
A prior-based approximate latent Riemannian metric

Georgios Arvanitidis 1 2 Bogdan Georgiev 3 Bernhard Schölkopf 2

1DTU Compute, Technical University of Denmark 2MPI for Intelligent Systems, Tübingen 3DeepMind

Abstract

Stochastic generative models enable us to
capture the geometric structure of a data
manifold lying in a high dimensional space
through a Riemannian metric in the latent
space. However, its practical use is rather
limited mainly due to inevitable functional-
ity problems and computational complexity.
In this work we propose a surrogate confor-
mal Riemannian metric in the latent space
of a generative model that is simple, efficient
and robust. This metric is based on a learn-
able prior that we propose to learn using a
basic energy-based model. We theoretically
analyze the behavior of the proposed metric
and show that it is sensible to use in practice.
We demonstrate experimentally the efficiency
and robustness, as well as the behavior of the
new approximate metric. Also, we show the
applicability of the proposed methodology for
data analysis in the life sciences.

1 Introduction

The manifold hypothesis states that in a high dimen-
sional space the data has a low dimensional nonlinear
geometric structure. One way to compute distances
that respect this structure is by using discrete short-
est paths on neighborhood graphs [Tenenbaum et al.,
2000]. Nevertheless, this strategy does not allow to
perform continuous analysis, as for example Rieman-
nian statistics [Pennec, 2006]. Hence, methods based
on latent variable models have been developed that
enables us to compute continuous shortest paths.

Generative models provide a way to estimate the prob-
ability density of the given data lying in an ambient
space X . Most of the models utilize a latent space Z,

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Figure 1: We propose a conformal Riemannian metric
that is related to the learnable prior of a latent variable
model. Intuitively, shortest paths prefer regions in the
latent space Z with high density.

but the Variational Auto-Encoder (VAE) also learns a
low dimensional representation of the data [Rezende
et al., 2014; Kingma and Welling, 2014]. Unfortu-
nately, the straight line distance in Z is misleading,
and in addition, is not identifiable [Hauberg, 2018].

One solution is to compute shortest paths in Z using
a Riemannian metric that is induced by the generator
[Tosi et al., 2014; Arvanitidis et al., 2018]. This gives
a natural and identifiable distance measure, since it is
actually computed directly on the data manifold in X .
However, we need to estimate meaningfully the gener-
ator’s uncertainty to properly capture the associated
geometry in Z. While this approach allows us to com-
pute continuous and principled distances respecting
the data manifold, it is not particularly efficient and
robust. Specifically, the metric is based on the gener-
ator’s Jacobian and its derivative, which is typically
expensive to compute and complex. Also, meaning-
ful uncertainty quantification is achieved using kernel
methods [Arvanitidis et al., 2018], which limits further
the robustness. These functionality problems motivate
us to search for an approximate Riemannian metric to
be used for practical purposes.

As regards VAEs, several improvements have been pro-
posed and we are interested in learnable priors. Usu-
ally, in a VAE a simple prior over Z is chosen, as the
unit Gaussian. This prior is not flexible and expres-
sive enough in order to capture the structure of the

A prior-based approximate latent Riemannian metric

data representations, which potentially might be com-
plex and multimodal. Therefore, learnable priors have
been proposed that adapt to the distribution of the
latent representations [Tomczak and Welling, 2018].

In this work, we propose to approximate the induced
Riemannian metric in Z with a locally conformally flat
surrogate metric that is based on a learnable prior. In
particular, we first propose to utilize a basic energy-
based model as a learnable prior in VAEs (Sec. 3.2).
Then, we define a conformal Riemannian metric in Z
that is inverse proportional to the prior (Sec. 4.1).
This constitutes a robust metric that is also highly
efficient both in computational speed, as well as in
modeling capabilities. For example, in Fig. 1 we show
that shortest paths in Z computed under our proposed
metric respect the structure of the learned prior. Fur-
thermore, we study theoretically when the proposed
metric is a sensible approximation to the Riemannian
metric that is induced by the generator. In the exper-
iments, we compare the behavior of the two metrics,
and we also show potential applications in life sciences.

2 Basics of Riemannian geometry

We consider Riemannian manifolds [do Carmo, 1992],
which are smooth spaces where one can compute
lengths between points. An intuitive way to think of a
d-dimensional smooth manifold M is as an embedded
smooth d-dimensional hypersurface in a higher dimen-
sional Euclidean ambient space X = RD, which locally
is homeomorphic to a d-dimensional Euclidean space.
In this perspective, one considers the tangent space
TxM at a point x ∈ M as a d-dimensional vector
space in X that is tangential to the hypersurface at
the point x. Technically, a manifold is covered by a
collection of charts (local parametrizations), and for
simplicity we assume that a “sufficiently large” global
chart exists (a global parametrization of the hyper-
surface). We denote this global chart by the mapping
h : H ⊆ Rd →M ⊂ X . By definition h(·) is a diffeo-
morphism onto its image and we say that H are the
intrinsic coordinates of the manifold.

A Riemannian metric is a positive definite matrix that
changes smoothly throughout the space. A smoothM
together with a Riemannian metric constitutes a Rie-
mannian manifold. Let an embedded M ⊂ X , the
Riemannian metric MX : X → RD×D�0 defines a local
inner product ∀x∈M on the tangent space TxM be-
tween two tangent vectors u,v ∈ RD as 〈u,v〉x =
〈u,MX (x)v〉. The global chart h(·) allows to map a
vector v∈H to a unique tangent vector v∈TxM using
the Jacobian matrix Jh :H→RD×d as v=Jh(z)v. For
smooth h(·), a Riemannian metric MH : H → Rd×d�0
is induced in H as MH(·) = Jh(·)ᵀMX (h(·))Jh(·).

v

x

y
c(t)

Figure 2: A shortest path c(t) and a tangent vector v.

In most cases, we consider X as Euclidean space so
MX (·)=ID, which implies that the metric MH(·) in H
is induced by the embedding [Arvanitidis et al., 2019].

A Riemannian metric shows how the distances change
in an infinitesimal region and enables us to compute
the length of a curve γ : [0, 1] → M ⊂ X with∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt =

∫ 1

0

√
〈ċ(t),MH(c(t))ċ(t)〉dt,

where γ(t) =h(c(t)) and γ̇(t) =∂tγ(t) =Jh(c(t))ċ(t) ∈
Tγ(t)M the velocity of the curve. We can compute the
length of γ(t) in intrinsic coordinates c(t) ∈ H using
the metric MH(·). Also, we find the shortest path be-
tween two points in H by applying the Euler-Lagrange
equations at the curve energy. This gives a system of
second order non-linear ordinary differential equations
(ODEs) c̈(t) = F (ċ(t), c(t), t) which can be found in
App. A. Intuitively, the shortest paths are pulled to-
wards areas of H where |MH(·)| is small. These curves
are known as geodesics. Additional details in App. A.

A Riemannian metric M(·) is conformal to M̃(·) when
for a positive smooth function m :H → R>0 we have

M̃(z) = m(z)M(z). The conformal metric is simply a
scaling of M(·), while the simplest example is to con-

sider M̃(z) = m(z)Id. This metric has some appeal-
ing properties as interpretability and efficiency. More
specifically, the corresponding ODEs system for com-
puting a shortest path simplifies to

c̈(t) =
∇m(c(t))ċ(t)ᵀċ(t)− 2ċ(t)∇m(c(t))ᵀċ(t)

2 m(c(t))
, (1)

where ∇m : H→Rd the gradient of m(·). The inter-
pretability implies that we can easily control the short-
est paths behavior in H by designing m(·) accordingly.

The manifold hypothesis is that the data lie uniformly
near an embedded M⊂X . However, for a given set
of finite noisy observations a global chart h(·) rarely
exists and d is unknown. Hence, a practical method
to capture the geometry of M is to learn a function
g : Z ⊆ Rd′ → X to approximate the data, which is
a smooth immersion but not constrained to be a dif-
feomorphism as h(·), while in general Z 6= H. We
then use Jg(·) to compute MZ(·), for which a desired
meaningful behavior is to be small in parts of Z that
correspond to regions ofM with non-zero data density.
This is known as the pull-back metric, and in practice,
we learn g(·) using generative models (see Sec. 4).

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

Riemannian metric learning. Apart from the
pull-back metric, we can also learn a Riemannian met-
ric directly in X from the given data x1:N ∈X , using a
parametric metric Mλ :X →RD×D�0 and estimating the
optimal parameters λ. Actually, this metric changes
the way we measure distances in X in order to respect
the data manifold structure. So the |Mλ(·)| should be
small in regions of X with non-zero data density, such
that to pull the shortest paths towards them (Fig. 2).

One approach is to consider a predefined set of metrics
centered at base points in X , and then using a kernel to
compute the Riemannian metric as their weighted sum
[Hauberg et al., 2012]. In a similar spirit, Arvanitidis
et al. [2016] used a kernel to compute the Riemannian
metric as the inverse local diagonal covariance matrix
of the data. Also, Arvanitidis et al. [2019] proposed
a simple method to construct conformal Riemannian
metrics directly from the data by multiplying a pos-
itive function in X with the Euclidean metric. For
details about these metrics see App. B. However, in
these approaches the parameters λ of the metric are
typically fixed, and in general, it is a challenging task
to find the best λ [Arvanitidis et al., 2017].

In contrast, Lebanon [2002] proposed to optimize
λ using the density pλ(x) ∝ (

√
|Mλ(x)|)−1 and

under the assumption of independent and identi-
cally distributed data to maximize the likelihood∏N
n=1 (

√
|Mλ(xn)|)−1/

∫
X (
√
|Mλ(x′)|)−1dx′. Hence,

the density should be high near the given data, which
means that the metric should be small, while the reg-
ularizer prevents the metric of becoming zero. The
quantity

√
|Mλ(x)| is the magnitude, which is a scal-

ing factor for the Lebesgue dx and represents the local
distrortion of the distance.

This Riemannian metric learning approach has the fol-
lowing disadvantages. We have to define explicitly
the parametric form of the metric before the train-
ing, which potentially limits its flexibility. Also, in
higher dimensions it is hard to guarantee the actual
behavior and usability of such an ad-hoc metric. In
addition, the optimization is challenging especially in
high dimensions due to the normalization constant.
Therefore, this methodology is mostly limited to low
dimensional spaces and rather simple data manifolds,
but the actual formulation motivates us to relate a
density function with a conformal metric (see Sec. 4).

3 Generative Models

An efficient way to approximate the underlying prob-
ability density of the observations x1:N ∈ X is with
a deep generative model and recent advances exhibit
great performance. There are several types of genera-
tive models such as Variational Auto-Encoders (VAEs)

[Kingma and Welling, 2014; Rezende et al., 2014],
Generative Adversarial Networks (GANs) [Goodfellow
et al., 2014] and flow based models [Dinh et al., 2016].
We consider the VAE that utilizes a low dimensional
latent space Z where we can represent the given data.

Specifically, we use a likelihood function pθ(x|z) that is
typically chosen to be a Gaussian N (x|µθ(z), IDσ2

θ(z))
and a prior p(z) as the N (0, Id) over the latent vari-
ables. We parametrize the likelihood with deep neural
networks µθ :Z→X and σ2

θ :Z→RD>0. Also, we use an
approximate posterior qφ(z|x) = N (z|µφ(x), Idσ2

φ(x)),

where again µφ : X → Z and σ2
φ : X → Rd>0 are deep

neural networks. Then, using Jensen’s inequality we
derive the evidence lower bound (ELBO)

Eqφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)||p(z)], (2)

which is a lower bound to the data log-likelihood. We
optimize θ, φ using objective and the reparametriza-
tion trick z = µφ(x) + diag(ε) · σφ(x), where ε ∼
N (0, Id), which allows to compute stochastic gradients
with low variance [Mohamed et al., 2020].

3.1 Prior learning in VAEs

One variant of the standard VAE is to replace the sim-
ple prior with a learnable one. Intuitively, the learned
prior captures the structure of the latent representa-
tions in Z, which is similar to the behavior of a pull-
back Riemannian metric.

One of the first successful methods to learn the prior in
a VAE is the VampPrior [Tomczak and Welling, 2018].
In this approach the learnable prior is chosen to be the
aggregated posterior p(z) , q(z) =

∫
X q(z|x)p(x)dx,

where p(x) is the true data density. In a standard VAE
this is essentially a huge Gaussian mixture model, since
typically we approximate this integral using the train-
ing data p(z) ≈ 1

N

∑N
n=1 q(z|xn). Of course, such a

prior can easily overfit, so the authors proposed to use
instead only K learnable inducing points x1:K . This
simple prior is empirically shown to be very effective,
but when the data dimension is high, training the in-
ducing points is computationally expensive. Also, is
hard to chose the number K of inducing points.

Another set of approaches is related to energy-based
models. Bauer and Mnih [2019] learns a function
to accept or reject samples from a base prior as the
unit Gaussian. Pang et al. [2020] learns an energy-
based model prior by optimizing the log-likelihood of
the data requiring iterative expensive Markov Chain
Monte Carlo sampling in Z for the prior and the
true posterior. Aneja et al. [2020] learns post-hoc an
energy-based model prior by contrasting samples from
the aggregated posterior to samples from a base prior.
These approaches motivate our proposed prior.

A prior-based approximate latent Riemannian metric

3.2 Our learnable prior for VAEs

Let a deep neural network fψ : Z → R and a base
distribution p(z) = N (0, Id). We use as learnable prior
the energy-based model [LeCun et al., 2006]

νψ(z) = exp(fψ(z))p(z) / C, (3)

where C =
∫
Z exp(fψ(z))p(z)dz is the normalization

constant. We plug this prior in the evidence lower
bound of the VAE (Eq. 2) and the ELBO becomes

Eqφ(z|x)[log pθ(x|z)]−KL[qφ(z|x)||p(z)]

+ Eqφ(z|x)[fψ(z)]− log(C), (4)

which can be optimized using stochastic gradients as
well. The challenge in this optimization problem is
to estimate efficiently the term with the normaliza-
tion constant. However, since the dimensionality of
Z is usually low this allows us to estimate the nor-
malization constant C relying on basic Monte Carlo
as C =

∫
Z exp(fψ(z))p(z)dz ≈ 1

S

∑S
s=1 exp(fψ(zs))

where zs ∼ p(z). Nevertheless, more sophisticated
techniques for estimating the constant can be used.

Even if this is a rather simple prior, it comes with some
desirable properties. First, the behavior is easy to in-
terpret, as the prior increases near the latent codes of
the data, while in contrast, the normalization constant
tries to reduce its value in regions of Z with no codes.
This implicit regularization does not allow the model
to overfit the latent codes, which is directly related to
the effectiveness of the integration. Also, contrastive
techniques can be used in order to control even further
the prior fitting i.e. far from latent codes to push the
prior towards zero. In addition, the KL divergence of
the standard VAE still appears in the objective. This
is beneficial because the encoder is still encouraged to
provide a meaningful structure for the latent codes,
while in a different case the representations could be
placed sparsely without any structure in Z depending
on the flexibility of fψ(·).

Clearly, our proposed energy-based model prior is a
rather simple choice, while being closely related to
more advanced models which aim to improve gener-
ative modeling [Pang et al., 2020; Aneja et al., 2020].
However, to the best of our knowledge, such a prior has
not be used in the standard VAE setting. In addition,
our main motivation for proposing this prior is not
to improve the generative modeling performance, but
instead to have a flexible prior that adapts to the la-
tent representations, which is efficient to evaluate and
derivate. This prior is the base to define a conformal
metric in Z (see Sec. 4.1), which approximates the ge-
ometry of the data manifold, while being at the same
time efficient and robust.

4 Riemannian metric learning via
generative modeling

Instead of learning a parametric Riemannian metric in
X from data (see Sec. 2), we discuss how to learn one
in the latent space Z of a generative model. Briefly, a
generator g : Z → X induces a pull-back metric in Z
(see Sec. 2) that informs us about the local distortions
of Z when mapping through g(·). This metric captures
the geometry of the data manifold lying in X . How-
ever, as we discuss below even if this is a theoretically
rigorous approach, it has practical disadvantages.

Tosi et al. [2014] first proposed to capture the geome-
try of a data manifold by modeling the generator g(·)
using a Gaussian Process Latent Variable Model (GP-
LVM) [Lawrence, 2005]. Here, the generator is taken
to be a Gaussian process g ∼ GP(0, k(z, z′)) and the
latent codes of the data z1:N are trained. Since GPs
are closed under differentiation the Jacobian Jg(·) is a
random process, which induces a stochastic Rieman-
nian metric in Z. This metric comes with a mean-
ingful behavior, since it is small near the latent codes
and increases when the uncertainty of g(·) increases.
This properly captures in Z the geometry of the data
manifold, but it is not very useful due to the practical
constraints of the GP.

In a similar spirit, Arvanitidis et al. [2018] showed that
a Riemannian metric is naturally induced in the latent
space of deep generative models. The generator of a
standard VAE x = g(z) = µθ(z) + diag(ε) · σθ(z) with
ε ∼ N (0, ID) is a stochastic function, which induces a
random Riemannian metric in Z with expectation

Mθ(z) = Jµθ (z)ᵀJµθ (z) + Jσθ (z)ᵀJσθ (z). (5)

When the uncertainty σθ(·) of g(·) increases, the sec-
ond term of the metric increases, which constitutes
a meaningful behavior. However, µθ(·) and σθ(·) are
usually parametrized as deep neural networks that are
known to extrapolate arbitrarily. A solution proposed
by Arvanitidis et al. [2018] is to model the precision
ξθ(z) = (σ2

θ(z))−1 using a positive Radial Basis Func-
tion (RBF) network. Hence, moving further from the
latent codes decreases the precision, which directly
makes the second term of the expected metric Eq. 5
to increase. Therefore, a stochastic generator with
meaningful uncertainty estimation enables us to prop-
erly capture the geometry of the data manifold in Z
[Hauberg, 2018]. Moreover, it has been theoretically
shown by Eklund and Hauberg [2019] that it is sensible
to use this expected metric.

Nevertheless, even if this metric enables us computing
shortest paths in Z that respect the latent structure,
it comes with practical drawbacks. In particular, we
need to set the parameters of the RBF network as the

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

number of components K and the bandwidth for a
Gaussian kernel, which is in general a difficult prob-
lem. In addition, to find one curve we evaluate the
ODE system several times, which involves the metric
and its derivative that are based on the Jacobian of
g(·). For complex generators this is computationally
very expensive. Also, by definition g(·) has to be twice
differentiable, so we cannot use complicated architec-
tures. Finally, the ODE system becomes highly unsta-
ble affecting negatively the performance of the solvers
[Arvanitidis et al., 2019]. Even solvers that minimize
the curve’s energy using automatic differentiation are
still slow for complex models [Yang et al., 2018].

Stochastic generators provide one way to properly cap-
ture in Z the geometry of the data manifold lying in X .
Moreover, this approach enables us to derive more in-
formative metrics by considering the space X as a Rie-
mannian manifold [Arvanitidis et al., 2020]. However,
due to the practical disadvantages, we are interested
in approximating the geometry in Z using a simple,
efficient and robust surrogate Riemannian metric.

4.1 Our prior-based conformal metric

We propose a new Riemannian metric in Z that ap-
proximates the behavior of the true pull-back metric
Mθ(·) (see Eq. 5), while having several advantages as
regards its practicality. Let a VAE with a trainable
smooth prior νψ(z) for which we can evaluate easily
the density function and its derivative. We are moti-
vated by Lebanon [2002] where a probability density
is defined to be inverse proportional to the magnifica-
tion factor (see Sec. 2). In a similar spirit, we propose
an approximation to the true Mθ(·) in Z using the
following locally conformally flat Riemannian metric

Mψ(z) = m(z) · Id = (α · νψ(z) + β)−
2/d · Id, (6)

where α, β > 0 are scaling constants to lower and
upper bound the metric, respectively. This metric by
definition is conformal to the Euclidean metric Id in Z,
and also, the quantity

√
|Mψ(z)| = (α · νψ(z) + β)−1

is inverse proportional to the learnable prior.

The metric Mψ(·) has an interepretable and meaning-
ful behavior, as in regions of Z where the density is
high the metric is small, and thus, the shortest paths
are pulled towards the latent codes. Intuitively, this
properly captures the geometry of the high dimen-
sional data manifold, at least in the sense that paths
tend to avoid regions of Z with no latent codes. Addi-
tionally, the metric is directly learned from the data,
while depending on the flexibility of νψ(·) it can be
highly adaptive. This further implies that the metric
is more robust in higher dimensional latent spaces, as
in principle, does not depend on a predefined paramet-
ric form and/or a kernel. Also, as a conformal metric

the corresponding ODEs system simplifies (see Eq. 1).
Hence, the proposed prior Eq. 3 seems to be a per-
fect choice, since it is flexible, adaptive and efficient to
evaluate, as well as to derivate.

In order to prevent the prior from overfitting the latent
codes we can control the capacity of fψ(·). Also, we
can improve the prior fitting using training techniques
as contrastive learning. Note that our prior in Eq. 6
can be easily replaced by a more sophisticated model
that performs better, as long as the functional form of
the density and its derivative are easy to compute.

4.2 Analysis of our proposed metric

We analyze the behavior of the proposed metric that
is seemingly a sensible approximation to the pull-back
metric of Arvanitidis et al. [2018]. Let the smooth
manifold Z = Id and two Riemannian metrics, the
pull-back Mθ(·) and the proposed conformal Mψ(·)
metric. We are interested in whether these two met-
rics result in equivalent shortest paths, meaning that
the corresponding curves should be similar. We study
theoretically and compare the behavior in three spe-
cific cases, while we provide the respective constructive
examples in the experiments (see Fig. 3). All proofs
can be found in App. D. Based on the manifold hy-
pothesis, we assume that the distribution p(x) of the
data near M is approximately uniform, and in addi-
tion, we assume that the learned g(·) together with our
proposed prior estimates this density sufficiently well.

Proposition 1. Let a learned g(·) with σ2
θ(·) an in-

verse RBF network and νψ(z) the proposed prior.
Then, the magnitude of the metrics Mθ(·) and Mψ(·)
is maximum in the same region of Z where νψ(z)→ 0.

Actually, Prop. 1 means that the two metrics capture
the same latent structure, since for both the magnitude
becomes high as we move far from the latent codes.
This directly implies that the global behavior of the
shortest paths tends to be similar, which is useful in
practice. In particular, the paths are pulled towards
the regions where νψ(z) > 0 avoiding regions with high
metric magnitude, which is a desirable behavior.

However, by definition the two metrics are structurally
different as Mθ(·) is a full metric tensor, while Mψ(·) is
a conformal metric. Consequently, the local behavior
of the paths is rather hard to perfectly match. Also,
we show below that the under some conditions the
behavior of the metrics is exactly the opposite.

Proposition 2. Let a neighborhood U ⊂ M where
p(x) is uniform, a learned g(·) and the proposed prior
νψ(z). If σ2

θ(·) ≈ ε, where ε > 0 a small scalar, then
in the corresponding region in Z the two metrics are

related as
√
|Mθ(·)| =

√
|Mψ(·)|−1.

A prior-based approximate latent Riemannian metric

Therefore, Prop. 2 implies that the associated shortest
paths locally can be different. Nevertheless, another
factor that influences the paths is the curvature. In-
tuitively, this quantity represents for a metric the rate
of change, and in general, the paths tend to avoid re-
gions with high curvature. When in a neighborhood
the curvature is low the magnitude of the metric does
not deviate much. So even if locally the magnitudes
are inverse proportional, as long as the curvature is
low, the behavior of the paths can be similar.

Proposition 3. Let a neighborhood U ⊂ M where
p(x) is uniform. We assume that in the correspond-
ing region in Z the generator’s uncertainty σ2

θ(·) ≈ ε,
where ε > 0 a small scalar and that the µθ(·) has low
curvature. Then, for both metrics Mθ(·) and Mψ(·)
the shortest paths within this region are straight lines.

Of course, in practice it is rather hard to control ef-
fectively the curvature of the generator. Since this
depends on several factors as the given data manifold,
the modeling choices and the training. Additionally,
our assumptions in general do not hold for data man-
ifolds, which complicates the analysis. In particular,
the uncertainty σ2

θ(·) is not constant, the distribution
p(x) is not uniform, while the intrinsic dimensionality
of the data manifold may change. We focus on the last
case, as it has direct implications in practice.

Proposition 4. Let a data manifold M where p(x)
is uniform. We assume that there is a neighborhood
U ⊂ M where the intrinsic dimensionality increases.
Then, in the corresponding region of Z the two metrics
Mθ(·), Mψ(·) have exactly the opposite behavior.

Nevertheless, due to Prop. 1 we argue that the pro-
posed metric is a sensible approximation to the true
pull-back metric. In particular, we showed that both
metrics capture the same latent structure, and hence,
the associated shortest paths globally are similar. In
contrast, we presented some cases where the behavior
of the paths locally differs, and we note that poten-
tially additional problematic cases might exist. Also,
we propose a conformal metric, which has a rather
limited expressivity compared to the true pull-back.
However, we argue that this type of problems are negli-
gible in practice, as long as the shortest paths for both
metrics are similar and can be computed efficiently.

Note that we can easily take our metric into account
during the training as it is based on the learnable prior.
In this way, we can influence the generative model by
considering interpretable inductive biases through ge-
ometric formulations. For example, we can consider
pointwise regularizers of the form ||Mψ(z)−Mθ(z)||2F .
Of course, this specific regularizer premises that Mθ(·)
is robust and efficient, which is not currently the case,
so we do not use this in our experiments.

Standard VampPrior Ours

MNIST 85.38 83.28 83.56
FMNIST 227.12 224.15 224.53

MNIST (100) 95.51 90.24 91.70
FMNIST (100) 87.17 81.83 84.06

Table 1: The mean NLL on test data.

5 Experiments

Our experimental setting is two fold. First, we com-
pare our prior to the state-of-the-art VampPrior Tom-
czak and Welling [2018]. Note that our goal is not to
improve generative modeling, but to show that νψ(·)
adapts well to the latent codes, so it is a sensible choice
for Mψ(·). Then, we compare the proposed metric
with the pull-back Mθ(·) of Arvanitidis et al. [2018] on
several aspects as the robustness and the efficiency of
shortest paths. Also, we provide a constructive exam-
ple based on the analysis of Sec. 4.2. Finally, we show
potential applications of Riemannian statistics in life
sciences. Further experimental details in App. E.

5.1 Performance of the proposed prior

We compare in terms of negative log-likelihood (NLL)
our learnable prior to the standard unit Gaussian and
the VampPrior. We train 10 Conv-VAEs on MNIST
and FashionMNIST datasets and we report the mean
NLL of test data in Table 1, which we computed us-
ing importance sampling with 5000 samples as p(x) ≈
1
S

∑S
s=1

pθ(x|zs)p(zs)
qφ(zs|x) where zs ∼ qφ(z|x). In addition,

using PCA, we projected the datasets in 100 dimen-
sions and we fitted 10 VAEs with Gaussian decoders.
This already captures > 90% of the data variance,
while enables us to use stochastic decoders such that
to use the pull-back metric in the latent space. In both
cases the dimension of the latent space is d = 10.

We use for the VampPrior K = 500 learnable inducing
points and for our prior fψ(·) a fully connected 2-layer
deep network with 128 units per layer and tanh acti-
vations. The results in Table 1 show that our proposed
prior is comparable to VampPrior, while being always
better than the unit Gaussian prior. This shows that
νψ(·) adapts well to the latent codes during training.

5.2 Comparing the behavior of the metrics

We provide empirical evaluation for the analysis in
Sec. 4.2. We generate a data manifold in X = R3

as [z, 0.25 · sin(z1)] + ε where zj ∼ U(0, 2π), j = 1, 2
and ε ∼ N (0, 0.12 · I3), with a hole in the center, and
with a ball of uniformly sampled points in the cen-
ter. We trained a VAE per dataset with our proposed

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

Hole

Pull-back path
Our path

Ball Normal

Hole Ball Normal
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 3: We demonstrate the three cases analyzed in Sec. 3. Left : The two metrics behave similarly since the
uncertainty estimation aligns well with the prior (Prop. 1). Middle: The behavior of the metrics is exactly the
opposite, as in the area with high prior density the generator has high uncertainty (Prop. 4). Right : We expect
the shortest paths locally to be similar, as long as the prior is uniform and the curvature of the generator is small
(Prop. 3). In addition, we show the distribution of distances between the curves for each case respectively. Note
that in the hole case the paths tend to be similar except a few outliers, which constitutes a useful behavior for
practical purposes in which we are interested, while in the problematic ball case many paths are not similar.

2 3 5 10

−30

−25

−20

−15

−10

−5

0

lo
g
[√ M

(·
)]

d

Metric robustness

Our conformal metric

Pull-back metric

2 3 5 10

−2

0

2

4

6

lo
g
[t

im
e
(s

e
c
)]

d

Shortest paths efficiency

Figure 4: Left : The magnitude of Mψ(·) remains sta-
ble in higher dimensions, while Mθ(·) due to the RBF
is not robust. In fact, some latent codes fall far from
the RBF centers, so the second term of Mθ(·) becomes
large overestimating curve lengths. Right : The Mθ(·)
results in a complex and unstable ODEs system that
limits the efficiency of the solver and also leads it many
times to failure. While with our metric Mψ(·) the sys-
tem is significantly easier to solve.

prior and we fitted post-hoc an RBF network for each
to get the pull-back metric. In Fig. 3 we show the
Z = R2. We define the distance between two curves as∫ 1

0
||c1(t)−c2(t)||22dt, where each curve is parametrized

with unit speed under the Euclidean metric. This
makes curves coming from different Riemannian met-
rics as comparable as possible. We then select pairs
of points and we compute the distance between the
curves that correspond to the pull-back and our pro-
posed conformal metric. More details in App. E.3.

The results show that theoretical analysis in Sec. 4.2 is
reasonable. In particular, for the hole case we see that
both metrics behave similarly, since the paths avoid
crossing the regions in Z with close to zero density
(Prop. 1). This meaningful behavior is useful in prac-
tice as the shortest paths are pulled towards the latent
codes for both metrics. However, some outliers still
exist, as the geometry induced by our Mψ(·) is not ex-
actly the same to the one of Mθ(·). This is apparent in
the ball case, where the metrics have exactly the oppo-

site behavior (Prop. 4). The ball samples increase the
prior in Z, while in the same region the uncertainty of
g(·) increases as well. This causes the shortest paths to
have a contrastive behavior. While in the normal case
the two metrics result in similar curves (see Prop. 3).
However, we show a pair of points where the path of
Mψ(·) crosses a region with higher density and the
path of Mθ(·) not, but the two curves are still similar.
Therefore, if the data lie uniformly near a manifold in
X , we expect the metrics to behave similarly, due to
the relation of the prior to the uncertainty of g(·).

5.2.1 Efficiency and robustness of the metrics

We investigate the behavior of the metrics as the di-
mension of Z increases, as well as the influence this
has on the computation of shortest paths. We use the
MNIST digits 0,1,2, which we project with PCA to 100
dimensions and we train a VAE for each d = [2, 3, 5, 10]
using our proposed prior. Also, we train post-hoc the
RBF network to get the Mθ(·). Moreover, to make
the metrics comparable we rescale them so that the
maximum magnitude on the latent codes is equal to 1.
For additional details see App. E.4.

We compute the magnitude on the latent codes and
we see from the results in Fig. 6 that Mψ(·) is robust
as dimensionality increases. This means that our prior
is non-zero on the representations and relatively simi-
lar across them. In addition, we sample uniformly in
the bounding box of the latent codes and we compute
the magnitude, which shows that indeed our prior is
non-zero only near the representations (see App. E.4).
In contrast, Mθ(·) is not robust due to the RBF net-
work. Due to the curse of dimensionality, the kernel
output is nearly zero for some of the latent codes on
the boundaries, which results in high magnitudes.

Additionally, we randomly sample 10 points per clus-
ter and we compute the pairwise distances within each

A prior-based approximate latent Riemannian metric

LANDs GMM Z

O
u
r

p
a
th

L
in

e
a
r

Similarity(g(c(t)), g(c(t′)))

Figure 5: Left : The mixture models on cortex data. Right : The shortest paths in chemical compounds Z
respect the structure of the latent representations. We also show the similarity of the generated samples along
3 interpolants. Our path generates relatively more explicit and diverse samples compared to the straight line.

Density with proposed metric Density with pull-back metric

Figure 6: Due to the robustness of our proposed met-
ric the mixture of LANDs density adapts better to
the representations. In contrast, the pull-back metric
is very high on some boundary points, so the curve
lengths are overestimated which affects negatively the
fitting of the mixture model.

cluster, in order to investigate the influence of the met-
rics on the shortest paths. The results in Fig. 6 show
that Mψ(·) is highly efficient when computing short-
est paths, even when d increases. The reason is that
the corresponding ODEs system is simpler, more sta-
ble and also easier to solve. While Mθ(·) mainly due
to the RBF, results in an unstable ODEs system, as
well as, only evaluating the metric and its derivative is
significantly more expensive. Consequently, the com-
putation of the paths is very slow, while many times
the solver fails (> 25%). Further details in App. E.4.

5.3 Statistical models on manifolds

We fit a mixture of locally adaptive normal distri-
butions (LANDs) defined on Riemannian manifolds
with density ρ(z) = C(µ,Γ) · exp(−0.5 · 〈Logµ(z),Γ ·
Logµ(z)〉), mean µ ∈ Rd, precision Γ ∈ Rd×d�0 and nor-
malization constant C(µ,Γ) [Arvanitidis et al., 2016].
This is a flexible model but computationally expensive
since it is fitted with gradient descent based on Logµ(·)
and Expµ(·) (see App. A). In Fig. 6 we show the result
on the latent codes of the previous experiment. Due to
the robustness of our Mψ(·) the density adapts better.
In contrast, outliers with high Mθ(·) cause underesti-
mated precisions. Also, the running times are respec-
tively 10 min and 2 hours, because the ODEs system
(Eq. 1) for Mψ(·) is significantly more efficient.

5.4 Applications in life sciences

We consider potential applications of the proposed
metric in real world problems. Note that our setting is
rather simplified and specialized models for such data
exist. For the details see App. E.6.

We train a VAE on mouse cortex cell data that has
a natural clustering [Zeisel et al., 2015]. In Fig. 5 we
compare a mixture of LANDs with a Gaussian mixture
model (GMM), where we see that the LANDs adapts
better to the representations, which can be useful for
exploratory data analysis by experts (see App. E.6 for
individual components). Also, we can use the principal
geodesics as a form of local disentanglement, as they
represent the directions with highest variance on the
data manifold (see App. E.6).

We train a recurrent VAE using chemical compounds
from the ZINC database [Sterling and Irwin, 2015].
This type of data has an inherent natural structure
that we can capture in Z = R3 with our Mψ(·), even
when the g(·) cannot induce the pull-back metric. We
see in Fig. 5 that our paths explore and respect the
learned nonlinear structure, as our interpolants gener-
ate diverse and explicit samples compared to the fuzzy
ones of the straight line (see App. E.6). This amounts
to interpretable and meaningful interpolations shown
to reveal biological information [Detlefsen et al., 2020].

6 Conclusion

We propose to approximate the geometry of a data
manifold in the latent space of a generative model us-
ing a Riemannian metric that is inversely proportional
to a learnable prior. In addition, we propose a suitable
energy-based model for the learnable prior in a VAE
context. Our analysis shows that the proposed metric
is a sensible approximation to the true pull-back met-
ric, while being significantly more efficient and robust.
Apart from its usefulness, our approach does not limit
the generator’s architecture. Also, it provides a way
in future work to consider inductive biases based on
interpretable geometric quantities of the metric.

References

Aneja, J., Schwing, A., Kautz, J., and Vahdat, A.
(2020). NCP-VAE: Variational Autoencoders with
Noise Contrastive Priors. In arXiv preprint.

Arvanitidis, G., Hansen, L. K., and Hauberg, S.
(2016). A locally adaptive normal distribution. In
Neural Information Processing Systems (NeurIPS).

Arvanitidis, G., Hansen, L. K., and Hauberg, S.
(2017). Maximum likelihood estimation of rieman-
nian metrics from euclidean data. In Geometric Sci-
ence of Information (GSI).

Arvanitidis, G., Hansen, L. K., and Hauberg, S.
(2018). Latent space oddity: on the curvature of
deep generative models. In International Confer-
ence on Learning Representations (ICLR).

Arvanitidis, G., Hauberg, S., Hennig, P., and Schober,
M. (2019). Fast and robust shortest paths on man-
ifolds learned from data. In Artificial Intelligence
and Statistics (AISTATS).

Arvanitidis, G., Hauberg, S., and Schölkopf, B. (2020).
Geometrically Enriched Latent Spaces. In arXiv
preprint.

Bauer, M. and Mnih, A. (2019). Resampled priors for
variational autoencoders. In Artificial Intelligence
and Statistics (AISTATS).

Dai, B. and Wipf, D. (2019). Diagnosing and enhanc-
ing VAE models. In International Conference on
Learning Representations.

Detlefsen, N. S., Hauberg, S., and Boomsma, W.
(2020). What is a meaningful representation of pro-
tein sequences? In arXiv preprint.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real NVP. In arXiv
preprint.

do Carmo, M. (1992). Riemannian Geometry. Math-
ematics (Boston, Mass.). Birkhäuser.

Eklund, D. and Hauberg, S. (2019). Expected path
length on random manifolds. In arXiv preprint.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Neu-
ral Information Processing Systems (NeurIPS).

Hauberg, S. (2018). Only Bayes should learn a mani-
fold. In arXiv preprint.

Hauberg, S., Freifeld, O., and Black, M. (2012). A
Geometric Take on Metric Learning. In Neural In-
formation Processing Systems (NeurIPS).

Hennig, P. and Hauberg, S. (2014). Probabilistic solu-
tions to differential equations and their application
to riemannian statistics. In Artificial Intelligence
and Statistics (AISTATS).

Kingma, D. P. and Welling, M. (2014). Auto-Encoding
Variational Bayes. In International Conference on
Learning Representations (ICLR).

Lawrence, N. (2005). Probabilistic Non-linear Princi-
pal Component Analysis with Gaussian Process La-
tent Variable Models. J. Mach. Learn. Res.

Lebanon, G. (2002). Learning riemannian metrics. In
Uncertainty in Artificial Intelligence (UAI).

LeCun, Y., Chopra, S., Hadsell, R., Huang, F. J., and
et al. (2006). A tutorial on energy-based learning.
In Predicting Structured Data. MIT Press.

Lee, J. (2018). Introduction to Riemannian Manifolds.
Springer.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
(2020). Monte carlo gradient estimation in machine
learning. Journal of Machine Learning Research.

Pang, B., Han, T., Nijkamp, E., Zhu, S.-C., and Wu,
Y. N. (2020). Learning latent space energy-based
prior model. In arXiv preprint.

Pennec, X. (2006). Intrinsic Statistics on Rieman-
nian Manifolds: Basic Tools for Geometric Mea-
surements. Journal of Mathematical Imaging and
Vision.

Pfau, D., Higgins, I., Botev, A., and Racanière, S.
(2020). Disentangling by Subspace Diffusion. In
Neural Information Processing Systems (NeurIPS).

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate infer-
ence in deep generative models. In International
Conference on Machine Learning (ICML).

Sterling, T. and Irwin, J. J. (2015). ZINC 15 – Lig-
and Discovery for Everyone. Journal of Chemical
Information and Modeling.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C.
(2000). A global geometric framework for nonlinear
dimensionality reduction. Science.

Tomczak, J. M. and Welling, M. (2018). VAE with a
VampPrior. In Artificial Intelligence and Statistics
(AISTATS).

Tosi, A., Hauberg, S., Vellido, A., and Lawrence, N. D.
(2014). Metrics for Probabilistic Geometries. In
Uncertainty in Artificial Intelligence (UAI).

Yang, T., Arvanitidis, G., Fu, D., Li, X., and Hauberg,
S. (2018). Geodesic clustering in deep generative
models. In arXiv preprint.

Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S.,
Lönnerberg, P., La Manno, G., Juréus, A., Mar-
ques, S., Munguba, H., He, L., Betsholtz, C., Rolny,
C., Castelo-Branco, G., Hjerling-Leffler, J., and Lin-
narsson, S. (2015). Cell types in the mouse cor-
tex and hippocampus revealed by single-cell rna-seq.
Science.

Supplementary Material:
A prior-based approximate latent Riemannian metric

Negative social impact. In this work we provide a methodology that enables us to use the latent variables of
a deep generative model in a geometrically meaningful way, by computing shortest paths that respect the intrinsic
structure of the data manifold. As we showed in our experiments, this could be potentially useful for applications
in life sciences and we cannot see our work having an immediate negative social impact. Nevertheless, generative
models have been also used for malicious purposes e.g. generating fake content. However, we believe that the
merits outweigh the possible risks.

A Riemannian geometry

A Riemannian manifold M is a smooth manifold together with a Riemannian metric that defines a smoothly
changing local inner product acting on the tangent space [Lee, 2018; do Carmo, 1992]. The most intuitive way
to conceptualize a Riemannian manifold is as a d-dimensional hypersurface embedded in a higher-dimensional
ambient space X = RD. The simplest Riemannian metric in this case is the restriction of the Euclidean metric ID
on each tangent space TxM, where the tangent space is a d-dimensional vector space that touchesM tangentially
at x ∈ M. So a tangent vector v ∈ TxM is actually a vector in RD. By definition, a smooth manifold can be
covered by a collection of charts. A chart can be seen as a parametrization of a neighborhood on M formally
written as φj : Uj ⊂ M → Hj ⊂ Rd. In other words, a chart gives us d-dimensional coordinates that represent
the points in a neighborhood Uj . Moreover, on a smooth manifold the charts are diffeomorphisms by definition.
However, for simplicity, we assume that a global chart h(·) exists, which gives a global paramtrization of the
manifold, so we can write that h : H →M. The space H is known as the intrinsic coordinates.

Since h(·) is a differomorphism, we know that Jh : H → RD×d is full-rank, and hence, we can uniquely map a
vector v ∈ H from the intrinsic coordinates to a tangent vector v ∈ TxM as v = Jh(z)v. Assuming that the
Riemannian metric in the ambient space X is the Euclidean MX (·) = ID, we can define the inner product in
each tangent space as 〈v,v〉x = 〈v,MH(z)v〉. Therefore, on the tangent space, which is actually a d-dimensional
vector space the metric now is MH(z) = Jh(z)ᵀJh(z) which changes for each point x = h(z). Intuitively, on
the tangent space we represent a “linearized” view of M with respect to a base point x ∈ M. When working
directly in the embedding space, the linear representation v is scaled by the metric MX (x), and equivalently,
the v is scaled by MH(z) when working in the intrinsic coordinates.

In addition, the metric MH(·) appears in the intrinsic coordinates H and represents the amount of distortion
caused to the infinitesimal volume element dz when mapped through h(·) on M. Also, due to the fact that the
chart is a diffeormorphism, we get that the metric is smooth as it is based on the Jacobian of h(·). In fact,
the embedding of a smooth manifold M in a higher dimensional ambient space with MX (·) directly induces a
Riemannian metric in the intrinsic coordinates H. In this work we assume that MX (·) = ID.

This Riemannian metric allows us to compute distances between points on M. Actually, it represents the
distortions of the infinitesimal distance and volume element. Let a curve γ : [0, 1]→M⊂ X with γ(0) = x and
γ(1) = y. We can measure the curve length on M by considering the curve simply lying in X , so we get

`[γ] =

∫ 1

0

√
〈γ̇(t), γ̇(t)〉γ(t)dt =

∫ 1

0

√
〈γ̇(t), IDγ̇(t)〉dt =

∫ 1

0

√
〈ċ(t),MH(c(t))ċ(t)〉dt = `[c], (7)

where γ̇(t) = ∂tγ(t) ∈ Tγ(t)M is the velocity of the curve and γ(t) = h(c(t)). Here, we assumed that the metric
of X is the Euclidean, however, other meaningful Riemannian metrics could have been used [Arvanitidis et al.,
2020]. This result shows that instead of computing the length of a curve onM⊂ X we can equivalently compute
it in the intrinsic coordinates H.

Moreover, we can find the shortest path i.e. the curve with minimum length, by optimizing the functional Eq. 7.
However, it is known that the length is parametrization invariant. In other words, we can reparametrize t and

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

get still the same length. Instead, the energy is not invariant under reparametrizations of t, and thus, we can
find the curve with minimum energy by optimizing the energy functional either in X or in H as

γ∗ = argmin
γ

∫ 1

0

〈γ̇(t), γ̇(t)〉γ(t)dt ≡ c∗ = argmin
c

∫ 1

0

√
〈ċ(t),MH(c(t))ċ(t)〉dt. (8)

In H we can apply the Euler-Lagrange equations which gives us a system of second order nonlinear ordinary
differential equations [Arvanitidis et al., 2018]

c̈(t) = −1

2
M−1
H (c(t))

[
2 · ∂c(t)MH(c(t))− ∂c(t)vec[MH(c(t))]ᵀ

]
(ċ(t)⊗ ċ(t)), (9)

that we need to solve in order to find the curve that minimizes the energy. The resulting curve is a minimizer
of the length as well. Here, ⊗ is the Kronocker product, vec[·] stacks the columns of the matrix and the

term ∂c(t)MH(c(t)) = [∂c1(t)MH(c(t)), . . . , ∂cd(t)MH(c(t))] ∈ Rd×d2 where ∂cj(t)MH(c(t)) ∈ Rd×d is the partial
derivative of the metric MH(c(t)) with respect to the j-th component of the curve.

We can find the shortest path by solving the ODE system above as a boundary value problem (BVP) with
c(0) = zx and c(1) = zy the corresponding points in H of γ(0) = x and γ(1) = y. Unfortunately, for general
Riemannian manifolds the analytic solution is intractable, and thus, we rely on approximate numerical solutions
[Arvanitidis et al., 2019; Hennig and Hauberg, 2014; Yang et al., 2018].

In order to perform computations on M or equivalently in the intrinsic coordinates H we use two operators.
The logarithmic map Logx(y) = v ∈ TxM takes two points x,y ∈ M and returns a tangent vector on the
tangent space of x. The vector v can be seen as the initial velocity of the curve that starts at x and on time
t = 1 reaches the point y. Since TxM is a vector space, this operator provides a linear representation of (a
neighborhood on)M with respect to the base point x ∈M. In practice, we compute the logarithmic map in the
intrinsic coordinates by solving the ODE system as a Boundary Value Problem (BVP). The inverse operator is
the exponential map that takes a point x ∈M and a vector v ∈ TxM and returns a geodesic Expx(t · v) = γ(t)
with γ(1) = y. Again, we implement this operator in the intrinsic coordinates H by solving the ODE system
as an Initial Value Problem (IVP). The length of a tangent vector, as it lies on a tangent space, it is computed
under the Riemannian metric and it is by definition length[γ] = 〈v,v〉x = 〈v,MH(z)v〉 = length[c], where γ(t)
and c(t) the geodesics onM and H respectively. We can rescale or reparametrize the intrinsic vector v to ṽ such

that the metric only locally to become Euclidean M̃H(·) = Id so the length[c] = 〈ṽ, ṽ〉. The new representation
ṽ is known as the normal coordinates.

For clarification, the tangent vector v ∈ TxM in the ambient space X is a vector in RD that is tangential to
a d-dimensional M at the point x ∈ M, as the tangent space is a hyperplane that touches tangentially M at
the point x. Hence, we can get a linear representation of M on each tangent space, which is a d-dimensional
vector space. On the other hand, an example of intrinsic coordinates forM can be see in Fig. 2. In the intrinsic
coordinates H ⊆ Rd the tangent space at a point z ∈ H is simply the Rd centered at z. So we can linearly
represent the intrinsic coordinates with respect to a base point z as vectors v ∈ Rd centered at z. Actually,
v ∈ Rd corresponds to the intrinsic representation of the vector v ∈ RD on the d-dimensional vector space TxM.

The analysis above shows that essentially the Riemannian metric MH(·) and the intrinsic coordinates H are
enough in order to compute shortest paths on a manifoldM. This further implies that as long as these quantities
are given, thenM could even be an abstract manifold. Unfortunately, in the setting where the manifold is implied
by data that lie in X , the Riemannian metric is usually unknown. Moreover, a unique chart rarely exists. In
this case, we use a trick to capture the geometry of the data manifold.

Specifically, let Z ⊆ Rd′ and we learn an at least twice differentiable function g : Z →M ⊂ X but not necessarily

a differomorphism. Then, following the previous analysis we can induce a Riemannian metric MZ : Z → Rd
′×d′
�0 .

The high level idea is that if a global chart existed and Z = H with g(·) ≈ h(·) then the MZ(·) ≈ MH(·).
Even if this is rarely the case, the MZ(·) is still able to capture the geometry of the neighborhoods onM which
approximates e.g. a submanifold on M if d′ < d. This metric is known as the pull-back metric. However, in
the data manifold regime as it has been shown from previous works [Arvanitidis et al., 2018; Tosi et al., 2014;
Hauberg, 2018; Eklund and Hauberg, 2019] the g(·) should be a stochastic generator in order to capture properly
the geometry of M in a latent space Z.

Let Z = Rd′ , which is a smooth manifold with a trivial tangent space, and consider a Riemannian metric MZ(·)
therein. Computing curve lengths under this metric transforms Z into a Riemannian manifold. In some sense,

A prior-based approximate latent Riemannian metric

this Riemannian manifold “imitates” or “captures approximately” the geometry of M. In practice, the metric
scales the distances locally in Z, so it changes the way we measure curve lengths therein.

The proposed conformal metric in this paper is one way to approximate the behavior of the computationally
expensive MZ(·), since evaluating and derivating this metric relies on expensive computations. As we showed in
the main paper (see Sec. 4), the new metric in many cases is a sensible approximation to the actual pull-back
metric. We analyzed theoretically the behavior of the two metrics, and we argued that due to their actual
definition both metrics induce the same “topological” structure in Z. In other words, in both cases the shortest
paths are pulled towards the training latent codes. Of course, there are also problematic cases where the two
metrics have the exact opposite behavior. However, one advantage of the proposed metric is the ability to take
it into account during training. Therefore, we can add regularizers to make the two metrics more similar or even
to include interepretable inductive biases in the form of geometric regularizers.

Identifiability in our context considers the preservation of the distance measure between points under diffeomor-
phic reparametrizations of the intrinsic coordinates. In particular, let two functions g1 : Z1 ⊆ Rd →M⊂ X and
g2 : Z2 ⊆ Rd →M ⊂ X , where g2(·) = T ◦ g1(·) with T (·) a diffeomorphic transformation. The reparametriza-
tion directly implies that for any pair of points x1, y1 ∈ Z1 and the corresponding points x2, y2 ∈ Z2 the
Euclidean distance in general is ||x1 − y1||2 6= ||x2 − y2||2. However, the curve length on the manifold M
between x = g1(x1) = g2(x2) and y = g1(y1) = g2(y2) does not change. Note that when we measure the
length of a curve using the pull-back metric in Z1 or Z2, then we actually measure the length directly on M.
Therefore, if both functions g1(·) and g2(·) generate M, then we know that the curve length is the same in
both parametrizations when measured under each corresponding pull-back metric. In other words, if for any
arbitrary learned parametrization gj(·) the generated M remains the same, then the distance measured under
the corresponding pull-back is invariant. Note that this is also the case when the distribution remains invariant
after the transformation T (·) as z1 ∼ p(z) and T (z1) = z2 ∼ p(z).

B Riemannian metrics from data

There are several ways to construct a Riemannian metric from a given set of observations. Here, we present
some methods that have been proposed previously in the literature.

Hauberg et al. [2012] proposed a Riemannian metric as a weighted sum of a predefined set of metric tensors. In
particular, let M1:K ∈ RD×D�0 a predefined set of positive definite metric tensors centered at points x1:K ∈ RD.
Then, the metric at new points x is computed as

M(x) =

K∑
k=1

w̃k(x)Mk, (10)

where wk(x) = exp
(
− ||xk−x||

2
2

2σ2

)
, σ > 0 the bandwidth or support of the kernel and w̃k(x) = wk(x)∑K

l=1 wk(x)
. In this

case, the predefined metrics can be estimated using additional information e.g. labels. The bandwidth controls
how large is the neighborhood from which we consider the predefined metrics and it is rather hard to find the
optimal σ. Especially, when the dimension of the space is high, where the curse of dimensionality occurs. Finally,
one downside of this metric is that as we move away from the training data, the magnitude does not necessarily
increase. Because the normalized weights still select some of the predefined metrics.

In a similar spirit Arvanitidis et al. [2016] proposed an unsupervised approach to construct a Riemannian metric
from data. In particular, the metric is defined as the inverse local diagonal covariance matrix, so the diagonal
elements of the metric are computed as

Mjj(x) =

[
N∑
n=1

wn(x)(xnj − xj) + ρ

]−1
, (11)

where wn(x) = exp
(
− ||xn−x||

2
2

2σ2

)
, the parameter σ > 0 is again the bandwidth and ρ > 0 a parameter to upper

bound the metric. The parameter σ in some sense controls the curvature of the metric i.e., how fast the metric
changes. However, again finding the optimal parameter is a challenging task. Regarding ρ, it is chosen as a small
value such that to pull shortest paths near the data.

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

A simple conformally flat Riemannian metric has been proposed by Arvanitidis et al. [2020], defined as

M(x) = (α · r(x) + β)−1 · ID, (12)

where α, β > 0 are parameters to lower and upper bound the metric. Here, the function r(·) is modeled as a

positive RBF r(x) = wᵀφ(x), with w ∈ RK>0 and φk(x) = exp
(
− ||ck−x||

2
2

2σ2

)
for some centers ck near the training

data, such that r(x) → 1 near the training data and r(x) → 0 as we move away from them. Again here, the
problem is how to find the optimal parameters σ as well as the kernel behavior in higher dimensions.

Even if the kernel based Riemannian metrics above are simple and meaningful, their performance is rather
limited. The main problem is the selection of the bandwidth σ, as well as the behavior of the kernel especially in
higher dimensions. For this reason, another line of work proposed to learn Riemannian metrics in the latent space
of a generative model. This approach allows to reduce the dimensionality of the problem. Even if theoretically
the resulting metrics capture precisely the data manifold’s geometry, in practice, they rely on some form of a
kernel as well. Moreover, their usability is hindered by inevitable computational complexity.

Here we focus on deep generative models and more specifically on Variational Auto-Encoders [Kingma and
Welling, 2014; Rezende et al., 2014]. However, the same analysis can be done in the context of Gaussian
Processes with GPLVMs [Tosi et al., 2014]. Let a stochastic generator x = g(z) = µθ(z) + diag(σθ(z)) · ε with
ε ∼ N (0, ID). Obviously, this stochastic function is not differentiable as it is a non-smooth function due to ε.
Instead, fixing ε makes the function smooth. This can be seen as generating a surface g(Z) ⊂ X for a fixed noise
vector ε, which in expectation results in a distribution of points that converges to the actual generative process.
Eklund and Hauberg [2019] viewed this step as a random projection of a smooth surface that lies in a higher

dimensional space [µθ(z), σθ(z)] ∈ RD2

using the projection matrix block diag([ID,diag(ε)]) ∈ RD×D2

.

Therefore, we can compute the Jacobian of g(·) and the expected Riemannian metric in Z as

Mθ(z) = Eε[Jᵀ
g(z)Jg(z)] = Jᵀ

µθ
(z)Jµθ (z) + Jᵀ

σθ
(z)Jσθ (z), (13)

which is known as the pull-back metric. This an interpretable and meaningful metric, since the second term
that is based on the uncertainty makes sure that the shortest paths prefer to stay in regions of the latent space
with low uncertainty. To achieve this we need the σθ(·) to increase as we move further from the latent codes.
The solution proposed by Arvanitidis et al. [2018] is to utilize a positive RBF network to model the precision
i.e. the inverse variance. So, as we move further from the latent codes due to the RBF behavior the uncertainty
increases. Even if this Riemannian metric seems as a reasonable solution, as we discussed in the main paper (see
Sec. 4) it comes with some practical disadvantages.

For this metric, we also need to set a hyperparameter for the variance function σ2
θ(z) = ξθ(z)−1 where

ξθ(z) = W κ(z) + ζ (14)

with W ∈ RD×K>0 , κk(z) = exp(−0.5 ·λ · ||z−zk||22) and ζ > 0 is the lower bound for the precision or equivalently
an upper bound for the uncertainty. Hence, ζ implicitly influences the metric, as it controls the point where
Jσθ (·) becomes close to constant. Practically, it does not allow the precision to become zero. Before Jσθ (·)
becoming close to constant, the corresponding part of the pull-back metric achieves its maximum value. This
sets the boundaries around the latent codes, which represents in some sense the topology of the data manifold
in Z. Also, it affects the maximum magnitude.

As we discussed in the main paper, usually the training of the VAE is done using a deep neural network σ2
θ(·)

to model the uncertainty of the generator. We use the same modeling choice during the training. Then, we
train post-hoc the RBF network, as a regression problem or using again the ELBO while fixing the other
functions. So a practical way to set ζ is after the first phase of the training to compute the mean variance
σ2
mean = 1

N ·D
∑N
n=1

∑D
j=1[σ2

θ(zn)]j of the training latent codes. Then we can set ζ = (α · σ2
mean)−1 where α > 0

is a multiplicative factor e.g. α = 1000. This is heuristic way to fix the hyperparameter ζ.

Rescaling the metrics. In order the magnitude to be as comparable as possible across different Riemannian
metrics, we propose to scale each metric. As regards the pull-back metric we compute the magnitude on the
training latent codes and we find the maximum mmax = maxzn

√
|Mθ(z)|. Then, we rescale the metric as

Mθ(z) ,
1

m
2/d
max

[
Jᵀ
µθ

(z)Jµθ (z) + Jᵀ
σθ

(z)Jσθ (z)
]
, (15)

A prior-based approximate latent Riemannian metric

which ensures that the maximum magnitude on the training latent codes is 1. Here, if mmax is a huge value,
then the metric is scaled dramatically especially on the rest of the latent codes. This is precisely what we see in
Sec. 5 when we compare the robustness of the metrics.

Given a probability density νψ(·) function that represents the prior of the training latent codes, we proposed in
this paper the conformally flat Riemannian metric

Mψ(z) = m(z) · Id = (α · νψ(z) + β)−
2/d · Id, (16)

where α, β > 0 two hyperparameter that lower and upper bound the metric respectively. Interestingly, this
metric does not depend in any way on a kernel. Also, the parameters ψ of the metric can be learned during the
VAE training. As regards the hyperparameters, we can set β = 1/mmax where mmax is the highest value that√
|Mψ(·)| can get. Typically, the mmax is set to a large value like 100. Then, we find the lowest prior value

on the training latent codes νmin = minzn νψ(z) and set the α = (1−β)/νmin. This ensures that the maximum
magnitude on the training latent codes is 1. Since this number is 1 � mmax the shortest paths will be pulled
towards the training latent codes.

The proposed metric does not depend on a kernel, which makes it robust. Also, does not rely on any Jacobian
computation, so it is efficient. While its hyperparameters can be fixed relatively easier, which makes it simple.

C Training details for the proposed prior

Our learnable prior is based on energy-based models [LeCun et al., 2006], and is defined as

νψ(z) =
exp(fψ(z)) · p(z)

C
, (17)

where fψ : Z → R is a deep neural network and the base prior p(z) = N (0, Id). Since Z is typically a low
dimensional space, the normalization constant can be computed using naive Monte Carlo as

C =

∫
Z

exp(fψ(z)) · p(z)dz ≈ 1

S

S∑
s=1

exp(fψ(zs)), (18)

where zs ∼ p(z). In addition, when we train the VAE we include the latent codes of the training batch in the
estimation of the normalization constant. This helps to prevent the function fψ(·) of getting extreme values. In
theory, the samples from p(z) should be enough such that to regularize the function fψ(·). However, especially in
higher dimensions the number of samples S might not be large enough, in order to successfully regularize fψ(·).
For this reason, we included the latent codes of the training batch, which we empirically observed to work well
i.e., extreme values of fψ(·) and C do not occur. Of course, in the training objective of the VAE (see Eq. 4), due
to the log(·) that is applied on the constant, we used the log-sum-exp trick in order to stabilize the training.

Another training trick (which we did not use) is to regularize the prior using temperature. In particular, we can
use a temperature parameter T in the exponent exp(T · fψ(z)), for which a large T gives a more complex prior
and a smaller T gives a smoother prior [LeCun et al., 2006]. Similarly, we can regularize the prior implicitly by
applying standard regularization techniques for the parameters of fψ(·) e.g. L2 regularization for the weights.

The actual contribution of the normalization constant is to regularize implicitly the prior to be close to zero in
regions of Z with no latent codes. This is important, because it ensures that the magnitude increases as we
move further from the latent codes. In other words, this helps to approximate well the structure (or topology) of
the data manifold. However, after the training, the normalization constant does not affect anymore the metric,
especially if we set the parameters α, β as explained above.

D Theoretical analysis of the proposed metric

We provide the details for the theoretical analysis in Sec. 4.2. Apart from the corresponding demonstrations in
the main paper (see Sec. 5), we provide additional empirical evaluations of these results in App. E.3.

Proposition 1. Let a learned g(·) with σ2
θ(·) an inverse RBF network and νψ(z) the proposed prior. Then, the

magnitude of the metrics Mθ(·) and Mψ(·) is maximum in the same region of Z where νψ(z)→ 0.

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

Proof. We consider first our proposed metric that is defined in Eq. 4.1 as Mψ(z) = (νψ(z) + β)−2/d · Id, where

we use for simplicity α = 1 and β = 0. So the magnitude is equal to
√
|Mψ(z)| = νψ(z)−1, which means that

the
√
|Mψ(z)| → +∞ when νψ(z)→ 0.

As regards the pullback metric, this is defined in Eq. 5 as Mθ(z) = Mµθ (z) + Mσθ (z), where Mµθ (z) =
Jµθ (z)ᵀJµθ (z) and similarly for σθ(·). We know from the properties of the determinant that |Mµθ (z)+Mσθ (z)| ≥
|Mµθ (z)|+ |Mσθ (z)|. This implies that when |Mσθ (z)| attains its maximum, the pull-back metric attains a high
value as well. Especially, if the µθ(·) is modeled using bounded activation functions as the tanh(·), which means
that potentially |Mµθ (z)| → 0 if all the first hidden layer becomes close to constant far from the latent codes.

Now, we consider the line z(ρ) = ρv ∈ Rd where ρ ∈ R, which implies that Mθ(z(ρ)) is a function Mθ : R→ R>0

with Mσ(ρ) =
∑D
j=1 σ

′
j(ρ)2 where we omit θ to simplify notation. Also, σj(ρ) = γj(ρ)−1/2, j = 1, . . . , D where

γj(ρ) =
∑K
k=1 wjkκk(ρ) = wᵀ

jκ(ρ) with κk(ρ) = exp(−λk||ρv − µk||2) and wj ∈ R+, k = 1, . . . ,K. Note that

γ′j(ρ) =
∑K
k=1 wjkκk(ρ)2λk(vᵀµk−ρvᵀv) and γ′′j (ρ) =

∑K
k=1 wjkκk(ρ)2λk[2λk(vᵀµk−ρvᵀv)2−vᵀv]. While we

have for the derivative σ′j(ρ) = − 1
2

γ′
j(ρ)

γj(ρ)
3/2

that limρ→±∞ σ′j(ρ)2 = limρ→±∞
1
4

γ′
j(ρ)

2

γj(ρ)3
→ 0

0 due to the RBF. We

compute the derivatives of the nominator and denominator and we get that

lim
ρ→±∞

2���γ′j(ρ)γ′′j (ρ)

3γj(ρ)2�
��γ′j(ρ)

= lim
ρ→±∞

2
∑K
k=1 wjkκ̃k(ρ)2λk[2λk(vᵀµk − ρvᵀv)2 − vᵀv]

3wᵀ
jκ(ρ) ·wᵀ

j κ̃(ρ)
→ +∞, (19)

where κ̃k(ρ) = κk(ρ)∑K
k=1 κk(ρ)

. This limit goes to infinity because 0 < κ̃k(ρ) < 1 and [2λk(vᵀµk − ρvᵀv)2−vᵀv] > 0

when ρ→ ±∞, while in the denominator wᵀ
jκ(ρ)→ 0. This actually means that the denominator converges to

zero faster than then nominator, so the magnitude
√
|Mσ(ρ)| → +∞ when the RBF network is close to zero.

Note that the centers and the bandwidths of the kernels are within the support of our prior, as they are trained
post-hoc using k-means and by computing the covariance of the corresponding clusters, respectively. So, it holds
that νψ(z(ρ))→0⇒γj(ρ)→0, which means that both metrics attain the maximum in the same region of Z.

Proposition 2. Let a neighborhood U ⊂M where p(x) is uniform, a learned g(·) and the proposed prior νψ(z).
If σ2

θ(·) ≈ ε, where ε > 0 a small scalar, then in the corresponding region in Z the two metrics are related as√
|Mθ(·)| =

√
|Mψ(·)|−1.

Proof. If σ2
θ(·) ≈ ε is close to zero within the region g : ZU → U ⊂ M, then we know from Eq. 5 that

Mθ(z) ≈Mµθ (·), since the Jacobian Jσθ (·)→ 0. This implies that the map g(·) ≈ µθ(·) locally is deterministic,

and hence, from the change of variables we know that p(x)
√
|Mθ(z)| = νψ(z). Then, if p(x) is uniform and our

proposed metric Mψ(z) = νψ(z)−2/d · Id (Eq. 4.1) we get the result
√
|Mθ(z)| =

√
|Mψ(z)|−1, ∀z ∈ ZU .

So, the behavior of the metrics locally is inverse proportional. But if it holds that m1 ≤ |Mψ(z)| ≤ m2, where
m1,m2 > 0 and |m1−m2| → 0 the metrics do not change significantly within ZU . In other words, the curvature
of the metrics locally is low, so the behavior of the shortest path is not extremely different. Even in this case
though, we cannot guarantee that locally the paths are similar. Since there might exist another neighborhood
U ′ ⊂M such that U ′ ∩ U 6= ∅, which one of the shortest paths might prefer.

Proposition 3. Let a neighborhood U ⊂M where p(x) is uniform. We assume that in the corresponding region
in Z the generator’s uncertainty σ2

θ(·) ≈ ε, where ε > 0 a small scalar and that the µθ(·) has low curvature.
Then, for both metrics Mθ(·) and Mψ(·) the shortest paths within this region are straight lines.

Proof. From the assumptions we know that σθ(·) is approximately constant implying that Jσθ (·) goes to 0D×d.
The low curvature of µθ(·) implies that Jµθ (·) is approximately constant. For example, if the map locally is
linear, then it has zero curvature and the Jµθ (·) is constant. In the general ODE system (see Eq. 9) we use the
derivative of the metric. In this case, this quantity will be approximately zero, since the low curvature implies
that the metric will not change locally. Therefore, the ODE system becomes c̈(t) = 0, where the solution is the
straight line. Note that we solve this ODE as a BVP problem with c(0) and c(1) the given boundary conditions.

Since locally σ2
θ(·) ≈ ε we know that the mapping is approximately deterministic, and also, p(x) is assumed to be

uniform, so
√
|Mθ(z)| =

√
|Mψ(z)|−1 (see Prop. 2). However, the curvature of µθ(·) is by the assumption low,

A prior-based approximate latent Riemannian metric

so
√
|Mθ(·)| is close to constant implying that

√
|Mψ(z)| = νψ(z) is approximatelly constant as well. Therefore,

the ODE system (see Eq. 1) becomes a small perturbation of c̈(t) = 0 and by basic ODE theory the solutions of
the two systems are close (e.g. in C2-norm). Consequently, the solution is again the straight line.

We are able to provide a more general result that relates any pull-back metric Mθ(·) with a conformal metric
Mψ(·). Briefly, in a local neighborhood let us consider a bounded pull-back metric with small (Riemannian)
curvature, i.e. the metric is almost locally isometric to a flat Euclidean space, and the corresponding volume
form is tightly controlled. Then, we can reparametrize this neighborhood so that Mθ(·) becomes conformally
flat, and in addition, we can rescale it such that the magnitude becomes equal to

√
|Mψ(·)|.

Proposition D.1. Let Mθ(·) be the Riemannian metric over the latent space Z as above and suppose that:

1. The curvature tensor R(·) associated to Mθ(·) satisfies ‖R(·)‖∞ ≤ κ for a sufficiently small positive κ;

2. There exist constants m1,m2 with |m2−m1| sufficiently small, so that the volume element
√
|Mθ(·)| satisfies

m1 ≤
√
|Mθ(z)| ≤ m2 for each z in the chart.

Then there exists a reparametrization z̃ equipped with the conformal metric Mψ(z̃) (given by a pointwise-diagonal
matrix with equal entries whose volume form agrees with Mθ(z) at corresponding points as above), so that the
geodesics are approximately given by straight lines and locally the volume of the geodesic balls Bρ(z) and Bρ(z̃)
are the same.

Proof. Let us suppose w.l.o.g. that the origin 0 ∈ Rn is contained in the chart and let us consider a normal
coordinate neighbourhood (Br(0), z) around 0. It is well-known that in these coordinates the metric tensor M(z̄)
at 0 is Euclidean and the following expansion of the metric holds:

M ij(z) = δij −
1

3
Rikjl(0)zkzl +O(|z|3), (20)

where R denotes the respective curvature tensor. In fact, using Jacobi fields one can obtain higher-order expan-
sions whose coefficients are again given by expressions of the curvature tensor. Hence, for every positive number
ε, if κ is small enough, then |M ij(z) − δij | ≤ ε for each z ∈ Br(0). Moreover, a similar expansion holds for the
Christoffel symbols of the Levi-Civita connection induced by M ij :

Γijk(z) = −1

3

(
Rikjl(0)−Rijkl(0)

)
zl +O(|z|2), (21)

hence, for eventually choosing a smaller κ one has |Γijk(z)| ≤ ε. Now considering the geodesic equations for M(z)
and the flat Euclidean metric at Me(z), by basic perturbation theory for ODEs, one sees that the solutions (i.e.
the geodesic curves) within Br(0) satisfy:

‖γMe
− γM‖C∞ ≤ ε, (22)

if κ is chosen small enough (shrunk further). This implies that the geodesic distances induced by the Euclidean
metric Me(z) and M(z) are similar i.e., straight lines.

Finally, let us pointwise rescale the coordinates z to z̃ so that the metric Me(z) agrees with the conformal metric
Mψ(z̃) - in particular, the volume forms at z̃ and z agree (since we assumed that |m2−m1| is sufficiently small,
the rescale is essentially given by constant multiplication). Here (z̃,Mψ(z̃)) is the conformal metric as defined
above. Moreover, by construction the volumes of the geodesic balls Bρ(z̃) and Bρ(z) agree.

Obviously, the Prop. D.1 implies that if Z is the latent space where the pull-back metric is defined, if we
reparametrize it to get an equivalent conformally flat metric we work over a new space Z ′. This is not easily
applicable and useful in our setting, since we are interested to compute shortest paths directly in the latent space
Z of the generative model. However, when Prop. 3 applies, then the reparametrization from Z to Z ′ is actually
the indentity map. Also, we are able to rescale the magnitude such that the maximum value on the training
latent codes is the same (see App. B). This result implies that shortest paths are approximately straight lines
and with equal curve length under each corresponding metric. For a demonstration see App. E.3.

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

M
M C

A

B

M
A

B

Figure 7: Left : A data manifold where the data are uniformly distributed p(x) near M. Middle: A ball of
uniform samples is located in the center of M. The mean function µθ(·) of the generator g(·) approximates the
regions A and B with the region C, while the corresponding uncertainty σθ(·) is high. Right : A rather unrealistic
scenario of approximating the data manifold with a VAE.

Proposition 4. Let a data manifold M where p(x) is uniform. We assume that there is a neighborhood
U ⊂ M where the intrinsic dimensionality increases. Then, in the corresponding region of Z the two metrics
Mθ(·), Mψ(·) have exactly the opposite behavior.

Proof. We need to show that: 1) the prior in the latent space increases in the region which corresponds to
the reconstruction of the neighborhood U where the dimensionality of the data manifold increases, and 2) the
uncertainty of the generator σθ(·) in the same region increases as well. We provide an illustration in Fig. 7,
where the dimensionality of the data manifold locally increases from 1 to 2.

The ELBO is maximized with respect to the parameters of the functions and we consider each term individually:

1. Eqφ(z|x)[log pθ(x|z)] = Ep(ε)
[∑D

j=1 log σ2
θ,j(µφ(x) + σφ(x)� ε) +

||x−µθ(µφ(x)+σφ(x)�ε)||2
σ2
θ(µφ(x)+σφ(x)�ε)

]
. Due to the Gaus-

sian likelihood and the L2-norm, the mean function of the generator µθ(·) approximates the points locally
as a “mean-value”. Also, this term pushes implicitly σφ(·) to low values to be able to reconstruct the point
x as good as possible. Since the overlapping region between multiple distributions qφ(z|xj), j = 1, . . . , J
results to a p(x|z) with low accuracy such that to approximate well all the points xj simultaneously.

2. KL[qφ(z|x)||N (0, Id)]. This term acts as a mild regularizer that pushes σφ(·)→ 1 and µφ(·)→ 0.

3. Ep(ε)[fψ(µφ(x) + σφ(x) � ε)], tries to maximize the function fψ(·) on the latent codes. So implicitly the
σφ(·) needs to be small, such that the encoded samples to result in high fψ(·) values.

4. − log(C) regularizes the function fψ(·) to be small far from the training latent codes, which implicitly forces
σφ(·) to be small, such that to keep the support of the encoder within the high values of the prior.

From the analysis above we see that the encoder tends to have negligible variance, which is a known result [Dai and
Wipf, 2019]. In addition, we know that under the Gaussian likelihood the generator g(·) favours approximations
of the data manifold in an L2 sense as illustrated in Fig. 7 (left, middle). Let ZA,ZB be the regions in Z where
the encoder maps the regions A and B. Then, we have that ZA ≈ ZB since C ≈ µθ(ZA) ≈ µθ(ZB). Note that
σθ(·) is high in the same region of the latent space. In a different scenario where ZA ∩ ZB = ∅ the A,B may be
approximated as depicted in Fig. 7 (right). However, we argue that this type of complex VAE solutions are not
achievable in practice, because d is typically much smaller than D.

The aggregated posterior is written as q(z) =
∫
X qφ(z|x)p(x)dx ≈ 1

N

∑N
n=1 qφ(z|xn), where xn the training data,

and it has been shown in Tomczak and Welling [2018] that this is the optimal prior. We also know that the
variance of the encoder is in general small and that ZA ≈ ZB. This implies that q(z) is high in the corresponding
region due to the high number of encoded points. Also, note that our learnable prior approximates the q(z).
Consequently, the proposed metric Mψ(·) is small in the latent region ZA ≈ ZB.

In contrast, the σθ(·) is high in this region. Let us distinguish two sets of kernels for the RBF: The set S1 for
which the kernel weights wk are big (low σθ(·)) and the set S2 where the weights wk are small (high σθ(·)). We
then consider two functions f1(z) =

∑
k∈S1

wkκk(z) and f2(z) =
∑
k∈S2

wkκk(z). The f1(·) > ε in regions with
low variance and f2(·) < ε in regions with high variance, where ε > 0. So the Jacobian of σθ(·) is non-zero in
the set S = {z | f1(z) = f2(z) and νψ(z) > 0} as we go from kernels that correspond to low variance σ2

θ(·) to
kernels with high σ2

θ(·). Therefore, the pull-back metric Mθ(·) is high in this regions.

We provided a theoretical analysis of our metric compared to the pull-back. Also, we discussed some problematic
cases that might occur in practice, while additional problematic cases may exist. However, Prop. 1 shows that
“globally” the behavior of the shortest paths is similar, while it depends only on mild assumptions.

A prior-based approximate latent Riemannian metric

E Experimental details

In this section, we give the details about our experimental setting and implementation, as well as additional
demonstrations. The source code can be found https://github.com/georgiosarvanitidis/geometric_ml.

E.1 Shortest path solver

One of the main tools that we use in our experiments is the solver for ODE system. Specialized approximate
numerical solvers have been proposed [Hennig and Hauberg, 2014; Arvanitidis et al., 2019; Yang et al., 2018]
mainly aiming for efficiency. However, usually the off-the-self numerical solvers provide more accurate solutions,
especially as regards the logarithmic maps, and for this reason our approach is based on the SciPy’s BVP solver.
Commonly, solvers of this type implement a version of Newton’s method, and thus, convergence heavily relies
on the initial solution. For this reason, we use a heuristic graph based solver, in order to provide a curve to the
BVP solver as a good initial solution.

For the heuristic solution, we construct a k-nearest neighbor graph in the latent space Z by using the Euclidean
distances to find the neighbors. Once we construct the graph, we assign as edge weights the length of the straight
line computed under the Riemannian metric. Essentially, a large edge weight informs us that this is not a good
connection. For two test points, we find their k-NN neighbors on the graph again using the Euclidean metric
first, and then, we update the weights of the edges using the Riemannian metric. This step enables us to use as
the starting and ending point, the nodes of the graph that are closer to the test points. Then, we can find the
discrete shortest path on the weighted graph using Dijkstra’s algorithm. Note that the algorithm runs only once
and the pairwise paths are stored.

This returns a sequence of points, but for which the starting and ending points are not the actual test points.
So once we have this sequence, we replace the two points on the boundaries with the test points. In order to
smooth the final path we apply a simple filter. We update each point except the ones at the boundaries as
pi = (pi−1 + pi + pi+1)/3. Of course, we can apply more sophisticated filtering techniques. Finally, we use a
cubic spline to interpolate the filtered points, including the boundary test points.

Clearly, this is a heuristic solution and does not satisfy the corresponding ODE system. However, in many cases
it constitutes a sufficiently good initial solution, which helps the BVP solver to converge. So for the solver that
we use, if we do not have a previous solution computed, we initialize the solver with the heuristic graph based
curve. If the BVP solver fails, then we return the graph based curve as our solution. However, in cases where
the logarithmic map is necessary (as the LAND fitting) and the BVP solver fails, we exclude the point from
the current step of the algorithm. The reason is that the logarithmic map of the graph based curve is totally
arbitrary, and thus, we do not use it.

E.2 Details for the comparison of the priors

Here we present the details for our generative modeling experiment where we compare three priors in a VAE
setting. In particular, we used two settings, a Convolutional VAE and a standard VAE. In Table 2 and Table 3
we present the details of each setting. Note that for the standard VAE we projected the data using PCA in 100
dimensions with whittening, so the given data are in X = R100. This step keeps > 90% of the data variance and
on the same time allows to train an RBF network post-hoc in order to induce the pull-back metric in Z. We
used the standard data splitting train/test both for MNIST and FashionMNIST1.

For the RBF network that models σθ(·) we use K = 100 components. The RBF network is fitted post-hoc.
Specifically, in the first phase of the VAE training we use a deep neural network to model σ2

θ(·) and in the second
phase we train individually the RBF’s weights i.e. as a regression problem or using the ELBO keeping the rest
of the functions fixed. The RBF’s centers are trained with k-means using the training latent codes. Then, using
the points in each cluster we compute the corresponding covariance matrices, and then, for the bandwidth of
each kernel we use the minimum variance on the diagonal of each covariance. This approach guarantees that
the centers are near the latent codes, while the bandwidths are small enough such that to capture precisely the
structure of the latent codes and be in the support of νψ(·). Note that training the RBF together with the VAE
in one phase might move centers far from the latent codes. Also, it is hard to pre-specify the bandwidth of the

1https://pytorch.org/docs/stable/torchvision/datasets.html

https://github.com/georgiosarvanitidis/geometric_ml

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

Figure 8: The synthetic data for the constructive examples (normal, hole, ball).

encoderφ(·) 3× 3× 32 3× 3× 32 3× 3× 32
µφ(·) encoderφ(·) flatten MLP(512, d)

log(σ2
φ(·)) encoderφ(·) flatten MLP(512, d)

µθ(·) MLP(d, 512) unflatten decoderθ(·)
decoderθ(·) 4× 4× 32 4× 4× 32 4× 4× 32

Table 2: The convolutional VAE details. Encoder: We used convolutional filters with padding 1 only in the first
two filters, stride 2 only in the first 2 filters and 1 in the final filter. Decoder: We used transposed convolutions
with padding 1 only in the last two filters, stride 2 only in the last 2 filters and 1 in the fist filter. Also, we
applied a final convolution filter 3 × 3 × 1 with stride 1 and padding 1 to provide a smooth output. We used
tanh activations both layers, convolutional and MLP.

kernels, and if this parameter is trainable usually overestimated bandwidths occur. For the VampPrior we used
K = 500 trainable inducing points.

We trained all the parameters using the Adam optimizer with learning rate 1e−3. The batch size is 128 and the
number of epochs is 500. For our prior we estimate the normalization constant using 10·batch size samples from
p(z), and in addition we included the latent codes of the training data in the batch. This helps to regularize the
behavior of fψ(·), such that to prevent extreme values on the latent codes.

E.3 Details for the constructive examples

We construct a surface in X = R3 with x = [z, 0.25·sin(z1)]+ε where zj ∼ U(0, 2π), j = 1, 2 and ε ∼ N (0, 0.12·I3).
We call this as the normal dataset. We also construct a surface with a hole in the middle by removing the points
in the center with radius ||z||2 < 0.3, before the mapping in R3. Finally, we construct a uniform ball directly in
R3 with radius ||x||2 < 0.2 that we place in the center of the normal surface. We present the datasets in X and
the corresponding true latent codes in Fig. 8. These are the three datasets that correspond to the analysis we
did in Sec. 4. In fact, the normal surface is the closest one to Prop. 3, as the manifold has low curvature locally.

For the deep neural networks and the RBF we use the same setting as in App. E.2. Also, we use for the solution of
the ODE system the strategy presented in App. E.1. As we note in the main paper (see Sec. 5) we reparametrize
the curves with respect to the Euclidean metric. This allows to compare as good as possible the actual curves
in Z. In this way, we can compare how “close” are the two curves in the space.

Additionally, we show in Fig. 9 and Fig. 10 a second comparison to demonstrate Prop. D.1. Basically, we compare
the actual lengths of the shortest paths computed under each Riemannian metric. We train a VAE and an RBF
using the normal surface data. In the first Fig. 9 the bandwidth of the RBF kernels is scaled by 1.5, which
makes the uncertainty term of the pull-back metric (second term in Eq. 5) close to zero. In other words, this

A prior-based approximate latent Riemannian metric

encoderφ(·) MLP(D, H) MLP(H, H)
µφ(·) encoderφ(·) MLP(H, d)

log(σ2
φ(·)) encoderφ(·) MLP(H, d)

decoderθ(·) MLP(d, H) MLP(H, H)
µθ(·) decoderθ(·) MLP(H, D)

log(σ2
θ(·)) decoderθ(·) MLP(H, D)

Table 3: The VAE encoder details. We used tanh activations for the MLPs.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Top row : Comparing the shortest path distance computed under each metric Mψ(·) with green and
Mθ(·) with red. When conditions in Prop. 3 hold, then shortest paths are approximately straight lines. The
scaled metrics have maximum magnitude 1 on the training latent codes, so the curve lengths are approximately
equal. Bottom row : Each dot in the graphs corresponds to a curve length, while the connecting lines are shown
for better illustration.

implies that the σθ(·) is nearly constant. Since this is a simple surface the curvature of µθ(·) is expected to be
low. Additionally, we expect the encoder to provide a nearly uniform distribution in Z since the data are almost
uniformly distributed in X . Note that we rescale the metrics (see App. B) such that the highest mangification
factor on the training latent codes to be 1 in the neighborhood of Z that we consider. Hence, as expected by
Prop. D.1 both metrics result to shortest paths that have approximately equal lengths (Fig. 9). However, when
the bandwidth of the RBF is not scaled by 1.5, it is very small, so the second term of the pull-back changes
fast. Hence, even if µθ(·) remains the same, the uncertainty term increases the curvature. Consequently, the
lengths are not similar anymore (Fig. 10). We could potentially use always larger bandwidths for the kernels
to alleviate this issue. The problem then is that we lose the locality of the RBF, which implies that we do not
capture precisely the structure of the data manifold. In other words, we will allow the shortest paths to move in
regions of Z with no latent codes, which does not necessarily correspond to the data manifold in X .

E.4 Details for efficiency and robustness

For the experiments that we conducted in Sec. 5 we used the same VAE setting as in App. E.2 and we projected
using PCA in 100 dimensions the MNIST digits 0,1,2.

For having comparable magnitudes we scale each metric so that the highest magnitude on the training latent
codes is 1 (see App. B). For our proposed metric we also set the upper bound to be 100. As regards the pull-back
metric we cannot explicitly control the upper bound of the magnitude. So we set ζ in the RBF such that the
maximum σ2

θ(·) to be 1000 times the mean variance of the training latent codes (see App. B).

Here we explain in more details the result in Fig. 6. In higher dimensions the RBF network for some points
can easily give a very high Jσθ (·). These points lie on the boundary of the kernels where the σ2

θ(·) changes
extremely fast. More specifically, this occurs in the “tails” of the RBF kernel. As we know due to the curse of
dimensionality this phenomenon is common for the kernels in high dimensions. Therefore, some of the latent
codes may obtain a very high magnitude, which means that this will scale down significantly the metric (see

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 10: Top row : Comparing the shortest path distance computed under each metric Mψ(·) with green and
Mθ(·) with red. When conditions in Prop. 3 does not hold, then shortest paths are not straight lines. However,
when the points are very close then the paths are similar. Note that the metrics are scaled to be maximum 1 on
the training latent codes. Bottom row : Each dot in the graphs correspond to the length of a curve, while the
connecting lines only for better illustration.

Eq. 15). This is precisely what we observe in Fig. 6 (right) for d = 10. In this case the distribution of the
magnitudes has two modes. The interpretation is that there are some latent codes near the centers and within
the support of the RBFs where the magnitude is normal, while there are few points closer to the tails causing a
huge downscaling to the normal magnitudes.

As regards our metric, its behavior is robust, which means that the prior near the latent codes is non-zero and
the actual density values across them are comparable i.e. νψ(·) is close to uniform. Also, there are no training
latent codes that get extreme prior values e.g. close to zero. In order to show that only near the latent codes the
magnitude is small, we sampled uniformly from the hypercube that surrounds the training codes and evaluated
the metric. The result in Fig. 11 shows that, indeed, only near the latent codes the metric is small. Especially,
as the dimension increases, there is more empty space in the hypercube with no latent codes so the magnitude is
large. The interpretation is that the proposed prior adapts well on the training latent codes and does not assign
density in regions of Z with no codes. Of course, an extremely flexible prior should not be used, as this could
easily overfit the latent codes. This implies a highly curved metric i.e., the metric changes extremely fast.

2 3 5 10
−10

−8

−6

−4

−2

0

2

4

6

lo
g
[√ |M

(·
)|

]

dim

Training latent codes

Uniform samples

Figure 11: Comparing the magnitude
between the training latent codes and
uniform samples in the bounding box.

Finally, due to the huge curvature of the pull-back metric, mainly
due to the uncertainty term, the shortest path solver has to run for
longer, while it fails many times. Note that even the evaluation of
the metric and its derivative that we need for the ODE system (see
Eq. 9) is significantly more computationally expensive compared to
our proposed metric. Here we used a different strategy to compute
shortest paths. First we run the BVP solver with the straight line as
the initial solution, and if this fails, we re-run the solver initialized
by the graph based solution. The reason for doing that is to show
that the ODE system under the proposed metric is easier and it can
be solved directly without the graph initialization.

E.5 Details for the LANDs experiment

For the LAND experiment we used the same VAE, RBF and data
as in App. E.4. Note that we did not use all the latent codes for
training the LANDs, but instead, we quantized them using k-means with 120 centers. Even if the proposed
metric is much more efficient than the pull-back, still computing one shortest path relies on the solution of an
ODE system. This makes the use of all the latent codes rather prohibited. As reported in the main paper (see
Sec. 5) the running times are significantly different, as it is much more efficient to compute shortest paths under
our proposed metric.

A prior-based approximate latent Riemannian metric

Moreover, we observe that the pull-back metric underestimates the precision matrices (or overestimates the
covariance matrices). The reason is that for some points the shortest path length is large, because the pull-back
metric gets large due to the non-robustness of the RBF term. So the corresponding logarithmic map is large
as well. This causes the precision to become smaller such that to capture these points that lie “far” from the
component’s center. Obviously, this is not a desirable behavior, since it only occurs due to the poor behavior
and non-robustness of the RBF.

E.6 Details for for life science experiments

Here we explain the details for the experiments with the real-world datasets (see Sec. 5). As we mention in the
main paper these experiments should be considered as a proof-of-concept, since specialized generative models
have been proposed in the literature for this type of data. With our experiment we want to show that geometry
might be a suitable theory to utilize for exploratory data analysis in life sciences.

Mouse cortex cell data. For the mouse cortex cell data [Zeisel et al., 2015] we used the scvi-tools
(https://www.scvi-tools.org). As a reprocessing step we kept the 558 genes with the highest variability, and
we projected the data into 100 dimensions using PCA for simplicity. For the VAE and the RBF we used the
setting as App. E.2. For the shortest path solver we used the setting as in App. E.1. Since for the LAND fit we
need the logarithmic maps to be as precise as possible, if the BVP solver fails, then we do not consider this point
for the corresponding mixture component. Also, we quantized the latent codes using k-means with k = 200.

The resulting LAND adapts better to the latent codes, especially when we observe the individual components
(Fig. 14). Interestingly, even the centers between the GMM and the mixture of LANDs differ. One reason is
that the Euclidean distance of the latent codes does not correspond to the actual distance on the data manifold.
For example, if some points are very sparse on the data manifold in X , the encoder will push everything towards
the support of the base distribution p(z) of our proposed prior. However, the Euclidean mean in Z is not aware
of the data manifold’s geometry in X , while the LAND mean potentially corresponds to a better estimate on
the actual data manifold. In addition, the geometry aware mean under our proposed metric will be closer to
the high density region in Z. For instance, assume that the latent codes exhibit a non-convex distribution as a
semi-circle. In this case, the Euclidean mean will be outside of the latent codes support, while our mean will be
in the support and in particular in the center of the semi-circle.

In addition, we show that we can use the principal geodesics for each component (see Fig. 12), which can be
seen as a form of local disentaglement. Specifically, we eigen-decompose the covariance matrices of the LANDs
mixture and we solve the exponential map with initial velocities the eigen-vectors. Clearly, the resulting paths
correspond to the directions with the highest variance on the data manifold in X . In this way we can recover
locally the intrinsic degrees of freedom of the data. This can be seen as a form of non-linear PCA. Geometry
aware disentanglement seems as a promising direction for future research [Pfau et al., 2020].

Chemical compounds. We used the ZINC database (https://zinc.docking.org/) [Sterling and Irwin, 2015]
with SMILES representation, we sampled randomly 6400 points and for simplicity we kept only the first 30
characters of each sequence. Clearly, this is a rather simplified setting, however, patterns of chemical structures
are still present. Each batch has dimension 128 × 30 × 1, using one-hot encoding. For the VAE we used an
encoder based on 1-dimensional Convolutions and a recurrent decoder (see Table 4).

encoderφ(·) 5× 32 5× 32 5× 32
µφ(·) encoderφ(·) flatten MLP(128, d)

log(σ2
φ(·)) encoderφ(·) flatten MLP(128, d)

cθ(·) MLP(d, H)
hsθ(·) MLP(d, H)

decoderθ(·) LSTM(H, cθ(·), hsθ(·)) MLP(H, 1)

Table 4: Recurrent VAE. Enc: Conv1d with kernel size 5 and 32 filters, stride 1 in the first conv and stride 2 for
the other two. Dec: For the output sequence we input 1 at each LSTM step and get the output value pushing
the hidden state through an MLP. We used tanh activations and H = 128.

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

Figure 12: Cortex dataset. Left : The true clusters of the latent codes in Z. We used a k-NN classifier to
approximate the true clusters with k = 21. Right : Comparing the principal geodesics computed using the
mixture of LANDs (green) with the linear eigenvectors computed using the GMM (red) for each component.
The principal geodesic can be seen as a form of local geometric disentaglement, since these paths correspond to
the highest variance on the data manifold.

Chemical compounds have by definition an inherent natural structure. As we observe in Fig. 13 even if our
setting is rather simplified the resulting representations are indeed non-linearly structured, which our shortest
paths respect. In this way, we are able to find interpretable and more meaningful interpolants between points,
we can compute mean values and barycenters accordingly, etc. Hence, geometry could potentially uncover some
useful properties in the latent space.

To quantify the performance, we measure the cosine similarity in the one-hot encoding space of the generated
points along two interpolants (straight line vs our shortest path). What we observe is that our shortest paths
generate diverse samples as they follow the nonlinear structure of the representations. In contrast, the straight
line does not take into account this structure and crosses regions of Z with no latent codes, where the behavior of
the generator is either constant or arbitrary. We see this in Fig. 5, where for our paths the similarity is high only
within small time intervals. Instead, the line crosses regions in Z with near zero density and generates rather
fuzzy samples. We argue that this might not be a useful and sensible behavior, since this kind of data has some
biological properties that we need to respect. For instance, the generated samples from the interpolants should
be more explicit in order to determine clearly the local properties encoded in the latent space i.e. we want to
avoid zero density areas where the generator’s behavior is arbitrary. Also, we may want with the interpolation
to explore efficiently the latent space and the sequence of the samples should be biologically meaningful, which
we cannot guarantee with the straight line. In this spirit, Detlefsen et al. [2020] studied the behavior of latent
representations for protein sequences and showed that structure aware paths reveal biological information that
is otherwise obscured. Note that our metric allows to capture the structure of the data manifold in the latent
space, even if the generator g(·) is not suitable such that to induce a pull-back metric.

A prior-based approximate latent Riemannian metric

(a) View xy-axis (b) View xz-axis (c) View yz-axis

Figure 13: The latent space of the molecule experiment from different views.

Georgios Arvanitidis, Bogdan Georgiev, Bernhard Schölkopf

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 6

Figure 14: Cortex dataset. The individual components for the mixture of LANDs and the corresponding Gaussian
mixture model. Top row : The LAND component. Bottom row : The corresponding GMM component. We see
that the LAND components adapt to the training latent codes, uncovering the structure for each cluster.

	Introduction
	Basics of Riemannian geometry
	Generative Models
	Prior learning in VAEs
	Our learnable prior for VAEs

	Riemannian metric learning via generative modeling
	Our prior-based conformal metric
	Analysis of our proposed metric

	Experiments
	Performance of the proposed prior
	Comparing the behavior of the metrics
	Efficiency and robustness of the metrics

	Statistical models on manifolds
	Applications in life sciences

	Conclusion
	Riemannian geometry
	Riemannian metrics from data
	Training details for the proposed prior
	Theoretical analysis of the proposed metric
	Experimental details
	Shortest path solver
	Details for the comparison of the priors
	Details for the constructive examples
	Details for efficiency and robustness
	Details for the LANDs experiment
	Details for for life science experiments

