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Abstract

Machine learning classifiers rely on loss func-
tions for performance evaluation, often on
a private (hidden) dataset. In a recent line
of research, label inference was introduced
as the problem of reconstructing the ground
truth labels of this private dataset from just
the (possibly perturbed) cross-entropy loss
function values evaluated at chosen predic-
tion vectors (without any other access to the
hidden dataset). In this paper, we formally
study the necessary and sufficient conditions
under which label inference is possible from
any (noisy) loss function value. Using tools
from analytical number theory, we show that
a broad class of commonly used loss functions,
including general Bregman divergence-based
losses and multiclass cross-entropy with com-
mon activation functions like sigmoid and soft-
max, it is possible to design label inference
attacks that succeed even for arbitrary noise
levels and using only a single query from the
adversary. We formally study the computa-
tional complexity of label inference and show
that while in general, designing adversarial
prediction vectors for these attacks is co-NP-
hard, once we have these vectors, the attacks
can also be carried out through a lightweight
augmentation to any neural network model,
making them look benign and hard to de-
tect. The observations in this paper provide a
deeper understanding of the vulnerabilities in-
herent in modern machine learning and could
be used for designing future trustworthy ML.
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1 INTRODUCTION

Consider a situation where a machine learning (ML)
modeler is interacting with a data curator who owns
a private dataset for a classification task. The curator
agrees to evaluate on this private dataset the prediction
vector (or an ML model) that the modeler submits,
and replies back with loss function values. Such a sit-
uation is commonly encountered in machine learning
competition settings like Kaggle (kag), KDDCup (kdd),
and ILSVRC Challenges (ils). In some competitions,
the features of the private (hold-out) dataset are re-
vealed but not its labels, and the modeler submits the
prediction vector on those features. In some other com-
petitions, no information about the private dataset is
revealed (i.e., neither the features nor the labels). The
modeler submits a model that is then evaluated on the
private dataset. A similar situation also appears when
dealing with sensitive datasets, where either labels, or,
both features and labels could be considered sensitive,
and a modeler and curator interact through loss scores.

In this paper, we investigate if it is possible for a (ma-
licious) modeler to recover all the private labels using
these interactions with the data curator (server). More
broadly, we investigate the problem of robust label
inference, where the goal is to infer the labels of a hid-
den dataset from only the (noisy) loss function queries
evaluated on the dataset. Of particular interest will
be the case where the modeler gets just one loss query
output, which could be distorted by noise. Surpris-
ingly, we show that even with just this single query
(and no access to the private feature set or any side
knowledge), for many common loss functions including
general Bregman divergence-based losses and multi-
class cross-entropy with common activation functions
like sigmoid and softmax, our inference attack succeeds
in exactly recovering all the labels. This is a stronger
privacy violation than that postulated by blatant non-
privacy (Dinur and Nissim, 2003), where the goal is to
only reconstruct a good fraction of the true labels.
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Our observations in this paper have important ram-
ifications, for example, when used by an adversary
to execute a privacy breach by learning labels associ-
ated with a sensitive dataset, or by an unscrupulous
participant to an ML competition for learning the un-
known test labels. Our results call to attention these
vulnerabilities which might be currently under silent
exploitation. Armed with this information, individuals
and organizations, which vend these seemingly innocu-
ous aggregate metrics from their models can grasp the
potential scope of the resulting information leakage.

Overview of Our Results and Techniques. Our
attacks rely on a mathematical notion of codomain sep-
arability of loss functions, which posits that the output
of the loss function is sufficiently distinct on every pos-
sible labeling of the input datapoints (see Definition 1).
We assume that the curator that returns the loss scores
can add noise to these scores up to some (known) error
bound 7. This noise can also be introduced as error
when the scores are communicated over noisy channels
or computed on low-precision machines'. As one would
expect, separating the loss function outputs by more
than 27 is a necessary and sufficient condition for this
label recovery to be accurate (see Proposition 1). While
intuitive, this result gives a natural candidate for label
inference, from just one loss query, using an exhaustive
(exponential) local search (see LABELINF (1)).

Throughout this paper, we assume that the adver-
sary knows the loss function, number of datapoints N
and an upper bound 7 on the resulting error (noise).
We also assume that the loss is computed on all the
datapoints. The main technical challenge here is to
design prediction vectors for which a loss function
demonstrates the required codomain separability to
handle arbitrary noise levels. Our key idea here is to
use sets with distinct subset sums. Two simple ex-
amples of such sets of size n are {1,2,4,...,2" 1}
and {lnpi,...,Inp,}, where py,...,p, are distinct
primes. Sets like these are useful when characteriz-
ing the sufficient conditions under which the required
codomain separability can be achieved. For example,
in the binary classification setting with N datapoints,
the following problem comes up often in our analysis:
Construct § = [0y, ...,0x] such that

S gy - S g =0

i:oq(i)=1 Jio2(j)=1

min
01,02€{0,1} N

for some function g and bound b. To satisfy this in-

1 Our assumptions about the noise generation process en-
sure that our attacks succeed irrespective of the noise pro-
cess used by the data curator. Knowledge about the noise
distribution can be helpful though. For random noise, by
first generating a bound on the noise using a tail bound,
our techniques can be applied.

equality, it suffices to set 6 such that the set g(0) :=
{g(6;),...,9(0n)} has all distinct subset sums. This
is because the summation operators essentially filter
out subsets of elements from the vector €, and because
01 # 02 in the minima operator, these subsets must
differ in at least one element. Now, to ensure that the
minimum difference of the subset sums in g(0) is at
least b, one can solve for g(6;) = 2°b or g(6;) = blnp;
(or using some other set with distinct subset sums)
depending on actual form of g and the application.

We use these ideas and tools from analytical number
theory to provide constructions of adversarial predic-
tion vectors for broad classes of ML loss functions
based on Bregman divergences (Section 3) and multi-
class cross-entropy (Section 4), for both the unnoised
and the noised setting. The analytical properties of
squarefree integers also helps us to reduce the com-
putation time needed by the adversary. In addition
to the single query model where the adversary has to
work with only one (noisy) loss function value, we also
analyze extensions where the adversary has access to
multiple (noisy) loss function values from different pre-
diction vectors. This extension comes in handy as with
sufficient queries the local computation time required
at the adversary becomes polynomial. Additionally, to
handle situations an actual ML model is required (and
not just the prediction vector), we provide a construc-
tion of a feed-forward neural network, which can be
used to carry out these label inference attacks while
making them look benign (see Section 5). We also
point out some caveats associated with our approaches
on machines with finite floating point precision.

Defenses. Our focus in this paper is on characterizing
the vulnerability of loss functions in leaking private
information. Viewed from this perspective, our results
establishes lower bounds on the amount of noise needed
(as a function of precision, number of queries, etc) on
releasing these loss functions for any reasonable notion
of label privacy. A rigorous defense mechanism against
our proposed attack would be to release the loss scores
under on differential privacy (Dwork et al., 2006) with
carefully calibrated noise that overcomes this lower
bound. This will ascertain desired levels of plausible
deniability on the labels recovered by an adversary.

We also highlight that in general, determining whether
a loss function is codomain separable is co-NP-hard
(Theorem 5). We establish this through a (polynomial
time) Karp reduction from the Almost Tautology prob-
lem from Boolean satisfiability theory (see Appendix A).
Based on standard consensus on the complexity of this
class of problems, it is unlikely that there is a general
polynomial time algorithm for robust label inference
from loss functions (Arora and Barak, 2009).
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Related Work. Label inference attacks were first in-
troduced in (Whitehill, 2018) for binary log-loss using
a heuristic solution to a min-max optimization problem.
This attack does not recover all the labels and works
only in the unnoised setting. The noised setting for
binary log-loss was recently studied by (Aggarwal et al.,
2021). While their approach was not formalized us-
ing codomain separability, their construction also used
the idea of making the loss function outputs distinct
for each labeling of the dataset using distinct subset
sums. However, their algorithm runs in exponential
time and works only in the unnoised setting for the
multiclass case. Furthermore, they also restrict only
to cross-entropy loss. Our paper not only subsumes
these results, but also significantly extends them by
showing that most commonly used loss functions in
ML applications are vulnerable to leaking private infor-
mation about the ground truth labels. Moreover, we
provide single query sub-exponential time and multi-
query polynomial time attacks that can be carried out
through benign looking ML models and settle the com-
putational complexity of robust label inference from

arbitrary loss functions.?.

2 REDUCING ROBUST LABEL
INFERENCE TO CODOMAIN
SEPARABILITY

We begin our discussion by formally defining the notion
of codomain separability and its connections to label
inference in the noised as well as unnoised setting. Our
objects of interest are functions whose domain is the
Cartesian product of the space of all labelings (defined
by the Z¥ = Zy x -+ x Zg (N times) = {0,..., K —
1}N) and an arbitrary set ©® C RN, Here, K > 2
represents the number of label classes. This formulation
captures the common scenario in machine learning,
where we evaluate a loss function using the true labeling
in Z% for N datapoints based on a (prediction) vector
in RV generated by an ML model. © is the space
of prediction vectors, and for § = [0,...,0n] € O,
the value of #; encodes the label prediction for the ith
datapoint. We work with different loss functions that
place different restrictions on ©. All missing details
from this section are presented in Appendix B.

Codomain Separability. Informally, we call a func-
tion codomain separable if there exists some vector
0 € © such that the function output is distinct on each
ZX (keeping @ fixed). Thus, when 6 is known, this
one-one correspondence between the function’s output

2 Qur approach is also reminiscent of similar concepts used
in information theory, e.g., coding schemes based on Sidon
sequences (O’Bryant, 2004) and Golomb rulers (Robinson
and Bernstein, 1967), where the goal is to have a high
minimum distance between the codewords.

and the labelings in Z% can be exploited to exactly
recover all the labels from just observing the output.

Definition 1 (7-codomain separability). Let f : Z& x
O — R be a function. For 6 € O, define Ag(f) :=
ming, 5,ezy |f(01,0) = f(02,0)| to be the minimum
difference in the function output keeping 0 fixed. For
a fired T > 0, we say that f admits T-codomain sep-
arability using 6 if Ag(f) > 7. In particular, we say
that f admits 0*-codomain separability using 0 if there
exists any T > 0 such that Ag(f) > 7.

Compared to 7-codomain separability for 7 > 0, the
0T-codomain separability is weaker as it only requires
Ag(f) > 0. This condition is used for label inference
in the unnoised case. As an example for 7-codomain
separability, consider the function f(c,0) = (o, 8) for
o € {0,1}¥. To demonstrate codomain separability,
it suffices to set 6 = [1,2,4,...,2V~1] which makes f
admit 1-codomain separability. Multiplying each entry
in € by 7 will make f admit 7-codomain separability
for any 7 > 0. In upcoming sections, we discuss our
constructions that make many popular loss functions
separable. In Appendix F, we present some function
classes that are provably not 7-codomain separable.

Robust Label Inference. The goal with robust label
inference is to recover the true labeling (in Z&) upon
observing only the loss function output, even if noised.
Observe that the results trivially hold for the unnoised
case if we can handle arbitrary noise levels.

Definition 2 (7-Robust Label Inference). Let f : Z& x
© — R be a function, and o* € ZX be the (unknown)
true labeling. For a given 7 > 0, we say that f admits
T-robust label inference if there exists 6 € © and an
algorithm (Turing machine) A that can recover o* given
any { € R where |f(o*,0) —{| < 7, i.e., for all * €
7, we have A(0,N,l) = o*.

We reiterate an important point to note here that 7-
robust label inference requires perfect reconstruction
of o*, which is a stronger notion than that required
by notions like blatant non-privacy (Dinur and Nissim,
2003), where the goal is to only reconstruct a good
fraction of o*. Also, while the above definition is based
on a single query, we later relax this requirement to
study robust label inference under a multi-query model.

The following proposition formally establishes the con-
nection between the above definitions of codomain
separability and robust label inference.

Proposition 1. For any 7 > 0, the function f admits
T-robust label inference using 6 € © iff Ag(f) > 27.

Suppose the adversary picks § € © based on Definition 1
and gets back the noisy loss function value ¢ from the
curator (server). Proposition 1 then allows for a natural
label inference algorithm (which we call LABELINF)



Reconstructing Test Labels From Noisy Loss Functions

which iterates over all possible labelings to recover the
one which is closest to the observed loss score:

LABELINF : ¢* < arg min |f(c,0) — /| (1)
oeZi

A special case of LABELINF is the unnoised setting,
wherein £ = f(o*,6). In that case, it suffices to design
a vector § € © with respect to which f admits 0F-
codomain separability and 7 plays no role.

While intuitive, an important feature about the ap-
proach outlined in LABELINF (1) is that it makes just
one call to the server to retrieve the (loss) function
f evaluated at a single 6, but still reconstructs the
entire private vector. However, the exponential time
exhaustive search over the space of all labelings makes
it impractical. We optimize for this runtime to sub-
exponential time (for single query) and polytime time
(using multiple-queries) in Section 3.

Role of Arithmetic Precision. Our label inference
attacks use number theoretic constructions with large
integers and products of primes, which can render these
attacks impractical to run (within a single query) on
limited floating-point precision machines. We begin
by observing that Definition 1 does not take into ac-
count fixed arithmetic precision, which has an effect
on separability by placing a bound on the resolution.
For example, even if f(o1,0) # f(02,0), this difference
may not be observable with only ¢ bits of precision,.
We extend the notion of codomain separability in the
finite precision model in Appendix B.1, and present
multi-query label inference attacks to recover all labels
within fixed precision in Sections 3 and 6. For sim-
plicity, we focus on inference attacks under arbitrary
precision arithmetic in the main body of this paper.

3 LINEAR-DECOMPOSABILITY
AND SUB-EXPONENTIAL TIME
LABEL INFERENCE

Our main focus in this paper is on an important class
of (binary) loss functions, which we refer to as linearly-
decomposable. These functions can be expressed as a
sum of two terms: one dependent on the true labeling
o, and the other only on the prediction vector 8. As
we will see, this decomposition allows for an efficient
construction of prediction vectors for robust label in-
ference from such functions. We present only our main
ideas here and defer all missing details to Appendix C.

Definition 3. Let g : [0,1] — R be some determin-
istic function. We say that a binary loss function
f {0, 1} x (0,1)Y — R is linearly-decomposable
if there exists some invertible function g : [0,1] — R

and some function h : [0,1]Y — R, such that:

N
Fo,0) =h(0) +> oigt:) =h(®) + > g(0:). (2)
=1

i:0;=1

This class of functions includes many commonly used
loss functions in the ML literature. For example, all
Bregman divergence-based binary loss functions satisfy
the linear-decomposability property.

Lemma 1. Let F : [0,1] x [0,1] — R be a strongly
conver function and Dp(p,q) = F(p) — F(q) —
(VF(q),p — q) be the Bregman divergence associated
with F'. Then, the corresponding loss function, defined
as fr(a,0) = £ SN Dp(los,1— 03], [6:,1 - 6,]), is
linearly-decomposable.

Unlike the distance metrics for probability distributions,
Bregman divergences does not require its inputs to be
necessarily distributions (Bregman, 1967). To use these
divergences as loss functions, we directly compare the
outputs of the ML model with the point distribution
from the ground truth labels, as we do in the definition
of fr(o,0) (similar to (Liu and Belkin, 2016)).

We also focus on a special class of linearly-decomposable
functions for which the linear split is based purely on
the labels: one term corresponding to datapoints with
true label 0, and the other for datapoints with true label
1. More formally, if g : [0,1] — R is some deterministic
function, then we say that a binary loss function f :
{0,1}¥ x (0,1)Y — R is g-linearly-decomposable if it
can be expressed as follows:

flo,0) = % < > g6+ > g1 _ei)> - (3)

:0;=1 1:0;=0

In many cases, as we will see, functions in this sub-
class are easier to analyze for codomain separability.
Observe that the KL-divergence loss (which reduces
to binary cross-entropy or log-loss) is of this form,
using g(#;) = —In#,. Some other common examples of
g-linearly-decomposable loss functions include the (i)
Itakura-Saito divergence based loss, which uses g(6;) =
1/6; + In6; — 2; (ii) Squared Euclidean loss, which
can be expressed using g(0;) = (1 — 6;)?; and, (iii)
norm-like loss, which uses ¢g(6;) = 1 + (o — 1)6% —
ad? ™ 4 (= 1)(1 — ;)™ for some o > 2. We provide
detailed constructions for robust label inference from
these particular loss functions in Appendix C.

3.1 Establishing Codomain Separability

As argued in Section 2, the first step for label inference
is to design prediction vectors using which the loss func-
tions are sufficiently codomain-separable. We provide
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two different constructions of such prediction vectors
for linearly-decomposable functions. Each construction
uses a different set with distinct subset sums to ensure
that the loss scores are in 1-1 correspondence with the
set of all possible labelings. The first construction uses
powers of 2, which follows naturally from the require-
ment of the 27 separation needed for 7-robust label
inference (as in Proposition 1). We analyze multiple
loss functions using this construction. Our second con-
struction uses a set consisting of (log) primes, which
enables us to perform robust label inference in sub-
exponential time using results from number theory.
We discuss these constructions in detail below.

Construction 1: As mentioned above, our first con-
struction is based on the fact that the set S,, =
{1,2,4,...,2™} has distinct subset sums. To see this,
observe that each subset sum in .S,, is an integer whose
binary representation (in reverse) is given by the bits
defined by the indices of elements contained in that
subset. Moreover, since the difference between any two
integers that can be represented this way is one, it
also holds that the minimum subset sum difference is
1. Scaling each element of .S, also scales the minimum
difference as needed. The theorem below states our
main result from this construction.

Theorem 1. Let g : [0,1] — R be some determinis-
tic function and f : {0,1}¥ x (0,1)¥ — R be a loss
function that is g-linearly-decomposable. Then, for any
T > 0, the function f is 2T-codomain separable if there
ezists 0 € (0,1)N so that g(0;) — g(1 — 6;) > 2°NT for
alli € [N]. If 7 =0, then setting g(6;) — g(1 —6;) >0
for all i € [N] suffices for 07 -codomain separability.

Based on this theorem, the prediction vectors can be
constructed as follows: (1) Compute z*(y) as the solu-
tion to g(z) —g(1 —x) = y; (2) If 2*(y) exists, then set
0; = x*(2°NT) for all i € [N]. This vector 6 can now
be used for 7-robust label inference from f using LA-
BELINF (see Section 6 for our empirical analysis using
this construction). The following corollaries follow for
specific loss functions such as Itakura-Saito divergence
loss, squared Euclidean, and norm-like divergence losses
(see detailed proofs in Appendix C). For simplicity, we
discuss only the unnoised case in Corollary 2, for which
it suffices to demonstrate 0™-codomain separability.

Corollary 1. The Itakura-Saito divergence loss is 27-
codomain separable with 0; = (1 + 32 N7)~1,

Corollary 2. The squared FEuclidean loss is 0F-
codomain separable using 0; = (1/2) (1 —In(p;)/N),
where p; is the ith prime number fori € [N]. The norm-
like divergence loss for o > 2 is 0% -codomain separable
using 0 that satisfies (1—0;)*~1 =031 = (Inp;)/(Na).

Construction 2: Our main motivation for this sec-
ond construction is to infer all labels within sub-

exponential time. Starting from Definition 2, we can
ensure Ag(f) > 27 (as is needed for T-robust label infer-
ence from Proposition 1) by setting ¢g(6;) = 3Pt Inp;
(if possible to do so within the domain of g), where
p; is the i*" prime number and P = vazl p;. This
particular choice of g(6;) ensures that each subset sum
in the set g(6) corresponds to the logarithm of a unique
integer (using its prime factorization), and leads to the
desired codomain separation as follows.

Theorem 2. Let f: {0,1}" x (0,1)Y — R be a loss
function that is linearly-decomposable (Definition 2).
Let p; is the it prime number and P = Hfil Pi, s the
product of the first N primes. Then, for any 7 > 0, set-
ting g(0;) = 3P7 lnp; for loss functions in Equation 2
ensures that Ag(f) > 27. If 7 = 0, setting g(0;) = lnp;
suffices for 0T -codomain separability.

We will now see how this choice of prime-based vector
entries enable efficient label inference for any given 7.

3.2 Establishing Robust Label Inference

We discuss three approaches to recover the ground
truth labels from the (perturbed) loss score obtained
on prediction vectors we just designed. We distinguish
each approach based on its runtime complexity and
number of queries made to the server.

Exponential Time Single-Query Inference. The
first approach is discussed in LABELINF (1), which iter-
ates over all 2V possible labelings to find the one that
is closest to the observed loss score. Both constructions
1 and 2 ensure that this algorithm always returns the
true labeling within a single query to the server.

Sub-Exponential Time Single-Query Inference.
To avoid the exhaustive search as above, we first
substitute the prediction vector from Construction
2 in the expression for the loss function to obtain
f(o,0) = h(0) + 3PTIn (Him:l p;i). Now, we know
that due to codomain separation, the labeling that
minimizes the distance between the observed loss ¢ and
the true loss f(c,0) above is the true labeling o*:

0 — (h(0)+3PTln< 11 pi>>‘
¢ — h(6)
o (“gp ) - ( 11 pi)

i:U,j:l

c* =arg min
oe{0,1}N

min

= a
rgo’E{OJ}N

To obtain ¢* from the equation above without using
an exhaustive search over {0,1}, we observe that the
expression inside the argmin essentially seeks a square-
free integer closest to some known real quantity. An
integer is said to be squarefree if it has no repeated
prime factors. This can be checked using the Booker-
Hiary-Keating algorithm from (Booker et al., 2015) in
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sub-exponential time. This algorithm uses the explicit
formula for Dirichlet L-functions and a conditional on
the Generalized Reimann Hypothesis for proving that a
given integer is square-free with little or no knowledge
of its factorization. Once such an integer is obtained,
its prime factors are in 1-1 correspondence with the
indices in ¢* that have label 1.

Algorithm 1: CLOSQFREE(z, m)

If x <2 or m =2, then return 2.

Let p; be the i*" prime number. If p; - -
then return p; - - - p,,.

s for k=0,1,2,...,|z] —1do

If |z] — k € SQFREE(m), then return |z| — k.

If [x] + k € SQFREE(m), then return [z] + k.

*Pm < Zz,

The problem of label inference on linearly-
decomposable loss functions is, thus, reduced to
the calculation of the nearest square-free integer to a
given real number. More concretely, the expression for
recovering the true labeling can be written as follows:

o* = {z : p; divides CLOSQFREE (ezgg(fe) ,N)} ,

where CLOSQFREE(z, m) = arg minyegqrres(m) |7 — ¥/
denotes the closest squarefree integer to x. The no-
tation SQFREE(m) denotes the set of all square free
integers whose largest prime factor is at most the

h prime number p,,. We outline an optimized ver-
sion of CLOSQFREE in Algorithm 1, which runs in
O(N exp ((In N)°W))) time.

Multi-Query Polynomial Time Attacks. Loss
functions that are g-linearly-decomposable also allow
for an efficient multi-query label inference algorithm.
In particular, we could have a trade-off between the
ability to perform multiple queries with faster com-
putation times for solving the optimization problem
in LABELINF (1). To see this, observe that setting
0; =1/2 gives g(0;) — g(1 — 6;) = 0. Thus, if we want
to infer the first M < N labels in a single query, we
can set 6 = [91,...,9&[,1/2,...,1/2}, where 91,...,91\/1
are produced according to either Constructions 1 or
2. Using this 0 will ensure that if f(o1,0) = f(02,0),
then o1[: M] = o9[: M]. After recovering the first
M labels, we can recover the next M labels using
0=1[1/2,...,1/2,0p41,...,020,1/2,...], and so on.

Observe that an [N/M]-query algorithm for robust
label inference will require O(N2M /M) local compu-
tations by the adversary (using LABELINF (1) in each
query). Thus, while the single query case required
O(2"V) computations, any multi-query algorithm using
M = O(log N) requires only O(poly(NN)) time.

4 MULTICLASS CROSS-ENTROPY
LOSS

We now show that the ideas of codomain separability
also extend to the particular case of multiclass cross-
entropy loss and its variants. We provide an overview of
our results and defer all missing details to Appendix D.

Multiclass Cross-Entropy Loss. We first recall
the definition of multiclass cross-entropy. We assume
K > 2 classes, and let N and Zg denote the number
of datapoints and the set of label classes, respectively.
The K-ary cross-entropy loss on 6 with respect to a
labeling o € Z¥ is defined as follows:

~ Y (In-

i=1 k=0

—_
H

CELOSS (o, 6) lnHZk) (4)

where [0; = k] = 1 if 0; = k and 0, otherwise. Here,
6 € © = [0,1]V*X is a matrix of prediction proba-
bilities, where the ith row is the vector of prediction
probabilities 01‘,0, ey 01‘,[{_1 (Wlth ZkEZK 91‘7k = 1) for
the ¢th datapoint on classes 0, ..., K — 1 respectively.

With this definition, we can now describe our construc-
tion of a matrix § € [0,1]V*X that makes CELOSS
function 27-codomain separable for any 7 > 0 (i.e.,
Ag(CELOSS) > 27). At a high level, we obtain the re-
quired codomain separability for CELOSS by splitting
the loss into label dependent and independent terms,
and designing the entries in the matrix 6 in such a
way that the expression reduces to a distinct integer
in some set. This calibration allows us to control the
minimum difference in the output of the cross-entropy
loss on different labelings, which we can scale to the
desired amount (> 27) easily. The following theorem
summarizes our construction.

Theorem 3. Let 7 > 0. Define matrices 9,0 €
RV*K sych that g = 3(2TVEEENT) Onk =
Oni) Son  Opi. Then, it holds that CELOSS is 27-
codomain separable using 0. If 7 = 0, then using
Uk = 3(2(”71)1(“) ensures 0T -codomain separability.
Using Theorem 3 and Proposition 1 implies that for
these cross-entropy loss functions, the approach out-
lined in LABELINF (1) succeeds in recovering all the
labels when the loss scores are noised by less than
7 in magnitude. We bring to the reader’s attention
the doubly-exponential nature of the entries used to
construct the prediction vector in Theorem 3. This
blowup is unfortunately unavoidable for constructing
T-codomain separability, even for the binary case (see
(Aggarwal et al., 2021, Theorem 7)).

Extensions of Cross-Entropy Loss. Often in prac-
tice, when using the cross-entropy loss to assess the
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performance of ML models (like CNNs), it is common
to apply an activation function (such as softmax or
sigmoid) before the cross-entropy loss calculation. For
example, a common idea in multiclass classification is
to apply the softmax function (to convert any sequence
of real outputs into a probability distribution) as:

K—

_W Z Z ([o’i =k|]-In SOFTMAX(Gi,k)>, (5)

=1 k=0

—_
[

where SOFTMAX(6; ) = exp(0; 1)/ Zszl exp(6; ;). To
extend Theorem 3 to this setting, we do the following:
(1) Let 0 € [0,1]V*E be the matrix from Theorem 3.
(2) For each i € [N], solve the following (fully specified)
system of equations for 0; ;’s: for all k € Zg, i € [N]:

K
oxp (07) / D exp (6; ;) = O

j=1

Once ' is obtained, since SOFTMAX(0; ;) = 0; 1, from
Theorem 3, we get that softmax cross-entropy loss is
27-codomain separable using #’. A similar argument
also works for Sigmoid cross entropy loss (Appendix D).

5 ONE MODEL TO INFER THEM
ALL

The results in previous sections highlight how predic-
tion vectors (0’s) could be generated that succeed with
T-robust label inference. This raises an interesting
question of whether the prediction vectors utilized in
these label inference attacks can actually be an output
of a non-trivial benign looking ML model? We answer
this question in the affirmative in this section.

Setup. Assume a classification problem on K classes.
We will design a multi-layer feed-forward neural net-
work MUTNET using following specifications. (1) The
input to MUTNET is a vector v € R% with true label
oy € Zk. (2) The output of MUTNET is a vector in
(0,1)% that represents an encoding of the prediction.
Let f: Zg x (0,1)% — R be a loss function. The goal
of the network is to ensure that on any input v the
network generates an output u,,4+1 such that f admits
27-codomain separability using u,,+1. Consequently,
for any input v, given a noisy value of f(oy,W;,41), an
adversary can use LABELINF to infer oy,.

Our Mutator Network. We construct a 2-layer net-
work MUTNET, : R% — (0,1)92 that can convert
any real vector v € R% into any desired fixed vec-
tor x € (0,1)%. The transformations we use in this
network are the RELU and S1GMOID activation func-
tions: one layer of the former and one layer of the
latter. Let M; € R%*d1 and M, € R%*d2 he matrices

such that all entries in M; are negative (the entries
in M5 can be arbitrary). Let x’ be a vector such that
x; =Inz; /(1 — x;). Then, for an input vector u; = v,
the transformations in MUTNETy are as follows: ugy =
RELU (vTM;), uz = SiemoIp (uj M, + x'), where
RELU and SiGMOID are applied element-wise on their
input vectors. Effectively, this construction inhibits
the propagation of v by outputting the same vector
u; = x always. By setting x to the desired (prediction
vector) 0 for 27-codomain separability on f, we get
that | f(ov, MUTNETy(v)) — ¢| < 7 (Theorem 6).

Remark 4. We note that any neural network model
can be modified to carry out our attack, as an adver-
sary can replace the top layer of any neural network
model with the above construction. This highlights the
versatility of our attack.

6 EMPIRICAL ANALYSIS

We now present an empirical evaluation of our label
inference attacks. We analyze the following datasets:

e Titanic (tit): a binary classification dataset (2201
rows) on the survival status of passengers.

e IMDB (imd): a binary classification dataset (25000
rows) on the movie reviews.

e Satellite (sat): a six-class classification dataset
(6430 rows) on the satellite images of soil.

e MINIST (mni): a ten-class classification dataset
(70000 rows) on handwritten digits.

e CIFAR (cif): a ten-class classification dataset
(60000 rows) on color images.

As our attacks construct prediction vectors that are
independent of the dataset contents, we ignore the
dataset features in our experiments, but all the labels of
the dataset are considered for the attack®. We consider
four common loss functions arising from Sections 3 and
4, two of which are multiclass losses (multiclass cross-
entropy (CELOSS (4)) and softmax cross-entropy (5)),
and the other two are binary losses (binary Itakura-
Saito (ISLoss (8)) and sigmoid cross-entropy (14)). As
a baseline, for the binary labeled dataset (Titanic) with
the (plain) cross-entropy loss, we implemented the label
inference attack of (Aggarwal et al., 2021). We also
present additional experimental results in Appendix G.

We start with the distinction between our experiments
and the approach outlined in LABELINF, which is pre-
sented in the arbitrary precision model. For CELOSS,
simulating LABELINF on a finite precision machine
must be able to differentiate min; j, 6; 5 from 0 (or else

3 All experiments are run on a 64-bit machine with 2.6GHz
6-Core processor, using the standard IEEE-754 double pre-
cision format. For reproducibility, the code is included as
part of the supplementary material.
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Figure 1: Results for single-query label inference. The Y-axis in Figures (a) and (b) represents the number of
datapoints that can be recovered with 100% accuracy, while for Figures (c) and (d), it represents the number of
datapoints that can be recovered at 50% accuracy, i.e., we recover at least this length vector accurately in at least
50% of the 1000 runs. The max computation time per inference attack is roughly 10 seconds.
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Figure 2: Label reconstruction accuracy with the multi-query label inference attack. As discussed in the text, for
a given loss-function, we expect similar plots for any two datasets with same number of classes, e.g., Itakura-Saito
for Titanic and IMDB, Softmax cross-entropy for MNIST and CIFAR.

the label inference will be ambiguous). A rough analy-
sis (from Theorem 3) gives that ¢ = Q(2VX N7) bits
are required to make this distinction. This bound hides
constant factors, but gives an idea of how arithmetic
precision plays a role in our experiments.

Figure 1 shows the number of datapoints N recov-
ered by LABELINF as we increase the noise for ISLOSS,
CELo0ss, and softmax cross-entropy loss. We sample
1000 random sets of labels each of length N from the
dataset here. At error magnitude 7 = 1, the noise
is comparable to the actual loss function values com-
puted. We measure accuracy as the percentage of labels
correctly inferred out of N. Figure 1(a) shows that
the number of datapoints (N) for which 100% label
inference accuracy is achieved with ISLOSS as we vary
noise magnitude. As expected at lower noise magnitude
the attacks can extract more labels correctly and this
quantity decreases as the noise magnitude (7) increases.
Note that as mentioned, our attacks are independent
of the dataset feature set, therefore the recovery per-
formance is same on both Titanic and IMDB, as they
are both binary labeled. Figure 1(b) shows the number
of datapoints (N) for which 100% label inference accu-
racy is achieved with CELOSS. Here, the results differ

(except for MNIST and CIFAR) because the datasets
have different number of classes K. At the same noise
magnitude, the accuracy also drops as the number
of classes (K) increases from 2 (in Titanic) to 10 (in
MNIST and CIFAR), which is also expected. These
happen because of the dependence on number of data-
points and number of classes in our prediction vector
construction (Theorem 3), which given fixed machine
precision runs into representation issues. We note that
the construction from (Aggarwal et al., 2021) on the
Titanic dataset (the only case where it is applicable),
works slightly better (especially at lower 7 values) than
ours due to a small difference in the exponent: it holds
that mine(n)(—In6;) = Q2N N7) in their paper, but
Q22N N7) when using Theorem 3.

Figures 1(c)-(d) show the number of datapoints on
which LABELINF achieves at least 50% accuracy for
CELo0ss and softmax cross-entropy losses respectively.
We notice this number is smaller for softmax cross-
entropy loss, which is also not surprising. Through
a similar argument as that above for the number of
bits required for cross-entropy loss, one can show that
computing the softmax cross-entropy loss will require
an additional Q(NK + In(NT)) bits (see the discussion
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in Appendix G for details). This additional requirement
further constraints the number of labels that can be
recovered with softmax cross-entropy loss.

We also examine a multi-query label inference algorithm
in Figure 2. For these plots, we simulated LABELINF on
M < N datapoints at a time (instead of all), to obtain
a total of [N/M] queries. The idea is to use Figure 1
to determine the maximum number of labels that can
be correctly inferred in a single query for a given noise
level, and then perform label inference on only those
many datapoints at a time. As expected, we observed
that the accuracy increases with the number of queries:
for ISLoss on Titanic, we achieved 100% accuracy
using M > 220 with 7 = 0.0001, and M > 1100 with
7 = 1. The accuracy is again lower for the softmax
case again due to reasons mentioned above. Additional
experimental results on CELOSS and sigmoid cross-
entropy losses are included in Appendix G.

7 CONCLUDING REMARKS

In this paper, we demonstrated how a large class of
common ML loss functions can be exploited to recover
the unknown test labels. Our attacks, based on tools
from analytical number theory, succeed with provable
guarantees, even when provided with noisy loss function
values. Our investigation also highlights the role of
number of queries and arithmetic precision. We also
demonstrate how our attack could be carried out using
a simple augmentation to any neural network model,
making it look benign.

Finally, we end up discussing some of the practical limi-
tations of our attacks, removing which could strengthen
the results we present in this paper.

e Our attacks require the knowledge of the loss func-
tion on the adversary’s part (which is generally
known in practice) as well as an upper bound on
noise being added. The latter assumption can, how-
ever, be relaxed in a multi-query setup where the
adversary uses a doubling trick for guess on the noise
magnitude.

e Our attacks assume that there is an arbitrary, but
fixed ordering of the test dataset across queries.

e Our attacks, as presented, are more interesting in
the public leaderboard setting. However, even in
the private leaderboard setting, the adversary will
still be able to recover the set of test labels using
our algorithm, but will not able to associate them
to individual test datapoints. Nonetheless, know-
ing the vector of test labels can give the adversary
sensitive summary statistics about the individuals
whose information is present in the test set (e.g.,
fraction of medical patients that have disease X).

Note that further such summary statistics can be
combined with other auxiliary data sources. Just for
illustration, if we know that John is taking cancer
treatment at a hospital (but do not which cancer),
and if that hospital is running a ML competition
for predicting lung cancer on their patients data,
and our attack say recovers [1,0,...,0,...,0] as la-
bels then we immediately know that John has lung
cancer (which will be a privacy breach).
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Supplementary Material:
Reconstructing Test Labels From Noisy Loss Functions

A COMPUTATIONAL HARDNESS OF CODOMAIN SEPARABILITY

We show that that determining the codomain separability is co-NP-hard (see (Arora and Barak, 2009) for a
definition of co-NP-hard). We establish the result for the weaker notion of 0*-codomain separability (Definition 1)
and restrict ourselves to functions of the form f: {0,1}" x Z&¥ — R, where the decision problem is to determine
whether there exists a 6 € Zf such that f is 0T-codomain separable using #. We denote this decision problem
by CODOMAIN-SEP. Note that this automatically implies that determining the 7-codomain separability of such
functions is also co-NP-hard.

Let ®(z1,...,2n) be a Boolean formula over N variables in the 3-CNF form ®(zq,...,zx) = C1 A--- A Chp,
where C; are disjunctive clauses containing 3 literals each. We say that ®(x1,...,2n) is an almost tautology if
there are at least 2V — 1 satisfying assignments for ®. In other words, there is at most one assignment of the
variables that makes ®(x1,...,zy) false. Define ALMOST-TAUTOLOGY to be the problem of determining if a
given Boolean formula is an almost tautology.

Lemma 2. ALMOST-TAUTOLOGY is co-NP-complete.

Proof. We first show that ALMOST-TAUTOLOGY is in co-NP, i.e., any certificate that ® is not an almost-tautology
can be checked in polynomial time. To see this, observe that such a certificate must contain at least two distinct
assignments for which ® is not satisfied, which can be verified efficiently.

To show that ALMOST-TAUTOLOGY is co-NP Hard, there are two cases: either ® is a tautology, or there is exactly
one assignment that does not satisfy ®. Deciding the former is co-NP-hard (Arora and Barak, 2009). For the
latter, consider the logical negation ~®(z1,...,zy). If ® is an almost tautology (but not a tautology), then there
is exactly one satisfying assignment for =®. This is the same as the Unique-SAT problem, in which we determine
if a Boolean formula has a unique solution. This problem is also co-NP-hard (Papadimitriou and Yannakakis,
1982; Blass and Gurevich, 1982), and hence, ALMOST-TAUTOLOGY is co-NP-hard. O

We start with an arbitrary Boolean formula ®(z1,...,2zx). For 6 € Zf , define the following function:
fo(0,0) = C’fl ~-~C’j0VNp‘f1 %,

where p1,...,pny > b are distinct prime numbers, and C; = C;(0o) in the additive form (i.e., mapping all variables
to {0,1}" by representing all negative literals z; as 1 — z;, and converting all disjunctions to addition). For
example, if C1 = (23 V T4 V ), then CL =0, (0) =05+ (1 — 04) + 0. Another example is as follows: assume
D(x1, 20, 23) = (T1 V2o Vas) A(z1 Vas V Zz). Then, first repeat the third clause in ® to make the number of
clauses the same as the number of variables to obtain ® (1, z2,x3) = (T1 Vae Vaz)A(x1 Ve VIs) A VasVTs).
Now, the corresponding function can be written as follows:

fq>(0', 9) = 5017021103(1 — 01+ 09+ 0'3)01(1 +o01+ 09 — 0’3)92+03. (6)

We now prove our hardness result for 0T-codomain separability using this reduction.

Lemma 3. For any 0 € ZY and distinct 01,05 € {0,1}", it holds that f(01,6) # f(02,0) if and only if at least
one of o1 or o9 satisfies ®. Here, we abuse the notation to represent the Booleans True and Fualse by 1 and 0,
respectively.

Proof. Observe that for any distinct o1, o € {0, 1}V, we have f(o1,0) = f(02,0) only when there is some set of
clauses C; and C; such that C;(01) = C;(02) = 0, i.e. they are unsatisfied by o1 and o9, respectively. This is
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because the product of the primes satisfies Hfil pfl(i) * H;VZI p;-m(j ) (since both products differ in at least one
prime — the one corresponding to the index of the element at which o1 and o9 differ). The lemma statement then

follows from the contrapositive of this result. O

Theorem 5. CODOMAIN-SEP is co-NP-hard.

Proof. We prove this by demonstrating a Karp reduction from the ALMOST-TAUTOLOGY problem, which we
showed is co-NP-complete in Lemma 2. Let ®(x1,...,2y5) be an arbitrary Boolean formula and fs (o, 6) be the
corresponding function from (6). Now, for ® to be an almost tautology, there can at most one unsatisfying
solution: (1) if there are no unsatisfying solutions, then for any Boolean assignment of z1,...,zy, all clauses
in ®(x1,...,2y) must be satisfied and hence, from Lemma 3, the value of fg(0,8) must also be distinct for
all o, implying that fg is 0T-codomain separable; (2) if there is an unsatisfying assignment, then the value of
fo(0,0) at this assignment must be zero, and it is non-zero at all other assignments. This also implies that fg
is 0t-codomain separable. Lastly, let 6 be a vector with respect to which f is 0T-codomain separable. This

immediately implies that ®(x1,...,2x) must be an almost tautology — if not, then either one of (1) or (2) must
be false since there will be at least two unsatisfying assignments in this case, implying that the function fe will
be zero on at least two inputs. O

B MISSING DETAILS FROM SECTION 2

The following proposition states the connection between 7-robust label inference and 7-codomain separability.
This connection, for the specific case of binary cross-entropy loss, was also noted by (Aggarwal et al., 2021).

Restatement of Proposition 1. A function f admits T-robust label inference using 0 € © if and only if
Ag(f) > 2T.

Proof. We start with one direction and show that if we can do label inference (there exists algorithm A in
Definition 2), then Agp(f) > 27 must hold. We prove this by contradiction. The idea is to construct a score
from which a unique labeling cannot be unambiguously derived. Without loss of generality, let 01,02 be two
distinct labelings for which 0 < f(o2,0) — f(01,0) < 27. It follows that f(02,0) — 7 < f(01,0) + 7. Now, let
L= (f(01,0) + f(02,0)) /2 and & = £ — f(01,0). Clearly, x < 7. Similarly, f(c2,0) — ¢ < 7. In other words, ¢
could be generated by a 7 magnitude perturbation to both f(o1,0) and f(o9,6) (with o1 # 02). Therefore, there
can exists no algorithm A that, given just ¢, can recover whether the true label is o1 or o9 (i.e., no A can succeed
with 7-robust label inference). This is a contradiction, therefore, Ag(f) = ming, o, |f(02,60) — f(01,0)| > 27.

For the other direction, let £ be as given in Definition 2 with |f(0*,0) — ¢| < 7. By triangle inequality it follows
that if Ag(f) = 27, then |€ — f(0*,0)] < mingezn\,+ [¢ — f(0,0)] (ie., addition of any noise less than 7 in
magnitude will maintain the invariant that the noised score is closest to the score on the true labeling). Hence,
solving argmin, czn |f(0,0) — £| will return the true label ™. O

B.1 Separability in Arbitrary Precision vs. Finite Floating-Point Precision

One important consideration in our label inference attacks is the precision of arithmetic that is required at the
adversary. In this context, there are two natural models of arithmetic computation: a) arbitrary precision and b)
finite floating-point precision. Arbitrary precision arithmetic model allows precise arithmetic results even with
very large numbers. In the floating-point precision model, the arithmetic is constrained by limited precision.
An example of the floating-point precision model is the commonly used IEEE-754 double precision standard.
Designing algorithms for standard arithmetic in both these models have been studied extensively (Knuth, 2014;
Brent and Zimmermann, 2010). We refer to the arbitrary precision arithmetic model as APA and floating point
arithmetic model with ¢ bits as FPA(¢). For ease of discussion, we assume that in the FPA(¢) model, we have 1
bit for sign, (¢ — 1)/2 bits for the exponent and (¢ — 1)/2 bits for the fractional part (mantissa). This assumption
can be relaxed to accommodate ¢, > 0 bits for the exponent and ¢, > 0 bits for the fractional part where
¢a + ¢» = ¢ — 1. Furthermore, for any loss function f in the APA model, we denote by f,; the algorithm that
computes f on a machine with an instruction set for performing computations within these ¢ bits of precision.

We begin by observing that Definition 1 does not take into account fixed arithmetic precision (i.e., deals with the
case where we have arbitrary precision arithmetic). Finite floating-point precision has an effect on separability, as



Aggarwal, Kasiviswanathan, Xu, Feyisetan, Teissier

bits of precision places a bound on the resolution. For example, even if f(o1,0) # f(02,0) in the APA model,
with only ¢ bits of precision, this difference may not be observable. This leads to notion of separability in the
FPA(¢) model.

Definition 4 (7-codomain Separability in the FPA(¢) model). Let f : Z¥ x © — R be a function. Let fs be
the representation of f in the FPA(¢) model. For 6 € ©, define Ag(fy) := min,, ,,czn |fs(01,0) — fy(02,0)]
to be the minimum difference in the function output keeping 0 fixed. For a fixed T > 0, we say that f admits
7-codomain separability using 6 in the FPA(¢p) model if Ag(fy) > 7.

In particular, we say that f admits 0"T-codomain separability using 6 in the FPA(¢) model if there exists any
T > 0 such that Ag(fy) > 7.

Let f4 be the representation of f in the FPA(¢) model. Informally, representation in the FPA(¢$) model implies
computing f within the granularity defined by ¢, and reporting underflow/overflow when the results are out
of range. It is easy to show that if f, admits 7-codomain separability using ¢, then f also admits 7-codomain
separability in the APA model using 6 (see Proposition 2). The other direction is trickier, but we can establish
that if f admits 7-codomain separability in the APA model using 0, then f,; admits 7-codomain separability using
0 if ¢ > max(2log, 7 + 5, —2log, 7 — 1) (see Proposition 3).

Proposition 2. Let f : Z¥ x© — R, § € ©, and 7 > 0. Let f, be the representation of f in the FPA(¢)
model. If fy admits T-codomain separability in the FPA(¢) model (using 8) for some ¢ > 0, then f also admits

T-codomain separability in the APA model using 6. Moreover, fy also admits T-codomain separability in the
FPA(¢') model using 0 for all ¢' > ¢.

Proof. Given 6 and the fact that f, admits 7-codomain separability using 6 in the FPA(¢) model, denote

Ag(f¢.) = min N ‘f¢<0‘1,9) — f¢(0‘2,9)| = b% . 'blbo . bflbfg o bi% Z 27’,

01,02€L

where each bit b; € {0,1}. Then, in the FPA(¢ + 1) model, we can write (without loss of generality):

Obu . ~b1bo . b_lb_g . 'bib ifd) is even,
Ao (for1) = 2 T

b%"'bﬂ)o.b,lbfg-“bi%o lf(f)ISOdd
Zb% "'blbo . b,1b72~-~biﬂ Z 27’,

2
which establishes that fsi; is 7-codomain separable using 6 in the FPA(¢ + 1) model. By induction, this implies
that fy admits 7-codomain separation in the FPA(¢') model using 6 for all ¢’ > ¢. In the limit when ¢ — oo,
this is equivalent to saying that f admits T7-codomain separation in the APA model. O

Proposition 3. Let f : ZX¥ x© - R, 0 € ©, and 7 > 0. Let f, be the representation of f in the FPA(¢) model.
If f admits T-codomain separation in the APA model using some 6 € © and for some 7 > 0, then f, admits
T-codomain separation in the FPA(¢) model using 0 for ¢ > max(2logy 7+ 5, —2log, 7 — 1).

Proof. Suppose f admits 7-codomain separation in the APA model. To establish fy admits 7-codomain separation
in the FPA(¢) model, we need to split the two cases: 7 > 1 and 7 < 1. Represent Ag(fs) in the FPA(¢) model as

bo—3---b1bg . b_1b_o---b 1.
2 2

When 7 > 1, a sufficient condition for f, to satisfy the 7-codomain separation is to have enough precision before

the decimal point,
2% > 2r,

which gives % > 1+logy, 7 = ¢ > 2log, 7 +5. When 7 < 1, a sufficient condition for f4 to satisfy 7-codomain
separation is to have enough precision after the decimal point,

b—1
2= < 2r,

which gives —% <1+4logy ™= ¢ > —2log, 7 — 1. The proposition follows from combining the two together

to obtain ¢ > max(2log, 7+ 5, —2logy T — 1). O
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C MISSING DETAILS FROM SECTION 3

We show that all Bregman divergence based loss functions are linearly-decomposable. Given a continuously

differentiable strictly convex function F : S — R over some closed convex set S C R%, the Bregman divergence
r: S xS — R associated with F' is defined as Dp(p,q) = F(p) — F(q) — (VF(q),p — q). We will focus on the

binary case for our discussion in this section and assume that the domain of F is the closed convex set [0, 1]V

Restatement of Lemma 1 Let F : [0,1] x [0,1] — R be a strongly convex function and Dr(p,q) = F(p) —
F(q)—(VF(q),p—q) be the Bregman divergence associated with F. Let fr(c,0) be the corresponding loss function,
defined as follows:

N
Z Uu ]3[9271_01])

Then, fr(c,0) is linearly-decomposable.

Proof. First, observe that any loss function of the form f(0,0) = Zf\il (0:9(0;) + (1 — 0;)h(6;)) is additively
linearly separable, since it can be rewritten as f(6,0) = =N ,0:9'(0;) + vazl h(6;), where ¢'(6;) = g(8;) — h(6;).

Let F:]0,1] x [0,1] — R be a strongly convex function and DF(p,q) = F(p) — F(q) — (VF(q),p — ¢) be the
Bregman divergence associated with F. Let Lr(0,0) be the corresponding loss function, defined as follows:

Z (loi 1 — o], 05,1 — 6]).

We start by using a shorthand ¢(z) = F([z,1 — z]). Then, we can write the following:

1 N
£F(9,0') = N ZDF([Uw 1-— O'iL [91‘, 1-— 91])
1 1;1
= 5 2 (0(03) = 6(6:) — (VE([oi.1 = 0i]). o3 — 0.6, — o))
1 z§1
=5 Z (p(0i) — (0:) — (07 — 0:)(VF (0,1 — ai]), [1,—1]))

©
Il
-

2=

¢(1) = ¢(0:) — (1 = 0:)(VF([1,0]), [1, —1]>> +

( PR i) + 0:(VE((0,1]), [1»—1]>>

i:0,=0

—
S

i

I

==

Let a = (VF([1,0]),[1,—1]) and b = (VF([0,1]), [1, —1]) be constants. Then, we have the following:

EF(Q“)&(Z ¢(1)¢(91)a+9i0) (Z #(0 +9b>

i = i:0,=0
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for the Bregman loss is obtained by setting g(#;) = 7 In p;, where p; is the i*" prime number, as follows:

L (Bi(a— 1)+ 6(1) - 6(0) — a) = rlup;

N
g, — NTlnpiJrqﬁ(_O)quafgb(l)

 Nrlup + F(0.1]) + (VF(L0]), [1, 1)) — F(([1,0)
== TR L) - (VE(O ), (L1

Restatement of Theorem 1. Let g : [0,1] — R be some deterministic function and f : {0,1}" x (0,1)V

O

— R be

a loss function that is g-linearly-decomposable (Definition 3). Then, for any T > 0, the function f is 27-codomain
separable if there exists 0 € (0,1)N so that g(6;) — g(1 — 0;) > 2'N7 for all i € [N]. If T = 0, then setting

9(0;) —g(1 —0;) > 0 for all i € [N] suffices for 0" -codomain separability.

Proof. We begin by observing that (3) can be rewritten as follows:
1

f(o,0) = N Z (0ig(ts) + (1 —03)g(1 — 6:))
i=1

N

=5 | 2 )~ -0+ 901-0)

iio(i)=1 i=1
For any 6 € (0,1), we can then write the following:

Ao(f) = min  |f(01,0) = f(o2,0)]

o1,02€{0,1}

= min | Y @) -g1-0)— Y (96) —g(1-6))

N o1,02€{0,1}¥ iio (i)=1 jioa(j)=1

If for all 4 € [N], it holds that g(6;) — g(1 — 6;) = 2'N7(1 + §) for some & > 0, then:

_ : i—1 -1 _
Ae(f)_(27(1+5))611052%’1}N | E(; 12 +j %:) 12 =27(1+6) > 2r,
1:01(2)= 01 =

where the last step holds because o1 # 0.

C.1 Kullback-Leibler Divergence Loss

The (generalized) Kullback-Leibler (KL) divergence between vectors p,q € S C R? is defined as:
Dxi(p,a) = »_ pil n* - > (i —a),
1€[d] 1€[d)

where p = (p1,...,p4) and q = (q1, .-, qd)-

For a binary classification setting, considering the ith datapoint, we have the true label o; € {0,1} and 6; € (0,1)

which is the probability assigned to the event o; = 1 by the ML model. In that case, we have
DKL([Oia 1— O‘i], [Hi, 1-— 9,]) = —0; lnHZ- — (1 — O'Z') 111(1 — 91>
Summing over the N datapoints (and dividing by N) gives the Kullback-Leibler divergence loss,

N
-1
KLLOSS ZDKL gy 1 7;],[9,‘,1—91‘]) = WZO}IH&—F(I—O}) ln(l—ﬁi)
(Z Inb; + Z In(1-46 )
i:o,=1 10, =

which is exactly the binary cross-entropy loss*.

4 Here, we adopt the notion that 0In0 = 0, so that KL divergence is well-defined.
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C.2 TItakura-Saito Divergence Loss

The Itakura-Saito divergence for vectors p,q € S C R? is defined as:

Dis(p,a) = Y ( —In f - 1)
icld) qi qi
where p = (p1,...,p4) and q = (q1, .-, qd)-

For a binary classification setting, considering the ith datapoint, we have the true label o; € {0,1} and 6; € (0,1),
which is the probability assigned to the event o; = 1 by the ML model. In this case, based on Dig, the Itakura-Saito
divergence loss is defined as:

ISLoss(a,e)—jlv<Z (;+ln9i1)+ ) <1_19. (1@)1)) (8)
z A1=9,

i:0;=1 1:0;=

The above equation shows the linear decomposability of this loss, therefore, Theorem 1 can be applied to get the
following result.

Restatement of Corollary 1. The Itakura-Saito divergence loss (ISLOSS) is 27-codomain separable with
9; = (1 + 32”\’7)7

Proof. We apply Theorem 1 here. For the Itakura-Saito divergence loss in (8), we begin by noticing that for
x € (0,1/2), it holds that

Thus, since

1 1 0;
g(ei)_g(l_ai)_ej_ 1— 06, +In (1_9.)

for this loss, it suffices to ensure that In (109 ) > 2!N7 for Theorem 1 to apply. In particular, we solve

—1
In ( 7, ) 2!N71In3 to obtain §; = (1 + 3% NT) . Note that 6; < 1/2 as needed above. O

C.3 Squared Euclidean Loss

The squared Euclidean divergence for vectors p,q € S C R¢ is defined as:

Dsg(p.q) = Z (|pi - qi|2> ; (9)
i€[d]
where p = (p1,...,pq) and q = (¢1, .-+, Gd)-

Again for the binary classification setting, considering the ith datapoint, we get the following expression for this
loss:
Dsg([oi, 1 — ai], [6:, 1 — 6;]) = 2los — 6;]|*.

Summing over the N datapoints (and dividing by N, and ignoring the factor of 2), we get the squared Euclidean
loss as follows:

SELoss(o (Z loi = 0> + > loi — 9|> (Z + > 92> (10)

1:0,=1 1:0;=0 1:0,=1 1:0,=

In this case, we establish 0t-codomain separability.

Restatement of the first part of Corollary 2. The squared Euclidean loss (SEL0SS) is 07 -codomain
separable using 0; = (1/2) (1 — In(p;)/N), where p; is the ith prime number.
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Proof. To apply Theorem 1 to the squared Euclidean loss, we have g(6;) = (1 — 6;)?, which gives g(6;) — g(1 —

0;) = 1 — 26,. Setting this to ln]\f i where p; is the ith prime number, ensures that u(Sp) > 0. Equivalently,

0; = % (1 — h}é’"’) works. O

Note that the proof above assumes that 6 € (0,1)". We show in Theorem 7 that restricting 6 to {0, 1}" prohibits
T-codomain separability for any 7 > 0.

C.3.1 Norm-like Divergence Loss

The norm-like divergence for vectors p,q € S C R? and a > 2 is defined as:

Dau(p,a) = Y (0% + (@ — 1)gf — apig? 1),
i€ [d]

where p = (p1,...,pq) and q = (g1, - ..,qqa). Again for binary classification, considering the ith datapoint, we get
the following expression for this loss:

DNL([Ui7 1-— (Ti], [9,, 1-— 91])
= (0 +(a—1)0 —aoi) '+ (1—0)* + (= 1)(1 = 0;)* —a(l — o) (1 — ;)7 1) .

Summing over the N datapoints (and dividing by N), and simplifying gives the norm-like divergence loss.

1

NLLoss(o,6) = N(

S (4 (=18 —abd ™t + (o= 1)(1—6;)*)

+ 3 1+ (@=D-0)"—al—0,)"" + (a—1)6)). (11)

1:0;,=0

In this case, we establish 0*-codomain separability.

Restatement of the second part of Corollary 2. The norm-like divergence loss (NLLOSS) for a > 2 is
0T -codomain separable using 6 where: (1 — ;)1 —0>~! = (Inp;)/(Na) with p; as the ith prime number.

Proof. Here we have g(6;) = 1+ (a — 1)0% — af?* 4 (o — 1)(1 — 6;), which gives g(6;) — g(1 — 6;) =
a((1—6;)*"1 —6~"). Similar to above, setting g(6;) — g(1 — 6;) = ln% suffices. This is equivalent to finding a
solution to the following equation, which has a unique solution in (0,1) for any fixed a > 2:

In p;

1 _ . a—1 _ q—l —
( 91) H’L NO[

It is easy to see that such a 6; < 1/2 exists. O

Ao(f) = min Soogo)— > g0n)]. (12)
i:o1(i)=1 i:og(i)=1

Restatement of Theorem 2 Let f: {0,1}V x (0,1)Y — R be a loss function that is linearly-decomposable

(Definition 2). Let p; is the it" prime number and P = H?;lpi, is the product of the first N primes. Then, for
any T > 0, setting g(0;) = 3P7Inp; for loss functions in Equation 2 ensures that Ag(f) > 27. If 7 =0, setting
9(0;) = Inp; suffices for 0*-codomain separability.
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Proof. We prove this by substituting g(6;) = 6P71lnp; in Equation 12 as follows:

Ag(f)

min | Y g(0) - Y 9(6)

o170z iioy (i)=1 Jio2(j)=1

(3P7) min Z Inp; — Z Inp;

o170z iioy (i)=1 Jio2(j)=1
= (3P1) p gnin[ ] In (Hlegl])l) > 2T
2S2C[N s j
5%10?5'2:@ <52 pj

Too see why the last inequality holds, let ST and S5 denote the sets of primes that achieve the minimum value
above. Then, without loss of generality, it must hold that HjeS; p; < P and H].GS; p; <1+ HieSf p;. Thus,

using the fact that 1.5z In (%) > 1 for all z > 1, we obtain that 1.5P times the log expression above is at least
1. Further scaling by 27 gives Ag(f) > 27. O

D MISSING DETAILS FROM SECTION 4

Worked out example for 0T-codomain separability for multiclass cross-entropy loss. For illustration,
we provide a simple example to demonstrate 0*-codomain separability for the multiclass cross-entropy loss using
a construction of prediction vector from (Aggarwal et al., 2021). Note that in Theorem 3, we establish that in
fact, multiclass cross-entropy loss admits the stronger notion of 7-codomain separability for any 7 > 0.

Assume N =2 and K = 3. Construct a matrix ¢ with first row [, 3, 2] and second row [37, 1, £2]. Observe
that these vectors are chosen using unique prime numbers in the numerator (the denominator is for normalizing
the sum to 1), the reasoning for which will be clear shortly. Using 6, one can prove that the cross-entropy
loss will be distinct for every labeling by observing that the terms inside the logarithm, that are chosen for

the outer sum in (4), are distinct for all 1abelings. For example, if the true labeling is [0, 2], then we obtain

CELoss([0,2];0) = =2 (In & +In$3) = —11In (&%), Similarly, if the true labeling is [1,0], then we obtain
CELoss([1,0];0) = =3 (In & +In55) = L 2In ($21). The use of primes makes this selection of summands in

the CELOSS score uniquely defined by the true labeling. This follows as the only thing that changes in the
CELOSS score based on the true labeling is the numerator in the In term, which is a product of primes based on
true labeling. Since the product of primes has a unique factorization, we can recover which primes were used from
the product, and since each entry in the matrix 6 is associated with a unique prime, this recovers the true labels.

Missing proofs. We show that the (multiclass) K-ary cross-entropy loss is 7-codomain separable for any 7 > 0.

Restatement of Theorem 3. Let 7 > 0. Define matrices 9,0 € RN*E such that

K
e =37 N and 0, = 900/ Y O
k=1

Then, it holds that CELOSS is 27-codomain separable using 0. If T =0, then using ¥, = 32

0T -codomain separability.

ensures

Proof. We begin by simplifying the expression for CELOSS (6, o) to write it as a sum of two terms: one dependent
on the labeling o, and the other independent of this labeling.

N K N
CELOSS (0, 0) %ZZ (fos = K] - m6:) = _Wl 3 nd,, Zln (Zm) C(13)
i=1 i=1

i=1 k=1

Labeling Dependent  Labeling Independent
Term Term
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Using (13), we then obtain the following:

Ag(CELOSS) = min |CEL0OSs (6,01) — CELOSS (6, 02)|

01,02€ZY
1| o
~ iy [y (i) =3 (o)
1 7; 7V
:0121é1ZNN ; (lnﬁzol(z)) ; (11119“,2())

= min (7ln3) >27In3 > 27.

01,02€ZY

Z2(z DK+o1(i) _ 220 1)K +05(i)

i=1 i=1

D.1 Sigmoid Cross-Entropy Loss

The separability from Theorem 3 also holds if we apply any bijective activation function before applying the
cross-entropy loss. As an example, consider the sigmoid cross-entropy commonly used in the binary classification
setting (to compresses arbitrary reals into the range (0,1)), defined as follows for o € {0,1}", 6 € (0, 1)

N
-1 Z (oz In (StcmoID(6;)) + (1 — o) In (1 — SIGMOID(Qi))), (14)

i=1

where S1GMOID(x) = (1 + e“'”)fl is the sigmoid function. Since SIGMOID : R — (0,1) is a bijection (and hence,
invertible), given SIGMOID(x) = y, we can obtain = In(y/(1 — y)). Thus, given the matrix 6 € [0, 1]V*2 from
Theorem 3, we can construct 6 € (0,1)" such that ¢, = In(6;1/(1 — ;1)) for all i € [N]. Once ' is obtained,
since SIGMOID(¢;) = 6;1 and 1 — SIGMOID(§;) = 6,2 we get that sigmoid cross-entropy loss is 27-codomain
separable using ', and hence the approach outlined in LABELINF (1) can be used for T-robust label inference.

E MISSING DETAILS FROM SECTION 5

Theorem 6. Let 7 > 0 and let § € (0,1)92 be such that f : Zx x (0,1)92 — R is 27-codomain separable using
6. Then, for any input v € (0,1)%, given £ such that |f(oy, MUTNETy(v)) — €| < 7, the approach outlined
in LABELINF (1) recovers oy .

Proof. Tt suffices to show that for given # € (0,1)% and any v € (0,1)%, the construction above ensures
that MUTNETy(v) = 6. To see this, observe that since all entries in M; are negative, the product v ' M; has
non-positive entries. Thus, when RELU is applied to v M; (element-wise), the output is the zero vector. This
zero vector, when fed into the Sigmoid, produces the desired output 6 since x’ is constructed in a way such that
SIGMOID(x’) = 6 (element -wise). O

F SOME NEGATIVE RESULTS ON 7-CODOMAIN SEPARABILITY

We now show certain loss functions are not 7-codomain separable. This complements our positive results on
T-codomain separability for cross-entropy and its variants, and Bregman divergence based losses. These negative
results on codomain separability rules out label inference in these cases, because of the connections between these
two notion established in Proposition 1.

Discrete L,-losses. We start with the simple L,-loss defined on the discrete domain and show it is not
T-codomain separable for any 7 > 0.
Theorem 7. For any p > 0, the function f : {0,1}Y x {0,1}¥ — R of the form f(0,0) = ||0 — oll, is not
T-codomain separable for any ™ > 0.
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Proof. Fix some 6 € {0,1}". For any o € {0,1}", let I(0,0) = {i € [N] | o(i) # 0(i)} be the set of indices on
which ¢ and 6 differ. Then, we can simplify the expression for f as follows:

1/p

N 1/p
flo,0) = (29(i)—0(i)|”> = X @ —o@r| =o'

i€1(0o,0)

Now, let 01,09 € {0,1}"V be such that they differ from 6 in exactly one label, i.e., |I(o1,0)| = |I(02,0)| = 1 and
hence, f(o1,0) = f(02,0) = 1. Note that for any choice of @, there are N — 1 such labelings. Thus, Ap(f) =0. O

Set-valued Functions. We now study set-valued loss functions. These are functions that are expressed with
respect to a fixed set, as a mapping from subsets of this set to the real line. For example, in our context of
codomain separability (in the binary classification setting), the set of interest is that of the N datapoints, and
the subsets are interpreted as comprising of those that have been assigned label 1. For example, if NV = 3 and the
subset is {1,3}, then this would represent the case where datapoints 1 and 3 have labels 1, and datapoint 2 has
label 0. As we will see, this generalization helps compute upper bounds on the magnitude of noise that will admit
label inference (in a single query) using any prediction vector.

We now present our main results in this section. For the discussion here, we will assume Q = {s1,...,sy} to
denote a set and 2 to denote the power set of . As mentioned before, since the sets of interest in our application
can be thought of as the labels for the datapoints, we will assume Q2] = N, unless mentioned otherwise.

Theorem 8. Let Q = {s1,...,sn5} be a set. Let f:2% x © — R, be a function and § € RN be such that f(-,0)
is monotonic, i.e.,, for all A C B C [N], it holds that f(A,0) < f(B,0). Then, f is not T-codomain separable

using 0 for any
f(BU {3}79) — f(B79)>
3 .

7> min min
BC[N] j¢B

In particular, if f(0,0) =0, then f is not T-codomain separable using 6 for any T > 3 (minje(ny f({j},6)).
Proof. Fix some o € [0,1]". Then, for f to be 7-codomain separable using o, it must hold that:
VBC[N,j¢B. |f(BU{j},0)—f(B,0)] =27
1
3 <_€11131 f(BU{j},0) — f(B, 0)> (since f(6,-) is monotonic)
J

f(BU{J'}ﬁ)—f(B,@))
5 :

=VBC[N]. 1<

<— 7 < min min
BC[N] j¢B

Taking the contrapositive of this statement establishes the desired result. When f((), ) = 0, then setting B =0
gives the desired result. O

Corollary 3. Let f:2? x © — Ry be a function such that f(-,0) is monotonic for all @ € RN. Then, f is not
T-codomain separable for any

T > sup min min< 5

geRrN BC[N] j¢B

In particular, if f((,0) =0 for all @ € RY, then f is not T-codomain separable for any

r> 2 (s min 1619)

9cRN JE[N]

We now show that if in addition to monotonicity, the loss function is also bounded, then we can get stronger
negative results.

Theorem 9. Let Q = {s1,...,sn5} be a set. Let f:2% x © — R, be a function such that f(-,0) is monotonic
and f(-,0) < B for all & € RN and for some finite 3 > 0. Then, f is not T-codomain separable for any T > B/N.
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Figure 3: Label reconstruction accuracy with the multi-query label inference attack.
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Figure 4: The plot on the left shows the length of vector recovered (at 50% accuracy) using single query. The
plot on the right shows label reconstruction accuracy with the multi-query label inference attack.

Proof. Assume that f is 7-codomain separable using some . Consider the chain of values vg = f({ },0),v1 =
F{1},0), f({1,2},0),...,on = f({1,...,N},0). For each i € [N], since f is 7-codomain separable, we must
have |v; — v;—1| > 7. Since f is monotonic, this implies v; — v;—1 > 7. Summing both sides over i gives
Zf\il (vi — vi—1) = vN —vg, which must be at least N7 for the inequality above to hold. This implies vy > N7+,
which, for 7 > §/N gives vy > (8 (since f is non-negative). This is a contradiction since f is bounded above by

8. O

G MISSING DETAILS FROM SECTION 6

We now discuss the missing details from Section 6 and present our results for label inference from the Sigmoid
cross entropy loss function.

Label Inference from Binary Cross-Entropy Loss. In our experiments, for binary cross-entropy, we use
the label inference attack of (Aggarwal et al., 2021) as a baseline (see Figures 1(a) and (b)).

Theorem 10 (7-codomain Separability from Algorithm 2 in (Aggarwal et al., 2021)). Let 7 > 0. For the binary

case (with class labels 0 and 1), define 0; = (%) for alli € [N]. Then, CELOSS is 27-codomain separable

using 6.
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Next, we discuss some technical caveats about the results for the softmax cross entropy loss, as observed in
Figure 1(d).

Additional bits Needed for Softmax Cross-Entropy Loss. Recall from our discussion in Section 6 that
computing the softmax cross-entropy loss will require an additional Q(NK + In(N7)) bits over those required for
the multiclass cross-entropy loss. We now formally argue this result.

Observe that for label inference in the softmax case, it suffices to compute a vector 8 = [}, ...,0%] such
that SOFTMAX(0]) = 6, where 6 is our desired vector for label inference. This is equivalent to requiring:
e/ > e%i = 0;, which gives rise to:

el TN

T

Thus, for any i and j, we can write 0; = 0} + In (%) Now, let
J

17 = arg max 0; and i, = arg min 6;.
T gie[N] ¢ gie[N]

OiT
ail

Then, we can write z;, = x;, +In ( ) Thus, the additional number of bits required to represent the entries

in xis (ln In (Z—T) —1In GiT> =0 (ln In (Z—T)) From our construction in Theorem 3, we know that the ratio
vl L
Z@ ~ 32" N7 This means that we need an additional (ln In 32NKNT) =Q(NK + In(NT)) bits for the softmax
*l
cross-entropy loss as compared to the (plain) multiclass cross-entropy loss.

Additional Experimental Results. Figure 3 presents the results with multiclass cross-entropy loss on Titanic,
Satellite, MNIST, and CIFAR datasets, using the same setting as in the multi-query experiments in Figure 2.

Figure 4 presents the results on sigmoid cross-entropy which is applicable only in the binary labeled setting (see (14))
on the Titanic dataset. The results are worse compared to (plain) multiclass cross-entropy loss. This is because the
number of bits required to represent SIGMOID ™' (6;) (where 6; is an element of ) is Q (In|In(6;/(1 — 6;))]), which
asymptotically dominates the 2 (|In 6;|) many bits required to represent 6; for the (plain) multiclass cross-entropy
loss.



