Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular
Data

Max Baak
ING Bank, University of Amsterdam

Ilan Fridman Rojas
ING Bank

Abstract

The creation of realistic, synthetic datasets
has several purposes with growing demand
in recent times, e.g. privacy protection and
other cases where real data cannot be eas-
ily shared. A multitude of primarily neural
networks (NNs), e.g. Generative Adversarial
Networks (GANSs) and Variational Autoen-
coders (VAEs), or Bayesian Network (BN)
approaches have been created to tackle this
problem, however these require extensive com-
pute resources, lack interpretability, and in
some instances lack replication fidelity as well.
We propose a hybrid, probabilistic approach
for synthesizing pairwise independent tabular
data, called Synthsonic. A sequence of well-
understood, invertible statistical transforma-
tions removes first-order correlations, then a
Bayesian Network jointly models continuous
and categorical variables, and a calibrated
discriminative learner captures the remaining
dependencies. Replication studies on MIT’s
SDGym benchmark show marginally or sig-
nificantly better performance than all prior
BN-based approaches, while being competi-
tive with NN-based approaches (first place in
10 out of 13 benchmark datasets). The com-
putational time required to learn the data
distribution is at least one order of magnitude
lower than the NN methods. Furthermore, in-
specting intermediate results during the syn-
thetic data generation allows easy diagnos-
tics and tailored corrections. We believe the
combination of out-of-the-box performance,

Proceedings of the 25'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Simon Brugman
ING Bank

Jean-Baptiste Oger
ING Bank

Lorraine D’almeida
ING Bank

Ralph Urlus
ING Bank

speed and interpretability make this method
a significant addition to the synthetic data
generation toolbox.

1 INTRODUCTION

Existing approaches for tabular data synthesis fall
broadly into four categories: GANs, VAEs, Copula
methods, and BNs. These differ in the core model that
fits the distributions and associations in the observed
data. Relevant examples of each of these approaches
are: CTGAN (Xu et all) [2019), TVAE (Xu et al., 2019)),
CLBN (Chow and Liul [1968) and PrivBN (Zhang et al.l
2017). We compare these using benchmark datasets in
the SDGym replication tests package (Xu et all 2019).

An important distinction between these methods is
their treatment of datasets with both continuous and
discrete features. Deep generative models tradition-
ally perform well on continuous features and BNs on
categorical ones. The method presented here differs
in its treatment of mixed continuous-discrete features,
where low-order correlations between both types are
modeled with a BN by discretizing the continuous vari-
ables and joining these with the categorical ones. A
calibrated, standard discriminator is used to model
higher-order feature dependencies, using both the cate-
gorical and (untouched) continuous variables. Another
factor where approaches differ is their computational
training cost, with GANs and VAEs representing some
of the most computationally expensive approaches to
learn the data distribution, and BNs and Copula meth-
ods being generally more computationally efficient.

In this work, we present a novel, hybrid, probabilis-
tic approach — called Synthsonic — which combines
elements of Copula methods and BNs along with a
calibrated, standard discriminator. Using a discrim-
inator to model association in Copula space has not
been studied before, as far as we are aware. The guid-

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

ing principle is to remove all obvious structure before
modelling the remaining non-linear correlations. Synth-
sonic ultimately produces results competitive with or
outperforming the best of all methods, on both con-
tinuous and discrete feature sets, at a computational
cost to fit the model slightly higher than BNs alone
but significantly lower than that of GANs or VAEs.

An additional benefit of our method is that, unlike
GANSs, every intermediate step can be visualized and
debugged where necessary, making the overall proce-
dure interpretable throughout.

2 BACKGROUND & RELATED
WORK

The creation of synthetic datasets which resemble ob-
served datasets is an endeavour that dates back at
least as far as work on Statistical Disclosure Limita-
tion and Statistical Disclosure Control, with the use
of fully synthetic data first proposed in Rubin| (1993)
(see Matthews and Harel (2011)) for a review). The ob-
jective of this work was to satisfy privacy requirements
by using alterations, aggregations, or total replacement
of an observed dataset, analogous to the current day
efforts in differential privacy, for example as used in
the US 2020 Census (Abowd et al., [2020]).

Current day high-capacity models which can mimic
realistic image data, such as GANs (e.g. Karras et al.
(2019))), along with the ever-growing need for datasets
that may be privacy-sensitive or difficult to move or
copy, creates opportunity to further expand on this line
of work. The approach of generating fully synthetic
datasets has been advocated for in multiple fields of
study, including finance (Assefal 2020; |Da Silva and
Shi, 2019), medicine (Goncalves et al.,|2020; [Yale et al.|
2019; |Choi et al., 2017)), and economics (Koenecke and
Varian, |2020) to name a few.

Another well-known use for synthetic data is data aug-
mentation to supplement observed training data. This
can be both in the form of using synthetic data gen-
eration to oversample minority class examples in im-
balanced class problems (Camino et al. |2020)), or to
augment the training data more broadly (Meyer et al.,
2021]).

Conceptually, the two recent, existing methods closest
to work presented here are the Copula Flows (Kamthe
et al}|2021) and the pre-transformation Variational Au-
toencoder (PTVAE) (Farhadyar et al., |2021]) approaches.
Similar to our approach, the former relies on probabil-
ity integral transform methods for part of the training.
The latter makes of transformations to obtain approxi-
mately normally-distributed data prior to learning finer
aspects of the data. For this later stage, a VAE is used,

whereas we rely on a BN and calibrated discriminator.

Lastly, extracting a probability density model from a
classifier has recently been studied in |Grathwohl et al.
(2020), however our concept to model the Copula space
is rather different.

3 SYNTHSONIC DATA MODEL

Synthsonic builds a probabilistic model describing any
pairwise independent tabular input dataset X. X can
consist of both categorical and continuous featureqT]
and is split beforehand into categorical and continuous
sets: X = (Xcat, Xnum)-

The modeling takes place in four steps:

1. Continuous features are transformed into uni-
formly distributed ones, using invertible steps,
from which the first-order correlations have been
removed.

2. Categorical and discretized continuous features are
jointly modeled with a Bayesian network.

3. A discriminative learner is trained to model the
residual discrepancies observed between the input
data and the Bayesian network, using the (not
discretized) continuous and categorical features.

4. The discriminative learner is calibrated to reweight
synthetic data from the Bayesian network.

Details on each building step are provided in the fol-
lowing subsections. This section concludes with a de-
scription of the joint probabilistic model and sampling
procedure.

An optional feature selection step can occur before the
discriminative learning. This can be beneficial when
dealing with large numbers of features that not all
need to be considered by the learner. The procedure is
described in the supplementary material in Section [C}

3.1 Transformations of continuous features

The continuous features are transformed into uniform
distributions in three invertible steps, frequently en-
countered in Copula methods (Durante and Sempi,
2016} Jaworski et al) 2010). Fig. [lh-d illustrates the
transformation steps.

1. Each individual feature gets transformed into a
normal distribution using a quantile transforma-
tion (Pedregosa et al., 2011)), resulting in dataset
Xnormal- Per feature non-unique continuous values,

!Synthsonic treats ordinal features as categorical.

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

e.g. often present in integer-based features, get
whitened beforehand by adding minuscule white
noise, ensuring a smooth quantile transformation’}

The motivation for this transformation is that the
PCA rotation we apply (next step) works best
for normal distributions (Pearson, [1901)). The
inverse Jacobian of this transformation (Durante
and Sempi, [2016) is:

15 (Xnuml7])
B et vt B W

where the product runs over all continuous fea-
tures j, G(X) is a normal density distribution,
and f;j(Xnpum[j]) is the marginalized probability
density function of feature Xp,um[j], as can be ex-
tracted from its quantile transformation.

2. Using PCA (Pearson, [1901; Pedregosa et al.l [2011))
the linear correlations between the normalized fea-
tures are removed by rotating these to the princi-
pal component’s frame of their covariance matrix,
leading to X;,.. Note that the principal compo-
nents do not follow normal distributions exactly
when non-linear dependencies are present. The
Jacobian of the rotation equals 1.

3. Each individual feature in X, gets transformed
into a uniform distribution with range (0, 1), using
another quantile transformation, giving Xuniform-
The inverse Jacobian of this transformation is:

[T (el @

where k;(X,c[i]) is the marginalized probability
density function of feature X,.[j], again obtained
from the quantile transformation.

Any non-linear dependencies between the continuous
features in X,y are still present in X niform after these
transformations. There are no tunable parameters for
these steps, besides the number of quantiles (500 by
default).

3.2 Bayesian network model

Each uniform, continuous feature get discretized into
n equal-width bins in the range [0, 1] and assigned a
bin index (we use n = 30). This results in a dataset
Xdiscrete, Which gets joined with the categorical fea-
tures as Xpn = (Xcat, Xdiscrete). Xbn 18 fitted using a
standard, tree-based Bayesian network, which serves to

2The variance of the white noise is the range of a feature
scaled with a (configurable) factor of 107°. Integer values
can later be recovered by rounding the transformed features.

describe the largest dependencies between the categori-
cal features themselves, the categorical and continuous
features, and residual dependencies between the con-
tinuous features. Fig. [Ip illustrates the learned weights
on the ring dataset, using only 10 bins to improve
readability.

Our framework is not restricted to a single structure
learner. In our experiments, for reasons of speed,
the structure learning is kept simple using the well-
established Chow-Liu (CL) algorithm as described in
Chow and Liul (1968]), with the Tree Augmented Naive
Bayes (TAN) extension described in [Friedman et al.
(1997)). The CL algorithm computes the mutual infor-
mation of all feature pairs as edge weights for a com-
plete graph, from which the maximum-weight spanning
tree is computed (Chow and Liul |1968)). The TAN
extension augments the structure with edges from a
designated class node to all other nodes (Friedman
et al., [1997)) for more robust estimation of that class
node. This class node can be provided, or detected
automatically from the aforementioned edge weights,
e.g. by using the node with the highest average edge
weights.

As the CL algorithm only considers bivariate relations,
in general the structure is less prone to overfitting than
those that consider higher-order dependencies.

Because of the combination of the transformation steps
applied to the continuous features, plus the Bayesian
network used for both feature types, we call this the
Copula Bayesian network.

Note that the information available in the continuous
features is not discarded in the discretization step: it
is used actively in the feature transformations and the
discriminative learning stage below.

3.3 Discriminative learning

We define Xtyans = (Xcat, Xuniform)- Using a fixed ran-
dom seed, Xy, ans is divided into training and calibration
datasets, having a 70/30% split by default, and a syn-
thetic dataset is generated from the Bayesian network
model, having the same size as the training set. Unlike
Xirans, the synthetic dataset contains categorical and
discrete continuous features only. Each discretized, con-
tinuous feature gets converted to a uniform distribution
by adding uniformly distributed random values — in
the range (0, 35) in case of 30 bins — to the bin indices.
This undiscretization step is logical for the synthetic
dataset as by construction all continuous features in
Xirans also have uniform, marginalized distributions.
At this point, Xirans and the synthetic sample, Xy,
are in a comparable state, although X;,..ns may contain
higher-order feature dependencies not modeled by the
Copula BN.

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

p®:¥3 0.40 0.34 0.48 1010
00 02 04 06 08 10 0.0 02 0.4

(d) Xuniform

~ REIRI 1015 0.82 0.85 111 0.59 0.39 0.40 kA

(X131.01 1.04 1.18 1.19 1.05 0.85‘ [Xr31502 1.58

-
SRV A RANN2Z1.17 1.42 1.52/1.00/0.97 1.19 0.92!

DRETNY/:10.99 1.1410.93 1.37 1.15 1.19 1.04 LX:-2]

©
E0:9111.31 1.68 1.54 (KENEPA1.07 1.34 1.18 (W)
.

El%511.16 1.180.93|1.64 1.02 1.04/0.89 (R EXNLY

0:8911.09 1.48 |0:92[(Wplvls] 1.56 1.53 1.21 0.91

1.09 0.96 0.91 1.00 1.51 1.52 1.02 1.01 [/ f¥i:]
~ B
© EREREP 0.57 0.83 ARERRER M REN L 0.43

[AZR0M098) 1.64 1.83

(e) BN weights Xaiscrete

0.8 1.0

(f) Xnum and Xsyn

Figure 1: Numerical transformations example on the ring dataset (a-d), (e) the Copula Bayesian network’s weights

for discretized Xypniform and (f) a synthetic sample.

Class label y = 1 is assigned to all data points in
Xirans and y = 0 to those in Xgyn. A standard non-
linear, binary classifier is trained to discriminate be-
tween data points from the two training samples. By
default, we use the gradient boosted tree classifier from
XGBoost (Chen and Guestrin, [2016). If the Copula BN
has managed to model the input data well, then the
classifier should find only a slight separation between
the two datasets. If non-linear and/or higher-order fea-
ture dependencies are not fully captured, the classifier
should zoom in on precisely those differences. Note
that a non-linear classifier is recommended here, as the
linear correlations have already been modeled by now.

Synthsonic relies on being able to describe the data
reasonably well with the Copula BN, such that the
discriminative learner finds sufficient overlap between
Xirans and Xgyy. If the two datasets are perfectly
separable by the classifier, a better initial model is
needed before proceeding further. When some overlap
is found however, a better model can be formed.

The discriminative learner is used to improve the Cop-
ula BN by weighting data points as a function of their
classifier scores. Low classifier scores generally indicat-
ing non-similarity with the input data are to be sup-
pressed, and high classifier scores, indicating (strong)

compatibility, are to be encouraged. If the classifier
is well-calibrated (see Sec. , its scores can be used
to form a weight function that transforms data points
from Xy, into Xirans:

Ply =1|z)
w(x) = ————=, 3
= Py =))
where P(y = 1|z) is the predicted probability of a data
point z to belong to the input data, and P(y = 0|z) =
1 — P(y = 1|z) the probability that it originated from
the synthetic data in our binary setup.

3.4 Calibration procedure

The weight function in Eqn. [J] can be interpreted as
a probability density function describing the Copula
space (Durante and Sempi, [2016; Jaworski et al. 2010)).
It needs probabilities as input, but out-of-the-box clas-
sifier scores (e.g. P(y = 1|z)) cannot be interpreted as
such. Besides the possibility of overfitting the trained
classifier, there is a second reason to calibrate it. Fig.[2a]
shows the two classifier score distributions of an exam-
ple benchmark dataset, as obtained on the hold-out
calibration dataset and another generated synthetic
dataset. (This synthetic dataset can be arbitrarily
large, by default 250k entries.) Fig. shows the

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

> 107! P(1|Xsyn)
O

OCJ P(1|Xtrans)
o

0 1072

=

Q

=

©

o 1073

—_

0.0 0.2 0.4 0.6 0.8 1.0
classifier score

(a) distribution of classifier scores

10

508 PRV

8 A ,“‘w"‘#’

© 0.6 u"‘\”

= M\

g 0.4 1 ‘fv,_v“"‘ —— Peo(1 | Xrans)

0.2 ',Jf:{"’ 95% Cl Pes

-8 AT Pisotonic(1 | Xtrans)
0.0{

0.0 0.2 0.4 0.6 0.8 1.0
classifier score

(b) calibration curve

Figure 2: Calibration score distributions on the Adult dataset (Xu et al.| 2019)). P(1|Xans), P(1|Xsyn) are the
distributions obtained over all data points in, respectively, Xirans and Xgyn.

classifier’s calibration curve, P, obtained from the
normalized distributions in Fig. 2a] defined as the ra-
tio of class 1 over the sum of both classes (Zadrozny
and Elkan| [2002). The calibration curve represents the
observed probability, as a function of classifier score,
for any data point to belong to the input data. A
perfectly calibrated classifier has a diagonal calibration
curve, i.e. the classifier score and observed probability
agree. If there is little to no separation between both
classes, the calibration curve will be (nearly) flat over
the domain. For example, a dataset containing only
linear correlations results in a flat calibration curve
at 0.5, as the Copula BN can model such first-order
correlations.

The general assumption is made that higher classifier
scores correspond to higher probabilities, and that any
deviations from this are caused by statistical fluctua-
tions, e.g. as visible in Fig. 2b. We therefore model
the calibration curve with a monotonically rising step-
function, specifically isotonic regression (Chakravartil
1989). The input calibration curve is obtained from
normalized classifier-score histograms. By default, the
number of bins used is the maximum of Sturges’ for-
mula (Sturges| [1926)) and the Freedman Diaconis Es-
timator (Freedman and Diaconis, [1981; [Harris et al.,
2020). We assign a sample weight to each bin that
reflects the statistical, binomial uncertainty on each
observed probability. Isotonic regression groups ad-
jacent bins with statistically compatible probabilities,
and assigns an average probability to each group.

As probability function in Eqn. [3] we use:

Rsotonic(”x) = (4)

isotonic_regressor(classifier_score(x))).
Note that a flat probability is assigned across any bin,
irrespective of the precise classifier score within that bin,
and no additional (e.g. linear) interpolation is applied
between different bins. In particular, this regulates the
highest bin and tends to keep its assigned probability

smaller than 1, keeping the corresponding weight value
finite. For example, the synthetic data points in Fig. 2b
get assigned a maximum weight of 20.8.

3.5 Joint probabilistic model

The steps in Sections [3.1}j3.4] are combined here to form
a joint probabilistic model describing input dataset X.

Using Sklar’s theorem (Sklar, [1959) and the inverse Ja-
cobians in Eqns. the probability density function
of only the continuous features is written as:

fXpum) = [Hfj(Xrlum[j]) ’ (m

C(Xuniform) 3 (5)

where ¢(Xuniform) 18 the probability density function
describing the Copula space. If no more dependencies
are left after the initial feature transformations then

C(Xuniform) =1

¢(Xuniform) 18 modeled by both the Bayesian network
and the weight function of the discriminator in Eqn. [3]
Decompose the probability mass function (p.m.f.) of
the Bayesian network as:

an(an) = P(Xcat|Xdiscrctc) : P(Xdiscrctc)) (6)

where P(Xgiscrete) 18 the p.m.f. of only Xgiscrete- Con-
sidering only the Bayesian network, then:

P(Xdiscrete)
Pnone (Xdiscrete)
= P(Xdiscrete) : n{)\/num (7)

ins

C()(uniform) =

where npiys is the number of bins per discretized, con-

. _N. .
tinuous feature, and Pone(Xdiscrete) = Nppe™™ is the
p-m.f. in case of no dependencies between any of the
Npum continuous features.

The classifier weight applies to both categorical and
continuous features. Putting all components together

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

then results in the joint probabilistic model:

p6) = | TL6 ol goe 2] il

an(an) . w(Xtrans) 5 (8)

where the categorical (continuous) features are modeled
with a mass (density) function.

3.6 Sampling procedure

A five-step sampling procedure is used to produce syn-
thetic datasets Xgyn:

1. Synthetic data are generated from the Bayesian
network model, using standard, forward sam-
pling over the topological structure of the network
tree (Guo and Hsu, [2002)). This results in a dataset
similar to Xy,.

2. Each discretized, continuous feature gets converted
to a uniform distribution by adding uniformly dis-
tributed random values — in the range (0, 55) for
30 bins — to the bin indices. This gives a dataset

comparable to Xirans-

3. Classifier weights are assigned to all data points
using Eqn. |3] Extremely high weights are problem-
atic, as they are used for oversampling (next step).
The maximum weight is capped at a (configurable)
value of 5000. Minimum weights do not need to
be capped.

4. We have chosen a fast weighting method to reshape
the synthesized dataset: weighted sampling with
replacement (Wong and Easton), [1980)). In short,
generated samples are dropped or duplicated to
match the assigned weights.

5. The inverse transformations of the ones described
in Section|3.1]are applied to all continuous features.
At this stage, the synthetic dataset resembles the
original dataset X, with the same boundaries per
feature.

In practice, we find the level of duplication from
weighted sampling to be relatively small, although the
value differs per dataset. For weight-based sampling we
can alternatively use the accept-reject method, without
replacement, but in practice this can be slow when
large maximum weight values are present.

4 INTERPRETABILITY &
VALIDATION

The transformations of X,um t0 Xuniform in Copula
space are well-studied (Sklar, (1959; |Jaworski et al.

2010; [Durante and Sempil, 2016) and can be inspected
using goodness-of-fit tests (Berg, 2013) or visually such
as in Fig. [[p-d. Similarly, multiple methods have been
developed for the interpretation of BNs (Timmer et al.|
2017; |Chubarian and Turan, [2020)), and the learned
dependencies can be visualized as in Fig. The
interpretability of the discriminative learning step is
dependent on the choice of classifier. For the purpose
of data synthesis, the classifier score distributions and
calibration curve in Fig. 2] provide a reasonable estimate
if the classifier is fit for the purpose.

In order to understand how well non-linear correlations
between variables are modeled in Synthsonic, we can
inspect the ¢ correlation matrix (Baak et al., [2020)).
The ¢x correlation constant supports categorical and
continuous features and captures non-linear dependen-
cies, with a value in the range [0,1]. As input, it takes
two contingency tables for each feature pair of the true
and generated data, where near-identical (highly dif-
ferent) tables result in a ¢k value close to zero (one).
In Synthsonic we can make this comparison at any
intermediate step in the modeling process.

In Fig. [Bp-c, in the off-diagonal matrix elements, we
observe the non-linear correlations present in the Ti-
tanic dataset (Kaggle, 2012)), after learning the Copula
Bayesian network model and after learning and apply-
ing the calibrated discriminator. (The Titanic dataset
was chosen for its small number of features allowing
for easy visualisation, while containing a mixture of
continuous and categorical features.) It is clear that
the levels of residual dependencies get smaller with
both modeling steps, reaching close to the identity ma-
trix — signifying no residual feature dependencies. For
the Titanic dataset, the dependencies are primarily
resolved by the Copula Bayesian network, and to a
smaller extent by applying the weights from the cali-
brated discriminator. In general however, the level of
dependency reduction — and how much by which step —
is highly dataset dependent.

5 PERFORMANCE EXPERIMENTS

To evaluate the performance of Synthsonic, we use
the benchmark setup and metrics developed by
SDGym (Xu et al.l |2019)), version 2.2.0, consisting
of 7 artificial and 6 real-world datasetsP] The three
sets of experiments performed are Gaussian Mixture
simulations (GM Sim.), Bayesian Network simulations
(BN Sim.) and classification and regression problems
on simulations of the real-world datasets.

3The MNIST datasets are not considered as the rows
are not pairwise independent, similar to [Xu et al.| (2019));
Leduc and Grislain| (2021)).

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

¢« Original

¢« Copula Bayesian Network

¢k calibrated learner

Fare ¥ 0.34 0.50 0.16 0.18 0.26
Par...Aboard{0.34 . 0.42 0.23 0.03 0.15
Sib...Aboard {0.50 (0] 0.40 0.19 0.22 0.17
Age{0.16 0.42 0.400.16 0.43 0.18

Sex{0.18 0.23 0.19 0.160.08 0.75

0.00 0.00 0.00 0.00 0.20 0.16
0.000.00 0.00 0.09 0.20 0.07
0.00 0.000.00 0.00 0.09 0.09
0.00 0.00 0.000.00 0.00 0.00

0.00 0.09 0.00 0.000.02 0.00

1.0
0.00 0.00 0.00 0.00 0.09 0.05

0.000.00 0.00 0.09 0.19 0.04 0.8

0.00 0.00 pXee} 0.00 0.00 0.11 0.10 06
0.00 0.00 0.000.00 0.00 0.00

0.00 0.09 0.00 0.000.03 0.00 04

Pclass .0.03 0.22 0.43 0.080.20 0.20 0.20 0.09 0.00 0.020.00 0.09 0.19 0.11 0.00 0.030.00 0.2
Survived{0.26 0.15 0.17 0.18 [0/ 0.20 pMe} 0.16 0.07 0.09 0.00 0.00 0,00 0.05 0.04 0.10 0.00 0.00 0.00 pMele}
0.0
° o - 2 o = x n ° - 3B ke] = x 0 °
8 © Z 8 5 2 8§ & ¢ 2 5 5 2 8 g 9
2 3 s 8 8 § S 2 s 2 8 5 S 3
< < O S e & 5 X g 3 X% = g
H : H 9] : H %]
5 g 5 g 5 g
a) a) a)
(a) X (b) Xon (c) P(Xon)

Figure 3: ¢ correlation matrices capturing the structure remaining after each modeling step on the Titanic
dataset. Xpy[0] and Xpy,[1] are discretized representations of ‘Fare’” and ‘Age’ features. The diagonal values equal

1 by construction.

We compare against the algorithms CTGAN and TVAE,
as these are top-ranking on the benchmark, and with
PrivBN and CLBN, both powered by a Bayesian Net-
work and closest to our approach. For example, the
CLBN baseline (Chow and Liu, [1968) is the structure
learner used for Synthsonic’s Copula BN, albeit a differ-
ent implementation. For these algorithms, the default
parameters from SDGym are used to conduct the ex-
periments. Table [I] shows the aggregated replication
scores for all compared algorithms on the data synthe-
sis tasks. For precise definitions of the metrics used we
refer to (2019). (A discussion of per-dataset
results can be found in the supplementary material.)
A good algorithm fits two criteria: the likelihood Ly,
should be close to L;cs:, as this indicates generalization,
and L¢es: should be close to the identity dataset (c.f.
Table 2 in (2019)). Based on this, Synth-
sonic outperforms all other algorithms on the artificial
datasets. For the real datasets, Synthsonic scores sec-
ond place on the classification problems (clf), based
on average F'1 score, and first place on the regression
problem (reg), ranked on R? score.

Per dataset, Synthsonic ranks first place on 10 out of 13
datasets. It is noteworthy that Synthsonic performs rel-
atively poorly on the highly-imbalanced credit dataset.
In practice, this could be easily resolved by specifying
the target label as the class node of the TANE|

Table[2]shows the average fit and sample times of Synth-
sonic, compared with the other algorithmsﬂ (See the

4Modeling the data per target class gives an F'1 score
of 0.580 for the credit dataset, and would give an average
F'1 score of 0.539.

5All CPU experiments have been run on 6-Core Intel
Core i7 with 16 GB RAM. GPU experiments have been
run on Google Colab instances, with Nvidia K80s, T4s, P4s

supplementary material for the results per dataset.)
Note that the implementation of PrivBN does not allow
for distinguishing between fit and sample times. Synth-
sonic efficiently samples using an optimized forward-

sampling technique implemented in pgmpy (Ankan and
2015)).

In comparison, CLBN uses a quite slow sampling tech-
nique. Compared with GPU times, on average Synth-
sonic fits at least 19 times faster than TVAE and 29 times
faster than CTGAN; both are computationally expensive.

To understand the effectiveness of individual compo-
nents of Synthsonic, we perform an ablation study on
the following parts on each of SDGym’s benchmark
datasets: without PCA (sec 3.1, step 2), without clas-
sifier (sec 3.4), or without calibration (sec 3.5). Also
shown in Table[3]are the default and optimized settings.

Synthsonic’s computational efficiency allows for the
user to tune the handful of parameters on any given
dataset. Chosen parameters are listed in the supple-
mentary material. Each optimized configuration is
replicated 3 times with different random seed values.

Note that Synthsonic gives a good out-of-the-box per-
formance. The most significant improvements to the
Copula BN come from adding PCA, the classifier and
its calibration.

6 LIMITATIONS

Although Synthsonic shows performance results on
the SDGym benchmark datasets marginally to sig-
nificantly better than all prior BN-based approaches,
whilst also being competitive with neural-net-based

and P100s.

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

Table 1: Performance of Synthsonic on artificial datasets, compared against top-performers on SDGym leaderboard
v0.2.2. The top scores are printed in bold. For the definitions of Ly, and Lics see (Xu et all, 2019) or the

appendix.
GM. Sim BN. Sim Real
Method Lsyn Liest Lsyn Liest clf i reg R?
Identity —-293 —-294 -934 -9.39 0.638 0.14
CLBN (Chow and Liu, |1968) —3.22 —-21.3 —10.67 —9.92 0.349 —6.47
PrivBN (Zhang et all|2017) —-3.29 —5.71 —10.38 —9.80 0.257 —4.49
TVAE (Xu et all, 2019) -2.91 -3.77 -10.12 -9.89 0.398 —0.24
CTGAN (Xu et al., [2019) —-7.89 —4.26 —12.86 —10.84 0.491 -0.07
Synthsonic —2.97 —-2.97 -9.65 —9.57 0455 0.02

Table 2: Efficiency of Synthsonic on real datasets, com-
pared against top-performers on SDGym leaderboard
v0.2.2. Reported times (sec) are averages over the six
datasets, unless otherwise mentioned. Table [J] contains
the per-dataset measurements.

Time (s)

CPU GPU
Method fit sample fit sample
CLBN 126 232 - -
PrivBN 16725 -
TVAE 17173 4 4082 4
CTGAN 45462 16 7595 10
Synthsonic 214 17 - -

approaches, the characteristics of these datasets should
be considered. MIT’s SDGym benchmark is limited to
13 datasets that are relatively low-dimensional (< 59
dimenstions, excluding MNIST). As such, the perfor-
mance on higher dimensional data has not yet been
tested. Synthsonic’s performance is sensitive to the
automatic root-node selection of the BN on datasets
with severe class imbalance. Manual selection of, for
example, the target label as class node of the TAN re-
stores performance to very reasonable levels. Datasets
that are not pairwise independent over the rows, e.g.
images or time-series data, have not been considered,
although we believe that it is possible to extend Synth-
sonic to relax this constraint. Additionally, the initial
fit of the Copula BN must be good enough such that
the data sampled from it cannot be fully separated by
the discriminative learner; only then can the classifier
learn to transform synthetic into realistic data.

7 CONCLUSIONS

We have proposed a hybrid, probabilistic approach for
the synthesis of tabular data called Synthsonic, incor-
porating a novel concept to model the Copula space.

By combining transformations to Copula space, a sim-
ple Bayesian Network and a calibrated discriminative
learner, we can describe tabular datasets using a prob-
abilistic representation that jointly models continuous
and categorical variables. We have shown that Synth-
sonic is competitive with the performance of GANs
and VAEs on the SDGym benchmark datasets, scoring
first place in 10 out of 13 datasets, at a much lower
computational cost. Interpretable intermediate rep-
resentations of Synthsonic’s probabilistic model allow
easy application of diagnostics and tailored corrections
to guard against the above-mentioned considerations.
We believe the combination of out-of-the-box perfor-
mance, speed, and interpretability make this method
an excellent addition to the synthetic data generation
toolbox.

BROADER IMPACT

Where synthetic data generation is used to share syn-
thetic versions of privacy-sensitive data, special care
must be taken in ensuring no unwanted disclosure takes
place, e.g. through overfitting the original data (Jordon
et al) 2018). Where the use case is data augmenta-
tion, practitioners must be aware of the limitation of
synthetic data generators, e.g. the modeling does not
account for the tails of distributions or any data points
beyond the support of the training data. Synthetic data
generation should also not be misused to whitewash
biases in the observed data, on the misunderstanding
that synthetic data must somehow be more objective.

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

Table 3: Ablation study results (Lies; for simulations, Fy for all-but-one real datasets, R? for the news dataset.
Higher is better). The right column shows the absolute performance of our model. The optimized configuration is
replicated 3 times with different random seed values; the average metric score and Mean Absolute Deviation
(MAD) are reported. The other columns contain the performance change relative to that. Any differences

exceeding two times the MAD are marked in bold.

Model w/o PCA w/o clf w/o calibration w/o tuning Synthsonic
Dataset
Grid —0.00 0.05 —0.10 0.05 —3.50 £ 0.04
Gridr 0.00 0.02 —0.02 —0.01 —3.67+0.03
Ring 0.00 —0.00 —0.05 —0.01 —1.71+£0.00
Asia 0.01 —0.01 0.00 —0.00 —2.254+0.01
Alarm 0.02 —0.54 —0.73 0.01 —10.64 £0.02
Child —0.00 —0.09 -0.94 —0.00 —12.19+£0.01
Insurance —0.01 —0.60 —0.87 —0.02 —13.22+£0.01
Adult —0.01 —0.01 —0.03 —0.04 0.62 £ 0.00
Census 0.03 -0.14 —0.01 —-0.01 0.39 £0.01
Credit —0.16 —0.07 -0.17 —0.09 0.17 4+ 0.06
Covtype —0.01 —0.08 —0.00 —0.04 0.43£0.01
Intrusion -0.23 0.01 0.02 —0.06 0.65 £ 0.01
News —0.09 0.00 —0.02 —0.25 0.024+0.01

References Chakravarti, N. (1989). Isotonic median regression:

Abowd, J. M., Benedetto, G. L., Garfinkel, S. L.,
Dahl, S. A., Dajani, A. N., Graham, M., Hawes,
M. B., Karwa, V., Kifer, D.; Kim, H., LeClerc, P.,
Machanavajjhala, A., Reiter, J. P., Rodriguez, R.,
Schmutte, I. M., Sexton, W. N.; Singer, P. E., and
Vilhuber, L. (2020). The modernization of statistical
disclosure limitation at the us census bureau.

Ankan, A. and Panda, A. (2015). pgmpy: Probabilistic
graphical models using python. In Proceedings of the
14th Python in Science Conference (SCIPY 2015).
Citeseer.

Assefa, S. (2020). Generating synthetic data in finance:
opportunities, challenges and pitfalls. In 33rd Con-
ference on Neural Information Processing Systems
(NeurIPS 2019). Workshop on Al in Financial Ser-

vices.

Baak, M., Koopman, R., Snoek, H., and Klous, S.
(2020). A new correlation coefficient between cate-
gorical, ordinal and interval variables with pearson
characteristics. Computational Statistics & Data
Analysis, 152:107043.

Berg, D. (2013). Copula goodness-of-fit testing: an
overview and power comparison. Copulae and Multi-
variate Probability Distributions in Finance, pages

79-106.

Camino, R., Hammerschmidt, C., et al. (2020). Over-
sampling tabular data with deep generative models:
Is it worth the effort? In ”I Can’t Believe It’s Not
Better!”NeurIPS 2020 workshop.

a linear programming approach. Mathematics of
operations research, 14(2):303-308.

Chen, T. and Guestrin, C. (2016). XGBoost: A scal-
able tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages
785-794, New York, NY, USA. ACM.

Choi, E., Biswal, S., Malin, B., Duke, J., Stewart,
W. F., and Sun, J. (2017). Generating multi-label
discrete patient records using generative adversar-
ial networks. In Doshi-Velez, F., Fackler, J., Kale,
D., Ranganath, R., Wallace, B., and Wiens, J., ed-
itors, Proceedings of the 2nd Machine Learning for
Healthcare Conference, volume 68 of Proceedings of
Machine Learning Research, pages 286-305, Boston,
Massachusetts. PMLR.

Chow, C. and Liu, C. (1968). Approximating dis-
crete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462—
467.

Chubarian, K. and Turan, G. (2020). Interpretability
of bayesian network classifiers: Obdd approximation
and polynomial threshold functions. In ISAIM.

Da Silva, B. and Shi, S. S. (2019). Style transfer
with time series: Generating synthetic financial data.
arXiw preprint arXiw:1906.03232.

Durante, F. and Sempi, C. (2016). Principles of copula
theory, volume 474. CRC press Boca Raton, FL.

Farhadyar, K., Bonofiglio, F., Zoeller, D., and Binder,
H. (2021). Adapting deep generative approaches

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

for getting synthetic data with realistic marginal
distributions. arXiv preprint arXiv:2105.06907.

Freedman, D. and Diaconis, P. (1981). On the his-
togram as a density estimator: L 2 theory. Zeitschrift
fiir Wahrscheinlichkeitstheorie und verwandte Gebi-
ete, 57(4):453-476.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997).
Bayesian network classifiers. Machine learning,
29(2):131-163.

Goncalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L.,
and Sales, A. P. (2020). Generation and evaluation

of synthetic patient data. BMC medical research
methodology, 20:1-40.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duve-
naud, D., Norouzi, M., and Swersky, K. (2020). Your
classifier is secretly an energy based model and you
should treat it like one. In International Conference
on Learning Representations.

Guo, H. and Hsu, W. (2002). A survey of algorithms for
real-time bayesian network inference. In Join Work-
shop on Real Time Decision Support and Diagnosis
Systems.

Harris, C. R., Millman, K. J., van der Walt, S. J.,
Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Rio, J. F., Wiebe, M., Peterson,
P., Gérard-Marchant, P., Sheppard, K., Reddy, T.,
Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E. (2020). Array programming with NumPy.
Nature, 585(7825):357-362.

Jaworski, P., Durante, F., Hardle, W. K., and Rychlik,
T. (2010). Copula theory and its applications, volume
198. Springer.

Jordon, J., Yoon, J., and Van Der Schaar, M. (2018).
Pate-gan: Generating synthetic data with differential
privacy guarantees. In International Conference on
Learning Representations.

Kaggle (2012). Titanic - machine learning from dis-
aster. https://www.kaggle.com/c/titanic/data.
Accessed on 22 May 2021.

Kamthe, S., Assefa, S., and Deisenroth, M. (2021).
Copula flows for synthetic data generation. arXiv
preprint arXiw:2101.00598.

Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial net-
works. In Proceedings of the IEEE/CVE Conference
on Computer Vision and Pattern Recognition, pages
4401-4410.

Koenecke, A. and Varian, H. (2020). Synthetic data
generation for economists. In American Economic
Association Annual Meeting.

Leduc, J. and Grislain, N. (2021). Composable genera-
tive models. arXiv preprint arXiv:2102.09249.

Matthews, G. J. and Harel, O. (2011). Data confiden-
tiality: A review of methods for statistical disclosure
limitation and methods for assessing privacy. Statis-
tics Surveys, 5(none):1 — 29.

Meyer, D., Nagler, T., and Hogan, R. J. (2021). Copula-
based synthetic data generation for machine learning
emulators in weather and climate: application to a
simple radiation model. Geoscientific Model Devel-
opment Discussions, 2021:1-21.

Pearson, K. (1901). On lines and planes of closest fit to
systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of
Science, 2(11):559-572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825-2830.

Rubin, D. B. (1993). Statistical disclosure limitation.
Journal of official Statistics, 9(2):461-468.

Sklar, M. (1959). Fonctions de repartition an dimen-
sions et leurs marges. Publ. inst. statist. univ. Paris,
8:229-231.

Sturges, H. A. (1926). The choice of a class inter-
val. Journal of the american statistical association,
21(153):65-66.

Timmer, S. T., Meyer, J.-J. C., Prakken, H., Renooij,
S., and Verheij, B. (2017). A two-phase method
for extracting explanatory arguments from bayesian
networks. International Journal of Approximate Rea-

soning, 80:475-494.

Wong, C.-K. and Easton, M. C. (1980). An efficient
method for weighted sampling without replacement.
SIAM Journal on Computing, 9(1):111-113.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. (2019). Modeling tabular data using
conditional gan. Advances in Neural Information
Processing Systems, 32:7335-7345.

Yale, A., Dash, S., Dutta, R., Guyon, I., Pavao, A.,
and Bennett, K. P. (2019). Assessing privacy and
quality of synthetic health data. In Proceedings of
the Conference on Artificial Intelligence for Data
Discovery and Reuse, pages 1-4.

Zadrozny, B. and Elkan, C. (2002). Transforming clas-
sifier scores into accurate multiclass probability esti-
mates. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 694-699.

https://www.kaggle.com/c/titanic/data

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

Zhang, J., Cormode, G., Procopiuc, C. M., Srivastava,
D., and Xiao, X. (2017). Privbayes: Private data
release via bayesian networks. ACM Transactions
on Database Systems (TODS), 42(4):1-41.

Supplementary Material:
Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular
Data

A EXTENDED EXPERIMENT RESULTS

This section presents a breakdown of the performance of each synthetic data generator by SDGym benchmark
dataset.

A.1 Synthetic data fidelity by dataset

In addition to Table[I] above, which shows performance aggregated over all synthetic or real datasets, the tables
below show a more granular breakdown by dataset type and per individual dataset. Table [4| shows a breakdown
of performance by dataset over the Gaussian Mixture artificial datasets, and Table [5| shows performance over the
remaining artificial datasets.

As defined in Xu et al|(2019), values of Ly, and Lics: closer to zero are better. Ly, is defined by evaluating the
generated synthetic dataset under the likelihood which generated the training dataset. This metric is therefore
prone to favouring overfitting. L;.s: is in turn defined by evaluating the likelihood of the test data under the
likelihood which takes as ground truths the parameters fitted on the synthetic data. This latter metric therefore
provides a metric for how likely the test data is under a model which uses parameters fitted from the synthetic
data used as ground truth. The row labelled ‘Identity’ shows the score expected if the synthetic data is a copy of
the training data. Scores on Ly, near or even higher than this value are a clear sign of likely overfitting when
the corresponding Ly score is poor.

Table [4] shows that Synthsonic outperforms competing models on all the Gaussian Mixture artificial datasets.
From Table [5| we see that Synthsonic also outperforms other models on both Ly, and Li.s on all but two
datasets, where it is either tied or marginally worse than the best model. The differences between Synthsonic and
the runner up can be marginal in places, however this must be judged in conjunction with computational cost,
which we discuss in Section [A.2]

Table 4: Performance of Synthsonic benchmarked on the Gaussian Mixture artificial datasets of SDGym. Values
closest to identity are marked bold. These are the leaderboard results version 0.2.2 from (Xu et al., 2019), with
Synthsonic and PrivBN scores added. PrivBN was computed by us since it was missing from the original v0.2.2
leaderboard.

grid gridr ring
Method ‘Csyn Liest Esyn Liest ‘Csyn Liest
Identity -347 -349 =359 -364 —-1.71 —1.70

CLBN (Chow and Liu, [1968) —3.88 —9.20 —4.01 —743 —1.77 —47.2
PrivBN (Zhang et al.,|2017) —3.99 —831 —4.07 -7.12 —1.81*% —29.95*
TVAE (Xu et al., [2019) -3.27 -—-566 —3.87 =371 -—-158 —-194
CTGAN (Xu et all 2019) -8.76 —5.06 —-831 —-5.05 —6.59 —2.67

Synthsonic -342 -350 -379 -367 -170 -—-1.71

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

Table 5: Performance of Synthsonic benchmarked on the Bayesian Network artificial datasets of SDGym.

asia alarm child insurance
Method Esyn Etest Esyn Ltest Esyn Etest Esyn Etest
Identity —-2.24 -224 -10.23 —-10.30 —12.03 —12.04 —12.85 —12.96
CLBN —-2.40 —-2.27 —-1246 -—-11.19 -—-12.63 —12.31 —15.17 —13.92
PrivBN —-2.29 -—-224 -12.15 -11.14 -1236 —12.19 -—-14.70 —13.64
TVAE -2.29 -227 -11.44 -1076 —12.46 —12.30 -—-14.30 —14.24
CTGAN —4.19 -2.46 —-1588 —13.10 —1435 —-1284 —-17.03 —14.97

Synthsonic —2.29 -2.25 -10.64 -10.62 -12.30 -12.19 -13.39 -13.22

Table[6] shows an equivalent breakdown of the aggregate performances over the real datasets, previously aggregated
over all real datasets in Table [1, using F; scores for classification-problem datasets and R? for the regression-
problem dataset.

Table 6: Performance of Synthsonic benchmarked on the real datasets of SDGym. These are the leaderboard
results version 0.2.2 from (Xu et all 2019), with Synthsonic and PrivBN scores added. PrivBN was computed by
us since it was missing from the original v0.2.2 leaderboard.

adult census credit covtype intrusion news

Method Fy Fy Fi Macro F; Macro F} R?
Identity 0.66 0.46 0.55 0.65 0.86 0.14
CLBN 0.31 0.29 0.44 0.33 0.39 —6.47
PrivBN 0.43 0.25 0.01 0.22 0.38 —5.58%
TVAE 0.62 0.38 0.10 0.46 0.43 —0.24
CTGAN 0.61 0.33 0.66 0.32 0.54 —-0.07
Synthsonic 0.62 0.39 0.17 0.43 0.65 0.02

For real datasets, Synthsonic outperforms all others in three of the six datasets, and is the runner-up or tied
in two others. As previously discussed in Section [f] with standard settings Synthsonic underperforms on the
highly-imbalanced credit dataset.

A.2 Computational efficiency by dataset

Tables [7] to [9] show the corresponding breakdowns of run times for fitting and sampling, following the same
structure as the tables above in Section [A 1l

Note that for PrivBN the fitting and sampling stages cannot be separated so run times for this model are included
under the ‘fit’ column alone.

In these tables, sub-second measures are denoted as "< 1". The difference between any sub-second timings is
relatively insignificant considering fit times, in particular on real datasets[0] We judged it to be impossible to
easily provide meaningful sub-second measurements given background (e.g. operating system-related) loads which
can affect running times at the sub-second level and which are outside of our control.

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

Table 7: Run times for fitting and sampling, on the Gaussian Mixture artificial datasets (seconds).

grid gridr ring
Method fit sample fit sample fit sample
CLBN <1l <1 <1l <1 <1l <1
PrivBN <1 <1 <1
TVAE 116 <1 111 <1 147 <1
CTGAN 298 <1 311 <1 315 <1
Synthsonic 3 <1 4 <1 3 <1

Table 8: Run times for fitting and sampling, on Bayesian Network datasets (seconds).

asia alarm child insurance
Method fit sample fit sample fit sample fit sample
CLBN <1 2 5 9 3 5 4 6
PrivBN 1 69 19 16
TVAE 113 <1 138 <1 142 <1 160 <1
CTGAN 370 <1 709 1 530 <1 658 6
Synthsonic 2 <1 12 1 6 <1 8§ <1

Table 9: Run times for fitting and sampling, on the real datasets (seconds). Times are based on cpu unless
otherwise stated.

adult census credit covtype intrusion news

Method fit samplefit samplefit samplefit sample fit sample fit sample

CLBN 3 8 121202 104 170 378 589 116 376 32 48
PrivBN 12 106 1574 63849 14954 19870

TVAE 491 <1 15779 4 23823 7 33787 T 27254 7 1933 1
with gpu 161 <1 2813 4 4906 3 8509 10 7194 5 912<1

CTGAN 1933 1 49297 15 69156 16 67128 38 79798 21 5462 2
with gpu 400 1 6896 11 8130 9 14455 22 14421 17 1267 2

Synthsonic 17 1 111 12 333 15 382 44 365 29 79 2

The pattern in computational cost results is clear in the most expensive step of the modelling, which is the fitting
(sampling is comparably inexpensive): Synthsonic is nearly as fast as the Bayesian Network models, and at least
one —or in some instances, two— orders of magnitude faster than the VAE or GAN models.

B PARAMETERS

The parameters for w/o PCA, w/o clf and w/o calibration are booleans turning off the respective functionality.
w/o tuning uses the default parameter settings. The full model’s parameters are presented below.

For the synthetic datasets the parameters are chosen with respect to the validation set, however for the real
datasets no validation set is provided, hence we only change parameters if issues are encountered with the default
parameters (in case of imbalanced datasets we reduce the test_size parameter and if continuous variables are
not modelled expressively enough we increase the n_uniform_bins parameter).

Here we provide a selection of the relevant altered configurations. The full (default) parameters can be found in
the codd®l

Shttps://doi.org/10.5281 /zenodo.6143990

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

’default’: {
‘pdf _args’: {
The train/test split used for calibrating the classifier
test_size’: 0.35,
The number of bins to use to discretize continuous variables
’n_uniform_bins’: 30,
TAN structure estimation
’estimator_type’: "tan",
Use the normalized mutual information as edge weights
’edge_weights_fn’: "normalized_mutual_info",
Automatically infer the class node
’class_node’: None,
3,
}

For tuning, we consider the following options per parameter. In future work we plan to set these parameters
heuristically (as is done for the structure learning parameters). The n_uniform_bins parameter can be set to any
of the options of numpy.histogram_bin_edges or to ‘knuth’ for astropy.stats.knuth_bin_width to determine
bin size based for each dimension individually. We have tested the n_uniform_bins parameter with multiple
values and have found that the set [50,40, 30] works well in practice for most datasets.

The test size can be reduced to prevent issues with imbalanced datasets
‘test_size’: [0.25, 0.35],

Uniform binning parameter. Controls the granularity needed of
the discretized representation of continuous variables.

A lower value results in a more efficient Bayesian Network.
‘n_uniform_bins’: [50, 40, 30],

Parameters used for the full model in the ablation study. Note that for six of the datasets the default parameters
were used.

#

Gaussian Sim.

—
‘ring’: {

‘pdf_args’: {
’test_size’: 0.25,
’n_uniform_bins’: 50,

},

},
‘grid’: {

’pdf_args’: {
’n_uniform_bins’: 50,

},

},
‘gridr’: {

‘pdf_args’: {
’n_uniform_bins’: 50,

},

},

#

Bayesian Network Sim.
#

‘asia’: {

’pdf _args’: {}
+s

Synthsonic: Fast, Probabilistic modeling and Synthesis of Tabular Data

’child’: {
‘pdf_args’: {}
},
’insurance’: {
‘pdf_args’: {}
},
’alarm’: {
’pdf _args’: {}

-

Real

H oH oY

’census’: {
’pdf _args’: {},
},
>credit’: {
’pdf_args’: {7,

1,
Yadult’: {
‘pdf_args’: {
’test_size’: 0.25,
3,
1,

Yintrusion’: {
‘pdf_args’: {3},
},
Ycovtype’: {
’pdf_args’: {
’n_uniform_bins’: 40,
test_size’: 0.25,

1,
3,
‘news’: {
’pdf _args’: {
Classifier (for news dataset the classifier is turned off
Dbased on the ablation analysis results - but competitive
performance still obtained even with the default
configuration which includes the classifier.)
’clf’: None,
s
}

C FEATURE SELECTION FOR REFINED MODELLING

Specific features can be selected for refined modeling of higher-order dependencies. These are modeled using a
discriminative learner, as described in Section [3.3] Feature selection is beneficial when there are hundreds of
features, and not all need to be modeled by the learner.

Our feature selection process is based on the ¢k correlation constant (Baak et al., |2020)). ¢x supports categorical
and numerical features and captures non-linear dependencies. As input it takes the contingency table of a feature
pair. From this the expected frequency table is derived, which assumes no dependency between the features. A
x? comparison is performed between these tables, from which the ¢ coefficient is derived, in the range [0,1]. A
small x? value results in a small value for ¢, a large discrepancy gives a value close to one.

We make a slight alteration to the inputs of ¢ . Observed contingency tables are formed from the discretized
input data Xy, as usual. A large, synthetic dataset is generated from the Bayesian network model, see Sec. [3.6]

Baak, Brugman, D’almeida, Fridman Rojas, Oger, Urlus

for details on sampling. This sample is used to form the expected contingency tables. ¢y values are calculated
for all feature pairs and ordered in descending value. Large values are assigned to pairs with a large discrepancy
between the input data and the Bayesian network. For the discriminative learner, the top-n features can be
selected with the largest ¢ values, or alternatively passing a configurable threshold, although by default all
features are used for further modeling.

	INTRODUCTION
	BACKGROUND & RELATED WORK
	SYNTHSONIC DATA MODEL
	Transformations of continuous features
	Bayesian network model
	Discriminative learning
	Calibration procedure
	Joint probabilistic model
	Sampling procedure

	INTERPRETABILITY & VALIDATION
	PERFORMANCE EXPERIMENTS
	LIMITATIONS
	CONCLUSIONS
	EXTENDED EXPERIMENT RESULTS
	Synthetic data fidelity by dataset
	Computational efficiency by dataset

	PARAMETERS
	FEATURE SELECTION FOR REFINED MODELLING

