1

loss(ζi + θ)︸ ︷︷ ︸
≡L2(θ)

,

s.t. (ζi + θ) ∈ [−0.5, 0.5]d ,∀i,

(32)

where the constraint is to normalize the resulting pixels within the range [−0.5, 0.5]d. The loss(·) :
Rd 7→ R imposed on each image takes the form

loss(ζ) = max
i:1≤i≤C

{
ps(ζ, i)− max

j 6=i:1≤j≤C
[ps(ζ, j)]

}
, (33)

where ps(ζ, i) denotes the prediction score of the i-th class given the input ζ. The model ps(·, ·)here
is trained using the structure specified in Carlini and Wagner (2017). Note that

∑I
i=1 loss(ζi+θ) =

0 when the chosen images {ζi}Ii=1 are successfully attacked by the universal perturbation θ. The
noisy loss observation `(θ,ω) is

`(θ,ω) = κ‖θ‖22 +
1

J

J∑
j=1

loss(ζij(ω) + θ) , (34)
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for J ≤ I , and the J indexes {i1(ω), · · · , iJ(ω)} are i.i.d. uniformly drawn from {1, · · · , I}
(without replacement).

Consider (32) with κ = 1/10. The I images arising in (32) are those correctly classified by the
trained model. d = 784 for MNIST dataset. The algorithm we compare against is ZO-ADAMM
(Chen et al., 2019). Both algorithms are initialized at θ̂0 = 0, i.e., no attack is imposed initially. The
ZO-query per iteration for both algorithms is 60, so the query complexity aligns with the iteration
complexity. We perform 25 independent replicates, each with K = 1000 iterations. The stepsizes
are ak = a/(k+1+A)0.602 and ck = c/(k+1)0.101. The details of the hyper-parameters are in the code
attached.

Figure 2: Average (expected) loss function evaluation of ZO-ADAMM and HARP in terms of loss
after K = 1000 iterations averaged across 25 independent replicates. The query complexity aligns
with the iteration complexity.

Figure 2 shows that HARP exhibits faster convergence rate than ZO-ADAMM given a fixed
query-budget. Recall that the loss function L(·) is the sum of the magnitude cost L1(·) and the
attack loss L2(·). Here L2(·) measures the attack loss on I = 10 images of the letter three, and its
noisy query is evaluated using a batch-size of one. E[L2(θ̂K)] for ZO-ADAMM and HARP are
approximately 9.8 and 0.2. A close-to-zero L2(·) loss is equivalent to a close-to-one attack success
rate.

6. Concluding Remarks

This work proposes HARP to use the second-order approximation from ZO queries in both the
random perturbation and the parameter update, and demonstrates its superiority in ill-conditioned
problems theoretically in Section 4.3 and numerically in Section 5. Note that all the prior work use
an identity/scalar matrix as the covariance matrix for the perturbation ∆k and use a deterministic
mapping mk(·). This work shows the benefits of using non-isotropic matrix as the covariance
matrix for ∆k and a stochastic mapping mk(·) which is Fk-measurable. This generalization allows
experimenters to incorporate various self-learning structure on the random directions ∆k—at the
cost of two additional ZO queries per iteration, see Algorithm 1.

Some potential future work includes (1) the generalization to root-finding problem where the
Jacobian matrix is possibly asymmetric5; (2) the generalization to the one-measurement counterpart

5. Note that in our discussion, the Hessian matrix for minimization problem is symmetric.
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to (3) as Spall (1997) to further reduce query complexity; (3) the extended discussion on global
convergence in line of Maryak and Chin (2001); (4) the extension to constrained minimization
problems, and the follow-up discussion when sparsity-promoted constraints are imposed; (5) the
potential exploration on (early) stopping SA iterations based on the root-mean-squared error; (6)
other forms of Σk, including diagonal forms to reduce floating point operations per iteration.
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Appendix A. Supplementary Proofs

Proof [Proof for Lemma 1] First consider the bias term βk(θ̂k) of ĝk(θ̂k) as an estimator for
g(θ̂k).

Ek[ĝk(θ̂k)]

a.s.
= Ek

[
L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck
mk(∆k)

]
+Ek

[
mk(∆k)

2ck
E[ (ε+

k − ε
−
k )
∣∣ θ̂k,∆k]

]
(35)

a.s.
= Ek[mk(∆k)∆T

k ]g(θ̂k) +
c2
k

12
Ek

{
[L(3)(θ

+
k ) + L(3)(θ

−
k )](∆k ⊗∆k ⊗∆k)mk(∆k)

}
(36)

a.s.
= g(θ̂k) + βk(θ̂k) , (37)

where equation (35) uses Chung (2001, Thm. 9.1.3 on p. 315), equation (36) uses the third-order
Taylor expansion with mean-value forms of the remainder and E[ε+

k − ε
−
k

∣∣ θ̂k,∆k]
a.s.
= 0 in A.3,

equation (37) uses the expression (19) and Ek[mk(∆k)∆T
k ]

a.s.
= I assumed in A.2. Then

Ek[‖βk(θ̂k)‖]
a.s.
≤

c2
k

6
‖L(3)(θ)‖∞Ek[‖∆k ⊗∆k ⊗∆k‖‖mk(∆k)‖] (38)

a.s.
=

c2
k

6
D1Ek[‖∆k‖3mk(∆k)] (39)

a.s.
≤

c2
k

6
D1D2 , (40)

where inequality (38) uses the mean-value theorem (
∫
D |f1(x)f2(x)| dx ≤ supx∈D |f1(x)|

∫
D |f2(x)|dx

for two functions f1 and f2 and some domain of integration D), equality (39) uses the independence
between θ̂k and ∆k assumed in A.2 and Lancaster and Farahat (1972), and inequality (40) uses A.2.
The representation of ξk(θ̂k) in (20) follows directly from (18) and (19).

We then consider the second-moment of ξk(θ̂k) through the following computation:

Ek

{
‖ĝk(θ̂k)‖2

}
a.s.
= Ek

{∥∥∥∥L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck
mk(∆k)

∥∥∥∥2
}

(41)

+
1

4c2
k

Ek[(ε+
k − ε

−
k )2‖mk(∆k)‖2] (42)

+
1

2c2
k

Ek

{
[L(θ̂k + ck∆k)− L(θ̂k − ck∆k)](ε+

k − ε
−
k )‖mk(∆k)‖2

}
.

(43)

The term on (42) becomes O(c−2
k ) because

Ek[(ε+
k − ε

−
k )2‖mk(∆k)‖2]

a.s.
= Ek

[
‖mk(∆k)‖2E[ (ε+

k − ε
−
k )2
∣∣ θ̂k,∆k]

]
(44)

a.s.
= D3 ·Ek[‖mk(∆k)‖2] (45)
a.s.
≤ D3D2 , (46)
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where inequality (44) uses Chung (2001, Thm. 9.1.3), inequality (45) uses A.3 and the indepen-
dence between θ̂k and ∆k, and inequality (46) uses A.2. The term on (43) becomes zero thanks
to Chung (2001, Thm. 9.1.3) and E[ε+

k − ε
−
k

∣∣ θ̂k,∆k] assumed in A.3. The term on (41) can be
bounded from above by D2‖g(θ̂k)‖2 + O(c2

k), as

Ek

{∥∥∥∥L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck
mk(∆k)

∥∥∥∥2
}

a.s.
= [g(θ̂k)]TEk{∆k[mk(∆k)]Tmk(∆k)∆T

k}g(θ̂k)

+
c4
k

144
Ek

∥∥∥∥[L(3)(θ
+
k ) + L(3)(θ

−
k )](∆k ⊗∆k ⊗∆k)mk(∆k)

∥∥∥∥2

+
c2
k

6
[g(θ̂k)]TEk

{
∆k[mk(∆k)]T [L(3)(θ

+
k ) + L(3)(θ

−
k )]× (∆k ⊗∆k ⊗∆k)mk(∆k)

}
a.s.
= O

(
‖g(θ̂k)‖2

)
+ O(c2

k) , (47)

thanks to A.2 and third-order Taylor expansion.
If we adopt the Hessian estimator form in (4), we shall first consider the term c̃−1

k `kmk(∆̃k).

E( c̃−1
k `kmk(∆̃k)

∣∣∣ θ̂k,∆k)
a.s.
= g(θ̂k + ck∆k)− g(θ̂k − ck∆k) + O(c3

k) , (48)

where the O(c3
k) term in (48) is the difference of the two O(c2

k) bias terms in the one-sided gradient
approximations for g(θ̂k ± ck∆k) in c̃−1

k `kmk(∆̃k) and c̃k = O(ck). Hence, by an expansion of
each of g(θ̂k ± ck∆k), we have for any i, j

E

(
`k

2ck c̃k
mk(∆̃k)[mk(∆k)]T

∣∣∣∣Fk,∆k

)
a.s.
= H(θ̂k) + O(c2

k) , (49)

where (49) uses (48) and Ek(mk(∆k)∆T
k ) = I in A.2. Note that the O(c2

k) term in (49) absorbs
higher-order terms in the Taylor expansion of g(θ̂k + ck∆k) − g(θ̂k − ck∆k) in (48). Another
symmetrization operation of (2ck c̃k)−1`kmk(∆̃k)[mk(∆k)]T gives the latter part of (4), in order
to ensure a symmetric Hessian estimate. Given (49), the statement that Hk

a.s.−→ H(θ∗) follows
from the Theorem 1 or Theorem 1’, the updating recursion (4), the algorithmic form in Algorithm 1
and the corresponding analysis in Zhu et al. (2020).

If we adopt the Hessian estimator form in (5), we can conclude thatEk(Ĥk)
a.s.
= H(θ̂k)+O(ck)

and Ek(‖Ĥk‖2)
a.s.
= O(c−4

k ) using C.2 and following Zhu (2021, Proof of Lemma. 3).

Proof [Illustration for Paragraph 4.1.1] The proof directly follows from the second-order Taylor
expansion and the Lipschitz Hessian condition on the remainder terms.

Ek[ĝk(θ̂k)]

a.s.
= Ek

[
L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck
mk(∆k)

]
+Ek

[
mk(∆k)

2ck
E

[
(ε+

k − ε
−
k )
∣∣ θ̂k,∆k

]]
a.s.
= Ek[mk(∆k)∆T

k ]g(θ̂k) +
ck
4
Ek

{
∆T

k [H(θ
+
k )−H(θ

−
k )]∆k

}
(50)

a.s.
= g(θ̂k) + βk(θ̂k) ,
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where (50) follows from the second-order Taylor expansion. Then βk(θ̂k) satisfies

Ek‖βk(θ̂k)‖
a.s.
≤ ck

4
Ek {∆T

k [O(1)‖2ck∆k‖] ∆k} (51)
a.s.
= O(c2

k) (52)

where the O(1) in (51) represents the Lipschitz parameter of H(·). Note that the explicit scaling
constant in (52) is no longer available as (19).

Proof [Proof for Theorem 1]
Under assumptions A.4, and A.5, we known from Kushner and Clark (1978, Thm. 2.3.1 on p.

39) that Thm. 1 holds when the following two conditions hold:

i) ‖βk(θ̂k)‖ <∞ for all k and βk(θ̂k)→ 0 a.s.

ii) limk→∞P
{

supj≥k ‖
∑j

i=k aiξi(θ̂k)‖ ≥ η
}

= 0 for any η > 0.

Obviously, i) holds thanks to Lemma 1. Under assumption A.3, ξk(θ̂k) defined in (20) is an Fk-
martingale. Using Kushner and Yin (2003, Eq. (4.1.4)), we have

P

{
sup
j≥k
‖

j∑
i=k

aiξi(θ̂i)‖ ≥ η

}
≤ η−2

E‖
∞∑
i=k

aiξi(θ̂i)‖2 (53)

= η−2
∞∑
i=k

a2
iE‖ξi(θ̂i)‖2 , (54)

where inequality (53) uses Markov’s inequality, equality (54) usesE[]ξi(θ̂i)
Tξj(θ̂j)] = E{ξi(θ̂i)

T
E[ξj(θ̂j)

∣∣∣ θ̂j ]} =

0 for all i < j. Given A.5, ii) is also satisfied. The a.s. convergence from θ̂k to θ∗ is arrived.

Proof [Proof for Theorem 1’] Let us first show part i). Under A.4’, we have

Ek[L(θ̂k)]

a.s.
≤ Ek

{
L(θ̂k)− ak[g(θ̂k)]T ĝk(θ̂k) +

D4a
2
k

2
‖ĝk(θ̂k)‖2

}
(55)

a.s.
≤ L(θ̂k)− ak‖g(θ̂k)‖2 + akO(c2

k)‖g(θ̂k)‖+
D4a

2
k

2

[
O(c2

k) + O(c−2
k ) + O(‖g(θ̂k)‖)2

]
(56)

a.s.
= L(θ̂k)− ak‖g(θ̂k)‖2 + O(akc

2
k)‖g(θ̂k)‖+ O(a2

kc
2
k)) + O

(
a2
k

c2
k

)
+ O(a2

k)‖g(θ̂k)‖2

a.s.
≤ L(θ̂k)− ak

2

(
‖g(θ̂k)‖ −O(c2

k)
)2

+ O
(
a2
kc

2
k

)
+ O(a2

kc
−2
k ) , for large k s.t. O(ak) < 1/2 ,

(57)

where (55) uses A.4’ and mean-value theorem, (56) uses Cauchy-Schwartz inequality and (41)–(43),
and (57) uses A.5.
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Therefore, for sufficiently large k, we have

Ek[L(θ̂k)− L(θ∗)]
a.s.
≤ L(θ̂k)− L(θ∗) + O(a2

kc
2
k) + O(a2

kc
−2
k ) − ak

2

(
‖g(θ̂k)‖ −O(c2

k)
)2

,

(58)

Under A.4’ and A.5, Lai (1989, Thm. 1) ensures that the nonnegative random variable [L(θ̂k) −
L(θ∗)] converges to a finite random variable on a.s. Now that A.4’ assumes sup {‖θ‖ : L(θ) ≤ L(θ∗) + C1},
the boundedness of L(θ̂k) a.s. implies the iterate boundedness supk ‖θ̂k‖ <∞ a.s.

Next we show part ii). When (58) hold, Robbins and Siegmund (1971) ensures that limk→∞
∑k

i=1 ai[‖g(θ̂i)‖−
O(c2

i )]
2 <∞ a.s. Together with A.5, we have ‖g(θ̂k)‖ → 0 as k →∞ a.s.

For any fixed sample point within a subset of Ω × Ω∆ with a measure of 1, the sequence
{θ̂0, · · · , θ̂k, · · ·} is a bounded sequence per i). By Bolzano-Weierstrass theorem, we can pick
a sub-sequence {θ̂k0 , · · · , θ̂ki , · · ·} such that ‖g(θ̂ki)‖ → 0+ as i → ∞ a.s. Moreover, the
fact that ‖g(θ̂k)‖ → 0 a.s. and the smoothness of g(·) ensure that the limit point of the sub-
sequence {θ̂k0 , · · · , θ̂ki , · · ·} as i → ∞ coincides with the limit point of the entire sequence
{θ̂0, · · · , θ̂k, · · ·} as k → ∞. Finally, A.4’ asserts that θ∗ is the unique minimizer such that all
neighboring points around it have nonzero gradient evaluation, so the claim in ii) is shown.

Proof [Proof for Theorem 2] The asymptotic normality result will be shown once the conditions
(2.2.1), (2.2.2), and (2.2.3) of Fabian et al. (1968) hold.

We first show that Fabian et al. (1968, Eq. (2.2.1)) hold. We see that Γk → aH(θ∗) a.s. by the
result in Thm. 1 and the continuity of H(·) as assumed in A.1. When α < 6γ, we have tk → 0 a.s.,
as Lemma 1 shows that ‖βk(θ̂k)‖ = O(c2

k) = O(k−2γ) a.s. When α = 6γ, using A.2 and Thm. 1,
we know that tk = −a(k + 1)2γ ·O(c2

k) = O(1). Using (19), A.1, and Thm. 1, we have

βk
k→∞−→ 1

6
c2
kE[L(3)(θ∗) · (∆⊗∆⊗∆) ·m(∆)] a.s. , (59)

thanks to the dominated convergence theorem. Multiplying −a(k + 1)τ/2 = −a(k + 1)2γ on both
sides of (59) gives (24). Combined the cases for α < 6γ and α = 6γ, we know that tk converges
to a finite vector for α ≤ 6γ.

We then show that Fabian et al. (1968, Eq. (2.2.2)) hold. By definition (18), ξk(θ̂k) is a Fk-
measurable martingale sequence, and so is vk.

Ek(vkv
T
k )

a.s.
=

a2

(k + 1)2γ

(
Ek{ĝk(θ̂k)[ĝk(θ̂k)]T} −Ek[ĝk(θ̂k)]{Ek[ĝk(θ̂k)]}T

)
(60)

a.s.
=

a2

c2
c2
kEk{ĝk(θ̂k)[ĝk(θ̂k)]T}+

a2

c2
c2
k[gk(θ̂k) + βk(θ̂k)][gk(θ̂k) + βk(θ̂k)]T (61)

a.s.
=

a2

c2
·Ek

[(
ε+
k − ε

−
k

2

)2

mk(∆k)[mk(∆k)]T

]
+ o(1)

a.s.
=

a2

4c2
Ek

{
mk(∆k)[mk(∆k)]TE[ (ε+

k − ε
−
k )2
∣∣ θ̂k,∆k]

}
+ o(1)

a.s.
=

a2

c2

2Var[`(θ∗,ω)]

4
E{mk(∆k)[mk(∆k)]T}+ o(1) (62)

a.s.−→ a2Var[`(θ∗,ω)]

2c2
Σ , as k →∞ , (63)
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where (60) follows from (18), the o(1) term on (61) is due to A.2, (19), Lemma 1, and Theorem 1,
both (62) and (63) are due to A.6 and Remark 2.

We finally show that either (2.2.3) or (2.2.4) in Fabian et al. (1968) hold. That is, for every
η > 0, limk→∞E(‖vk‖2I{‖vk‖2≥ηkα}) = 0. For any C5 ∈ (0, C4/2), we have

lim
k→∞

E
(
‖vk‖2I{‖vk‖2≥ηkα}

)
≤ lim sup

k→∞
[P(‖vk‖2 ≥ ηkα)]

C5
1+C4 · [E(‖vk‖2(1+C5))]

1
1+C5

≤ lim sup
k→∞

(
E(‖vk‖2)

ηkα

) C5
1+C4

· [E(‖vk‖2(1+C5))]
1

1+C5 , (64)

where the first inequality is due to Holder’s inequality and the second inequality is due to Markov’s
inequality.

Using Minkowski inequality, we have ‖vk‖2(1+C5) ≤ 2(1 +C5)k−2(1+C5)γ
[
‖ĝk(θ̂k)2(1+C5) +

‖g(θ̂k)‖2(1+C5) +‖βk(θ̂k)‖2(1+C5)‖
]
. From Lemma 1 and A.4, we know that there exists some K

such that both βk(θ̂k) and g(θ̂k) are uniformly bounded a.s. for all k ≥ K. Lemma 1 also implies
that ‖ĝk(θ̂k)‖ = O(c−2

k ). Combined, we have E‖vk‖2(1+C5) = O(1).
Now that all relevant conditions in Fabian et al. (1968) are met to ensure the asymptotic nor-

mality.

Proof [Proof of Lemma 2]
Under A.3’,

Ek[ĝk(θ̂k)[ĝk(θ̂k)]T ]

a.s.
=

1

4c2
k

Ek

{
mk(∆k)[mk(∆k)]T × [`(θ̂k + ck∆k,ωk)− `(θ̂k − ck∆k,ωk)]2

}
a.s.
=

1

4c2
k

Ek

{
mk(∆k)[mk(∆k)]T ×E[ [`(θ̂k + ck∆k,ωk)− `(θ̂k − ck∆k,ωk)]2

∣∣∣ θ̂k,∆k]

}
.

(65)

Similar to the third-order Taylor expansion in Lemma 1, we have

1

4c2
k

E[ [`(θ̂k + ck∆k,ωk)− `(θ̂k − ck∆k,ωk)]2
∣∣∣ θ̂k,∆k]

a.s.
= E

{
[∆T

kg(θ̂k,ωk)]2
∣∣∣ θ̂k,∆k

}
+ O(c4

k)

a.s.
=
[
∆T

kg(θ̂k,ωk)
]2

+ O(c4
k) .

(66)

Whence, (65) becomes

Ek[ĝk(θ̂k)[ĝk(θ̂k)]T ]
a.s.
= Ek

{
mk(∆k)∆T

kg(θ̂k,ωk)[g(θ̂k,ωk)]T∆k[mk(∆k)]T
}

+ o(1) .

(67)
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Now that A.2 assumes independence between θ̂k and ∆k, then the (i, j)−th component of (67)
equals the following a.s.:

E

 d∑
p=1

d∑
q=1

mk,i∆k,p∆k,qmk,j

 ·Ek (gk,pgk,q) + o(1)

a.s.
=
[
I{i=j}I{p=q} + I{i 6=j}(I{p=i,q=j} + I{p=j,q=i})

]
×Ek (gk,pgk,q) + o(1) (68)

a.s.
=

{∑d
p=1Ek(gk,p)

2 + o(1), if i = j,

2Ek(gk,igk,j) + o(1), if i 6= j.
(69)

where mk,i is the ith component of mk(∆k), ∆k,p is the pth component of ∆k, gk,p is the pth
component of g(θ̂k,ωk), equality (68) uses Ek[mk(∆k)∆T

k ] = I in A.2. Taking the diagonal
terms of (69) gives (26).
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