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Abstract
When only the noisy zeroth-order (ZO) oracle is available, stochastic approximation algorithms

are popular for estimating the root of the multivariate gradient equation. Inspired by Stein’s identity,
this work establishes a novel Hessian approximation scheme. We compare it with second-order si-
multaneous perturbation stochastic approximation (2SPSA) algorithm (Spall, 2000). On the basis
of the almost sure convergence guarantee with the same convergence rate, 2SPSA requires four ZO
queries, while ours requires three instead. Moreover, 2SPSA requires two statistically independent
perturbations and two differencing stepsizes, while ours requires generating one perturbation vec-
tor and tuning one differencing stepsize only. Besides, the weighting mechanism for the Hessian
estimate is generalized and the smoothness restriction on the loss function is relaxed compared to
2SPSA. Finally, we present numerical support for the reduced per-iteration ZO query complexity.
Keywords: stochastic optimization; Hessian estimation; Stein’s identity; gradient-free methods

1. Introduction

Stochastic approximation (SA) has been widely applied in the problem of minimization. Let θ ∈ Rd

concatenate all the adjustable model parameters. Let the system stochasticity be represented by the
random variable ω following a probability distribution P on its domain Ω. Consider finding the
minimizer of a twice-differentiable bounded-from-below loss function f(·) : Rp → R:

θ∗ ≡ arg min
θ∈Rd

f(θ) , where f(θ) ≡ Eω∼P [F (θ,ω)] . (1)

In (1), the Rd × Ω 7→ R mapping F (·, ·) evaluated at (θ,ω) represents one noisy observation of
f(θ) when a realizationω ∼ P is drawn from Ω. Evaluating these zeroth-order (ZO) queries F (·, ·)
are usually expensive. Under this setup, the generic SA recursions are widely applied:

θ̂k+1 =

{
θ̂k − akĝk , stochastic 1st-order method using ZO oracles, (2a)

θ̂k − akĤ
−1
k ĝk , stochastic 2nd-order method using ZO oracles, (2b)

where θ̂k denotes the recursive estimate at the kth iteration, ak is positive stepsize (gain), ĝk rep-
resents an estimate for the gradient function g(θ) ≡ ∇f(θ) evaluated at θ̂k, and Ĥk represents
an estimate for the Hessian function H(θ) ≡ ∇2f(θ) evaluated at θ̂k. Except for the SA scheme
(2), random search (including stochastic ruler, stochastic comparison, simulated annealing) is also
useful in solving (1), but it will not be our focus.
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1.1. Why Do We Care Second-Order SA in Black-Box Problems?

Setting the subtleties relating to both the noisy ZO oracles and the stepsizes aside, using SA al-
gorithms (2) to solve (1) in part stems from the localized model [f(θ) + dTg(θ) + dTB(θ)d/2]
constructed within the region {θ + d : ‖d‖ ≤ δ}, where B(·) is a curvature matrix. In a nutshell,
letting B(θ) = L2I (where L2 upper-bounds the spectral norm of the second-order information
H(·) throughout this neighborhood) and B(θ) = H(θ) inside that neighborhood motivate (2a)
and (2b), respectively.

Currently, (2a) remains dominant over (2b), mainly because (2b) suffers from (i) the model-trust
region/radius issue and (ii) expensive computational cost. Issue (i) becomes obvious when (2b) is
naively implemented around a region with negative curvature for nonconvex loss functions. On the
contrary, issue (i) does not arise in (2a) because the conservative localized model with B(θ) = L2I
enforces extremely small updates. Besides, large parameter space d and/or large dataset size I
renders (2b) infeasible in most big-data applications. The storage, update, and inversion of the
d2-entry curvature matrix B(θ) across a total of I data points can be prohibitive1 as in issue (ii).
Fortunately, using the damping techniques in Levenberg-Marquardt method reviewed in Remark 1,
issue (i) can be largely overcome. To address issue (ii), researchers may impose low-rank, diagonal,
or other structures onto the curvature matrix so as to store, compute, and invert B(·) easily.

Remark 1 Computing arg mind:‖d‖≤δ [f(θ) + dTg(θ) + dTB(θ)d/2] is equivalent to comput-
ing arg mind∈Rd [f(θ) + dTg(θ) + dT (B(θ) + εI)d/2] ≡ −(B(θ) + εI)−1g(θ). Although ε
is a complicated function of δ, we can directly work with ε for convenience.

After a sharp decline during early iterations, the estimates from (2a) suffer from slow conver-
gence rate in later iterations. When θ̂k reaches the vicinity of θ∗, the algorithmic scheme (2b) offers
multiple edges: (a) the resulting θ̂k remains intact under linear2 mappings imposed upon θ; (b) they
eliminate3 the need for tuning some hyper-parameters; (c) the estimates enjoy faster convergence
when the iterate θ̂k is close to the optimum defined as θ∗ in (1) where the underlying loss function
f(·) is locally quadratic; (d) local curvature exploitation (preconditioning) makes the loss surface
more isotropic4 and mitigate the ill-conditioning effects.

1.2. Perspectives on Randomness and Data

In anticipation of Sect. 1.3, Sect. 2.2, and Sect. 4.2, we comment on the randomness Ω 3 ω ∼
P in (1) that inevitably arise when the function measurements are collected from either physical
experiments or computer simulation.

1. Large I makes it costly to evaluate Hessian, and large d makes it costly to invert the Hessian. Each Newton iteration
requires O(Id2) to evaluate the exact Hessian of all the collected data points and O(d3) to invert it.

2. For example, the value for θ changes with the unit of measurement or the choice of coordinate system.
3. For (2a) using ZO queries, the gain sequence in the form of ak = a/k must satisfy a > [3λmin(H(θ∗))]−1 (Spall,

1992) in order to attain the fastest convergence rate of O(k−1/3). Second-order methods (2b) can achieve the optimum
rate without knowing the minimum eigenvalue of H(θ∗).

4. In stochastic optimization, the asymptotic behaviors of the stochastic optimizer only cares about how many data
you’ve seen. The optimization problem becomes an estimation problem. The asymptotic convergence behavior kicks
in sooner when second-order information are approximated, since navigating the curved loss landscape stops being
the bottleneck—but in well-conditioned problems it’s already not the bottleneck.
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Data-Stream (Fresh Samples) For online learning where fresh sample arrives sequentially, ω ∈
Ω may represent some noises imposed on the underlying loss. When data come in a streaming
fashion, it is natural to assume that all the sample points ω’s are independently drawn from Ω and
identically distributed according to the distribution P.

Fixed Dataset (Collected Samples) For empirical risk minimization (ERM) where only a fixed
number (say I) of (training) samples5 are available, it is standard practice to reuse the given I
samples using a (mini-)batch size of J (1 ≤ J ≤ I). When sampling with replacement is applied,
all the J-elements subsets of {1, · · · , I} constitute Ω, andP places a probability mass of J !(I−J)!/I!
on eachω ∈ Ω. Unlike sampling without replacement (exhausting every sample within one epoch),
this scenario whereω ∈ Ω following uniform distribution P can still fit into (1).

1.3. Prior Work on Second-Order SA Using ZO Queries

Second-order estimation using ZO oracles can be traced back to Fabian (1971) which requires O(d2)
ZO queries per iteration. A simultaneous perturbation version of the Hessian estimate, which costs
four ZO queries per iteration was proposed in Spall (2000). Later, a similar estimation form using
three ZO queries per iteration was considered in Prashanth et al. (2016), but it entails several con-
trived constants. We note that Martens and Grosse (2015); Wang et al. (2017); Agarwal et al. (2019)
use first-order oracle, Agarwal et al. (2017) uses Hessian–vector-product oracle, and Sohl-Dickstein
et al. (2014); Byrd et al. (2016); Saab and Shen (2019) use second-order oracle. Here we assume
that only noisy ZO oracle is available, so methods not solely using ZO oracles are beyond the scope
of our comparison.

Core Budget Indicator For problem (1), the ZO query complexity (to achieve certain level of ac-
curacy) is usually the key budget indicator. When the number of ZO queries per iteration is fixed, the
iteration/runtime complexity may be used interchangeably with oracle complexity in performance
measure. Besides, the floating-point-operations (FLOPs) per iteration may also be important for
experimenters in high-dimensional problems, see Zhu et al. (2020).

Convergence Notion When the loss function in ERM is composed of a finite number of sum-
mands, notions of convergence and rates of convergence are in line with those in deterministic
optimization. For example, in Johnson and Zhang (2013); Martens and Grosse (2015); Byrd et al.
(2016); Sohl-Dickstein et al. (2014); Schraudolph et al. (2007), rates of convergence are linear or
quadratic as a measure of iteration-to-iteration improvement in the empirical risk function. In con-
trast, we follow the traditional SA notion, including applicability to general noisy loss functions
(discussed in Sect. 1.2), and stochastic notions of convergence and rates of convergence based on
sample-points (almost surely, a.s.) and convergence in distribution.

1.4. Overview and Contribution

The remainder of this paper is organized as follows. Sect. 2 conveys the motivation behind the
newly-proposed Hessian approximation based on Stein’s identity and presents implementation de-
tails. Sect. 3 provides theoretical justification for (2b) using damped Hessian estimate. Sect. 4

5. Although the experimenter only has access to the training error (based on the fixed I samples) in black-box problems,
the ultimate goal for ERM should be minimizing the generalization error. Note that deterministic optimization
applied on given dataset (deeming the empirical risk loss as a deterministic loss function) does not work in terms of
the generalization performance.
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illustrates the numerical performance of this algorithm in comparison with 2SPSA. Sect. 5 in-
cludes some concluding remarks and envisions multiple further directions. Before proceeding, let
us outline the key difference between ours and 2SPSA.

1) On the basis that the fastest6 convergence rate remains to be O(k−1/3), our estimator to ap-
pear in (12d) requires three ZO queries only, whereas 2SPSA requires four. Moreover, (12d)
requires generating one perturbation vector via Monte Carlo and tuning one differencing step-
size only, while 2SPSA requires two statistically independent perturbations and two differ-
encing stepsizes.

2) The smoothing rate wk in (10b) is allowed to decrease as long as A.4 is met, whereas 2SPSA
considers direct averaging only.

3) Our Hessian estimator is symmetric by construction, while 2SPSA in Spall (2000) requires
an additional step to manually symmetrize its Hessian estimate. Moreover, our estimator has
a rather clean and elegant form compared to 2RDSA in Prashanth et al. (2016).

4) The restriction of “four-times continuously differentiable with bounded fourth-order deriva-
tives” in 2SPSA is relaxed to “thrice continuously differentiable with Lipschitz-continuous
third-order derivatives.”

5) Based on Stein’s identity, the motivation behind our gradient/Hessian estimators and the cor-
responding derivation for bias/variance are simplified compared to 2SPSA.

2. Motivation, Description, and Implementation

2.1. Stein’s Identity Motivates Our Gradient/Hessian Estimators

The key to implement (2) is to construct efficient estimators ĝk and Ĥk. Both Spall (2000) and
Prashanth et al. (2016) resort to the fundamental Taylor’s theorem7, and they require “four-times
continuously differentiable with bounded fourth-order derivatives” to achieve the optimal conver-
gence rate of O(k−1/3). On the contrary, Stein’s identity allows us to construct gradient/Hessian
estimators for a general class of smooth functions, and enables the optimal convergence rate pos-
sible when the underlying function is “thrice continuously differentiable with Lipschitz-continuous
third-order derivatives.” The following proposition describes the basic Stein’s identity. Note Er-
dogdu (2015) also uses Stein’s identity to estimate Hessian, but their work is restricted for linear
predictor with Gaussian data.

Proposition 1 (First-Order and Second-Order Stein’s Identity) (Stein et al., 2003) Let X ∈ Rd

be a d-dimensional random vector whose underlying density function is p(·) : Rd 7→ R.

i) Assume that the density function p(x) is differentiable. Let q : Rd 7→ R be a differentiable
function such that E[∇q(X)] exists. Then

E
{
q(X)[p(X)]−1∇p(X)

}
= −E[∇q(X)] . (3)

6. Note that O(k−1/3) in terms of root mean squared (RMS) error (E[‖θ̂k − θ∗‖2])1/2 is the fastest rate possible for
ak = O(k−1) and ck = O(k−1/6), when f(·) is thrice continuously differentiable and is not quadratic.

7. Note that under the same condition as in 2SPSA and following the proofs therein will not give us the fastest conver-
gence rate.
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ii) Assume that the density function p(x) is twice differentiable. Let q : Rd 7→ R be a twice
differentiable function such that E[∇2q(X)] exists. Then

E
{
q(X)[p(X)]−1∇2p(X)

}
= E[∇2q(X)] . (4)

For the special case of multivariate standard normal vector X ∼ N(0, I), we have ∇p(x) =
−xp(x) and ∇2p(x) = (xxT − I)p(x). In this case, (3) and (4) reduce to{

E[Xq(X)] = E[∇q(X)] ,

E[(XXT − I)q(X)] = E[∇2q(X)] ,
when X ∼ N(0, I) .

For the case of X ∼ N(0,Σ), we have∇p(x) = −Σ−1xp(x),∇2p(x) =
(
Σ−1xxTΣ−1 −Σ−1

)
p(x).

In this case, (3) and (4) reduce to{
E[Σ−1Xq(X)] = E[∇q(X)] ,

E
[(

Σ−1XXTΣ−1 −Σ−1
)
q(X)

]
= E

[
∇2q(X)

]
,

when X ∼ N(0,Σ) .

Remark 2 The distribution for the absolutely continuous d-dimensional random vector X is al-
lowed to come from the exponential family (with continuous density function) per Hudson et al.
(1978), and the family of elliptical distributions (i.e., spherical distribution, hyperbolic distribution,
logistic distribution, multivariate Laplace distribution, multivariate t-distribution) per Landsman
and Nešlehová (2008).

Remark 3 Teerapabolarn (2013) extends (3–4) to several discrete distributions, including the bi-
nomial (Rademacher) and the Poisson distributions.

Let us introduce the smoothed loss function fc(θ) constructed through the convolution of the
underlying loss function f(·) and the Gaussian kernel. The upcoming gradient/Hessian estima-
tor with perturbation magnitude c will be the unbiased estimator for the gradient/Hessian of the
smoothed loss function fc(·). Even though f(·) may not be continuous, fc(·) is infinitely many
times differentiable, inheriting from the Gaussian kernel function.

Lemma 1 (Stein’s Identity Based Estimator) Let u ∼ N(0, I). Let fc(θ) ≡ Eu [f(θ + cu)]
be the smoothed loss function. Assume the left-hand-sides of (5–9) exist, we have the following
estimators.

i) One-measurement estimator for∇fc(θ) and ∇2fc(θ):

Eu

[
c−1uf(θ + cu)

]
= Eu [g(θ + cu)] ≡ ∇fc(θ) , (5)

Eu

[
c−2 (uuT − I) f(θ + cu)

]
= Eu [H(θ + cu)] ≡ ∇2fc(θ) . (6)

ii) Two-measurements estimator for∇fc(θ) and ∇2fc(θ):

∇fc(θ) =

{
Eu

{
c−1[f(θ + cu)− f(θ)]u

}
, (7a)

Eu

{
(2c)−1[f(θ + cu)− f(θ− cu)]u

}
, (7b)

∇2fc(θ) =

{
Eu

{
c−2[f(θ + cu)− f(θ)](uuT − I)

}
, (8a)

Eu

{
(2c2)−1[f(θ + cu) + f(θ− cu)](uuT − I)

}
. (8b)
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iii) Three-measurements estimator for∇2fc(θ):

∇2fc(θ) = Eu

{
(2c2)−1[f(θ + cu) + f(θ− cu)− 2f(θ)](uuT − I)

}
. (9)

Although Lemma 1 does not provide an unbiased gradient/Hessian estimators for the true loss
function f(·), they are instrumental to construct an asymptotically unbiased estimators in (11–12)
with its bias vanishing at certain rate to appear in Lemmas 2–3.

2.2. Algorithmic Form

Recall that the model-trust issue discussed in Sect. 1.1 can be handled by Levenberg-Marquardt
damping technique per Remark 1. Therefore, we modify (2b) as follows:{

θ̂k+1 = θ̂k − ak[pk(Hk)]−1ĝk , (10a)

Hk+1 = Hk − wk(Hk − Ĥk) , (10b)

for k ≥ 0. The general adaptive SA algorithm (10) is comprised of two recursions: (10a) estimates
θ via a stochastic analogue of the Newton method, and (10b) produces estimate for H(·) through
a weighted average of the seen Hessian estimates Ĥk’s. The stepsize wk governing the smoothing
rate for Hessian estimate places a crucial role in the convergence of (10), and one common choice8

is wk = 1/(k+1) for k ≥ 0. When w0 > 0, the initialization H0 can be a scaling matrix, so that
early iteration of (10) resembles that of (2a). In (10), pk(·) is a mapping from Rd×d to the set
of symmetric and positive definite matrices. The straightforward form for pk is the approximate
damped Newton (see Remark 1): pk(Hk) = Hk + εkI , for εk > λmin(Hk). Another popular
mapping is pk(Hk) = (H

T

kHk + εkI)1/2 for εk → 0, where the square root here is the unique
positive definite square root (implementable via sqrtm in MATLAB).

For succinctness, write F±k ≡ F (θ̂k ± ckuk,ω
±
k ) and Fk ≡ F (θ̂k,ωk). Write ε±k ≡ F±k −

f(θ̂k ± ckuk) and εk ≡ F (θ̂k,ωk)− f(θ̂k). We focus on the uncontrolled9 noise scenario where
ω±k and ωk are i.i.d. Since only noisy evaluation of the loss function is accessible, the gradient
estimate can be as (11) using one or two noisy ZO oracles

ĝk =


c−1k F+

k uk , (11a)

c−1k (F+
k − Fk)uk , (11b)

(2ck)−1(F+
k − F−k )uk , (11c)

and the Hessian estimate can be as (12) using one to three noisy ZO oracles

Ĥk =


c−2k F+

k (uku
T
k − I) , (12a)

c−2k (F+
k − Fk)(uku

T
k − I) , (12b)

(2c2k)−1(F+
k + F−k )(uku

T
k − I) , (12c)

(2c2k)−1(F+
k + F−k − 2Fk)(uku

T
k − I) . (12d)

The Hessian estimators (12) are guaranteed to be symmetric. This contrasts with 2SPSA (Spall,
2000) where manual symmetrization is required.

8. This is the stepsize enforced in 2SPSA. Generally, we allow wk to go to zero at a rate such that
∑

k w
2
kc

−4
k < ∞,

see A.4 to appear.
9. For the controllable noise scenario whereω±

k = ωk, frequently encountered in simulation optimization or the fixed-
dataset discussed in Sect. 1.2.
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2.3. Implementation Aspects

The entire second-order algorithms (10) is summarized in Algorithm 1.

Algorithm 1 Second-Order SA Using Normal Perturbation in Black-Box Problems

Input: initialization θ̂0, H0 = I; coefficients ak, wk and ck for 0 ≤ k ≤ K.
1: set iteration counter k = 0.
2: for k = 0, 1, · · · ,K do

generate uk ∼ N(0, I) and collect noisy loss observations.
estimate ĝk via (11) and Ĥk via (12).
update θ̂k+1 and Hk+1 via (10).
end

Output: terminal estimate θ̂K+1 (or iterate average).

θ̂0 initialization Following the last paragraph in Sect. 1.1, it is recommended to first run the first-
order scheme (2a), and then switch to the second-order scheme (2b) after θ̂k has reached the vicinity
of θ∗ where the loss function is locally quadratic.

Positive-definite mapping The crucial step before applying second-order estimation to the pa-
rameter update for θ̂k within an optimization context is enforcing the Hessian estimate to be positive-
definite. Note that the estimation errors in Ĥk may result in negative eigenvalues of Hk, which is
inevitable due to the noisy ZO oracles. Generally, it costs O(d3) FLOPs to guarantee a symmet-
ric matrix to be positive-definite (Zhu and Spall, 2002). Zhu et al. (2020) proposed to utilize the
symmetric indefinite matrix decomposition to reduce the per-iteration FLOPs to O(d2).

Gradient/Hessian averaging It is desirable to average several Ĥk and ĝk values despite the ad-
ditional query cost, especially in high-noise environment.

Blocking We may enforce to set θ̂k+1 = θ̂k if the evaluation of the noisy evaluation at θ̂k+1 is
substantially higher than that at θ̂k by a user-specified constant.

2.4. Notation Conventions

Matrix and vector operations Let A ∈ Rd×d be a matrix and x ∈ Rd be a vector. ‖x‖ returns
the Euclidean norm of x, and ‖A‖ returns the spectral norm of A. If all eigenvalues of A are
real, λmin(A) returns its smallest eigenvalue. A � 0(A � 0) means A is symmetric and positive
definite (semi-definite).

Probability Let Fk represents the history10 of the process (2). If θ̂0 is random, F0 is spanned by
θ̂0; if otherwise, F0 is trivial. Note that θ̂k+1 is a random variable that depends on the filtration Fk

generated by the recursive algorithm (2) before θ̂k+1 is realized. Let Ek(·) denote the conditional
expectation E[ · | Fk]. “Independent and identically distributed” is abbreviated as i.i.d. “Infinitely
often” is abbreviated as i.o. “Almost surely” is abbreviated as a.s. The equality of two random
variables almost surely may be written as equality for clarity.

10. The precise definition for the filtrationFk may vary, depending on the estimator forms (11–12) and the corresponding
ZO queries.
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Miscellaneous The binary operator ⊗ denotes the Kronecker product. In addition to g(θ) ≡
∇f(θ) ∈ Rd×1 and H(θ) ≡ ∇2f(θ) ∈ Rd×d, we also let ∇3f(θ) ∈ R1×d3 (as a row vector) be
the third-order derivative of the loss function f(·).

3. Convergence Theory

For clarity and for the reason explained in Remarks 4–5, we analyze ĝk in (11c) (using two ZO
queries) and Ĥk as (12d) using three ZO queries subsequently.

3.1. Model Assumptions

We present conditions under which θ̂k → θ∗ and Hk → H(θ∗) almost surely as k → ∞. Write
the “conditioned” gradient estimate as gk ≡ [pk(Hk)]−1g(θ̂k).

Assumption A.1 (Conditions on f(·)) The loss function f(·) : Rd 7→ R is thrice continuous
differentiable, and∇3f(·) is L3-Lipschitz continuous11 and bounded.

Assumption A.2 (Noisy ZO Queries) For the gradient-estimator (11c), assumeE[ε+k − ε
−
k

∣∣ θ̂k,uk] =

0 and E[ (ε+k − ε
−
k )2
∣∣ θ̂k,uk] is uniformly bounded for all k. For the Hessian-estimator (12d), as-

sume E[ε+k + ε−k − 2εk
∣∣ θ̂k,uk] = 0 and E[ (ε+k + ε−k − 2εk)2

∣∣ θ̂k,uk] is uniformly bounded for
all k.

Assumption A.3 (Random Perturbation) uk
i.i.d.∼ N(0, I) and uk is independent of Fk. More-

over, both E{[f(θ̂k ± ckuk)]2} and E{[f(θ̂k)]2} are uniformly bounded.

Assumption A.4 (Stepsizes) The positive stepsizes satisfy ak, wk, ck
k→∞−→ 0,

∑
k ak =∞,

∑
k(ak/ck)2 <

∞, and
∑

k (wk/c2k)2 <∞.

Assumption A.5 lim supk→∞ ‖θ̂k‖ <∞ a.s. Moreover, for any ρ > 0 and for all i ∈ {1, · · · , d},

P (Ek i.o.) = 0 where the event Ek ≡
{

sign(gk,i) 6= sign(gi(θ̂k)) and |(θ̂k)i − (θ∗)i| ≥ ρ
}
.

(13)

Assumption A.6 (Sufficient Curvature) For each k and for all θ, there exists a C > 0 such that
(θ̂k − θ∗)Tgk ≥ C‖θ̂k − θ∗‖.

Assumption A.7 (Conditions for pk(·)) c2k[pk(Hk)]−1 → 0 almost surely as k → ∞. For some
δ > 0, E[‖(pk(Ĥk))−1‖2+δ] is bounded uniformly for all k. ‖pk(Hk)−Hk‖ → 0 almost surely
as k →∞.

11. It means that ‖∇3f(θ)−∇3f(ζ)‖ ≤ L3‖θ− ζ‖, where the third-order derivative∇3f(·) and the Euclidean norm
‖ · ‖ were defined in Subsection 2.4.
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Comments on assumptions A.2–A.3 are standard in SA algorithms.
∑

k w
2
kc
−4
k < ∞ in A.4

is to ensure the bounded variance of the Hessian estimator. Kushner and Clark (2012, pp. 40–
41) explains why “lim supk→∞ ‖θ̂k‖ < ∞ a.s.” in A.5 is not a stringent condition and could be
expected to hold in most applications. Condition (13) in A.5 ensures that θ̂k cannot be bouncing
around to cause the signs of the conditioned gradient elements to be changing infinitely often when
θ̂k is strictly bounded away from θ∗. A.1 and A.6 ensure the smoothness12 and steepness of f(·).
Note that experimenter has full control over the stepsize and the mapping, A.4 and A.7 can be met
easily.

3.2. Asymptotic Unbiasedness

Let us leverage Lemma 1 to construct an asymptotically unbiased gradient and Hessian estimators.
This is instrumental in establishing convergence and achieving optimal convergence rate later on.

Lemma 2 (Bias/Variance in Gradient Estimate) Under A.1–A.3, the gradient estimators (11)
satisfy Ek(ĝk)

a.s.
= g(θ̂k) + O(c2k). Furthermore, Ek(‖ĝk‖2)

a.s.
= O(c−2k ).

Remark 4 Despite Lemma 2 applies to all three estimators in (11), it is recommended to use (11c)
over (11a–11b). The rationale behind it is discussed in Appendix A.

Lemma 3 (Bias/Variance in Hessian Estimate) Under A.1–A.3, the Hessian estimator (12) sat-
isfy Ek(Ĥk)

a.s.
= H(θ̂k) + O(c2k) and Ek(‖Ĥk‖2)

a.s.
= O(c−4k ).

Remark 5 For the same reason in Remark 4, it is recommended to use (12d) over (12a–12c).

3.3. Almost Sure Convergence

With the gain sequence properly weighting the bias and variance in the gradient and Hessian esti-
mators, we can establish the almost surely convergence θ̂k

a.s.−→ θ∗ as k →∞.

Theorem 1 (Strong Convergence of Parameter) Under A.1–A.7, θ̂k → θ∗ a.s. as k →∞.

Theorem 2 (Strong Convergence of Hessian) Under A.1–A.7, Hk → H(θ∗) a.s. as k → ∞,
where Hk is governed by (10b) and Ĥk is computed per (12d).

3.4. Rate of Convergence

Let us find the convergence rate here. We enforce the form of the stepsizes: ak = a/(k+1)α, ck =
c/(k+1)γ, and wk satisfies A.4. Let τ ≡ α− 2γ and τ+ ≡ τ · I{α=1}

Theorem 3 (Asymptotic Normality) Assume A.1–A.7 hold. Pick a > τ+/[2λmin{H(θ∗)}] and α ≤
6γ, we have

k
τ/2(θ̂k − θ∗)

dist.−→ N(µ,Λ) , (14)

12. Note that 2SPSA requires four-times continuously differentiable with bounded fourth-order derivatives. We change
it to thrice continuously differentiable with Lipschitz-continuous third-order derivatives.
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where 
µ =

ac2

3τ+ − 6a
[H(θ∗)]−1E[f (3)(θ∗)(u⊗ u⊗ u)u] , (15a)

Λ =
a2Var[F (θ∗,ω)]

2c2(2a− τ+)
[H(θ∗)]−2 , (15b)

with u ∼ N(0, I).

Remark 6 Note that when ω ∼ P is drawn i.i.d. from Ω, we have E[ (ε+k − ε
−
k )2
∣∣ θ̂k,uk] →

2Var[F (θ∗,ω)] a.s., where the variance is taken over ω ∈ Ω. This is due to θ̂k
a.s.−→ θ∗ shown in

Theorem 1 and ck → 0 assumed in A.4.

Remark 7 Although the possible fastest rate remains to be O(k−1/3) for ak = O(k−1), ck =
O(k−1/6), and wk such that

∑
k w

2
kc
−4
k < ∞, (12d) only requires three ZO queries to form one

single Hessian estimate whereas 2SPSA requires four ZO queries. Moreover, (12d) only requires
generating one perturbation uk (via Monte Carlo) and differencing stepsize ck (which requires
hyper-parameter tuning), while 2SPSA requires two statistically independent perturbations and
two differencing stepsizes (Zhu and Spall, 2020).

3.5. Comparison with 2SPSA

We can now explain Sect. 1.4 in more details. Specifically, 2SPSA for per-iteration Hessian esti-
mate requires sampling two random perturbations ∆k and ∆̃k (commonly each component of the
random perturbations are i.i.d. Rademacher distributed) and tuning two perturbation magnitudes ck
and c̃k. It has the following form:{

Ĥk ← (2ck c̃k)−1(F+,+
k − F−,+k + F−k − F+

k )(∆̃−1k ∆−T

k ) ,

Ĥk ← 1/2(Ĥk + ĤT
k ) , for symmetrization ,

(16)

where F±k = F (θ̂k ± ck∆k,ω
±
k ) and F±,+k = F (θ̂k ± ck∆k + c̃k∆̃k,ω

±,+
k ), ∆−1 indicates

component-wise inverse13. Comparing (16) and (12d) side-by-side, we shall see the bullet-point
comparison in Sect. 1.4, which is further summarized in Table 1. Note that the bias and variance

Optimal Rate* Queries Injected Randomness Hyper-para Weighting wk

2SPSA
O(k−1/3)

4 Rademacher ∆k, ∆̃k ck, c̃k 1/k+1

Algo 1 3 Standard MVN uk ck
∑

k w
2
kc
−4
k <∞

Table 1: Comparison between 2SPSA and Algorithm 1. * explained: the convergence rate in
2SPSA requires “four-times continuously differentiable with bounded fourth-order derivatives”,
while Algorithm 1 requires “thrice continuously differentiable with Lipschitz-continuous third-
order derivatives.”

for the gradient/Hessian estimates for 2SPSA requires the bound of the fourth-order derivative,

13. Spall (2000) requires that both ∆k and ∆̃k have bounded inverse-second-moment. For Rademacher distributed
random perturbation, component-wise inverse is well-defined as every component has zero probability of being zero.
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while those in Lemma 2/3 requires the Lipschitz continuity constant of the third-order derivatives.
Moreover, the fourth-order continuity in 2SPSA cannot be relaxed, as it is required in Taylor-
expansion derivation.

To further dissect the big-O optimal rate in Table 1, we interpret Theorem 3 following Zhu
(2020b, Sect. 3): limk→∞[E(‖θ̂k − θ∗‖2)]1/2 = k−τ/2

[
‖µ‖2 + tr(Λ)

]
. The estimates gener-

ated by 2SPSA similarly satisfies kτ/2(θ̂2SPSA
k − θ∗)

dist.−→ N(µ2SPSA,Λ2SPSA), where ∆ and
Λ2SPSA coincides with (15b). Let each component of ∆ be i.i.d. Rademacher distributed, then
µ2SPSA = ac2/(3τ+−6a)[H(θ∗)]−1E[f (3)(θ∗) (∆⊗∆⊗∆) ∆−1]. Unfortunately, it is difficult
to make a concrete comparison between µ in (15b) and µ2SPSA, as it depends on the third-order
derivative of the underlying unknown loss function f(·).

4. Numerical Experiment

To support that Stein’s identity helps reducing the per-iteration ZO-queries, this section provides
one synthetic illustration and one real-data example.

4.1. Skewed-Quartic Function

This section compares Algorithm 1 with the counterpart 2SPSA. The loss function here is the
skew-quartic function

f(θ) = θTATAθ + 0.1
d∑

i=1

(Aθ)3i + 0.01
d∑

i=1

(Aθ)4i ,

where (·)i is the ith component of the argument vector, and A is such that dA is an upper-triangular
matrix of all ones. The additive noise in F (·) is independent N(0, 0.1), i.e., F (θ,ω) = f(θ) +
ε(ω), where ε(ω) ∼ N(0, 0.1). Though H(θ) � 5/4ATA, the Hessian function is ill-conditioned.

We use d = 20 and initialize θ̂0 within [−5, 5]d. Both algorithms are run with iteration K =
10000 with 50 replicates (i.e., all the performance will be averaged over 50 replicates). We use
ck = 1/(k+1)0.101 and ak = 1/(k+1+A)0.602 and A equals 10% of the total iteration number K for
both (10) and 2SPSA. For fair comparison, we use wk = 1/k+1 for both methods. During the
implementation, both algorithms use exactly twelve14 ZO queries per iteration, so that the query
complexity aligns with the iteration complexity. We see from Figure 1 that Algorithm 1 is more
query-efficient than 2SPSA, in terms of the attainable accuracy using the same ZO queries.

4.2. Black-Box Binary Classification

We now apply both 2SPSA and the proposed algorithm to solve the black-box binary classification
task Huang et al. (2020). The dataset PHISHING has I = 11055 samples (xi, yi)1≤i≤I , where the
features xi are 68-dimensional, and yi ∈ {−1, 1}. Consider the following nonconvex corr-entropy
induced loss

f(θ) =
1

I

I∑
i=1

κ2

2

{
1− exp

[
−(yi − xT

i θ)2

κ2

]}
, (17)

14. Using twelve queries, four Ĥk can be produced for Algorithm 1, and three Ĥk can be produced for 2SPSA.
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Figure 1: Performance of Algorithm 1 and 2SPSA in terms of normalized distance
[f(θ̂k)−f(θ∗)]/[f(θ̂0)−f(θ∗)] average across 50 independent replicates. Both algorithms use twelve
ZO queries per iteration, so query complexity aligns with iteration complexity. The underlying
loss function is the skew-quartic function with d = 20, and the noisy observation is corrupted by
N(0, 0.1) noise.

where θ is 68-dimensional, and the κ is some penalty parameter. Note that f(θ) = 0 when all
samples are correctly classified. The noisy observation F (θ,ω) is

F (θ,ω) =
1

J

J∑
j=1

κ2

2

{
1− exp

[
−

(yij(ω) − xT

ij(ω)θ)2

κ2

]}
, (18)

for J ≤ I , and the J indexes {i1(ω), · · · , iJ(ω)} are i.i.d. uniformly drawn from {1, · · · , I}
(without replacement as discussed in Sect. 1.2).

Consider (17) with penalty parameter κ = 10 and (18) with mini-batch size J = 10. Both
2SPSA and Algorithm 1 are initialized at a 68-dimensional vector of all ones. The ZO-query per
iteration for both algorithm is twelve15, so the query complexity aligns with the iteration complex-
ity. We perform 25 independent replicates, each with K = 5000 iterations. Figure 2 shows the
convergence of the two algorithms on the black-box binary classification problem. We see that Al-
gorithm 1 is more query-efficient than 2SPSA in terms of the attainable accuracy using the same
ZO queries.

5. Summary and Concluding Remarks

This work proposes (1) in solving the minimization problem when noisy ZO oracle is available. The
key improvement from (12d) to 2SPSA is the reduced per-iteration ZO query number. Besides, ours
and 2SPSA differ in the number of functions sampled, the sampling scheme for random perturba-
tions, and the way in which the gradient/Hessian approximations are derived, as summarized in
Sect. 1.4 and revisited in Sect. 3.5.

15. With 12 queries, 2SPSA can construct the average of three Hessian estimators, as each of 2SPSA Hessian estimators
costs 4 ZO-queries. Similarly, Algorithm 1 can construct the average of four Hessian estimators, each of which costs
3 queries.
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Figure 2: Performance of Algorithm 1 and 2SPSA in terms of the true loss function f(θ̂k) average
across 25 independent replicates. Both algorithms use twelve ZO queries per iteration, so query
complexity aligns with iteration complexity. A zero loss function is equivalent to 100% classifica-
tion correctness.

Several potential future work includes (i) extension to scenarios where unbiased direct mea-
surements of g(θ) are available; (ii) extension for possible distribution for u, e.g., other continuous
distributions per Remark 2 and discrete distributions per Remark 3; and (iii) leveraging importance
sampling techniques in Monte Carlo sampling our estimators once the distribution for perturbation
u is revealed.
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Appendix A. Supplementary Proofs

Proof [Proof for Lemma 1]

i) Let us discuss the general setting where the underlying loss function f(·) convolutes with a
Gaussian distribution with a symmetric positive-definite covariance matrix Σ � 0:

f(θ|Σ) ≡
∫
Rd

f(ζ)ϕ(ζ|θ,Σ)dζ , (19)

where ϕ(ζ|θ,Σ) ≡ [(2π)d |Σ|]−1/2 exp
[
−1/2(ζ− θ)TΣ−1(ζ− θ)

]
is the probability den-

sity function of the multivariate normal distribution N(θ,Σ). By Leibniz’s rule,{
∇f(θ|Σ) =

∫
Rd Σ−1(ζ− θ)ϕ(ζ|θ,Σ)f(ζ)dζ ,

∇2f(θ|Σ) =
∫
Rd

[
Σ−1 (ζ− θ) (ζ− θ)T Σ−1 −Σ−1

]
ϕ(ζ|θ,Σ)f(ζ)dζ .

(20)

We can rewrite (19–20) compactly as follows:
f(θ|Σ) = E [f(θ + Cu)] ,

∇f(θ|Σ) = E
[
C−1uf(θ + Cu)

]
,

∇2f(θ|Σ) = E
{

[C−1 (uuT − I)C−1]f(θ + Cu)
}
,

(21)

where the expectation is taken with respect to the random variable u ∼ N(0, I) and C is a
symmetric matrix16 such that Σ = C2. Recall that fc(θ) = Eu∼N(0,I) [f(θ + cu)]. Letting
C = cI (equivalently Σ = c2I) in (21) gives (5–6), which is a special case of Proposition 1.

ii) (7) can be obtained using E(u) = 0 and ∇fc(θ) = −E
[
c−1uf(θ− cu)

]
. (8) can be

obtained using E(uuT ) = I and ∇2fc(θ) = E
[
c−2 (uuT − I) f(θ− cu)

]
.

iii) (9) can be directly derived from (8).

16. Suppose Σ has eigen-decomposition form as UDUT for some unitary matrix U and diagonal matrix D, then
C = U

√
DUT is symmetric and satisfies Σ = C2.
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Proof [Proof of Lemma 2]

• Bias for (11c)

Ek(ĝk)
(11c)
= (2ck)−1Ek

{
[f(θ̂k + ckuk) + ε+k − f(θ̂k − ckuk)− ε−k ]uk

}
a.s.
= (2ck)−1

(
Ek{[f(θ̂k + ckuk)− f(θ̂k − ckuk)]uk}+Ek[ukE(ε+k − ε

−
k

∣∣ θ̂k,uk)]
)
(22)

a.s.
= (2ck)−1Ek

(
E

{
[f(θ̂k + ckuk)− f(θ̂k − ck)]uk

∣∣∣ θ̂k

})
(23)

a.s.
= ∇fck(θ̂k) , (24)

where (22) is due to Chung (2001, Thm. 9.1.3 on p. 315), (23) is valid given A.2, and (24) is
due to (7b). When A.1 holds, we have |f(ζ)−f(θ)−(ζ−θ)Tg(θ)−2−1(ζ−θ)TH(θ)(ζ−
θ)| = O(‖ζ− θ‖3) by Taylor expansion. Moreover,

2c[∇fc(θ)− g(θ)]
(7b)
= Eu{[f(θ + cu)− f(θ− cu)]u} − 2cg(θ)

= E
{

[f(θ + cu)− f(θ)− cuTg(θ)− 2−1c2uTH(θ)u]u
}

−E
{

[f(θ− cu)− f(θ) + cuTg(θ)− 2−1c2uTH(θ)u]u
}
,
(25)

where (25) uses Eu[uTg(θ)u] = g(θ) for u ∼ N(0, I) per A.3. Using the triangle inequal-
ity and the higher-moments for multivariate chi-squared distribution, we have

‖∇fc(θ)− g(θ)‖ ≤ c2O(1)

6
Eu(‖u‖5) = c2 ×O(d

5/2) .

Combining above with (24), we have Ek(ĝk)
a.s.
= g(θ̂k) + O(c2k) for (11c).

• Bias for (11b) Similarly, Ek(ĝk)
a.s.
= ∇fck(θ̂k) for estimator (11b) thanks to (7a). Moreover,

c[∇fc(θ)− g(θ)]
(7a)
= Eu{[f(θ + cu)− f(θ)]u} − cg(θ)

= E
{

[f(θ + cu)− f(θ)− cuTg(θ)− 2−1c2uTH(θ)u]u
}
, (26)

where (26) uses Eu[uTg(θ)u] = g(θ) and Eu{[uTH(θ)u]u} = 0 for u ∼ N(0, I). For
estimator (11b), Ek(ĝk)

a.s.
= g(θ̂k) + O(c2k) can be similarly derived.

• Bias for (11a) Still, Ek(ĝk)
a.s.
= ∇fck(θ̂k) for estimator (11a) thanks to (5). Moreover,

c[∇fc(θ)− g(θ)]
(5)
= Eu{f(θ + cu)u} − cg(θ)

= E
{

[f(θ + cu)− f(θ)− cuTg(θ)− 2−1c2uTH(θ)u]u
}
, (27)

where (27) uses Eu[f(θ)u] = 0, Eu[uTg(θ)u] = g(θ), and Eu{[uTH(θ)u]u} = 0.
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The dominant contributor to the asymptotic variance of each element in ĝk is the O(c−1k ) times
the noise term, leading to a variance that is asymptotically proportional to c−2k with constant of
proportionality independent of k because Var(ε+k − ε

−
k ) is asymptotically constant in k assumed in

A.2. Furthermore, each elements at an arbitrary position in the O(c−1k ) vector, as derived from (11),
are uncorrelated across k by the independence assumptions on {uk}. Consequently, Ek(‖ĝk‖2)

a.s.
=

O(c−2k ).

Proof [Proof of Lemma 3] When A.2 and A.3 hold, we haveEk(Ĥk)
a.s.
= ∇2fck(θ̂k) for estimator

(12d) following the proof of Lemma 2. When A.1 holds, i.e., ‖∇3f(θ)−∇3f(ζ)‖ ≤ L3‖θ− ζ‖,
by mean-value theorem we have |f(ζ) − f(θ) − (ζ − θ)Tg(θ) − 2−1(ζ − θ)TH(θ)(ζ − θ) −
6−1∇3f(θ) [(ζ− θ)⊗ (ζ− θ)⊗ (ζ− θ)] | ≤ 24−1L3‖ζ− θ‖4. Moreover,

2c2[∇2fc(θ)−H(θ)]

= Eu {[f(θ + cu) + f(θ− cu)− 2f(θ)] (uuT − I)} − 2c2H(θ)

= E
{[
f(θ + cu)− f(θ)− cuTg(θ)− 2−1c2uTH(θ)u− 6−1c3∇3f(θ) (u⊗ u⊗ u)

]
(uuT − I)

}
+E

{[
f(θ− cu)− f(θ) + cuTg(θ)− 2−1c2uTH(θ)u + 6−1c3∇3f(θ) (u⊗ u⊗ u)

]
(uuT − I)

}
,

(28)

where (28) uses Eu [uTg(θ)× (uuT − I)] = 0, Eu

[
2−1uTH(θ)u× (uuT − I)

]
= H(θ),

and Eu

[
∇3f(θ) (u⊗ u⊗ u)× (uuT − I)

]
= 0 when u follows A.3. Combined with triangle

inequality and the higher-moments for multivariate chi-squared distribution, we have

‖∇2fc(θ)−H(θ)‖ ≤ c2L3

24
Eu

(
‖u‖4‖uuT − I‖

)
=

L3

24
c2 ×O(d

7/2) .

Therefore, Ek(Ĥk)
a.s.
= H(θ̂k) + O(c2k) for (12d). We can similarly derive Ek(Ĥk)

a.s.
= H(θ̂k) +

O(c2k) for the other three estimators (12a–12c).
The dominant contributor to the asymptotic variance of each element in Ĥk is the O(c−2k ) times

the noise term, leading to a variance that is asymptotically proportional to c−4k with constant of
proportionality independent of k because Var(ε+k + ε−k − 2εk) is asymptotically constant in k and
because of A.2. Furthermore, each elements at an arbitrary position in the O(c−2k ) matrix, as derived
from (12), are uncorrelated across k by the independence assumptions on {uk}. Consequently,
Ek(‖Ĥk‖2)

a.s.
= O(c−4k ).

Proof [Proof of Thm. 1] From Lemma 2, we have Ek(ĝk) = g(θ̂k) + βk with c−2k ‖βk‖ being
uniformly bounded for sufficiently large k. The rest follows from Spall (2000, Thm. 1a). Note that
the proof for Spall (2000, Thm. 1a) does not assume any particular form of the Hessian estimate; it
only requires A.7 and the result in Lemmas 2–3.

Proof [Proof of Thm. 2] The proof proceeds similarly as Zhu (2020a, Appendix A). Let Wk ≡
Ĥk − Ek(Ĥk), which satisfies EWk = 0 for all k. Thanks to Lemma 3, E(c4k‖Ĥk‖2) < ∞
uniformly for all k. When A.4 holds, we have

∑
k

(
E‖wkWk‖2

)
<∞. By martingale convergence

theorem, we have
∑

k wkWk → 0 a.s. Now that Lemma 3 gives Ek(Ĥk) = H(θ̂k) + O(c2k),
we have

∑
k[wkEk(Ĥk)] =

∑
k{wk[H(θ̂k) + O(c2k)]} → H(θ∗) a.s., using A.1 (Hessian is

continuous around θ̂k), Theorem 1 (θ̂k converges a.s. to θ∗), and A.4 (wkc
2
k → 0).
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Proof [Proof of Thm. 3] The proof can be derived following the proofs of the general result Zhu
(2020b, Thm.3) after specifying the conditioner and the distribution for the perturbation. We skip
the sketch here as it involves quite a few notations not introduced here.
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