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Abstract

Minimax optimization has been central in
addressing various applications in machine
learning, game theory, and control theory.
Prior literature has thus far mainly focused
on studying such problems in the continuous
domain, e.g., convex-concave minimax opti-
mization is now understood to a significant
extent. Nevertheless, minimax problems ex-
tend far beyond the continuous domain to
mixed continuous-discrete domains or even
fully discrete domains. In this paper, we study
mixed continuous-discrete minimax problems
where the minimization is over a continuous
variable belonging to Euclidean space and
the maximization is over subsets of a given
ground set. We introduce the class of convex-
submodular minimax problems, where the
objective is convex with respect to the contin-
uous variable and submodular with respect to
the discrete variable. Even though such prob-
lems appear frequently in machine learning
applications, little is known about how to ad-
dress them from algorithmic and theoretical
perspectives. For such problems, we first show
that obtaining saddle points are hard up to
any approximation, and thus introduce new
notions of (near-) optimality. We then pro-
vide several algorithmic procedures for solving
convex and monotone-submodular minimax
problems and characterize their convergence
rates, computational complexity, and quality
of the final solution according to our notions
of optimally. Our proposed algorithms are it-
erative and combine tools from both discrete
and continuous optimization. Finally, we pro-
vide numerical experiments to showcase the
effectiveness of our purposed methods.
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1 INTRODUCTION

The problem of solving a minimax optimization prob-
lem, also known as the saddle point problem, appears
in many domains such as robust optimization (Ben-Tal
et al., 2009), game theory (Osborne and Rubinstein,
1994), and robust control (Zhou and Doyle, 1998; Hast
et al., 2013). It has also recently attracted a lot of at-
tention in the machine learning community due to the
rise of generative adversarial networks (GANs) (Good-
fellow et al., 2014) and robust learning (Bertsimas et al.,
2011; Lanckriet et al., 2002; Li et al., 2019). There has
been an extensive literature on the design of convergent
methods for solving minimax problems for the case that
both minimization and maximization variables belong
to continuous domains (Tseng, 1995; Nesterov, 2007; Li
and Lin, 2015; Ouyang and Xu, 2019; Thekumparampil
et al., 2019; Zhao, 2019; Hamedani and Aybat, 2018;
Alkousa et al., 2019; Daskalakis et al., 2017; Ibrahim
et al., 2020; Nouiehed et al., 2019; Mokhtari et al.,
2020a; Lin et al., 2020a; Murty and Kabadi, 1985).
In particular, for the case that the loss function is
(strongly) convex with respect to the minimization
variable and (strongly) concave with respect to maxi-
mization variable several efficient algorithms have been
studied (Nesterov, 2007; Li and Lin, 2015; Mokhtari
et al., 2020b), including the extra-gradient method (Ko-
rpelevich, 1976; Nemirovski, 2004) that is known to be
optimal for this setting. However, all these methods
suffer from two major limitations: (i) they are provably
convergent only in convex-concave settings; (ii) they are
designed for the settings that both minimization and
maximization variables belong to continuous domains.

There has been some effort to address the first limi-
tation by finding a first-order stationary point or lo-
cally stable point for the problems that are not convex-
concave (Lin et al., 2020b; Diakonikolas et al., 2021;
Yang et al., 2020; Sanjabi et al., 2018). However, these
approaches fail to guarantee any global optimality as
it is known that finding a saddle point in a general
nonconvex-nonconcave setting is NP-hard (Jin et al.,
2020). Nonetheless, it might be possible to achieve
global approximation guarantees for structured sad-
dle minimax problems. Addressing the second limita-
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tions and developing methods for discrete-continuous
domains or fully discrete domains requires exploiting
tools from discrete optimization. Several recent works
have considered applications involving specific discrete-
continuous minimax problems and proposed structure-
informed algorithms (Zhou and Bilmes, 2018). However,
to our knowledge, there is no work that provides a prin-
cipled algorithmic or theoretical framework to study
minimax problems with mixed discrete-continuous com-
ponents and it is not even clear if such problems allow
for tractable solutions with global guarantees.

In this paper, we tackle these two issues and present iter-
ative methods with theoretical guarantees to solve struc-
tured non convex-concave minimax problems, where
the minimization variable is from a continuous do-
main and the maximization variable belongs to a dis-
crete domain. Concretely, for a non-negative function
f : Rd × 2V → R+, consider the minimax problem

OPT , min
x∈X

max
S∈I

f(x, S), (1)

where x belongs to a convex set X ⊂ Rd and S is a
subset of the ground set V with n elements that is
constrained to be inside a matroid I. Given a fixed
S, the function f(·, S) is convex with respect to the
continuous (minimization) variable. Further, given a
fixed x, the function f(x, ·) is submodular with respect
to the discrete (maximization) variable. We refer to
this problem as convex-submodular minimax problem.

The convex-submodular minimax problem in (1) encom-
passes various applications. In Section 4, we describe
specific optimization problems, such as convex-facility-
location, as well as applications such as designing ad-
versarial attacks on recommender systems. There are
various other applications that can be cast into Prob-
lem (1), in particular, when convex models have to
be learned while data points are selected or changed
according to notions of summarization, diversity, and
deletion. Examples include learning under data dele-
tion (Ginart et al., 2019; Neel et al., 2020; Wu et al.,
2020), robust text classification (Lei et al., 2018), mini-
max curriculum learning (Zhou and Bilmes, 2018; Zhou
et al., 2021, 2020; Soviany et al., 2021), minimax su-
pervised learning (Farnia and Tse, 2016), and minimax
active learning (Ebrahimi et al., 2020).

1.1 Our Contributions

In this paper, we provide a principled study of the prob-
lem defined in (1), from both theoretical and algorith-
mic perspectives, when f is convex in the minimization
variable and submodular as well as monotone in the
maximization variable1. We introduce efficient itera-

1For completeness, a function g : 2V → R is called
submodular if for any two subsets S, T ⊆ V we have:

tive algorithms for solving this problem and develop
a theoretical framework for analyzing such algorithms
with guarantees on the quality of the resulting solutions
according to the notions of optimality that we define.

Notions of (near-)optimality and hardness re-
sults. For minimax problems, the strongest notion of
optimality is defined through saddle points or their ap-
proximate versions. We first provide a negative result
that shows finding a saddle point or any approximate
version of it (which we term as an (α, ε)-saddle point)
is NP-hard for general convex-submodular problems
(Theorem 1). We thus introduce a slightly weaker
notion of optimality that we call (α, ε)-approximate
minimax solutions for Problem (1). Roughly speaking,
the quality of the minimax objective at such solutions is
at most 1

α (OPT + ε), and hence they are near-optimal
when α < 1. We show in Theorem 2 that obtaining
such solutions for α > 1 − 1/e is NP-hard. This is
a non-trivial result that does not readily follow from
known hardness results in submodular maximization.
Consequently, we focus on efficiently finding solutions
in the regime of α ≤ (1−1/e). We present several algo-
rithms that achieve this goal and theoretically analyze
their complexity and quality of their solution.

Algorithms with guarantees on convergence
rate, complexity, and solution quality. Our pro-
posed algorithms are as follows (see also Table 1):
(i) Greedy-based methods. We first present Gradient-
Greedy (GG), a method alternating between gradient
descent for minimization and greedy for maximization.
We further introduce Extra-Gradient-Greedy (EGG)
that uses an extra-gradient step instead of gradient
step for the minimization variable. We prove that
both algorithms achieve a ((1 − 1/e), ε)-approximate
minimax solution after O(1/ε2) iterations when I is
a cardinality constraint. Importantly, EGG does not
require the bounded gradient norm condition as op-
posed to GG. Our results for the case that I is a
matroid constraint (see Table 1) are provided in the
supplementary material. (ii) Replacement greedy-based
methods. The greedy-based methods require O(nk)
function computations at each iteration. To improve
this complexity, we present alternating methods that
use replacement greedy for the maximization part to
reduce the cost of each iteration to O(n). The Gradi-
ent Replacement-Greedy (GRG) algorithm achieves a
(1/2, ε)-approximate minimax solution after O(1/ε2)
iterations and Extra-Gradient Replacement-Greedy
(EGRG) achieves a (1/2, ε)-approximate minimax solu-
tion after O(1/ε2), when I is a cardinality constraint.
(iii) Continuous extension-based methods. Note that
all mentioned methods achieve a convergence rate of

g(S ∩ T ) + g(S ∪ T ) ≤ g(S) + g(T ). Moreover, g is called
monotone if for any S ⊆ T we have g(S) ≤ g(T ).
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Table 1: Algorithms performance guarantee. Here cf is the cost of single computation of f , cPx and cPy are cost
of projection in X and Y, c∇xf is the cost of computing gradient of f with respect to x, and c∇xF and c∇yF

are the cost of computing gradient of multilinear extension F with respect to x and y, respectively. k is the
cardinality constraint (|S| ≤ k) and n is size of the ground set |V | = n.

Alg. Number of
iterations

Approx.
ratio

Cost per iteration Cardinality
const.

Matroid
const.

Unbounded
gradient

GG O(1/ε2) 1− 1/e nk.cf + c∇xf+cPx
X × ×

GG O(1/ε2) 1/2 nk.cf + c∇xf+cPx
× X ×

GRG O(1/ε2) 1/2 (n+ k)cf + c∇xf+cPx
X × ×

EGG O(1/ε2) 1− 1/e 2nk.cf + 2c∇xf+2cPx
X × X

EGG O(1/ε2) 1/2 2nk.cf + 2c∇xf+2cPx
X X X

EGRG O(1/ε2) 1/2 2(n+ k)cf + 2c∇xf+2cPx
X × ×

EGCE O(1/ε) 1/2 2c∇xF+2c∇yF+2cPx+2cPy
X X X

O(1/ε2). To improve this convergence rate, we further
introduce the extra-gradient on continuous extension
(EGCE) method that runs extra-gradient update on
the continuous extension of the submodular function.
We show that EGCE is able to achieve an (1/2, ε)-
approximate minimax solution after at most O(1/ε)
iterations, when I is a general matroid constraint.

1.2 Related Work

Several recent works have considered specific appli-
cations that require solving Problem (1) when f is
nonconvex-submodular (Zhou and Bilmes, 2018; Lei
et al., 2018; Mirzasoleiman et al., 2020). Zhou and
Bilmes (2018) consider the problem of minimax cur-
riculum learning which is a special case of minimax
strongly convex-submodular optimization, and propose
an algorithm similar to gradient-greedy (GG). They
provide an upper bound on the distance between their
obtained solution and the optimal solution when f is
strongly convex in x and monotone-submodular in S
with non-zero curvature. Moreover, Lei et al. (2018)
study designing an adversarial attack in text classifi-
cation and show that for some specific neural network
structures, the task of designing an adversarial attack
can be formulated as submodular maximization, lead-
ing to a minimax nonconvex-submodular problem. An
algorithm similar to gradient-greedy is then proposed
by Lei et al. (2018) for designing attacks and it has
led to successful experimental results. In contrast, this
paper is the first to introduce a principled study of
Problem (1) for general functions f with newly devel-
oped notions of optimality, algorithmic frameworks,
and theoretical guarantees.

Another line of work is the literature on differentiable
submodular maximization (Tschiatschek et al., 2018;
Wilder et al., 2019; Sakaue, 2021) in which the goal is
to find a smooth maximization oracle for submodular
maximization to compute the gradient of the objec-
tive function. Another related work is "Submodular+

Concave"(Mitra et al., 2021) in which authors studied
the problems that can be written as a summation of
submodular and concave function. Both of these works
consider fundamentally different problems from our
setting.

Another relevant line of work is the literature on ro-
bust submodular optimization (Krause et al., 2008;
Bogunovic et al., 2017b; Mirzasoleiman et al., 2017;
Kazemi et al., 2018; Bogunovic et al., 2018; Iyer, 2021;
Orlin et al., 2018; Chen et al., 2017; Anari et al., 2019;
Wilder, 2018; Bogunovic et al., 2017a; Mitrović et al.,
2017). This setting corresponds to solving a max-min
optimization problem which involves only discrete vari-
ables, and hence, it is different from our setting with
fundamentally different methods. For such problems,
finding discrete solutions with any approximation fac-
tor is NP-hard; and consequently, the literature has
mostly focused on obtaining solutions that satisfy a
bi-criteria approximation guarantee. Another related
work is distributionally robust submodular maximiza-
tion in (Staib et al., 2019) which is a special case of
max-min version of Problem (1). In this setting, the
inner minimization has a special structure that allows
for a closed form solution, and hence, the problem can
be solved by using appropriate techniques from con-
tinuous submodular optimization. We will derive the
implication of our results on the max-min version of
Problem (1) in the supplementary material.

2 CONVEX-SUBMODULAR
MINIMAX OPTIMIZATION

For the minimax problem in (1), a natural goal is to
find a so-called saddle point. Next, we formally define
the notion of saddle point for Problem (1).
Definition 1. A pair (x∗, S∗) is a saddle point of the
function f if the following condition holds:

∀x ∈ X , S ∈ I : f(x∗, S) ≤ f(x∗, S∗) ≤ f(x, S∗) (2)
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Based on this definition, (x∗, S∗) is a saddle point of
Problem (1), if there is no incentive to modify the min-
imization variable x∗ when the maximization variable
is fixed and equal to S∗, and, conversely, there is no
incentive to change the maximization variable from S∗

when the minimization variable is x∗. In other words,
a saddle point can be interpreted as an equilibrium.

There is a rich literature on efficient approaches for
finding an ε-saddle point for convex-concave minimax
optimization, where ε is an arbitrary positive constant
(Thekumparampil et al., 2019). To define an ε-saddle
point, we first need to define the duality gap, which is
given by D(x, S) := φ̄(x)− φ(S), where

φ̄(x):= max
S∈I

f(x, S), φ(S) := min
x∈X

f(x, S).

Considering these definitions, we call a pair of solution
ε-saddle point if their duality gap is at most ε.

Definition 2. A pair (x̄, S̄) is called an ε−saddle point
of f if it satisfies

D(x̄, S̄) = φ̄(x̄)− φ(S̄) ≤ ε (3)

One can verify that if we set ε = 0, then Definitions 1
and 2 coincide, i.e., (x∗, S∗) satisfies (3) for ε = 0 if
and only if (x∗, S∗) satisfies (2). Hence, to derive a
finite time analysis we often aim for finding an ε-saddle
point. For instance, for smooth and convex-concave
problems extra-gradient obtains an ε-saddle point after
O(1/ε) iterations (which is the optimal complexity).

However, for our convex-submodular setting, one can-
not expect to find an ε-saddle point efficiently, as
the special case of finding an ε-accurate solution
for submodular maximization is in general NP-hard
(Nemhauser and Wolsey, 1978; Wolsey, 1982; Krause
and Golovin, 2014). Although solving the problem
of maximizing a monotone submodular function sub-
ject to a matroid constraint is hard, one can find α-
approximate solution of that in polynomial time, i.e.,
finding a solution that its function value is at least
αOPT, where α ∈ (0, 1). Inspired by this observation,
we introduce the notion of (α, ε)-saddle point for our
convex-submodular setting.

Definition 3. A pair (x̂, Ŝ) is called an (α, ε)−saddle
point of f if it satisfies

αφ̄(x̂)− φ(Ŝ) ≤ ε. (4)

Our first result is a negative result that shows even
finding an (α, ε)-saddle point is not tractable.

Theorem 1. Finding (α, ε)-saddle point for Prob-
lem (1) is NP-hard for any α > 0.

While this result shows intractability of finding (ap-
proximate) saddle-points for Problem (1), one avenue

to provide solutions with guaranteed quality is to see
whether we can find solutions that achieve a fraction
of OPT. We thus proceed to introduce the notion of
approximate minimax solution.

Definition 4. We call a point x̂ an (α, ε)-approximate
minimax solution of Problem (1) if it satisfies

αφ̄(x̂) ≤ OPT + ε, (5)

where OPT = minx∈X φ̄(x) = minx∈X maxS∈I f(x, S).

Next, we describe the notion of an (α, ε)-approximate
minimax solution for Problem (1). The minimax prob-
lem in (1) can be interpreted as a sequential game,
where we first select an action x and then an adver-
sary chooses a set S to maximize our loss f(x, S).
In this case, our goal is to find x that minimizes
the loss obtained by the worst possible action by
the adversary, i.e., we aim to minimize the function
φ̄(x̂) := maxS∈I f(x̂, S) over the choice of x̂. Indeed,
finding the exact minimizer is also hard and we should
seek approximate solutions. Hence, our goal is to find
solutions x̂ whose worst-case loss φ̄(x̂) is only a factor
larger than the best possible loss OPT = minx∈X φ̄(x).
That said, by finding an (α, ε)-approximate minimax
solution for Problem (1) we obtain a solution whose
loss is at most (OPT+ ε)/α, where 0<α≤1 and ε > 0.

The task of finding an x̂ that is (α, ε)-approximate
minimax solution is easier than finding a pair (x̃, S̃)
that is an (α, ε)-saddle point, since if the pair (x̃, S̃)
satisfies (4), then x̃ satisfies (5):

αφ̄(x̃)− φ(S̃) ≤ ε ⇒ αφ̄(x̃)−max
S∈I

φ(S) ≤ ε

⇒ αφ̄(x̃)−min
x∈X

φ̄(x) ≤ ε

Hence, the condition in (4) is more strict compared to
(5). In fact, in the next section, we show that unlike
the task of finding an (α, ε)-saddle point of Problem (1)
that is NP-hard for any α ∈ (0, 1], one can find an
(α, ε)-approximate minimax solution of Problem (1) in
poly-time for α ∈ (0, 1− 1/e]. Alas, the problem is still
NP-hard for α ∈ (1− 1/e, 1] as we show in Theorem 2.

Theorem 2. Let α = 1−1/e+γ for a positive constant
γ > 0. If there exists a polynomial time algorithm and
a polynomial time oracle that can achieve an (α, ε)-
approximate solution for any choice of the function
f(x, S) in problem (1), then P = NP.

We emphasize that Theorem 2 does not follow directly
from that fact that submodular maximization beyond
(1− 1/e)-approximation is hard, and hence it is non-
trivial. Indeed, one naive way to argue for the proof of
this theorem (which is incorrect) is to consider functions
f(x, S) whose output does not depend on the variable
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x, i.e. f(x, S) = f(S), and use the hardness results for
submodular optimization. But for such functions any
point x is an optimal solution (with α = 1). Hence,
the proof of the theorem (provided in the appendix)
requires a novel idea beyond trivial consequences of
known results for submodularity.

So far we have shown two results: (i) Finding an approx-
imate (α, ε)-saddle point is hard for α>0. (ii) We in-
troduced the notion of (α, ε)-approximate solution and
showed that for α>1−1/e finding an (α, ε)-approximate
solution is hard. The only missing piece is showing
whether or not it is possible to efficiently find an (α, ε)-
approximate minimax solution when α≤1−1/e. In the
rest of the paper, we provide an affirmative answer to
this question and present methods achieving this goal.

3 ALGORITHMS

In this section, we present a set of algorithms that are
able to find an (α, ε)-approximate minimax solution
of Problem (1). To present these algorithms, we first
present two subroutines that we use in the implemen-
tation of our algorithms2: (i) greedy update and (ii)
replacement greedy update.

Greedy subroutine. In the greedy update, for a fixed
minimization variable x, we select a subset S with k
elements in a greedy fashion, i.e., we sequentially pick k
elements that maximize the marginal gain. Specifically,
if we define ∆ef(x, S) = f(x, S ∪ {e})− f(x, S) as the
marginal gain of element e, in the greedy update, for a
given variable x we perform the update

Si+1 = Si ∪ {arg max ∆ef(x, S)}, (6)

for i = 0, . . . , k−1, where S0 is the empty set. The out-
put of this process is Sk with k elements. We use the
notation Greedy(f, k,x) for the greedy subroutine,
which takes function f , cardinality constraint parame-
ter k, and variable x as inputs, and returns a set S by
performing (6) for k steps.

Replacement greedy subroutine. In the replace-
ment greedy update (Mitrovic et al., 2018; Schrijver,
2003; Stan et al., 2017a), for a given variable x and
set S, the output is an updated set S+ whose func-
tion value at x is larger than the one for S, i.e.,
f(x, S) ≤ f(x, S+). The procedure for finding the
new set S+ is relatively simple. If the size of the input
set S is less than k, we add one more element to the set
S that maximizes the marginal gain and the resulted
set would be S+. In other words, if |S| < k,

S+ = S ∪ {arg max ∆ef(x, S)}. (7)
2For better exposition, we consider the case that I is

k-carnality constraint and refer to Appendix for matroids.

Algorithm 1
Option I: Gradient Greedy (GG)
Option II: Extra-Gradient Greedy (EGG)
Initialize the set S1 to ∅ and variable x1 to zero.
for t = 1 to T do

Option I: xt+1 = πX (xt − γt∇f(xt, St))
St+1 = Greedy(f, k,xt+1)

Option II: x̂t = πX (xt − γt∇f(xt, St))
Ŝt = Greedy(f, k, x̂t)
xt+1 = πX (xt − γt∇f(x̂t, Ŝt))
St+1 = Greedy(f, k,xt+1)

end for
Option I: xsol = (

∑T
t=1 γt)

−1∑T
t=1 γtxt

Option II: xsol = (
∑T
t=1 γt)

−1∑T
t=1 γtx̂t

If the size of the input set S is k, we first remove one
element of the set S that leads to minimum decrease in
the function value (denoted by e∗) and then replace it
with another element of the ground set that maximizes
the marginal gain. Hence, if |S| = k, we have

S+ = (S \ {e∗}) ∪ {arg max ∆ef(x, S \ {e∗})}, (8)

where e∗ = arg maxe∈S{f(x, S \ e)}.

We use the notation RepGreedy(f, k,x, S) for the
replacement greedy subroutine. Note that replacement
greedy is computationally cheaper than greedy, as it
requires only one pass over the ground set, while greedy
requires k passes.

3.1 Greedy-based Algorithms

Next, we present greedy-based methods to find (α, ε)-
approximate minimax solutions for Problem (1).

Gradient Greedy. The first algorithm that we
present is Gradient Greedy (GG), which uses a pro-
jected gradient descent step to update the minimiza-
tion iterate xt at each iteration, i.e., xt+1 = πX (xt −
γt∇f(xt, St)), and then uses a greedy procedure to
update the maximization variable St. This update is
performed in an alternating fashion, where we first use
xt and St to find xt+1 and then we use the updated
variable xt+1 to compute St+1. Note that the final out-
put of this process is a weighted average of all variables
xt that are observed from time t = 1 to t = T , defined
as xsol = (

∑T
t=1 γt)

−1∑T
t=1 γtxt. The steps of GG are

summarized in Algorithm 1 option I.

Next, we show that GG is able to find a (1 − 1/e, ε)-
approximate minimax solution after O(1/ε2) iterations.
To prove this claim we require the following assump-
tions on the objective function f .
Assumption 1. The function f is L-smooth with re-
spect to x, i.e., for any x,x

′ ∈ Rd, S ∈ I, we have
‖∇xf(x, S)−∇xf(x

′
, S)‖ ≤ L‖x− x

′‖.
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Assumption 2. The gradient of function f with re-
spect to x is uniformly bounded by a constant M , i.e.,
for any x ∈ Rd, S ∈ 2V , we have ‖∇xf(x, S)‖ ≤M .
Theorem 3. Consider Gradient Greedy (GG) in Al-
gorithm 1 option I. If f is convex-submodular and
Assumptions 1-2 hold, then the output of this algo-
rithm after O(1/ε2) iterations with step size O(ε), is
a ((1− 1/e), ε)-approximate minimax solution of Prob-
lem (1) .

The smoothness assumption (Assumption 1) is required
to guarantee convergence of gradient-based methods
at the rate of 1/ε2. The bounded gradient assumption
(Assumption 2), however, comes from the fact that even
in convex-concave problems gradient descent-ascent al-
gorithms only converge when the gradient norm is uni-
formly bounded. This issue has been addressed in the
convex-concave setting by the update of extra-gradient
method which converges to a saddle point only under
smoothness assumption. However, this improvement is
not for free and it requires two gradient computations
per update, instead of one. Next, we leverage this tech-
nique to present an alternating method that obtains
the approximation factor and iteration complexity of
GG without requiring Assumption 2.

Extra-gradient greedy. We now present the Extra-
Gradient Greedy (EGG) algorithm, which consists of
two gradient updates as suggested by extra-gradient
and two greedy steps to find the auxiliary set Ŝt and
the updated set St+1. In the extra-gradient method,
we take a preliminary step to find a middle/auxiliary
point and then compute the next iterate using the gra-
dient information of the middle point. If we consider
xt and St as the current iterates, we first run a gra-
dient step to find the auxiliary minimization variable
according to the update x̂t = πX (xt − γt∇f(xt, St))
then we compute the auxiliary set Ŝt by performing
a greedy step based on the auxiliary iterate x̂t, i.e.,
Ŝt = Greedy(f, k, x̂t). Once x̂t and Ŝt are com-
puted, we update the minimization variable xt+1 by
descending towards a gradient evaluated at (x̂t, Ŝt),
i.e., xt+1 = πX (xt−γt∇f(x̂t, Ŝt)). Lastly, we compute
the new set St+1 by running a greedy update based on
the new iterate xt+1, i.e., St+1 = Greedy(f, k,xt+1).
Steps of EGG are outlined in Algorithm 1 (option II).

Next we establish our theoretical result for Extra-
gradient Greedy and show that only under smooth-
ness assumption it finds an (1 − 1/e, ε)-approximate
minimax solution after O(1/ε2) iterations.
Theorem 4. Consider Extra-Gradient Greedy (EGG)
outlined in Algorithm 1 option II. If f is convex-
submodular and Assumption 1 holds, then the output
of this algorithm after O(1/ε2) iterations with step size
O(ε), is a ((1− 1/e), ε)-approximate minimax solution
of Problem (1).

Algorithm 2
Option I:Gradient Replacement-greedy (GRG)
Option II:Extra-gradient Replacement-greedy (EGRG)
Initialize the set S1 to ∅ and variable x1 to zero.
for t = 1 to T do

Option I: xt+1 = πX (xt − γt∇f(xt, St))
St+1 = RepGreedy(f, k,xt+1, St)

Option II: x̂t = πX (xt − γt∇f(xt, St))
Ŝt = RepGreedy(f, k,xt, St)
xt+1 = πX (xt − γt∇f(x̂t, Ŝt))
St+1 = RepGreedy(f, k, x̂t, Ŝt)

end for
Option I: xsol = (

∑T
t=1 γt)

−1∑T
t=1 γtxt

Option II: xsol = (
∑T
t=1 γt)

−1∑T
t=1 γtx̂t

Remark 1. Note that as both GG and EGG are greedy
based methods, they can also be used for the case of
general matroid constraint. However, the approxima-
tion guarantee would be 1/2 instead of 1 − 1/e. The
details are provided in the supplementary material.

3.2 Replacement Greedy-based Methods

As we showed earlier, for the cardinality constraint
problem GG and EGG achieve the optimal approxi-
mation guarantee of 1− 1/e for the minimax problem
in (1). However, they both require running greedy
updates at each iteration which makes their per it-
eration complexity O(nk). To resolve this issue, we
propose the use of replacement-greedy in lieu of greedy
update. This modification reduces the complexity of
each iteration to O(n+ k) at the cost of lowering the
approximation factor.

Gradient replacement-greedy. We first present the
Gradient Replacement-Greedy (GRG) algorithm which
alternates between a gradient update and a replacement
greedy update. As shown in Algorithm 2 option I, the
only difference between GRG and GG algorithms is the
substitution of greedy update with replacement greedy.
Next, we establish the theoretical guarantee of GRG.
Theorem 5. Consider the Gradient Replacement-
Greedy (GRG) algorithm in Algorithm 2 option I. If f
is convex-submodular and Assumptions 1-2 hold, then
the output of this algorithm after O(1/ε2) iterations
with step size O(ε), is a (1/2, ε)-approximate minimax
solution of Problem (1).

Extra-gradient replacement-greedy. The GRG
algorithm requires the bounded gradient assumption
similar to GG. To address this issue, a natural idea is
to exploiting the extra-gradient approach for updating
x and introducing the Extra-gradient Replacement-
greedy (EGRG) algorithm, outlined in Algorithm 2
option II. However, unlike the case of Greedy-based
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methods, here we can not drop the bounded gradient
assumption by exploiting the idea of extra-gradient
update. Next, we elaborate on this issue.

Note that to prove that EGRG finds a (1/2, ε)-
approximate minimax solution we need to find an upper
bound on f(x̂t, S)−2f(x̂t, Ŝt) for every S. To establish
such a bound, we need to relate f(x̂t, Ŝt) to f(xt, Ŝt)
which requires the function f to be Lipschitz with re-
spect to x, which is equivalent to the bounded gradient
condition in Assumption 2; see proof of Theorem 2 in
the appendix for more details. Note that such argu-
ment is not required for the EGG method, as in greedy
based method we always have the following inequality
f(x̂t, S)− (1− 1/e)−1f(x̂t, Ŝt) ≤ 0 for every S. As a
result, the required conditions for the convergence of
GRG and EGRG are similar and we only state EGRG
results for completeness.
Theorem 6. Consider Extra-Gradient Replacement
Greedy(EGRG) in Algorithm 2 option II. If f is convex-
submodular and Assumptions 1-2 hold, then the output
of EGRG after O(1/ε2) iterations with step size O(ε),
is a (1/2, ε)-approximate minimax solution of (1).

3.3 Extra-gradient on Continuous Extension

So far all proposed algorithms achieve (α, ε)-
approximate minimax solutions in O(1/ε2) iterations.
In this section, we investigate the possibility of achiev-
ing a faster rate of O(1/ε). Note that, in the discussed
algorithms, the update for the discrete variable is not
smooth and the iterates jump from one set to another
in consecutive iterations, which results in slowing
down the convergence. To overcome this limitation,
we introduce the continuous multi-linear extension of
Problem (1); for introduction to multi-linear extension
of submodular maximization problems see (Vondrák,
2007; Calinescu et al., 2011; Badanidiyuru and
Vondrák, 2014; Feldman et al., 2011; Hassani et al.,
2017; Sadeghi and Fazel, 2020). As we will show, the
continuous extension of Problem (1) is equivalent to its
original version, and by extending the extra-gradient
methodology to this setting we achieve a convergence
rate of O(1/ε) for the case that I is a matroid.
Definition 5. The continuous extension of a function
f : Rd×2V → R+ is the function F : Rd× [0, 1]n → R+

defined as F (x,y) = ES∼y[f(x, S)], where S ∼ y is a
random set wherein each element i is included with
probability yi independently.

We show that for convex-submodular problems we have
(see Proposition 1 in Appendix A.8):

min
x∈X

max
S∈I

f(x, S) = min
x∈X

max
y∈K

F (x,y), (9)

where I is assumed to be a matroid constraint and
K is the corresponding base polytope(K = conv{1S :

Algorithm 3 Extra-gradient on Continuous Extension
Initialize the variables y1 and x1 to zero.
for t = 1 to T do

x̂t = πX (xt − γt∇xF (xt,yt))

ŷt = πK(yt + γt∇yF (xt,yt))

xt+1 = πX (xt − γt∇xF (x̂t, ŷt))

yt+1 = πK(yt + γt∇yF (x̂t, ŷt))
end for
Return solution xsol = (

∑T
t=1 γt)

−1∑T
t=1 γtx̂t

S ∈ I}). We present Extra-Gradient on Continuous
Extension (EGCE) in Algorithm 3 which applies the
updates of extra-gradient on the continuous extension
function F (x,y).
Theorem 7. Consider the Extra-Gradient On Con-
tinuous Extension (EGCE) algorithm outlined in Al-
gorithm 3. If f is convex-submodular and Assump-
tions 1-2 hold, then the output of this algorithm after
O(1/ε) iterations with constant step size is a (1/2, ε)-
approximate minimax solution of Problem (1).

4 EXPERIMENTS

In this section, we study two specific instances of Prob-
lem (1): (i) convex-facility location functions along
with a synthetic experimental setup, and (ii) designing
adversarial attacks for item recommendation which is
a real world application of our framework.

Convex-facility location functions. Consider the
function f : Rd × 2V → R+ defined as f(x, S) =∑n
i=1 maxj∈S fi,j(x) + g(x), where g : Rd → R and

fi,j : Rd → R are convex. Indeed, f(x, S) is con-
vex with respect to x. Also, for a fixed x, we re-
cover the objective of the facility location problem,
which is submodular and monotone. To introduce our
setup, suppose x ∈ Rd+ can be written as the concate-
nation of n = d/m vectors xi ∈ Rm+ of size m, i.e.,
x = [x1; . . . ;xn]. In our experiments, we assume that
the function fi,j(x) is defined as fi,j(x) = xTi Qi,jxj ,
where Qi,j ∈ Sm++ is a positive definite matrix and all of
its elements are also positive, i.e., Qi,j > 0. Moreover,
we consider the case that the regularization function
g is defined as g(x) := λ(

∑n
i=1 ‖xi‖2)−1, and the con-

straint set for the minimization variable x is defined
as C := {x = [x1; . . . ;xn]|‖xi‖ ≤ 1, for i = 1, . . . , n}.
Considering these definitions the convex-submodular
minimax optimization problem that we aim to solve
can be written as

min
xi∈C

max
|S|≤k

n∑
i=1

max
j∈S

xTi Qi,jxj + λ
( n∑
i=1

‖xi‖2
)−1

(10)

where the constraint on the maximization variable S
is a cardinality constraint of size k. For our numerical
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Figure 1: Comparison of our proposed methods for
convex-facility location functions(case I and Case II)

experiments, we tested two cases, in the first case we
set the problem parameters as m = 10, n = 30, k = 5,
and λ = 1 and in the second case we set the problem
parameters as m = 10, n = 50, k = 10, and λ = 1.

Case I (m = 10, n = 30, k = 5, λ = 1). In this case, we
choose m,n to be small so that we can solve the
inner max in problem (10) and compute φ̄(x) =
max|S|≤k f(x, S) exactly using search over all the sub-
sets of size k. We report φ̄(xt) as well as optimal
value of problem (10). Results in Figure 1. (first plot)
show that the algorithms converge to the optimal min-
imax value. We also demonstrate the relative error
of these algorithms errort := φ(xt) − OPT in second
plot. As we observe in Figure 1 (second plot), greedy
based methods converge faster than replacement greedy
based algorithms in terms of iteration complexity.

Case II (m = 10, n = 50, k = 10, λ = 1). We now in-
vestigate the behavior of our proposed methods for
solving (10) in the second case when k, n are rela-
tively larger. Note that exact computation of φ̄(x) =
max|S|≤k f(x, S) is not computationally tractable for
this case, since it requires solving a submodular
maximization problem. Hence, in third plot in fig-
ure 1, we report the value of the function φ(x) :=
f(x,Greedy(f, k,x)) which is an approximation for
φ̄(x). In other words, instead of computing φ̄(x)
which is the maximum of f(x, S) over the choice of
S, we report φ(x) which is the value of f(x, S) when
S is obtained via the greedy method. The conver-
gence paths of φ(xt) for our proposed methods are
reported in the third plot of Figure 1. We further
show the relative error of these algorithms defined as
errort := φ(xt) − φ(xT ) in the fourth plot to better
compare their convergence rates.

Adversarial Attack for Item Recommendation.

Figure 2: Comparison of our proposed methods for for
Problem (11) (the green line is the performance of the
recommender system when there is no adversary)

In this section, we study the application of design-
ing an adversarial attack for a movie recommenda-
tion task. Consider a (completed) rating matrix X
whose entries Xi,j correspond to the estimated rating
that user i has given to movie j. Given a rating ma-
trix X, the recommender system chooses k movies via
maximizing the utility function max|S|≤k h(X,S) :=
1
|U|
∑
u∈U maxj∈S Xu,j where U is the set of all users.

The attacker’s goal is to slightly perturb the rat-
ing matrix X to a matrix X ′ such that the utility
max|S|≤l h(X ′, S) is minimized. Therefore, the attacker
aims at solving the minimax problem

min
‖X′−X‖F≤ε
0≤X′

i,j≤5

max
|S|≤k

h(X ′, S), (11)

where ‖.‖F is the Frobenius norm. Note that h(X,S)
is convex-submodular (convexity in x is clear, and the
function h(x, S) is a facility location function in S).
Hence, this problem is an instance of Problem (1).
To evaluate the performance of our methods, we con-
sider movie recommendation on the Movielens dataset
(Harper and Konstan, 2015). We pick 2000 most rated
movies with 200 users with highest number of rates
for these movies (similar to (Stan et al., 2017b; Adibi
et al., 2020)) and we set k = 10. The adversary has
a power to manipulate up to 0.5% of movies ratings
on average (i.e. ε = 0.5× 0.01× 200× 2000). We plot
φ(Xalg) in each iteration as a measure of effectiveness
of our algorithms and compare it to the case that there
is no attack. Figure 2 shows the comparison of our
algorithms. As we can see in Figure 2, the facility
location based recommendation systems are extremely
vulnerable to adversarial attacks and the performance
drops from 90 (when there is no adversary) to around
12 when we have attacks.

5 CONCLUSION

In this paper, we introduced and studied the convex-
submodular minimax problem in (1). We defined multi-
ple notions of (near-) optimality and provided hardness
results regarding these notions in various regimes. In
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particular, one of the notions was (α, ε)-approximate
minimax solution. We showed that for α > 1 − 1/e
finding an (α, ε)-approximate minimax solution is hard.
For α ≤ 1 − 1/e, we proposed five algorithms and
characterized their theoretical guarantees in different
settings. The main take-away message from our al-
gorithmic procedures is that, if the function f has
bounded gradient, then one can use the GG Algorithm,
or the GRG algorithm which has a better complexity
albeit it has a worse approximation factor. If the gra-
dient of f is not uniformly bounded, then one has to
resort to the proposed EGG algorithm.

An interesting future direction is to find more computa-
tionally efficient algorithms for harder constraints such
as matroid constraint with 1− 1/e factor. We believe
gradient continuous-greedy will achieve the 1 − 1/e
factor on matroid constraints; However, it needs to run
the continuous greedy algorithm each iteration which
is computationally costly.
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A SUPPLEMENTARY MATERIALS

A.1 Proof of Theorem 1

Consider the function f : Rd × 2V → R+, where f(x, .) is submodular for every x and f(., S) is convex for every
S. Then, the maxmin convex-submodular problem is an optimization problem where the maximization is over
continuous variable and minimization is over a discrete variable as

OPTmaxmin , max
S∈I

min
x∈X

f(x, S), (12)

Let us define the notion of approximate solution for maxmin problem as follows:

Definition 6. We call a point Ŝ an (α, ε)-approximate maxmin solution of Problem (12) if it satisfies

αφ(Ŝ) ≥ OPTmaxmin − αε, (13)

We know any (α, ε)−saddle point, denoted by (x̄, S̄), has the following properties:

1. φ(S̄) > α.OPTmaxmin − ε

2. φ̄(x̄) < 1
α .OPTminmax + ε

α

This is due to the fact that we have:

1. min
x∈X

f(x, S̄) ≤ min
x∈X

max
S∈I

f(x, S) = OPTminmax

2. OPTmaxmin = max
S∈I

min
x∈X

f(x, S) ≤ max
S∈I

f(x̄, S)

these two conditions imply that by finding an (α, ε)−saddle point we find an α−approximate solution for the
minimax problem (1) and a 1

α−approximate solution for the max-min problem (12). In order to prove finding
(α, ε)− saddle point is NP-hard, we will prove that finding approximate solution for maxmin convex-submodular
is NP-hard. We do this establishing a connection between this problem and the problem of robust submodular
maximization through following result stated and proved in (Krause et al., 2008).

Consider monotone-submodular functions f1, f2, . . . fn and the following robust submodular maximization problem:

OPT1 = max
|S|≤k

min
i∈[n]

fi(S). (14)

Solving this problem up to approximation factor is NP-hard, i.e. finding a solution S such that maxi fi(S) ≥
αOPT1 is an NP-hard task for any α > 0.

Now, consider the following problem:

OPT2 = max
|S|≤k

min
x∈Rn,x≥0
xT1=1

n∑
i=1

xi.fi(S) (15)

where 1 is vector of all ones and x = [x1, x2, x3 . . . xn]T . For this problem, it is easy to verify that OPT1 = OPT2

since for every set S ∈ V we have mini∈[n] fi(S) = min
x∈Rn,x≥0
xT1=1

∑n
i=1 xi.fi(S). Therefore, finding a α−approximate

solution for problem in (15) is NP-hard. Problem (15) is max-min convex-submodular optimization which means
max-min convex-submodular optimization is NP-hard in general. We show that by finding (α, ε)−saddle point we
can provide 1

α−approximate solution for max-min problem; therefore, since we proved finding 1
α−approximate

solution for max-min problem is NP-hard, finding (α, ε)−saddle point is NP-hard too.
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A.2 Proof of Theorem 2

Before stating this proof, let us explain what we mean by "NP-hard" for the considered setting. We note that
an algorithm for Problem (1) is supposed to search for an approximate solution only in X (i.e., in terms of the
variable x), and for this, it will require some information about the values f(x, S). However, for every fixed x,
there may be restrictions on obtaining some specific values of f(x, S). For example, finding the exact value of
φ̄(x) can in general be NP-hard (as maximizing a monotone-submodular function beyond (1− 1/e) approximation
is hard). In order to appropriately address these restrictions, we will view our setting as a procedure between the
algorithm and an oracle that we now describe below.

Upon receiving an input point xin ∈ X , the oracle chooses based on this input a set Sout such that |Sout| ≤ k,
and returns all the following information: the set Sout, the value f(xin, Sout), and the gradient of f(xin, Sout)
with respect to x at the point (xin, Sout). The only restriction on the oracle is that it is a polynomial-time oracle,
i.e. the oracle’s procedure to find the set Sout requires poly-time complexity in terms of the size of the ground-set
|V |. More precisely, there exists an integer q > 0 such that for any ground set V , the oracle uses at most O(|V |q)
operations to find the output set Sout corresponding to an input xin. Note that we do not put any restriction on
what the oracle does apart from having poly-time complexity; e.g. it could output a greedy solution, or it could
output a random set Sout, or it could do any other procedure. We call such an oracle a polynomial-time oracle.
Given this choice of the oracle, the algorithm proceeds in m rounds, and in each round r ∈ [m], it chooses an
input point xr ∈ X to query from the oracle. Importantly, we consider algorithms that require a polynomial
number of rounds in terms of the size of the ground set V . More precisely, for any ground set V and α, ε, the
number of rounds of the algorithm is at most c(α, ε)|V |q where q > 0 is an absolute constant and c(α, ε) is another
constant that only depends on α and ε. We call such an algorithm a polynomial-time algorithm. Next, we
show that no polynomial-time algorithm is capable of finding an (α, ε)-approximate of (1) for α > 1− 1/e.

In the following, we assume for simplicity that ε = 0. The proof can be trivially extended to any value of ε, as we
will explain at the end of the proof. Recall from the statement of the theorem that α = 1− 1/e+ γ for a fixed
constant γ > 0.

We know for a fact that monotone-submodular maximization beyond the (1− 1/e)-approximation in NP-hard
(Krause and Golovin, 2014). I.e. unless P = NP, for any integer q > 0 there exists a monotone submodular
function g1 : 2V → R+ and an integer k ≤ |V | such that finding a set S with cardinally k where g1(S) ≥
(1− 1/e+ γ/3) max|S|≤k g1(S) requires computing more than |V |q function values (i.e. complexity is larger than
|V |q). Consider such a function g1 and the choice of k, and define OPTg1 = max|S|≤k g1(S). We also define
another function g2 : 2V → R+ as follows: g2(S) = min{g1(S), (1− 1/e+ γ/3)OPTg1}. It is important to note
that finding a set |S| ≤ k such that g1(S) 6= g2(S) requires complexity larger than |V |q (also note that the choice
of q is arbitrary here, i.e. for every q there exists a g1, etc.).

Consider the integer n = d4/γ + 1e and let X be the n-dimensional simplex, i.e.

X = {x = (x1, · · · , xn) s.t.
n∑
i=1

xi = 1 &xi ≥ 0 ∀i = 1, · · · , n}.

For j ∈ {1, · · · , n} we define fj(x, S) : X × 2V → R+ as

fj(x, S) =
∑

i∈[n],i6=j

xig1(S) + xjg2(S)

We note a few facts about each of the functions fj(x, S):

(i) Any (α, 0) approximate solution for the function fj has the property that xj > 1/n + γ/4. This is simply
because for any (α, 0)-approximate solution x = (x1, · · · , xn) we have αφ̄(x) ≤ minx∈X max|S|≤k fj(x, S), and
hence

α (xj(1− 1/e+ γ/3) + (1− xj)) OPTg1 ≤ (1− 1/e+ γ/3)OPTg1

From the above inequality (and by noting that γ ∈ (0, 1]) we can always deduce that xj > γ/2, and thus
xj > 1/n+ γ/4.
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(ii) Given a polynomial-time oracle, we can not distinguish between the functions f1, . . . , fn using a query from
the oracle. This is because the oracle can not find a set S with carnality at most k for which g1(S) 6= g2(S) (as
finding that set by the oracle is intractable), and thus, for the set Sout that the oracle finds, the outcome of the
oracle will be the function value f(xin, Sout) = g1(Sout) and ∇xf(xin, Sout) = g1(Sout)1n where 1n is the all-ones
vector of dimension n. These outputs bear absolutely no information about the index j.

Given the above facts, we are now ready to finalize the proof. Consider the scenario where the index j is chosen
uniformly at random inside the set [n], and the algorithm aims at finding an approximate solution of the function
fj . Note that the choice of j is hidden to the algorithm. Now, given fact (ii) above, if both the algorithm and
oracle are polynomial-time, then in all the rounds and queries, there will be absolutely no information revealed
about the index j. As a result, the mutual information between the outcome of the queries and the index j will
be zero.

On the other hand, from fact (i) above, if an algorithm can find an (α, 0)-approximate solution, we claim that the
solution is informative about the index j. More precisely, given the solution that the algorithm has found, we can
infer the hidden index j using the following procedure: the algorithm’s solution x = (x1, · · · , xn) can be viewed
as a probability distribution over the set {1, · · · , n}. As a result, if we use this probability distribution to draw
an integer ĵ from the set {1, · · · , n}, then we have Pr{ĵ = j} = xj >= 1/n+ γ/4. Thus, we can decode the index
j with a probability that is strictly larger than a random guess. This means that the mutual information of the
solution found by the algorithm and the index j is strictly lower-bounded by a positive constant (which only
depends on γ). This contradicts the result of the previous paragraph.

Note that in the above we have assumed that ε = 0. For general ε, we note that we can always choose the
function g1 such that OPTg1 is sufficiently large. As a result, we can write ε = ε′ ×OPTg1 where ε′ can be made
arbitrarily small. Hence, proving hardness for obtaining an (α, ε)-approximate becomes equivalent to proving
harness for obtaining an (α/(1 + ε′), 0) approximate solution. The conclusion is now immediate since out proof
above works for any α = 1− 1/e+ γ and ε′ can be made arbitrarily small by making OPTg1 sufficiently large.

A.3 Proof of Theorem 3: Gradient Greedy(GG) Convergence

Let us pick γt = α.Then, we can write the following based on update xt+1 = πX (xt− γt∇f(xt, St)) in algorithm 1
and assumption 2.

‖xt+1 − x‖2 ≤ ‖xt − α∇f(xt, St)− x‖2 = ‖xt − x‖2 + ‖α∇f(xt, St)‖2 − 2〈α∇f(xt, St),xt − x〉 (16)

≤ ‖xt − x‖2 + α2M2 − 2〈α∇f(xt, St),xt − x〉 (17)

which results in

2α(f(xt, St)− f(x, St)) ≤ 2〈α∇f(xt, St),xt − x〉 ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 + α2M2 (18)

and finally

f(xt, St)− f(x̃, St) ≤
1

2α
(−‖xt − x̃‖2 + ‖xt−1 − x̃‖2) +

1

2
αM2 (19)

summing up over t we have:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
1

2α
(‖x0 − x̃‖2) +

1

2
αTM2 (20)

our set of continuous variable is bounded which means ‖x‖2 ≤ H; this results:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
H

2α
+

1

2
αTM2 (21)
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Also, from greedy update we have for every S(check (Krause and Golovin, 2014)):

f(xt−1, S)− f(xt−1, St)

1− 1
e

≤ 0 (22)

Now, using the Lipschitz condition (consequence of Assumption 2):

|f(xt, St)− f(xt−1, St)| ≤M‖xt − xt−1‖ ≤Mα‖∇f(xt−1, St)‖ ≤M2α (23)

Putting (22) and (23) together:

(1− 1

e
)f(xt, S)− f(xt, St) ≤ 2M2α (24)

and summing over t we have:

T∑
t=1

(1− 1

e
)f(xt, S)− f(xt, St) ≤ 2M2αT (25)

From (21) and (25) we can then obtain the following:

T∑
t=1

(1− 1

e
)f(xt, S)− f(x̃, St) ≤ 2M2αT +

H

2α
+

1

2
αTM2 (26)

and finally: ∑T
t=1 α((1− 1

e )f(xt, S)− f(x̃, St))∑T
t=1 α

≤
3M2αT + H

2α

T
(27)

From convexity we have:

f(
1

T

T∑
t=1

xt, S) ≤
∑T
t=1 f(xt−1, S)

T
(28)

which results in:

(1− 1

e
)f(

1

T

T∑
t=1

xt, S)−
∑T
t=1 α(f(x̃, St))∑T

t=1 α
≤

3M2αT + H
2α

T
(29)

Defining x∗ = arg min max f(x, S), we know that minx maxS f(x, S) = max f(x∗, S) ≥ f(x∗, St). Now in (29) we
let x̃ = x∗ and write:

(1− 1

e
) max

S
f(

1

T

T∑
t=1

xt, S)−min
x

max
S

f(x, S) ≤
3M2αT + H

2α

T
(30)

Letting α = 1√
T

we obtain:

(1− 1

e
) max

S
f(

1

T

T∑
t=1

xt, S)−min
x

max
S

f(x, S) ≤
3M2 + H

2√
T

(31)

Finally, if we define K = 3M2 + H
2 and let T = K2

ε2 ; then xsol = 1
T

∑T
t=1 xt is a (1− 1/e, ε)- approximate minimax

solution.
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A.4 Proof of Theorem 5: Gradient Replacement-greedy(GRG) Convergence

Let g be a monotone-submodular function, and consider sets B,S ⊆ V with size k. Define e∗ = arg maxe∈S g(S \
e)− g(S), and v∗ = arg maxv∈V g(S ∪ v \ e∗)− g(S ∪ v \ e∗). We have:

g(S ∪ v∗ \ e∗)− g(S) ≥ 1

k

∑
v∈B

g(S ∪ v \ e∗)− g(S)

=
1

k

∑
v∈B

(g(S ∪ v \ e∗)− g(S ∪ v) + g(S ∪ v)− g(S)) (32)

where the first inequality comes from the definition of v∗. We know that for a monotone-submodular function g
we have g(B ∪ S)− g(S) ≤

∑
v∈B(g(S ∪ v)− g(S)) for any choice of B,S (Stan et al., 2017b); which results in:

1

k

∑
v∈B

(g(S ∪ v)− g(S)) ≥ 1

k
(g(B ∪ S)− g(S)) ≥ 1

k
(g(B)− g(S)) (33)

Here, the first inequality is due to submodularity and the second inequalities is due to monotonicity. Also, we
have:

1

k

∑
v∈B

(g(S ∪ v)− g(S ∪ v \ e∗)) ≤ 1

k

∑
v∈B

(g(S)− g(S \ e∗)) = g(S)− g(S \ e∗)

≤ 1

k

∑
e∈S

(g(S)− g(S \ e)) ≤ 1

k
g(S) (34)

where the first and second inequality comes from submodularity. Combining (32),(33), and (34) we have that for
every set B of size k:

g(S ∪ v∗ \ e∗)− g(S) ≥ 1

k
(g(B)− 2g(S)) (35)

If we apply (35) for the replacement greedy update in Gradient Replacement-greedy(GRG) algorithm, we obtain:

f(xt, St)− f(xt, St−1) ≥ 1

k
(f(xt, S)− 2f(xt, St−1)) (36)

and hence
f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)(f(xt, S)− 2f(xt, St−1)) (37)

Note that as f is M -Lipschitz we have for every S (consequence of Assumption 2):

|f(xt, S)− f(xt−1, S)| ≤M‖xt − xt−1‖ ≤Mα‖∇f(xt−1, St)‖ ≤M2α (38)

Combining (37) and (38) we obtain that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)(f(xt−1, S)− 2f(xt−1, St−1) + 3M2α) (39)

Using a recursive argument we can show that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)t(f(x0, S)− 2f(x0, S0)) +

t∑
m=1

(1− 2

k
)m3M2α (40)

Now since f(x0, S0) is non-negative, we can eliminate −f(x0, S0) from the right hand side. Using this observation
and by simplifying the geometric sum we obtain that

f(xt, S)− 2f(xt, St) ≤ (1− 2

k
)tf(x0, S) + 3M2α

k

2
(41)
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Now, note that (1− 2
k )t is bounded above by e−

2t
k and therefore we have

f(xt, S)− 2f(xt, St) ≤ Ae−
2t
k + 3M2α

k

2
, (42)

where A is an upper bound for function value at point zero, f(0, S) ≤ A. Now, from the analysis of gradient
descent similar to (21), we have:

T∑
t=1

f(xt, St)− f(x̃, St) ≤
H

2α
+

1

2
αTM2 (43)

Combining this inequality with (42) we have:
T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

H

2α
+

∑T
t=1Ae

− 2t
k

2
+

5TM2αk

4
≤ K

2α
+

Ae−
2
k

2(1− e− 2
k )

+
5TM2αk

4
(44)

Thus, choosing the parameters α = 1√
T

will lead to

1

T

T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

H

2
√
T

+
Ae−

2
k

2T (1− e− 2
k )

+
5M2k

4
√
T
≤ K√

T
(45)

where K is some constant.

In summary, we have obtained the following relation that will be used to drive the guarantee for the minimax
problem:

1

T

T∑
t=1

1

2
f(xt, S)− f(x̃, St) ≤

K√
T

(46)

We know because of convexity we have:

f

(
1

T

T∑
t=1

xt−1, S

)
≤
∑T
t=1 f(xt−1, S)

T
(47)

Now combining (46) and (47) we have:

1

2
f

(
1

T

T∑
t=1

xt, S

)
− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(48)

Also for x∗ = arg minx maxS f(x, S) we have minx maxS f(x, S) = maxS f(x∗, S) ≥ f(x∗, St). By using x̃ = x∗

we can write:

1

2
f

(
1

T

T∑
t=1

xt, S

)
−min

x
max
S

f(x, S) ≤ 1

2
f

(
1

T

T∑
t=1

xt, S

)
− 1

T

T∑
t=1

f(x∗, St) ≤
K√
T

(49)

Let T = K2

ε2 ; then xsol = 1
T

∑T
t=1 xt is a (1/2, ε)- approximate minimax solution.

A.5 Proof of Theorem 4: Extra-gradient Greedy(EGG) Convergence

Consider the Extra-gradient Greedy method, we can write the following equations to find the bound on convergence
of x:

‖x̂t − x‖2

≤ ‖xt − x− γt∇xf(xt, St)‖2

= ‖xt − x‖2 − 2γt∇xf(xt, St)
>(xt − x) + ‖x̂t − xt‖2

= ‖xt − x‖2 − 2γt∇xf(xt, St)
>(x̂t − x) + ‖x̂t − xt‖2 + 2γt∇xf(xt, St)

>(x̂t − xt)

= ‖xt − x‖2 − 2γt∇xf(xt, St)
>(x̂t − x) + ‖x̂t − xt‖2 + 2(xt − x̂t)

>(x̂t − xt)

= ‖xt − x‖2 − 2γt∇xf(xt, St)
>(x̂t − x) + ‖x̂t − xt‖2 − 2‖x̂t − xt‖2 (50)
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Hence, we have

2γt∇xf(xt, St)
>(x̂t − x) ≤ ‖xt − x‖2 − ‖x̂t − x‖2 − ‖x̂t − xt‖2 (51)

Similarly we can show that

‖xt+1 − x‖2

≤ ‖xt − x− γt∇xf(x̂t, Ŝt)‖2

= ‖xt − x‖2 − 2γt∇xf(x̂t, Ŝt)
>(xt − x) + ‖xt+1 − xt‖2

= ‖xt − x‖2 − 2γt∇xf(x̂t, Ŝt)
>(xt+1 − x) + ‖xt+1 − xt‖2 + 2γt∇xf(x̂t, Ŝt)

>(xt+1 − xt)

= ‖xt − x‖2 − 2γt∇xf(x̂t, Ŝt)
>(x̂t − x) + ‖xt+1 − xt‖2 + 2(xt − xt+1)>(xt+1 − xt)

= ‖xt − x‖2 − 2γt∇xf(x̂t, Ŝt)
>(xt+1 − x) + ‖xt+1 − xt‖2 − 2‖xt+1 − xt‖2 (52)

Hence, we have

2γt∇xf(x̂t, Ŝt)
>(xt+1 − x) ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt+1 − xt‖2 (53)

Now note that we can write 2γt∇xf(x̂t, Ŝt)
>(x̂t − x) as

2γt∇xf(x̂t, Ŝt)
>(x̂t − x) (54)

= 2γt∇xf(x̂t, Ŝt)
>(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

>(xt+1 − x) (55)

= 2γt∇xf(x̂t, Ŝt)
>(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

>(xt+1 − x) (56)

+ 2γt∇xf(xt, St)
>(x̂t − xt+1)− 2γt∇xf(xt, St)

>(x̂t − xt+1) (57)

= 2γt∇xf(xt, St)
>(x̂t − xt+1) + 2γt∇xf(x̂t, Ŝt)

>(xt+1 − x) (58)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)>
(x̂t − xt+1) (59)

≤ ‖xt − xt+1‖2 − ‖x̂t − xt+1‖2 − ‖x̂t − xt‖2 (60)

+ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖xt+1 − xt‖2 (61)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

>(x̂t − xt+1)
)

(62)

= −‖x̂t − xt+1‖2 − ‖x̂t − xt‖2 + ‖xt − x‖2 − ‖xt+1 − x‖2 (63)

+ 2γt

(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)>
(x̂t − xt+1), (64)

where the inequality follows from the results in (51) and (53).

Next we derive an upper bound for the inner product
(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)>
(x̂t − xt+1) using the

smoothness of the function f , i.e.,(
∇xf(x̂t, Ŝt)−∇xf(xt, St)

)>
(x̂t − xt+1)

≤ ‖∇xf(x̂t, Ŝt)−∇xf(xt, St)‖‖x̂t − xt+1‖

≤
(
‖∇xf(x̂t, Ŝt)−∇xf(x̂t, St)‖+ ‖∇xf(x̂t, St)−∇xf(xt, St)‖

)
‖x̂t − xt+1‖

≤
(
Lx,S‖Ŝt − St‖+ Lx,x‖x̂t − xt‖

)
‖x̂t − xt+1‖

Now to complete our upper bound we need to bound ‖Ŝt − St‖ which can be done as

‖Ŝt − St‖ ≤ φ‖x̂t − xt‖+ σ (65)
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The above relation holds because for every two feasible set we have ‖A−B‖ ≤ 2k ;therefore, if we let σ = 2k and
φ = 1 the above condition is always true. Considering this result we obtain that(

∇xf(x̂t, Ŝt)−∇xf(xt, St)
)>

(x̂t − xt+1) ≤ (Lx,Sφ+ Lx,x) ‖x̂t − xt‖‖x̂t − xt+1‖

+ Lx,Sσ‖x̂t − xt+1‖

Applying this upper bound into (54) implies that

2γt∇xf(x̂t, Ŝt)
>(x̂t − x)

≤ −‖x̂t − xt+1‖2 − ‖x̂t − xt‖2 + ‖xt − x‖2 − ‖xt+1 − x‖2

+ 2γt (Lx,Sφ+ Lx,x) ‖x̂t − xt‖‖x̂t − xt+1‖+ 2γtLx,Sσ‖x̂t − xt+1‖
≤ ‖xt − x‖2 − ‖xt+1 − x‖2

+
[
−‖x̂t − xt+1‖2 − ‖x̂t − xt‖2 + 2γt (Lx,Sφ+ Lx,x) ‖x̂t − xt‖‖x̂t − xt+1‖

]
+ 2γtLx,Sσ‖x̂t − xt+1‖

≤ ‖xt − x‖2 − ‖xt+1 − x‖2 − ‖x̂t − xt+1‖2 − ‖x̂t − xt‖2

+ γt (Lx,Sφ+ Lx,x) ‖x̂t − xt‖2 + γt (Lx,Sφ+ Lx,x) ‖x̂t − xt+1‖2 + 4γ2tL
2
x,Sσ

2

+
1

4
‖x̂t − xt+1‖2

≤ ‖xt − x‖2 − ‖xt+1 − x‖2 + 4γ2tL
2
x,Sσ

2

where the third inequality holds because of the fact that 2ab ≤ a2 + b2, and the last inequality holds since we
assume γt(Lx,Sφ+ Lx,x) ≤ 3/4.

Using this result we have that

2γt∇xf(x̂t, Ŝt)
>(x̂t − x) ≤ ‖xt − x‖2 − ‖xt+1 − x‖2 + 4γ2tL

2
x,Sσ

2

Now by convexity of f with respect to x we have

∇xf(x̂t, Ŝt)
>(x̂t − x) ≥ f(x̂t, Ŝt)− f(x, Ŝt)

and therefore

f(x̂t, Ŝt)− f(x, Ŝt) ≤
1

2γt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ 2γtL

2
x,Sσ

2

Moreover we know that

f(x̂t, S)− 1

1− 1/e
f(x̂t, Ŝt) ≤ 0

Hence,

f(x̂t, Ŝt)− f(x, Ŝt) + (1− 1/e)f(x̂t, S)− f(x̂t, Ŝt)

≤ 1

2γt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ 2γtL

2
x,Sσ

2 (66)

Let γt = 1√
T
. Then, since ‖x‖2 ≤ H, we have

1

T

T∑
t=1

−f(x, Ŝt) + (1− 1/e)f(x̂t, S) ≤ H

2
√
T

+
2L2

x,Sσ
2

√
T

(67)

Let K = 2L2
x,Sσ

2 +K/2 then we have

1

T

T∑
t=1

−f(x, Ŝt) + (1− 1/e)f(x̂t, S) ≤ K√
T

(68)
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We know because of convexity

f(
1

T

T∑
t=1

x̂t−1, S) ≤
∑T
t=1 f(x̂t−1, S)

T
(69)

Now combining (68) and (69) we have

(1− 1/e)f(
1

T

T∑
t=1

x̂t, S)− 1

T

T∑
t=1

f(x̃, Ŝt) ≤
K√
T

(70)

Also for x∗ = arg minx maxS f(x, S), we have minx maxS f(x, S) = maxS f(x∗, S) ≥ f(x∗, St). We let x̃ = x∗

and write

(1− 1/e)f(
1

T

T∑
t=1

x̂t, S)−min
x

max
S

f(x, S) (71)

≤ (1− 1/e)f(
1

T

T∑
t=1

x̂t, S)− 1

T

T∑
t=1

f(x∗, Ŝt) ≤
K√
T

(72)

Let T = K2

ε2 ; then, xsol = 1
T

∑T
t=1 x̂t is an ((1− 1/e), ε) approximate minimax solution.

A.6 Extra-gradient Replacement-greedy(EGRG) Convergence

For the analysis with respect to x, we can show that

f(x̂t, Ŝt)− f(x, Ŝt) ≤
1

2γt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+ 2γtL

2
x,Sσ

2

therefore:

∑T
t=1 γt

[
f(x̂t, Ŝt)− f(x, Ŝt)

]
∑T
t=1 γt

≤ ‖x− x1‖2

2
∑T
t=1 γt

+

∑T
t=1 2γ2tL

2
x,Sσ

2∑T
t=1 γt

≤ K1√
T

(73)

It remains to derive an upper bound for f(x̂t, S)− 2f(x̂t, Ŝt) . According to the update of replacement-greedy
method, we can write the following inequalities:

f(xt, Ŝt)− f(xt, St) ≥
1

k
(f(xt, S)− 2f(xt, St)) (74)

and

f(x̂t, St+1)− f(x̂t, Ŝt) ≥
1

k

(
f(x̂t, S)− 2f(x̂t, Ŝt)

)
(75)

Using the second expression, we can write

1

k

(
f(x̂t−1, S)− 2f(x̂t−1, Ŝt−1)

)
≤ f(x̂t−1, St)− f(x̂t−1, Ŝt−1) (76)

Let φ̄(xt) = max|S|≤k f(xt, S); if we assume for every x, S, ‖∇xf(x, S)‖ ≤ G then we have:

|φ̄(x)− φ̄(y)| ≤ G||x− y|| (77)

hence
φ̄(x̂t−1)− 2f(x̂t−1, St) ≤ (1− 2

k
)(φ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) (78)
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Note that

f(x̂t−1, St) ≤ f(xt, St) + Lx||xt − x̂t−1||
≤ f(xt, Ŝt) + γtG

2 (79)

≤ f(x̂t, Ŝt) + 2γtG
2, (80)

therefore,

φ̄(x̂t−1)− 2f(x̂t, Ŝt) ≤ (1− 2

k
)(φ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) + 4γtG

2 (81)

Also, note that
|φ̄(x̂t)− φ̄(x̂t−1)| ≤ G2γt. (82)

Putting (81), (80) and (82) together, we obtain:

φ̄(x̂t)− 2f(x̂t, Ŝt) ≤ (1− 2

k
)(φ̄(x̂t−1)− 2f(x̂t−1, Ŝt−1)) + 5γtG

2 (83)

let γt = 1√
T

and φ̄(x̂0)− 2f(x̂0, Ŝ0) = A0, then

T∑
t=1

γt(φ̄(x̂t)− 2f(x̂t, Ŝt)) ≤
T∑
t=1

1√
T

(

t−1∑
t=0

5G2

√
T

(1− 2

k
)t + (1− 2

k
)tA0)

≤
T∑
t=1

1√
T

(
5kG2

2
√
T

+ (1− 2

k
)tA0) (84)

≤ kβ (85)

where β = 5kG2

2 + kA0

2
√
T

and finally for update of S we get:

∑T
t=1 γt(φ̄(x̂t)− 2f(x̂t, Ŝt))∑T

t=1 γt
≤ kβ√

T
(86)

Adding up (86) and (73) we have:

∑T
t=1 γt

[
0.5φ̄(x̂t)− f(x, Ŝt)

]
∑T
t=1 γt

≤ K1√
T

+
kβ√
T
≤ K√

T
(87)

from this for every S

∑T
t=1 γt

[
0.5f(x̂t, S)− f(x, Ŝt)

]
∑T
t=1 γt

≤ K√
T

(88)

Similar to (69) to (71), (88) results xsol = 1
T

∑T
t=1 x̂t, to be (1/2, ε)-approximate minimax solution.

A.7 Maxmin Result

In this section, we introduce maxmin convex-submodular problem and discuss how we can exploit the algorithms
described in the previous sections for the maxmin problem. Formally, consider the function f : Rd × 2V → R+,
where f(x, .) is submodular for every x and f(., S) is convex for every S. Then, the maxmin convex-submodular
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problem is an optimization problem where the maximization is over continuous variable and minimization is over
a discrete variable as

OPTmaxmin , max
S∈I

min
x∈X

f(x, S), (89)

Due to hardness of the max-min problem as we stated in Theorem 1 and Appendix A.1, we cannot drive the same
result for the maxmin problem as we did for minimax problem. In general, finding an approximation solution
for problem (89) is NP-hard. Our result as stated in theorem 8 proves that ∪Tt=1St is an approximate solution
for (89) which has a larger cardinality than our cardinality constraint (at most Tk elements). Although, the set
∪Tt=1St is not feasible solution, our algorithm converges quickly, and we can use the small number of steps to
solve such a problem which means even for small T the set ∪Tt=1St can solve maxmin problem approximately.
This result is similar to the bi-criterion solutions for robust submodular maximization studied in (Krause et al.,
2008), where the authors propose an approach that finds a set that violates the cardinality constraint, but it is
within logarithmic factor of the constraint.
Theorem 8. Consider all algorithms stated in Algorithms section, if the functions f is convex monotone sub-
modular, and Assumption 1 holds (and Assumption 2 holds for Gradient Greedy(GG), and Gradient Replacement-
greedy(GRG)), then the set ∪Tt=1St is (α, ε)−approximate solution for maxmin convex-submodular problem with
cardinality constraint after O(1/ε2) iterations. Note that parameter α is α = (1− 1/e)

−1 for Gradient and Extra-
gradient Greedy, α = 2 for Gradient Replacement-greedy, α = 2 + k

k−1 for Extra-gradient Replacement-greedy.

A.7.1 Proof of Theorem 8 for Gradient Greedy(GG)

If we let S∗ = arg maxS minx f(x, S) we know that for every t we have f(xt−1, S
∗) ≥ minx f(x, S∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (27) we have:

(1− 1

e
) max

S
min
x
f(x, S)−

∑T
t=1 α(f(x̃, St))∑T

t=1 α
≤

3M2αT + H
2α

T
(90)

Also, if we let x̂ = arg minx f(x,∪tSt) and put x̃ = x̂ in (90) then because f(x̂, St) ≤ f(x̂,∪tSt) we have:

(1− 1

e
) max

S
min
x
f(x, S)−min

x
f(x,∪tSt) ≤

3M2αT + H
2α

T
(91)

and by using α = 1√
T
:

(1− 1

e
) max

S
min
x
f(x, S)−min

x
f(x,∪tSt) ≤

3M2αT + H
2α√

T
(92)

Now, using specific choices K = 2M2 + H
2 and let T = K2

ε2 ; we obtain that Ssol = ∪tSt is a ((1 − 1/e)−1, ε)-
approximate maxmin solution.

A.7.2 Proof of Theorem 8 for Gradient Replacement-greedy(GRG)

If we let S∗ = arg maxS minx f(x, S) we know that for every t we have f(xt−1, S
∗) ≥ minxf(x, S∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (45) we have :

1

2
max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(93)

Let x̂ = arg minx f(x,∪tSt) and put x̃ = x̂ in (94) then because f(x̂, St) ≤ f(x̂,∪tSt) we have:

1

2
max
S

min
x
f(x, S)−min

x
f(x,∪tSt) ≤

1

2
max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̂, St) ≤
K√
T

(94)

let T = K2

ε2 ; then Ssol = ∪tSt is a (2, ε)-approximate maxmin solution.
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A.7.3 Proof of Theorem 8 for Extra-gradient Greedy(EGG)

If we let S∗ = arg maxS minx f(x, S) we know that for every t we have f(x̂t−1, S
∗) ≥ minxf(x, S∗) =

maxS minx f(x, S). Therefore, if we let S = S∗ in (66) we have :

(1− 1/e) max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̃, St) ≤
K√
T

(95)

Let x̂ = arg minx f(x,∪tSt) and put x̃ = x̂ in (94) then because f(x̂, St) ≤ f(x̂,∪tSt) we have:

(1− 1/e) max
S

min
x
f(x, S)−min

x
f(x,∪tSt) (96)

≤ (1− 1/e) max
S

min
x
f(x, S)− 1

T

T∑
t=1

f(x̂, St) ≤
K√
T

(97)

Let T = H2

ε2 ; then, Ssol = ∪tSt is ((1− 1/e)−1, ε) approximate maxmin solution.

A.7.4 Proof of Theorem 8 for Extra-gradient Replacement-greedy(EGRG)

Similar to (95), and (96), (88) results Ssol = ∪tSt to be ((2 + k
k−1 ), ε)-approximate maxmin solution.

A.8 Proof of Theorem 7: Extra Gradient on Continuous Extension Convergence

In this section, we will focus on convergence analysis of Extra Gradient on continuous extension. We first provide
two propositions and matroid definition that will help us in the proof.

Definition 7. Let I be a nonempty family of allowable subsets of the ground set V , then the tuple (V, I) is a
matroid if and only if the following conditions hold:

1. For any A ⊂ B ⊂ V , if B ∈ I, then A ∈ I

2. For all A,B ∈ I, if |A| < |B|, then there is an e ∈ B\A such that A ∪ {e} ∈ I.

Proposition 1. we have that

OPT , min
x∈C

max
S∈I

f(x, S) = min
x∈C

max
y∈K

F (x,y). (98)

Furthermore, the function F has the following properties (assuming differentibility):

Proposition 2. we have for function F ((Hassani et al., 2017)):

∀x1,x2 ∈ Rd : F (x1,y)− F (x2,y) ≤ 〈∇xF (x1,y),x1 − x2〉,
∀y1,y2 ∈ Rd : F (x,y2)− 2F (x,y1) ≤ 〈∇yF (x,y1),y2 − y1〉.

using same procedure as Extra-gradient Greedy we drive following equations similar to (53):

‖x̂t − x‖2

≤ ‖xt − x− γt∇xf(xt,yt)‖2

= ‖xt − x‖2 − 2γt∇xf(xt, yt)
>(xt − x) + ‖x̂t − xt‖2

= ‖xt − x‖2 − 2γt∇xf(xt,yt)
>(x̂t − x) + ‖x̂t − xt‖2 + 2γt∇xf(xt,yt)

>(x̂t − xt)

≤ ‖xt − x‖2 − 2γt∇xf(xt,yt)
>(x̂t − x) + ‖x̂t − xt‖2 + 2(xt − x̂t)

>(x̂t − xt)

= ‖xt − x‖2 − 2γt∇xf(xt,yt)
>(x̂t − x) + ‖x̂t − xt‖2 − 2‖x̂t − xt‖2

and similarly we have:
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2〈−γt∇yF (xt,yt), ŷt − y〉 ≤ ‖y − yt‖2 − ‖y − ŷt‖2 − ‖ŷt − yt‖2

2〈γt∇xF (xt,yt), x̂t − x〉 ≤ ‖x− xt‖2 − ‖x− x̂t‖2 − ‖x̂t − xt‖2

2〈−γt∇yF (x̂t, ŷt),yt+1 − y〉 ≤ ‖y − yt‖2 − ‖y − yt+1‖2 − ‖yt+1 − yt‖2

2〈γt∇xF (x̂t, ŷt),xt+1 − x〉 ≤ ‖x− xt‖2 − ‖x− xt+1‖2 − ‖xt+1 − xt‖2

2〈−γt∇yF (xt,yt), ŷt − yt+1〉 ≤ ‖yt+1 − yt‖2 − ‖yt+1 − ŷt‖2 − ‖yt − ŷt‖2

2〈γt∇xF (xt,yt), x̂t − xt+1〉 ≤ ‖xt+1 − xt‖2 − ‖x̂t − xt+1‖2 − ‖xt − x̂t‖2

combing the above equations we have:

〈−γt∇yF (x̂t, ŷt), ŷt − y〉 = 〈−γt∇yF (x̂t, ŷt), ŷt − yt+1〉+ 〈−γt∇yF (x̂t, ŷt),yt+1 − y〉
= 〈−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1〉

+ 〈−γt∇yF (xt,yt), ŷt − yt+1〉
+ 〈−γt∇yF (x̂t, ŷt),yt+1 − y〉

≤ 〈−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1〉
+ 0.5(−‖ŷt − yt+1‖2 − ‖yt − ŷt‖2

+ ‖y − yt‖2 − ‖y − yt+1‖2)

and

〈γt∇xF (x̂t, ŷt), x̂t − x〉 = 〈γt∇xF (x̂t, ŷt), x̂t − xt+1〉+ 〈γt∇xF (x̂t, ŷt),xt+1 − x〉
= 〈γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1〉

+ 〈γt∇xF (xt,yt), x̂t − xt+1〉+ 〈γt∇xF (x̂t, ŷt),xt+1 − x〉
≤ 〈γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1〉+ 0.5(−‖x̂t − xt+1‖2 − ‖xt − x̂t‖2

+ ‖x− xt‖2 − ‖x− xt+1‖2)

let

σx
t = 〈γt∇xF (x̂t, ŷt)− γt∇xF (xt,yt), x̂t − xt+1〉+ 0.5(−‖x̂t − xt+1‖2 − ‖xt − x̂t‖2)

and

σy
t = 〈−γt∇yF (x̂t, ŷt) + γt∇yF (xt,yt), ŷt − yt+1〉+ 0.5(−‖ŷt − yt+1‖2 − ‖yt − ŷt‖2)

then 2σx
t + σy

t ≤ 0 if γt ≤ 1
3max{Lx,Ly} (check (Nemirovski, 2004) for more details) ; which results in:

2〈−γt∇yF (ŷt, ŷt), ŷt − y〉 ≤ ‖y − yt‖2 − ‖y − yt+1‖2 (99)

2〈γt∇xF (x̂t, ŷt), x̂t − x〉 ≤ ‖x− xt‖2 − ‖x− xt+1‖2 (100)

combing above equations with proposition 2 we have:

2γtF (x̂t, ŷt)− 2γtF (x, ŷt) ≤ 2〈γt∇xF (x̂t, ŷt), x̂t − x〉 ≤ ‖x− xt‖2 − ‖x− xt+1‖2 (101)

−2γtF (x̂t, ŷt) + γtF (x̂t,y) ≤ 〈−γt∇yF (x̂t, ŷt), ŷt − y〉 ≤ 0.5‖y − yt‖2 − 0.5‖y − yt+1‖2 (102)

−2γtF (x, ŷt) + γtF (x̂t,y) ≤ 0.5‖y − yt‖2 − 0.5‖y − yt+1‖2 + ‖x− xt‖2 − ‖x− xt+1‖2 (103)
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summing over t in (103) and divide both side by
∑T
t=1 γt (set of variable x and y is bounded i.e. ‖y‖2 ≤

H, ‖x‖2 ≤ H): ∑T
t=1 γt [−2F (x, ŷt) + F (x̂t,y)]∑T

t=1 γt
≤ 0.5‖y − y1‖2 + ‖x− x1‖2∑T

t=1 γt
≤ 1.5H

γT
(104)

which means same as before let T =
√
1.5H
γε and constant step size γt = γ, and x∗ = arg min max f(x,y) we have:

1

2
f(

1

T

T∑
t=1

x̂t,y)−min
x

max
y

F (x,y) ≤ 1

2
F (

1

T

T∑
t=1

xt,y)− 1

T

T∑
t=1

f(x∗,yt) ≤ ε (105)

then using proposition 1, xsol = 1
T

∑T
t=1 x̂t is (0.5, ε)-approximate minimax solution.
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