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Abstract

Although Shapley Values (SV) are widely
used in explainable AI, they can be poorly
understood and estimated, implying that
their analysis may lead to spurious infer-
ences and explanations. As a starting
point, we remind an invariance principle
for SV and derive the correct approach for
computing the SV of categorical variables
that are particularly sensitive to the encod-
ing used. In the case of tree-based mod-
els, we introduce two estimators of Shapley
Values that exploit the tree structure effi-
ciently and are more accurate than state-
of-the-art methods. Simulations and com-
parisons are performed with state-of-the-art
algorithms and show the practical gain of
our approach. Finally, we discuss the abil-
ity of SV to provide reliable local explana-
tions. We also provide a Python package that
compute our estimators at https://github.
com/salimamoukou/acv00.

1 Introduction

The explainability and interpretability of Machine
Learning (ML) models are now central topics in Ma-
chine Learning Research due to their increasing ubiq-
uity in Industry, Business, Sciences, and Society. As
ML models are usually considered as black-box mod-
els, scientists, practitioners, and citizens call for the
development of tools that could provide better in-
sights into the important variables in a prediction or in
identifying biases for some individuals, or sub-groups.
Typically, standard global importance measures such
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as permutation importance measures (Breiman, 2001)
are not sufficient for explaining individual or local pre-
dictions, and new methodologies are developed in the
very active field of Explainable AI (XAI). Indeed, var-
ious local explanations have been proposed, focusing
on model-agnostic methods that can be applied to the
most successful ML models, typically ensemble meth-
ods (such as random forests, gradient boosted trees)
and deep learning. The most used are, for instance,
Partial Dependence Plot (Friedman, 2001), Individ-
ual Conditional Expectation (Goldstein et al., 2015),
and local feature attributions such as Local Surrogate
(LIME) (Ribeiro et al., 2016). With the same objective
in mind, the Shapley Values (Shapley, 1953), a concept
primarily developed in Cooperative Game Theory, has
been adapted to XAI for evaluating the ”fair” contri-
bution of a variable Xi = xi in a prediction (Strumbelj
and Kononenko, 2010; Lundberg and Lee, 2017). The
Shapley Values (SV) are now massively used for iden-
tifying important variables at a local and global scale.
As remarked by Lundberg et al. (2020); Covert et al.
(2020b), a lot of importance measures aim at analyz-
ing the behavior of a prediction model f based on p
features X1, . . . , Xp by removing variables and consid-
ering reduced predictors. Typically, for any group of
variables XS = (Xi)i∈S , with any subset S ⊆ J1, pK
and reference distribution QS,x, reduced predictors are
defined as:

fS(xS) ≜ EQS,x [f (xS ,X S̄)] , (1)

where QS,x is the conditional distribution
P (X S̄ |XS = xS). Other SV can be defined
with the marginal probabilities but their interpreta-
tion is different (Heskes et al., 2020; Janzing et al.,
2020; Chen et al., 2020) and there are still active
debates on using or not conditional probabilities (Frye
et al., 2020): we consider only conditional SV as, in
this case, the estimation is very challenging. The SV
for local explanations at x have been introduced in
(Lundberg and Lee, 2017) and are based on a cooper-
ative game with value function v(f ;S) ≜ fS(xS). For
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any group of variables C ⊆ J1, pK and k ∈ J1, p− |C|K,
we denote the set Sk(C) = {S ⊆ J1, pK \C | |S| = k}
and we introduce a straightforward generalization of
the SV for coalition C as

ϕC(f ;x) ≜
1

p− |C|+ 1

p−|C|∑
k=0

1(
p−|C|

k

)∑
S∈Sk(C)

(fS∪C(xS∪C)− fS(xS))). (2)

This definition of the Shapley Value is a generalization
of the classical SV for one variable: if we consider the
singleton C = {i} for i ∈ J1, pK, we recover the stan-
dard definition for ”player Xi”. In the next section,
we show how the definition 2 appears naturally for
measuring the impact of a group of variables C, and
in particular categorical variables.

Our paper proposes several solutions to the problem
of the computation and the estimation of the Shapley
Values ϕi(f ;x) which is an active subject. We focus
on tree-based models only as the computational cost
is reduced and the statistical problem is easier to
address. Indeed, we show that the current state-
of-the-art algorithm for tree-based models that is
Tree SHAP (Lundberg et al., 2020) is highly biased
when the features are dependent. Thus, we improve
the estimation of the SV by statistically principled
estimators. In addition, we address the theoretical
computation of SV for categorical variables when we
use standard encodings, which motivates the use of
equation 2. In particular, we show that the true SV
of the categorical variable is different from the sum
of SV of encoded variables. Moreover, using the sum
of the encoded variables as the SV of a categorical
variable provides wrong estimates of all the SV in the
model and implies spurious interpretations. Note that
this is currently the only way to handle categorical
variables with Tree SHAP. Therefore, we highlighted
the correct way of computing the SV of encoded
variables and implemented it with our estimators.
Our contributions are implemented in a Python
package1.

The paper is organized as follows. In the next sec-
tion, we derive invariance principles for SV under
reparametrization or encoding that is particularly use-
ful for dealing with categorical variables. In section 3,
we introduce two estimators of reduced predictors and
SV. In section 4, we highlight the improvement over
the dependent Tree SHAP. Finally, we discuss the abil-
ity of SV to provide reliable local explanations.

1https://github.com/salimamoukou/acv00.

2 Coalition and Invariance for
Shapley Values

We derive in this section a unifying property of invari-
ance for the Shapley Values of continuous and categor-
ical variables: the explanation provided by a variable
should not depend on the way it is coded in a model.
We show that this invariance property gives a natu-
ral way of computing the SV of categorical variables
based on the notion of coalition and the general defi-
nition given in Eq. 2. This is useful in our case, as we
are also interested in the discretization of continuous
variables to facilitate the estimation of Shapley Values
and enhance their stability, as we will see in section 3.

2.1 Invariance under reparametrization for
continuous variables

From the definition 1 of the reduced predictor, there is
no constraint on the dimension ofXi. We suppose that
the p variables are vector-valued i.e., Xi ∈ Rpi , pi ≥ 1
and that they have a density gi. We assume that
we transform each variable Xi with a diffeomorphism
φi : Rpi −→ Rpi . We introduce the transformed
variables Ui ≜ φi(Xi) and the reparametrized model
f̃ defined by f̃(U1, . . . , Up) = f(X1, . . . , Xp), i.e.,

f̃(u1, . . . , up) = f ◦ φ(−1)(u) where φ = (φ1, . . . , φp).
In general, we cannot relate the predictor fx learned
from the real data set DTrain

x = {(xi, yi), i ∈ J1, nK} to
the predictor fu learned from DTrain

u = {(ui, yi), i ∈
J1, nK} (y is the label to predict). Indeed, esti-
mation procedures are not invariant with respect
to reparametrization that’s why we obtain different
predictors after ”diffeomorphic feature engineering”:
fu ̸= fx ◦ φ. For this reason, we focus only on the
impact of reparametrization on explanations, and we
show below that the Shapley Values are invariant.

Proposition 2.1. Let f and f̃ = f ◦ φ(−1) its
reparametrization, then we have ∀i ∈ J1, pK, and u =
φ(x):

ϕi(f,x) = ϕi(f̃ ,φ(x)).

We refer to Appendix A for detailed derivations. This
identity indicates that the information provided by
each feature Xi in the explanation does not depend on
any encoding, as mentioned by Covert et al. (2020a).

Suppose we transformed the variables by some feature
engineering. In that case, we will keep the same SV
ϕi(f,x). Another interest of identity (2.1) is to show
that the SV depends essentially on the dependence
structure of the features Xi.
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2.2 Invariance for encoded categorical
variable

In the rest of the paper, continuous predictive vari-
ables are denoted with X, categorical predictive vari-
ables are denoted with Z, and the output to predict is
denoted Y . There exist numerous encodings for a cat-
egorical variable Z with modalities {1, . . . ,K}. Still,
we focus on methods related to One-Hot-Encoding
(OHE), and Dummy Encoding (DE) that corresponds
to the introduction of some indicator variables Zk

(Zk = 1 if Z = k, 0 otherwise). Contrary to the con-
tinuous case, the introduction of indicators changes
the number of ”players” in the game defined for com-
puting the Shapley Value. Unlike the diffeomorphic
reparametrization, this change has dramatic conse-
quences on the computation of the SV of all the vari-
ables in the models. As a consequence, the widespread
practice that recommends summing the SV of the in-
dicator variables Zk for computing the SV of Z is not
justified and false in general: if we want to benefit
from a similar invariance result to proposition 2.1, we
need to deal with the coalition of indicators and use
the general expression of SV introduced in Eq. 2.
For the sake of simplicity, we assume that the model
has only two variables X = (X,Z), where X ∈ R and
Z = 1, . . . ,K is a categorical variable. The efficiency
property of SV gives the decomposition

f(x, z)−EP [f (X,Z)] = ϕX(f ;x, z)+ϕZ(f ;x, z) (3)

In order to establish the link between the SV of the
indicator variables Zk and the SV of the variable Z,
we need more notations. We focus on the Dummy
Encoding (DE) φ : z 7→ (z1, . . . , zK−1). The vari-

ables (X,Z1:K−1) are defined on R × {0, 1}K−1
, its

distribution P̃ is the image probability of P induced
by the transformation φ. The initial predictor f :
R × {1, . . . ,K} −→ R is reparametrized as a func-

tion f̃ : R × {0, 1}K−1 −→ R such that f(X,Z) ≜
f̃(X,Z1, . . . , ZK−1). The function f̃ is not completely

defined for all (z1 . . . , zK−1) ∈ {0, 1}K−1
and is only

defined P̃ -almost everywhere because of the determin-
istic dependence

∑K−1
k=1 Zk ≤ 1. Consequently, we

need to extend f̃ to the whole space X ×{0, 1}K−1
by

setting f̃(x, z1, . . . zK−1) = 0 as soon as
∑K−1

k=1 zk > 1.

For the predictor f̃(X,Z1, . . . , ZK−1), we can compute
the SV of X,Z1, . . . , ZK−1 and obtain the following
decomposition thank to the efficiency property

f̃(x, z1:K−1)− EP̃

[
f̃ (X,Z1:K−1)

]
= ϕX(f̃ ;x, z1:K−1) +

K−1∑
k=1

ϕZk
(f̃ ;x, z1:K−1) (4)

where ϕZk
(f̃ ;x, z1:K−1) are the SV of the variable Zk

computed with distribution P̃ . Consequently, we have

ϕX(f ;x, z) + ϕZ(f ;x, z) = ϕX(f̃ ;x, z1:K−1)

+

K−1∑
k=1

ϕZk
(f̃ ;x, z1:K−1) (5)

In general, we have ϕZ(f ;x, z) ̸=∑K−1
k=1 ϕZk

(f̃ ;x, z1:K−1), because the SV depends
on the number of variables. We show in the next
proposition that ϕZ(f ;x, z) = ϕZC

(f̃ ;x, zC) where
ϕZC

is computed with equation 2 and C is the
coalition of variables (Z1, ..., ZK−1).

Proposition 2.2. For all x ∈ X , and if z1:K−1 = φ(z)
then {

ϕZC
(f̃ ;x, zC) = ϕZ(f ;x, z)

ϕX(f̃ ;x, zC) = ϕX(f ;x, z),
(6)

where ϕX(f̃ ;x, zC) is the SV of X when the vari-
ables (Z1, ..., ZK−1) are considered as a single vari-
able. We refer to Appendix A for detailed derivations.
In general, for cooperative games, the SV of a coali-
tion ϕZC

(f̃ ;x, zC) is different from the sum of individ-
ual SV

∑
k∈C ϕZk

(f̃ ;x, z1:K−1). We note that we can
compute two different SV for X when we use the en-
coded predictor f̃ : ϕX(f̃ ;x, zC) and ϕX(f̃ ;x, z1:K−1).
These two SV are different in general as they involve
different number of variables and different conditional
expectations. Proposition 2.2 shows that we should
prefer ϕX(f̃ ;x, zC) as it is equal to the theoretical SV
given in equation 3.

2.3 Coalition or Sum: numerical comparisons

We give numerical examples illustrating the differ-
ences between coalition or sum and the correspond-
ing explanations. We consider a linear predictor f ,
with 1 categorical and 3 continuous variables X =
(X1, X2, X3), defined as f(X, Z) = BZX with X|Z =
z ∼ N (µz,Σz) and P(Z = z) = πz, Z ∈ {a, b, c}. The
values of the parameters used in our experiments are
found in Appendix G. In figure 1, we remark that the
SV change dramatically for a single observation. The
sign changes given the encoding (DE or OHE) and is
often different from the sign of the true SV of Y with-
out encoding. We can also note important differences
in the SV of the quantitative variable X.

To quantify the global difference of the different meth-
ods, we compute the relative absolute error (R-AE) of
the SV defined as:

R-AE(f, f̃) =

p∑
i=1

|ϕi(f ;x)− ϕi(f̃ ;x)|
|ϕi(f ;x)|

(7)
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Figure 1: SV with or without encoding (OHE - DE)
for observation x = [0.35,−1.61,−0.11], y = a

.

We compute the SV of 1000 observations of the syn-
thetic dataset. We observe in figure 2 that the differ-
ences can be huge for almost all samples (DE is much
worse than OHE in this example). Thus, we highly
recommend using the coalition as it is consistent with
the true SV contrary to the sum. More examples on
real datasets can be found in Appendix D.

Figure 2: R-AE distribution between the SV without
encoding and the corresponding encodings

3 Shapley Values for tree-based
models

There are two challenges for the computation of SV:
the combinatorial explosion with 2p coalitions to con-
sider and the estimation of the conditional expecta-
tions fS(xS) = E [f(X)|XS = xS ] , S ⊆ J1, pK. In
current approaches, the estimation relies on several
approximations and sampling procedures that assume
independence (Lundberg and Lee, 2017; Covert and
Lee, 2020) or more recently Aas et al. (2020, 2021)
proposed to model the features with a gaussian distri-
bution or vine copula to draw samples from the con-
ditional distributions. Besides, Williamson and Feng
(2020) trained one model for each selected subset S of
variables that is accurate but computationally costly.
Moreover, their final objective differs from ours since
we are interested in local estimates and exact com-

putations (i.e., no sampling of the subsets). Thus, we
focus on tree-based models, as it has been exploited by
Lundberg et al. (2020) for deriving an algorithm Tree
SHAP for exact computing of SV: we can compute all
the terms (no sampling of the subsets S ⊆ J1, pK) and
the estimation of the conditional expectations is sim-
plified. After a brief presentation of the limitations of
Tree SHAP, we introduce two new estimators that use
the tree structure. For the sake of simplicity, we do not
consider ensemble of trees (Random Forests, Gradient
Tree Boosting,. . . ) as the extension of our estimators
to these more complex models is straightforward by
linearity.

3.1 Algorithms for computing Conditional
Expectations and the Tree SHAP
algorithm

We consider a tree-based model f defined on Rp (cat-
egorical variables are one-hot encoded). We have

f(x) =
∑M

m=1 fm1Lm
(x) where Lm represents a leaf.

The leaves form a partition of the input space, and
each leaf can be written as Lm =

∏p
i=1 [a

m
i , bmi ] (with

−∞ ≤ ami < bmi ≤ +∞). Alternatively, we write the
leaf with the decision path perspective: a leaf Lm is
defined by a sequence of decision based on dm variables
XNk

, k = 1, . . . , dm. For each node Nk in the path of
the leaf Lm, we associate the region INk

(defined by
a split: it is either ]−∞, tk] or [tk,+∞[) and the leaf
can be rewritten as

Lm = {x ∈ Rp : xN1 ∈ IN1 , . . . , xNdm
∈ INdm

}. (8)

A crucial point is to identify the set of leaves compati-
ble with the condition XS = xS : we can partition the
leaf according to a coalition S: Lm = LS

m × LS̄
m with

LS
m =

∏
i∈S [ami , bmi ] and LS̄

m =
∏

i∈S̄ [ami , bmi ]. Thus,
for each condition XS = xS the set of compatible
leaves of x = (xS ,xS̄) is

C (S,x) =
{
m ∈ [1 . . .M ] |xS ∈ LS

m

}
= {m ∈ [1 . . .M ] |xNi ∈ INi , Ni ∈ S}

and the reduced predictor fS(xS) has the simple ex-
pression

fS(xS) =
∑

m∈C(S,x)

fmPX(Lm|XS = xS)

When we have a model for PX from which we can
derive a conditional density and evaluate directly
the conditional probabilities PX(Lm|XS = xS), we
can have an exact computation. This is typically
the case when X ∼ N (µ,Σ) and we can integrate
the densities for deriving the conditional probabilities

PX

(∏dm

k=1 INk
|XS = xS

)
. The derivation of condi-

tional probabilities can become challenging, and as-
sumptions about the factorization of the distribution
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can accelerate the computation: in (Lundberg et al.,
2020), the authors introduce a recursive algorithm
(Tree SHAP with path-dependent feature perturba-
tion, Algorithm 1) that assumes that the probabilities
for every compatible leaf Lm can be factored with the
decision tree:

PSHAP
X

(
dm∏
k=1

INk |XS = xS

)
=

δS(N1)×
dm∏

i=2|Ni /∈S

P

XNi ∈ INi

∣∣∣ i∏
k=2|Nk /∈S

XNk−1 ∈ INk−1


(9)

with δS(N1) = P (XN1
∈ IN1

) if N1 /∈ S, and 1 oth-
erwise. The underlying assumption in equation (9) is
that we have a Markov chain defined by the path in
the tree, and the transition probabilities are estimated
conditionally on {XS = xS}, e.g., each probability is
replaced by 1 if Ni ∈ S, see algorithm description in
Appendix C. As we will see in the simulations, this as-
sumption is not satisfied in general and we can observe
a bias in the estimation produced by this algorithm.
We denote f̂SHAP

S and ϕi(f̂
SHAP
S ;x) the correspond-

ing estimators. Therefore, we propose two estimators
that do not make assumptions on the probability PX .

3.2 Statistical Estimation of Conditional
Expectations

Discrete case We want to solve the statistical
problem of estimating probabilities from the dataset
DTrain

x ∼ PX . We do not assume the existence of
the density or probability p(x) as in Aas et al. (2020,
2021). We have DExplain

x that corresponds to the
(new) individuals on which we want to compute SV.

We first assume that all the variables are cate-
gorical: in that case, we can estimate directly
PX (Lm |XS = xS ). For every x ∈ DExplain

x , a
straightforward estimation is based on N(xS): the
number of observations in DTrain

x such that XS = xS

(across all the leaves of the tree) and N(Lm,xS): the
number of observations of DTrain

x in leaf Lm that sat-
isfies the condition XS = xS . We have

P̂
(D)
X (Lm |XS = xS ) ≜

N(Lm,xS)

N(xS)
. (10)

When the variables XS are continuous, the estimation
is more challenging, and a standard approach is to use
kernel smoothing estimators (with Parzen-Rosenblatt
kernels). The main drawbacks are the low convergence
rate in high dimensions or the derivation and the se-
lection of appropriate bandwidths, which might add
complexity and instability to the whole estimation pro-
cedure.

We suggest a simple approach based on quantile-
discretization of the continuous variables: such pro-
cessing is common for easing model explainability
(typically for tree-based models), see for instance
(Bénard et al., 2021b) and the binning of observations
can help to stabilize the reduced predictors and SV
such that we can improve the robustness of the expla-
nation (Alvarez-Melis and Jaakkola, 2018).
In our experiments, we take usually q = 10 quan-
tiles (estimated with the empirical cdf) and the dis-
cretized variable Xi is encoded with indicator func-
tions X

(r)
i , r = 1, . . . , q − 1. Following our previous

section, the SV of Xi are computed by using the coali-

tion of variables C =
(
X

(1)
i , . . . , X

(q−1)
i

)
. We define

then the Discrete reduced predictor, that is denoted

f̂D
S (xS) =

∑
m∈C(S,x)

fmP̂
(D)
X (Lm|xS) (11)

and our estimates of the SV are ϕi(f̂
D;x).

Although we lose some information with this pre-
processing, the loss in performance is often minor with
trees, see Appendix D. With only q = 10, the input
space is a fine grid of p10 cells that can provide a great
richness. Obviously, this is also a limitation, as the
number of cells grows very fast with p and the number
of categories per variable. There is a risk of obtaining
a high variance with cells having low frequencies. For
this reason, we propose another estimator that uses
the leaf estimated by the tree.

Continuous and mixed-case Instead of discretiz-
ing the variables, we use the leaves of the esti-
mated tree. Essentially, we replace the conditions
{XS = xS} by

{
XS ∈ LS

m

}
. This change introduces

a bias, but it aims at improving the variance during
estimation. We introduce the Leaf-based estimator

f̂
(Leaf)
S (xS) =

1

Z(S,x)

∑
m∈C(S,x)

fmP̂
(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
(12)

where P̂
(Leaf)
X

(
Lm

∣∣XS ∈ LS
m

)
is an estimate of the

conditional probability, and Z(S,x) is a normalizing
constant. The definition of every probability estimate
is

P̂
(Leaf)
X

(
Lm

∣∣XS ∈ LS
m

)
=

N(Lm)

N(LS
m)

where N(Lm) is the number of observations (of
DTrain

x ) in the leaf Lm, and N(LS
m) is the number of

observations satisfying the conditions xS ∈ LS
m across

all the leaves of the tree.
We put emphasis on the correction needed for
normalizing the probability: in general, we have∑

m∈C(S,x) P̂
(Leaf)
X

(
Lm

∣∣XS ∈ LS
m

)
̸= 1, because we

do not condition by the same event (while we have
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∑
m PX (Lm |XS = xS ) = 1). For this reason, the

normalizing constant is defined as

Z(S,x) =
∑

m∈C(S,x)

N(Lm)

N(LS
m)

.

The Leaf-based reduced predictor (12) can be com-
puted for continuous and categorical variables, and

hence we can compare it with f̂
(D)
S in order to evaluate

the bias. We see that in both cases, the main challenge
is the computation of C(S,x), for every coalition S.
We show in the next section how the computational

complexity of f̂
(Leaf)
S (xS) is drastically reduced. In-

deed, when we consider the leaf Lm, we only have to
compute the SV for dm variables, and not for p vari-
ables.

3.3 Fast Algorithm for the computation of
Shapley Values with the Leaf estimator

We have introduced a plug-in estimator of the reduced
predictor that is based on an approximation of the
conditional expectation on event {XS = xS} by a
conditional expectation based on event {XS ∈ LS

m}.
Indeed, the Leaf estimator f̂

(Leaf)
S defined in equation

12 is an unbiased estimator of

f
(Leaf)
S (xS) =

M∑
m=1

fmPX

(
Lm|XS ∈ LS

m(x)
)

(13)

For sake of notational simplicity, we write simply
LS
m = LS

m(x) and we remove the dependence on
x. Thanks to this approximation, we can propose a
straightforward estimate based on empirical frequen-
cies. Here, we focus on the computational efficiency
offered by this approximation. It is well-known that
the complexity of the computation of a Shapley value
is exponential as we need to compute 2p different coali-
tions for each observation x. We show below that the
complexity can be made much lower for the Leaf es-

timator f̂
(Leaf)
S . Indeed, we derive an algorithm with

complexity exponential in the depth of the tree instead
of being exponential in the total number of variable
p. This is very interesting as the depth of the tree is
rarely above 10 in practice, while p can be very large
(different order of magnitudes). The idea is to split
the original game into the sum of smaller games, as
described by the following proposition.

Proposition 3.1. Let f(x) =
∑M

m=1 fm1Lm
(x) be a

tree-based models and X = (X1, . . . , Xp). We intro-
duce the set of variables Sm = {XN1 , XN2 , . . . , XNdm

}
of the path of each leaf Lm. For any variable Xi, the
SV ϕi(f

(Leaf),x) can be decomposed into the sum of
M cooperative games defined on each leaf Lm, and we

have

ϕi(f
(Leaf),x) =

M∑
m=1

ϕm
i (f (Leaf),x) (14)

where ϕm
i (f (Leaf),x) is a reweighted version of

the Shapley Value of the cooperative game with
players Sm and value function v(f (Leaf), S) =
PX

(
Lm|XS ∈ LS

m(x)
)
.

Proof. By definition, we have for a single variable i

ϕi(f
(Leaf),x) =

1

p

∑
S⊆[p]\{i}

(
p− 1

|S|

)−1(
f
(Leaf)
S∪i (xS∪i)− f

(Leaf)
S (xS)

)

=
1

p

∑
S⊆[p]\{i}

(
p− 1

|S|

)−1( M∑
m=1

fm
[
P (Lm|XS∪i ∈ LS∪i

m )

− P (Lm|XS ∈ LS
m

])

=
1

p

M∑
m=1

∑
S′⊆Sm\{i}

[(
p− 1

|S′|

)−1

fm
[
P (Lm|XS′∪i ∈ LS′∪i

m )

− P (Lm|XS′ ∈ LS′
m )
]

+
∑

Z ̸=∅,Z⊆Sm∪i

(
p− 1

|Z|+ |S′|

)−1

fm

[
P (Lm|XS′∪Z∪i ∈ LS′∪Z∪i

m )− P (Lm|XS′∪Z ∈ LSm∪Z
m )

]]

However, if Z ⊆ S̄m and S ⊆ Sm:

PX(Lm|XZ∪S ∈ LZ∪S
m ) = PX(Lm|XS ∈ LS

m). (15)

Note that the identity of equation 15 is not true any-
more if we consider the conditional probability XS =
xS . Therefore, the SV ϕi(f

(Leaf),x) can be rewrite
as:

1

p

M∑
m=1

∑
S′⊆Sm\{i}

[(
p− 1

|S′|

)−1

fm
[
P (Lm|XS′∪i ∈ LS′∪i

m )

− P (Lm|XS′ ∈ LS′
m )
]

+
∑

Z ̸=∅,Z⊆Sm∪i

(
p− 1

|Z|+ |S′|

)−1

fm
[

P (Lm|XS′∪i ∈ LS′∪i
m )− P (Lm|XS′ ∈ LS′

m )
]]

=
1

p

M∑
m=1

∑
S′⊆Sm\{i}

[(
p− 1

|S′|

)−1

+
∑

Z ̸=∅,Z⊆Sm∪i(
p− 1

|Z|+ |S′|

)−1]
fm
[
P (Lm|XS′∪i ∈ LS′∪i

m )−

p(Lm|XS′ ∈ LS′

m )
]]

≜
M∑

m=1

ϕm
i (x)
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Therefore, we suggest computing SV leaf by leaf
thanks to equation 14. In that case, the computation
of the SV for the p variables is done by summing over
M games (leaves), each of them having a number of
variables |Sm| lower thanD the maximum depth of any
tree. Consequently, the complexity is O(p×M × 2D)
in worst cases. The Multi-Games algorithm described
below dramatically improves the computational com-
plexity as D is often much lower than p. Moreover,
the algorithm is linear in the number of observations.
However, it is still higher than the complexity of Tree
SHAP (Lundberg et al. (2020)) which is polynomial
O(M × D2).

The algorithm is described below, we use the following
notations N(L∅

m) =
∑M

m=1 N(Lm) and 1L∅
m
(x∅) = 1.

Algorithm 1: Multi-Games Algorithm

Inputs: x, f(x) =
∑M

m=0 fm1Lm
(x);

p = length(x);
ϕ = zeros(p);
for m = 1 to M do

for i in [p] do
if i not in Sm then

continue ; /* skip to next variable

*/
end
for S ⊆ Sm do

ϕ[i]+ =((
p−1
|S|
)−1

+
∑p−|Sm|

k=1

(
p−|Sm|

k

)(
p−1
k+|S|

)−1
)
×(

1LS∪i
m

(xS∪i)
N(Lm)
N(LS∪i

m )
− 1LS

m
(xS)

N(Lm)
N(LS

m)

)
end

end

end
return ϕ

Remark: The algorithm is easily parallelizable as it
can be vectorized to compute SV of several observa-
tions at the same time.

4 Comparison of the estimators

To compare the different estimators, we need a model
where conditional expectations can be calculated ex-
actly. If X ∼ N (µ,Σ) then XS̄ |XS is also multivariate
gaussian with explicit mean vector µS̄|S and covariance
matrix ΣS̄|S , see Appendix A. Note that we do not in-
clude any comparisons with KernelSHAP as our main
goal is to improve upon TreeSHAP which is the SOTA
for tree-based models. In addition, most implementa-
tion of KernelSHAP is based on marginal distribution
as its aims to be model-agnostic. However, recently
Aas et al. (2020, 2021) proposed a conditional version
of KernelSHAP but it assumes Gaussian distribution

and samples the subsets. Therefore, the comparisons
with our synthetic data would be unfair.

Experiment 1. In the first experiment, let assume we
have a dataset DTrain

x = {(xi, yi) , i = 1, . . . , n} with
n = 104 generated by a linear regression model with
X ∈ Rp, X ∈ N (0,Σ), Σ = ρJp + (ρ − 1)Ip with
p = 5, ρ = 0.7, Ip is the identity matrix, Jp is all-
ones matrix and a linear predictor Y = BtX. We use
a RandomForest f trained on DTrain

x with a MSE=
4.28, parameters can be found in Appendix G. Since
we know the law of X, we can compute exactly the
SV of f with a Monte-Carlo estimator (MC).

We compare the true SV ϕi(f ;x) and the SV of the dif-

ferent estimators ϕi(f̂
α;x), α = SHAP,Leaf,D. To

highlight the differences, we compute 3 metrics. For
each estimator, we compute the R-AE defined in equa-
tion 7 and a True Positive Rate (TPR) to measure if
the ranking of the top k = 3 highest and lowest SV is
preserved.

In figure 3, we compute the SV ϕi(f̂
SHAP ;x),

ϕi(f̂
Leaf ;x) on a dataset DExplain

x of size 1000 gen-
erated by the synthetic model. We observe that the
estimator f̂Leaf is more accurate than Tree SHAP
f̂SHAP by a large margin. TreeSHAP has an aver-
age R-AE= 3.31 and TPR= 86%(±17%) while Leaf
estimator gets R-AE= 0.90 and TPR= 94%(12±%).

Figure 3: R-AE on 1000 new observations sampled
from the synthetic model, p=5.

Figure 4: R-AE on 1000 new observations sampled
from the synthetic model with discreted variables, p=5

In figure 4, we compare the SV of the Discrete unbiased

estimator ϕi(f̂
(D);x), Tree SHAP ˆϕSHAP

i (f ;x) and
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Leaf estimator ϕi(f̂
(Leaf);x) with the True ϕi(f ;x),

where f was trained on the discretized version of
DTrain

x . As demonstrated in figure 3, the Discrete es-
timator also outperform Tree SHAP with a significant
margin.

Experiment 2. Here, we evaluate the impact of the
dependence between the features on the different es-
timators. We use the toy model of experiment 1 but
the correlation coefficient ρ varies between 0 and 0.99,
representing an increasing positive correlation among
the features. As demonstrated in figure 5, Tree SHAP
works well when the features are independent (ρ = 0),
but it is outperformed by Leaf when the dependence
increases.

Figure 5: R-AE of the different estimators given the
correlation coefficient ρ ∈ [0, 0.99]

Finally, we conduct a run-time comparison of the com-
putation of SV with Leaf and TreeSHAP. We used 3
datasets with different shapes: Boston (n=506, p=13),
Adults (n=32561, p=12), and a toy linear model with
(n=10000, p=500) where n is the number of obser-
vations and p the number of variables. We trained
on these datasets XGBoost with default parameters
(ntree = 100, maxdepth = 6). We compute the SV
of 1000 observations for Adults, the toy model, and
506 for Boston. As expected in table 1, TreeSHAP
is much faster than Leaf estimator. This difference
in run-time can be partly explained by the fact that
Leaf estimator has to go through all the data for each
leaf, whereas TreeSHAP uses the information stored in
the trees. However, the Leaf estimator is not very af-
fected by the dimension of the variables as it succeeds
in computing the SV when p = 500 in a reasonable
time.

Table 1: Run-time of TreeSHAP and Leaf estimator
on Adults (A), Boston (B) and the toy (T) datasets.

DataSETS Leaf Tree SHAP

A (p=12) 1 min 4 s ± 1.73 s 3.33 s ± 39.9 ms
B (p=13) 8.82 s ± 204 ms 129 ms ± 6.91 ms
t (p=500) 1min 5s ± 1.73 s 101 ms ± 4.54 ms

5 Discussion and Future works

We have shown that the Shapley Values used in XAI
and one of its common implementation cannot pro-
vide reliable explanations because of the use of biased
estimates or because of inappropriate management of
categorical variables. We have introduced new esti-
mators and derived the correct way of handling cat-
egorical variables, and we show that, even in simple
models, the difference can be very significant. Despite
this, the impact of such inaccuracies in explanation is
poorly addressed, while there is an ever-increasing in-
terest for a trustworthy AI. This leak might be due to
the difficulty of evaluating - systematically and quanti-
tatively - the SV and the corresponding explanations.
Indeed, it is often hard to have a ground truth and
to be able to evaluate precisely the quality of an ex-
planation (as it depends on the law of X that can be
difficult to approach). Moreover, such analysis can be
altered by a confirmation bias.
Nevertheless, we think that the quality of the estimates
is not the only drawback of SV. Indeed, it can be shown
that the explanations of SV are not local, but they re-
main global, as it is shown in the following proposition

Proposition 5.1. Let us assume that we have X ∈
Rp, X ∈ N (0, Ip) independent Gaussian features, and
a linear predictor f defined as:

f(X) = (a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0.
(16)

Even if we choose an observation x such that x5 ≤ 0
and the predictor only uses X1, X2, the SV of ϕ3, ϕ4 is
not necessarily zero. Indeed, ∀i ∈ {3, 4}

ϕi =
1

p
P (X5 > 0)

∑
S⊆[p]\{i,5}

(
p− 1

|S|

)−1(
ai(xi − E[Xi])

)
= K

(
ai(xi − E[Xi])

)
K a constant

The proof is in Appendix B.
Proposition 5.1 shows that the SV is not really local
but is, in fact, global. Such results raise important
difficulties in the interpretation of SV, and we think
that they are hidden in practice by the lack of preci-
sion and understanding of Shapley Values. Moreover,
when the model has numerous variables, the number of
non-vanishing SV is very high (even in the case similar
to Proposition 5.1), thus it is challenging to select the
relevant variables. For this reason, we aim at develop-
ing an algorithm based on Shapley Values that gives
better insight into the local behavior of the model.
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Supplementary Material:
Accurate Shapley Values for explaining tree-based models

A Proofs

This section gathers all the proofs of the propositions and claims of the paper.

2. Coalition and Invariance for Shapley Values

2.1 Invariance under reparametrization for continuous variables

Proposition A.1. Let f and f̃ = f ◦ φ(−1) its reparametrization, then we have for all i ∈ J1, pK, for all
x,u = φ(x):

ϕi(f,x) = ϕi(f̃ ,φ(x)).

Proof. It is a direct application of the change of variables formula. If g(x) is the joint density of X1, . . . , Xp

(Xi has density gi), the transformed variable U = (φ1(X1), . . . , φp(Xp)) has density g̃(u) = g(φ(−1)u) ×∏
i |J(φ

(−1)
i )(ui)|. With obvious notations, we have

g̃(uS̄ |uS) =
g̃(uS̄ , uS)

g̃S(uS)
= g

(
φ
(−1)

S̄
(uS̄ |φ

(−1)
S (uS)

)
×
∏
i∈S̄

|J(φ(−1)
i )(ui)|.

The computation of the reducted predictor is straightforward

E [f(X)|xS ] =

∫
f(xS ,xS̄)g(xS̄ |xS)dxS̄

=

∫
f(φ

(−1)
S (φS(xS)) , φ

(−1)

S̄
φS̄(xS̄)) g(xS̄ |xS)dxS̄

=

∫
f̃(uS ,uS̄)g

(
φ
(−1)

S̄
(uS̄)|φ

(−1)
S (uS)

)∏
i∈S̄

∣∣∣Jφ(−1)(ui)
∣∣∣ duS̄

= E
[
f̃(US ,U S̄)|US = uS

]
.

The equality of Shapley Values is then a direct consequence of the equality of reduced predictors.

2.2 Invariance for encoded categorical variable

We recall the expression of the SV for 2 variables for all x ∈ R and Y ∈ {1, . . . ,K}. The role of variable
X,Y are symmetric and the categorical or quantitative nature of the variable does not have any impact on the
computation of SV given:{

ϕX(f ;x, y) = 1
2 (E [f(X,Y )|X = x]− E [f (X,Y )]) + 1

2 (f (x, y)− E [f (X,Y ) |Y = y])
ϕY (f ;x, y) =

1
2 (E [f(X,Y )|Y = y]− E [f (X,Y )]) + 1

2 (f (x, y)− E [f (X,Y ) |X = x])
(17)

Proposition A.2. For all x ∈ X , and if y1:K−1 = C(y) then{
ϕYC

(f̃ ;x, yC) = ϕY (f ;x, y)

ϕX(f̃ ;x, yC) = ϕX(f ;x, y)
(18)
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Proof. As we consider only doable (x, y1:K−1), then ∃!y ∈ {1, . . . ,K} such that C(y) = y1:K−1. We have the
coalition C = {1, . . . ,K − 1}, and number of variables p = K, meaning

ϕYC
(f̃ ;x, yC) =

1

2

{
1(
1
0

)∆(f̃ ; {∅}, YC) +
1(
1
1

)∆(f̃ ; {X} , YC)

}

where

∆(f̃ ; {∅}, YC) = EP̃

[
f̃(X,Y1:K−1)|Y1:K−1 = y1:K−1

]
− EP̃

[
f̃(X,Y1:K−1)|∅

]
= EP

[
f̃ (X,φ (Y )) |Y = y

]
− EP

[
f̃ (X,φ (Y ))

]
= EP [f (X,Y ) |Y = y]− EP [f (X,Y )]

Indeed

EP̃

[
f̃(X,Y1:K−1)|Y1:K−1 = y1:K−1

]
=

∫
f̃(x, y1:K−1)dP (x|y1:K−1)

=

∫
f̃(x, y1:K−1)

dP (x, y1:K−1)

P (y1:K−1)

=

∫
f̃(x, φ(y))

dP (x, φ(y))

P (φ(y))

=

∫
f(x, y)

dP (x, y)

P (y)

In addition,

∆(f̃ ; {X} , C) = EP̃

[
f̃(X,Y1:K−1)|X = x, Y1:K−1 = y1:K−1

]
− EP̃

[
f̃(X,Y1:K−1)|X = x

]
= f̃(x, y1:K−1)− EP

[
f̃(X,φ (Y ))|X = x

]
= f̃(x, φ (y))− EP

[
f̃(X,φ (Y ))|X = x

]
= f(x, y)− EP [f(X, y)|X = x]

ϕYC
(f̃ ;x, yC) =

1

2
(EP [f (X,Y ) |Y = y]− EP [f (X,Y )])

+
1

2
(f(x, y)− EP [f(X, y)|X = x])

We can recognize that we have exactly ϕYC
(f̃ ;x, yC) = ϕY (f ;x, y). From Equation 2.1, we derive that

ϕX(f̃ ;x, yC) = ϕX(f ;x, y).

Proposition A.3. If X ∼ N (µ,Σ), then XS̄ |XS = xS is also multivariate gaussian with mean µS̄|S and
covariance matrix ΣS̄|S equal:

µS̄|S = µS̄ +ΣS̄,SΣ
−1
S,S(xS − µS) and ΣS̄|S = ΣS̄S̄ − ΣS̄SΣ

−1
SSΣS,S̄
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B Focus on influential variables on Linear regression

Proposition B.1. Let us assume that we have X ∈ Rp, X ∈ N (0, I8) and a linear predictor f defined as:

f(X) = (a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0. (19)

Even if we choose an observation x such that x5 ≤ 0 and the predictor only uses X1, X2, the SV of ϕ3, ϕ4 is not
necessarily zero.

Proof.

ϕ3 =
1

p

∑
S⊆[p]\{3}

(
p− 1

|S|

)−1(
fS∪3(xS∪3)− fS(xS)

)
(20)

=
1

p

∑
S⊆[p]\{3,5}

(
p− 1

|S|

)−1(
fS∪3(xS∪3)− fS(xS)

)
+

1

p

∑
S⊆[p]\{3,5}

(
p− 1

|S|+ 1

)−1(
fS∪{3,5}(xS∪{3,5})− fS∪5(xS∪5)

)
(21)

The second term is zero. Indeed, ∀S ⊆ [p] \ {3, 5}

fS∪{3,5}(xS∪{3,5})− fS∪5(xS∪5) = 0

Because, if we condition on the event {X5 = x5} with x5 ≤ 0

fS∪{3,5}(xS∪{3,5}) = E
[
(a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0 | XS∪{3,5} = xS∪{3,5}

]
= E

[
(a1X1 + a2X2)1X5≤0 | XS∪{3,5} = xS∪{3,5}

]
because x5 ≤ 0

= E [(a1X1 + a2X2) | XS∪5 = xS∪5] ⊥⊥ of X3

= fS∪5(xS∪5)

The first term of 3.3 is the classic marginal contribution of SV in linear model. ∀S ⊆ [p] \ {3, 5}

fS∪3(xS∪3) = E [a1X1 + a2X2 |XS∪3 = xS∪3]P (X5 ≤ 0 |XS∪3 = xS∪3)

+ E [a3X3 + a4X4 |XS∪3 = xS∪3]P (X5 > 0|XS∪3 = xS∪3)

= E [a1X1 + a2X2|XS = xS ]P (X5 ≤ 0) + (E [a2X2|XS = xS ] + a3x3)P (X5 > 0)

= fS(xS) + P (X5 > 0)
(
a3(x3 − E[X3])

)
Therefore,

ϕ3 =
1

p

∑
S⊆[p]\{3,5}

(
p− 1

|S|

)−1

P (X5 > 0)
(
a3(x3 − E[X3])

)
= K

(
a3(x3 − E[X3])

)
K is a constant

The computation of ϕ4 is obtained by symmetry.



Salim I. Amoukou, Tangi Salaün, Nicolas J.B. Brunel

C Link between the Algorithm 1 (TreeSHAP with path-dependent) and f̂SHAP

In section 3.1, we have said that the recursive algorithm 1 introduced in Lundberg et al. (2020) and shows in
figure 2 assumes that the probabilities can be factored with the decision tree as:

PSHAP
X

(
dm∏
k=1

INk
|XS = xS

)
= δS(N1)×

dm∏
i=2|Ni /∈S

P

XNi ∈ INi

∣∣∣ i∏
k=2|Nk /∈S

XNk−1
∈ INk−1

 (22)

with δS(N1) = P (XN1
∈ IN1

) if N1 /∈ S, and 1 otherwise.

Figure 6: Left figure: Algorithm 1 in Lundberg et al. (2020) (Tree SHAP). Right figure: A sample decision tree

used to illustrate the link between f̂ (SHAP )

To show the link between between f̂SHAP and the Algorithm 1, we choose an observation x = (2, 3, 0.5,−1) and

compute E[f̂SHAP (X)| X0 = 2, X2 = 0.5] where f is the tree in the left of figure C. x is comptatible with Leaf
6, 7, 11, 13, 14, we denote f6, f7, f11, f13, f14 the value of each leaf respectively.

The output of the algorithm is on step 4, and its corresponds to:

f̂ (SHAP )(x) = P (X1 ≤ 0.305)P (X2 > −0.048|X1 ≤ 0.305, . . . ) ∗ P (X1 ≤ −0.536|X2 > −0.048, . . . )f6

+ P (X1 ≤ 0.305)P (X2 > −0.048|X1 ≤ 0.305, . . . ) ∗ P (X1 > −0.536|X2 > −0.048, . . . )f7

+ P (X1 > 0.305)P (X3 ≤ 0.207|X1 > 0.305, . . . ) ∗ P (X0 > −0.191|X3 ≤ 0.207, . . . )f11

+ P (X1 > 0.305)P (X3 > 0.207|X1 > 0.305, . . . ) ∗ P (X1 ≤ 1.585|X3 > 0.207, . . . )f13

+ P (X1 > 0.305)P (X3 > 0.207|X1 > 0.305, . . . ) ∗ P (X1 > 1.585|X3 > 0.207, . . . )f14

= (202/335) ∗ 1 ∗ (51/97) ∗ (−51.85) + (202/335) ∗ 1 ∗ (46/97) ∗ (50.716)
+ (133/335) ∗ (82/133) ∗ 1 ∗ (73.971) + (133/335) ∗ (51/133) ∗ (44/51) ∗ (145.955)
+ (133/335) ∗ (51/133) ∗ (7/51) ∗ (318.125)
= 41.98



Accurate Shapley Values for explaining tree-based models

Step Calculus

0 G(0, 1)

1 G(1, 202/335) + G(8, 133/335)

2 G(5, 202/335) + G(9, 88/335) + G(12, 51/335)

3 G(6,(202/335)*(51/97)) + G(7,(202/335)*(46/97)) + G(11,82/335) + G(13,44/335)
+ G(14,7/335)

4 -(202/335)*(51/97)*51,85 + (202/335)*(46/97)*50,713 + (82/335)*73,971 +
(44/335)*145,955 + (7/335)*318,126

5 = 41.98

D Additional examples

D.1 Impact of quantile discretization

The table below shows the impact of discretization on the performance of a Random Forest on UCI datasets.

Dataset Breiman’s RF q=2 q=5 q=10 q=20

Authentification 0.0002 0.08 0.002 0.0005 0.0004

Diabetes 0.17 0.23 0.18 0.18 0.18

Haberman 0.32 0.35 0.30 0.32 0.30

Heart Statlog 0.10 0.10 0.10 0.10 0.10

Hepastitis 0.13 0.15 0.14 0.14 0.13

Ionosphere 0.02 0.07 0.03 0.02 0.02

Liver Disorders 0.23 0.32 0.27 0.25 0.24

Sonar 0.07 0.09 0.07 0.07 0.07

Spambase 0.01 0.14 0.03 0.02 0.01

Titanic 0.13 0.15 0.14 0.14 0.13

Wilt 0.007 0.15 0.03 0.02 0.02

Table 2: Accuracy, measured by 1-AUC on UCI datasets, for two algorithms: Breiman’s random forests and
random forests with splits limited to q-quantiles, for q ∈ {2, 5, 10, 20}. Table 5 in Bénard et al. (2021a)

D.2 The differences between Coalition and sum on Census Data

We use UCI Adult Census Dataset Dua and Graff (2017). We keep only 4 highly-predictive categorical variables:
Marital Status, Workclass, Race, Education and use a Random Forest which has a test accuracy of 86%. We
compare the Global SV by taking the coalition or sum of the modalities. Global SV are defined as:

Ij =

N∑
i=0

|ϕ(i)
j |

In figure 7, we see differences between the global SV with coalition and sum with N=5000. The ranking of the
variables changes, e.g. Education goes from important with sum to not important with the coalition. We also
compute the proportion of order inversion over N=5000 observations choose randomly. The ranking of variables
is changed in 10% of the cases. Note that this difference may increase or diminish depending on the data.
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Figure 7: Difference between the global absolute value of SV: sum (left) vs coalition (right) of dummies of
individual with modalities: Married, local gov, others, 1rst-4th.

E Individual Shapley values for indicator variables in Dummy Encodings

We give some partial results for the Shapley Values of the modalities Y = k, based on the dummy encoding
considered in section 2. Indeed equation 2.4 introduces ϕk(f̃ , x, y1:K−1), and proposition 2.1 claims that their
sum is different in all generality of the SV of Y . In this section, we give a deeper insight into these values and
show that are related multiple comparisons between modalities.

We compute the Shapley Value at point (x, y = i) = (x, 0, 0, . . . , 1, . . . , 0) = (x, C(y)) : for ease of notation, we
set Y0 = X, and we compute also the Shapley values ϕk(f̃ ;x, y1:K−1) for k = 1, . . . ,K − 1. We recall that we
need to compute

1

K

K−1∑
k=0

1(
K−1
k

) ∑
Z ⊆ J1..KK \i

|Z| = k

∆(f̃ ;Z, i).

where ∆ denotes the difference between the value function evaluated at Z ∪ {i} and Z. If we examine the terms
∆(f̃ ;Z, i), the computation needs to take into account if X = Y0 is part of the conditioning variable of not.
Indeed, we have for each k ≥ 1,

∑
Z ⊆ J0..K − 1K \i

|Z| = k

∆(f̃ ;Z, i) =
∑

Z ⊆ J1..K − 1K \i
|Z| = k

∆(f̃ ;Z, i) +
∑

Z ′ ⊆ J1..K − 1K \i
|Z ′| = k − 1

∆(f̃ ;Z ′ ∪ {0} , i). (23)

We start by computing the first term in the right hand side, and it involves only the dummies, and not the
quantitative variable.

Proposition E.1 (Computation of Contributions in Shapley without X). We compute the Shapley values of
the variable Yi , when we have the observations (x, y1:K−1) = (x, C(i)) for i ∈ {1, . . . ,K}. We consider any
Z ′ ⊆ J1..K − 1K \i, with |Z ′| = k ≥ 1 and Z ′ = {j1, . . . , jk}. In that case,

∆(f̃ ;Z, i) = EP [f(X,Y )|Y = i]− EP [f(X,Y )|Y /∈ {j1, . . . , jk}] (24)

Proof. We have Yi = 1 ⇔ Y = i, and for Z ′ ⊆ J1..K − 1K \ {0, i}, we consider Z ′ = {j1, . . . , jk}, with 1 ≤ j1 <
· · · < jk ≤ K − 1,

EP̃

[
f̃(Y0, Y1:K−1)|Yj1 = 0, . . . , Yjk = 0, Yi = 1

]
= EP̃

[
f̃(Y0, Y1:K−1)|Yi = 1

]
= EP̃

[
f̃(Y0, C(Y ))|Yi = 1

]
= EP [f(Y0, Y )|Y = i]
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because for all j1, . . . , jk−1 ̸= i, we have {Yj1 = 0, . . . , Yjk = 0, Yi = 1} = {Yi = 1}.
Moreover,

EP̃

[
f̃(Y0, Y1:K−1)|Yj1 = 0, . . . , Yjk = 0

]
= EP

[
f̃(Y0, C(Y ))|Y ̸= j1, . . . , jk

]
Hence for Z ⊆ J1..K − 1K \i, we have

∆(f̃ ;Z, i) = EP [f(X,Y )|Y = i]− EP [f(X,Y )|Y /∈ {j1, . . . , jk}] .

The second term of the right hand side is given below.

Proposition E.2 (Computation of Contributions in Shapley with X). We compute the Shapley values only for
the variable Yi , when we have the observations doable (x, y1:K−1) = (x, C(i)) for i ∈ {1, . . . ,K}. We consider
any Z ′ ⊆ J1..K − 1K \i, with |Z ′| = k − 1 ≥ 1, and Z ′ = {j1, . . . , jk−1}. In that case,

∆(f̃ ;Z ′ ∪ {0} , i) = EP [f(X,Y )|X = x, Y = i]− EP [f(X,Y )|X,Y /∈ {j1, . . . , jk−1}] (25)

Proof. We assume that we have a subset |Z ′| = k − 1, such that Z ′ ⊆ J1..K − 1K \i. This means that Z ′ =
{j1, . . . , jk−1}, with 1 ≤ j1, . . . , jk−1 ≤ K − 1. We

EP̃

[
f̃(Y0, Y1:K−1)|Y0 = x, Yj1 = 0, . . . , Yjk−1

= 0, Yi = 1
]
= EP̃

[
f̃(Y0, Y1:K−1)|Y0 = x, Yi = 1

]
= EP

[
f̃(Y0, C(Y ))|Y0 = x, Y = i

]
= EP [f(Y0, C(Y ))|Y0 = x, Y = i]

and

EP̃

[
f̃(Y0, Y1:K−1)|Y0 = x, Yj1 = 0, . . . , Yjk−1

= 0
]
= EP

[
f̃(Y0, C(Y ))|Y0 = x, Y /∈ {j1, . . . , jk−1}

]
= EP [f(Y0, Y )|Y0 = x, Y /∈ {j1, . . . , jk−1}]

Finally, we can give several examples of the different increments involved in the Shapley values of each variable
X or Yk. If k = 0, then Z ′ = ∅ and

∆(f̃ ;Z ′, i) = ∆(f̃ ; ∅, i) = EP [f(X,Y )|Y = i]− EP [f(X,Y )]

If k = 1, then Z ′ = {0} or Z ′ = {j} ≠ {i} ,

∆(f̃ ;Z ′, i) = ∆(f̃ ; 0, i) = EP [f(X,Y )|X = x, Y = i]− EP [f(X,Y )|X = x]

∆(f̃ ;Z ′, i) = ∆(f̃ ; {j} , i) = EP [f(X,Y )|Y = i]− EP [f(X,Y )|Y ̸= j]

For k = K − 1, Z ′ = {1, . . .K − 1},

∆(f̃ ; {1, . . .K − 1} , i) = EP [f(X,Y )|X = x, Y = i]− EP [f(X,Y )|X = x, Y ̸= i]

The propositions E.1 and E.2 show that the individual Shapley value for the variable (modality) Yi is a weighted
mean of the difference between classe i and group of classes:{

EP [f(X,Y )|Y = i]− EP [f(X,Y )|Y /∈ {j1, . . . , jk}]
EP [f(X,Y )|X = x, Y = i]− EP [f(X,Y )|X,Y /∈ {j1, . . . , jk−1}]

Finally, we can also compute the Shapley values of the other variables Yj at point (x, y = i), for j ̸= i. In that

case, the difference ∆(f̃ ;Z ′, j), j ̸= i are of the type of
EP [f(X,Y )|Y /∈ {j, j1, . . . , jk}]− EP [f(X,Y )|Y /∈ {j1, . . . , jk}]
EP [f(X,Y )|Y = i]− EP [f(X,Y )|Y = i]

EP [f(X,Y )|X = x, Y /∈ {j, j1, . . . , jk}]− EP [f(X,Y )|X,Y /∈ {j1, . . . , jk−1}]
EP [f(X,Y )|X = x, Y = i]− EP [f(X,Y )|X,Y = i]
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The Shapley values computes a mean of the difference between different aggregation of modalities, that contains
or not the variable of interest.

As a conclusion of this part, we see that the individual Shapley values ϕk(f̃ ;x, y1:K−1) perform a multiple
comparison of the means obtained by aggregating the classes or modalities in various ways, looking at the
presence or not of the modality k. These differences of means have weights 1

(K−1
k )

where k is basically the

number of classes of the variable Y that we aggregate.

Consequently the sum
∑K

k=1 ϕk(f̃ ;x, y1:K−1) is clearly different from the

ϕY (f ;x, y) =
1

2
(E [f(X,Y )|Y = y]− E [f (X,Y )]) +

1

2
(f (x, y)− E [f (X,Y ) |X = x]) .

This latter has a much more global analysis that aims at measuring how the mean E [f(X,Y )|Y = y] in the
various classes changes w.r.t E [f (X,Y )], while the individual Shapley focus on the difference between subgroups
of classes.

F Plug-In estimator of Marginal expectation

As we have indicated in the paper, the Shapley Values can be computed with different probability QS,x. In that
section, we show that when we use the marginal distribution (as in the so-called interventional case), the previous
estimators for tree-based models can be adapted straightforwardly.
We consider then decision tree

f(x) =

M∑
m=1

fm1Lm
(x)

and remark that the Marginal Shapley coefficients involve the computations of the marginal expectations
EP [1Lm(XZ̄ ,xZ)] for any subgroup of variables Z. On real data, we need to compute the conditional ex-
pectations, but we use the Tree approximations in order to replace

EP [1Lm(XZ̄ ,xZ)] =

∫ ∫
1Lm(uZ̄ ,xZ)p(uZ̄ ,uZ)duZ̄duZ

=

∫ ∫
1Lm

(uZ̄ ,xZ)p(uZ |uZ̄)p(uZ̄)duZduZ̄

=

∫ {∫
p(uZ |uZ̄)duZ

}
1Lm

(uZ̄ ,xZ)p(uZ̄)duZ̄

=

∫
1Lm

(uZ̄ ,xZ)p(uZ̄)duZ̄

This means that we just need the marginal distributions of the variables XZ̄ in order to compute the expectations
of the leaf. In the case of quantitative data, the leaf can be written Lm =

∏p
i=1 [a

m
i , bmi ], and we have by definition

∃k ∈ Z, xk /∈ [ak, bk] =⇒ 1Lm
(uZ̄ ,xZ) = 0

We define the set of leafs compatible with condition XZ = xZ as

C(Z,x) =

{
m ∈ [1 . . .M ] |Lm =

p∏
i=1

[ami , bmi ] ,∀k ∈ Z, xk ∈ [amk , bmk ]

}
We write for m ∈ C(Z,x), Lm = LZ̄

m×LZ
m, with LZ̄

m =
∏

i∈Z̄ [ami , bmi ] and LZ
m =

∏
i∈Z [ami , bmi ] , this means that

for all m ∈ C(Z,x) we have

EP [1Lm
(XZ̄ ,xZ)] = EP

[
1LZ̄

m
(XZ̄)

]
As an approximation, the conditional probability for m ∈ C(Z,x) is computed as

EP

[
1LZ̄

m
(XZ̄)

]
= P

(
Xi ∈ [ami , bmi ] , i ∈ Z̄

)
≃ N(LZ̄

m)

N
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where N(LZ̄
m) is the number of observations in the (partial) leaf LZ̄

m. As a consequence we have

EP [f(XZ̄ ,xZ)] =

M∑
m=1

ŷmEP [1Lm
(XZ̄ ,xZ)]

=
∑

m∈C(Z,x)

ŷmEP [1Lm(XZ̄ ,xZ)]

=
∑

m∈C(Z,x)

ŷmEP

[
1LZ̄

m
(XZ̄)

]
≃

∑
m∈C(Z,x)

ŷm
N(LZ̄

m)

N

G EXPERIMENTAL SETTINGS

All our experiments are reproducible and can be found on the github repository Active Coalition of Variables,
https://github.com/salimamoukou/acv00

A.1 Toy model of Section 2.3

Recall that the model is a linear predictor with categorical variables define as f(X,Y ) = BY X with X|Y = y ∼
N (µy,Σy) and P(Y = y) = πy, Y ∈ {a, b, c}.
For the experiments in Figure 1 and 2, we set πy = 1

3 , µy = 0∀ y ∈ {a, b, c}. We use a random matrices generated
from a Wishart distribution. The covariance matrices are:

Σa =

 0.41871254 −0.790061361 0.46956991
−0.79006136 1.90865098 −0.82571655
0.46956991 −0.82571655 0.95835472

 , Σb =

 0.55326081 0.11811951 −0.70677924]
0.11811951 2.73312979 −2.94400196
−0.70677924 −2.94400196 4.22105088

,
Σc =

 9.2859966 1.12872646 2.4224434
1.12872646 0.92891237 −0.14373393
2.4224434 −0.14373393 1.81601676

 for y ∈ {a, b, c} respectively.

The coefficients are Ba = [1, 3, 5], Bb = [−5,−10,−8], Bc = [6, 1, 0] and the selected observation in figure 1 values
is x = [0.35,−1.61,−0.11, 1., 0., 0.]

A.2 Toy model of Section 4

The data D = (xi, zi)1≤i≤n are generated from a linear regression Z = BtX with n = 10000, X ∈ Rp,
X ∈ N (0,Σ), Σ = ρJp+(ρ−1)Ip with p = 5, ρ = 0.7, Ip is the identity matrix, Jp is all-ones matrix and a linear
predictor Z = BtX. B = [6.49,−2.44,−2.11,−4.29, 3.46] for the continuous case and d=3, B = [6.49,−2.44, 0]
for the discrete case.

We used the decision tree of sklearn trained on D with the defaults parameters. The Mean Squared Error (MSE)
are MSE = 4.39 for the continuous case and MSE = 2.88 for the discrete case.

https://github.com/salimamoukou/acv00
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