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Abstract

This paper considers convex shape-restricted
nonparametric regression over subgaussian
domain and noise with the squared loss. It in-
troduces a tractable convex piecewise-linear
estimator which precomputes a partition of
the training data by an adaptive version of
farthest-point clustering, approximately fits
hyperplanes over the partition cells by min-
imizing the regularized empirical risk, and
projects the result into the max-affine class.
The analysis provides an upper bound on the
generalization error of this estimator match-
ing the rate of Lipschitz nonparametric re-
gression and proves its adaptivity to the in-
trinsic dimension of the data mitigating the
effect of the curse of dimensionality. The ex-
periments conclude with competitive perfor-
mance, improved overfitting robustness, and
significant computational savings compared
to existing convex regression methods.

1 INTRODUCTION

Convex (shape-restricted) nonparametric regression
aims to estimate a convex regression function over
some hypothesis class of convex functions. If the hy-
pothesis class is chosen to be the set of max-affine func-
tions, represented by the maximum of affine functions
(also called hyperplanes), and the number of hyper-
planes is chosen to be equal to the sample size, then
the infinite dimensional minimization of the empirical
risk can be written as a quadratic program and solved
in polynomial time (Boyd and Vandenberghe, 2004,
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Section 6.5.5). Due to the simplicity of its construc-
tion and its tractable (polynomial-time) computabil-
ity, this estimator has been dominating the convex
regression literature. By today its convergence rate
is well-understood in many settings (e.g., Seijo and
Sen, 2011; Lim and Glynn, 2012; Lim, 2014; Balázs
et al., 2015; Han and Wellner, 2016; Kur et al., 2020),
and many algorithms have been proposed to reduce
its polynomial but large computational cost (e.g., Lee
et al., 2013; Aybat and Wang, 2014; Balázs et al., 2015;
Mazumder et al., 2019; Chen and Mazumder, 2020).

It has been also observed that reducing the number of
hyperplanes over the hypothesis class to significantly
less than the number of samples can improve estima-
tion properties, including reaching near-optimal min-
imax rate (e.g., Guntuboyina, 2012, Section 3.3), and
adapting the convergence rate to some structure of the
regression function (e.g., Han and Wellner, 2016, Sec-
tion 4). However, there is no known tractable method
to carry out the empirical risk minimization of these
estimators, except when the hypothesis class is re-
stricted to max-affine functions inducing a fixed par-
tition of the data (Balázs et al., 2015, Section 4.4),
that is when the max-affine function values for data
points within the partition cells are provided by the
same hyperplane. Although many clustering methods
have been proposed to find an appropriate partition
(e.g., Balázs et al., 2015; Siahkamari et al., 2020b),
there have been no generalization bounds proved for
these algorithms yet.

1.1 Contribution of the paper

This paper provides the first tractable partitioning
max-affine estimator with an upper bound on the
generalization error. The presented estimator (Al-
gorithm 2) computes an approximate max-affine fit
over a precomputed partition of the training data by
minimizing the regularized empirical risk over a class
of (not necessarily convex) piecewise-linear functions,
and projects the result to the max-affine function class.
The distance between the hypothesis class and the set
of max-affine functions is controlled by regularization.
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The precomputed partition is delivered by an adap-
tive version of the farthest-point clustering method
(Algorithm 1) which governs the complexity of the
max-affine representation by setting the number of hy-
perplanes (or equivalently the partition size) appropri-
ately for the regression task. The main result (Theo-
rem 4.1) proves an adaptive (instance dependent) up-
per bound on the generalization error for this estima-
tor as O(n−2/(2+dX )) for sample size n and intrinsic
data dimension dX . Finally, an empirical evaluation is
provided (Section 5) to demonstrate the competitive
performance, the overfitting robustness, and the eco-
nomical computational cost of the proposed method.

1.2 Related literature

There is a significant amount of work on max-affine
estimators which minimize the empirical risk over the
class of max-affine functions with a fixed number of
hyperplanes being less than the number of samples
including Guntuboyina (2012, Section 3.3), Han and
Wellner (2016, Section 4), and Balázs (2016, Section
5.4). However, the tractability of such minimization
has been only studied by Ghosh et al. (2019, 2021) for
the special case when the regression function is max-
affine with a known number of hyperplanes. They an-
alyzed a carefully initialized version of the alternating
minimization algorithm of Magnani and Boyd (2009)
and proved a convergence rate for this case, while
stated that the optimization of the empirical L2-risk
over max-affine functions is intractable in general.

Balázs et al. (2015, Section 4.4) observed that if the
partition is fixed, the empirical risk minimization over
a max-affine function class inducing the fixed partition
is tractable. Recently, Siahkamari et al. (2020b, Ap-
pendix A6) proposed using the Farthest-Point Cluster-
ing (FPC) algorithm which admits a 2-approximation
guarantee (Gonzalez, 1985; Hochbaum and Shmoys,
1985), however they did not provide an analysis. Con-
necting the two results is challenging because the lin-
earization of the convex regression function around the
partition cell centers provides a max-affine function
which might not induce the partition itself, and this
makes it hard to prove an upper bound on the approx-
imation error to the regression function by the max-
affine class inducing the fixed partition. This work
overcomes this problem in Section 4.1 by relaxing the
hypothesis class to (not necessarily convex) piecewise-
linear functions for the empirical risk minimization (3)
which are close to the max-affine class inducing the
fixed partition and contain a (max-affine) lineariza-
tion of the regression function which admits bounded
approximation error to the regression function itself.

The only tractable nonparametric convex estimator
which provides a convergence rate guarantee for the

subgaussian convex regression setting studied here is
the max-affine estimator using as many hyperplanes
as the number of samples, while the other tractable al-
gorithms including LSPA (Magnani and Boyd, 2009),
CAP (Hannah and Dunson, 2013) and AMAP (Balázs,
2016, Section 6.2.3) can provide consistency at best.
However, for the theoretical guarantee, this max-affine
estimator necessarily requires regularization to control
the overfitting risk at the domain boundary (Balázs
et al., 2015, Section 4.3), either by limiting the Lip-
schitz constant (Lim, 2014) or the magnitude of the
estimator values (Han and Wellner, 2016, Section 3).
The proposed algorithm (Algorithm 2) requires such
regularization as well and it is designed to limit the
Lipschitz constant, because imposing a Lipschitz con-
straint barely adds any cost to the training process
while working with boundedness constraints requires
the existence (and the knowledge) of the domain
boundary which is not satisfied for infinite domains,
and even for bounded settings with known boundaries,
the extra optimization cost might be still significant.

This paper was also motivated by the literature on par-
titioning estimators for (non-convex) Lipschitz non-
parametric regression (e.g., Györfi et al., 2002, Sec-
tion 4), where adaptation to intrinsic dimension of
the covariate data has been studied for kernel esti-
mators and regression trees (Kpotufe, 2010; Kpotufe
and Dasgupta, 2011). The model selection technique
for choosing the number of hyperplanes in Algorithm 1
to adapt the rate to the intrinsic dimension in Theo-
rem 4.1 is similar in spirit to the automatic stopping
rule designed for random projection regression trees by
Kpotufe (2009, Lemma 14). Adaptation to intrinsic di-
mension for convex regression has been studied by Han
and Wellner (2016, Section 4) for max-affine estima-
tors which learn the number of hyperplanes, but they
do not provide a tractable training algorithm. They
define the intrinsic dimension through the pseudodi-
mension (Pollard, 1990, Section 4) of the set of max-
affine mappings of the covariate data, which is different
to the definition used here. Similar to Cutler (1993)
and Clarkson (2006), in this paper the intrinsic dimen-
sion is defined on the data itself (Section 2.4), and it is
propagated through the objective value of the cluster-
ing method (Lemma 4.2) and then the approximation
error of the estimator to the regression function (4) to
reduce the dimension dependence of the generalization
bound (Theorem 4.1).

2 PROBLEM SETTING

Throughout the paper, let [n]
.
= {1, . . . , n} for any

positive integer n ∈ N, denote the common asymp-
totic order of growth notations by Θ(·), O(·), and their
versions ignoring logarithmic terms by Θ̃(·), Õ(·).
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2.1 Convex regression

In general, a random design regression setting is de-
fined by a probability measure µ over Rd×R for some
domain dimension d ∈ N. The learner is given a fi-
nite data set Dn

.
= {(xi, yi) : i ∈ [n]} ⊆ (Rd × R)n of

size n ∈ N sampled independently and identically from
the unknown distribution µ written as (xi, yi) ∼ µ
for all i ∈ [n]. Its goal is to use the data Dn for
constructing an estimate fn ∈ Fn of some hypoth-
esis class Fn ⊆ {f | f : Rd → R} which minimizes
the L2-error to the unknown regression function de-
fined as f∗(x)

.
= E(x,y)∼µ[y|x] almost surely (a.s.).

Formally, the goal of the learner is to find an esti-
mate fn which minimizes the L2-error ‖fn − f∗‖2µ

.
=

E(x,·)∼µ
[
|fn(x) − f∗(x)|2

]
with high-probability with

respect to (w.r.t.) the random sample Dn and the
possible randomness of the estimate fn. To address
these regression problems, I use least squares esti-
mates (LSEs) which minimize the empirical L2-risk
Ln(f)

.
= 1

n

∑
i∈[n] |f(xi) − yi|2 for function f ∈ Fn

over some hypothesis class Fn ⊆ {h |h : Rd → R}.

The paper considers subgaussian convex regression
problems µ for which there exists a convex set X con-
taining the covariate data Xn

.
= {x1, . . . ,xn} ⊆ X

with probability at least 1− γ for all γ > 0 (where X
might depend on γ and n), and the regression function
f∗ belongs to the class of uniformly Lipschitz convex
functions over X given by

FX ,L
.
=
{
f
∣∣ f is convex and

L-Lipschitz w.r.t. ‖·‖ on X
}

for some Lipschitz constant L ≥ 0 and the Euclidean
norm ‖·‖, that is f∗ ∈ FX ,L. Additionally, both the
covariate x and the observation noise (y−f∗(x))|x are
subgaussian random variables (x, y) ∼ µ satisfying

E
[
e‖x−E[x]‖2/ρ2]

≤ 2 ,

E
[
e|f∗(x)−y|2/σ2 ∣∣x] ≤ 2 a.s. ,

E[y − f∗(x) |x] = 0 a.s. ,

(1)

with some subgaussian parameters ρ > 0 and σ > 0.

The probabilistic statement of Xn ⊆ X is needed for
the problem setup to cover locally Lipschitz regres-
sion functions over covariates with unbounded sup-
port, for example the quadratic regression function
over a covariate with standard normal distribution.
Define the radius of Xn by ρn

.
= maxi∈[n] ‖xi − x̄‖,

its center by x̄
.
= 1

n

∑
i∈[n] xi, and the d-dimensional

ball with radius r > 0 around center x0 ∈ Rd by
B(x0, r)

.
= {x ∈ Rd : ‖x− x0‖ ≤ r}. Because the

covariate data satisfies Xn ⊆ B(x̄, ρn), it can be also
bounded by the Chernoff and union bounds as

P{ρn > ργ} ≤ 2n e−ρ
2
γ/(2ρ)

2

= γ/2 (2)

with ργ
.
= 2ρ ln(4n/γ) for any γ > 0. Then without

loss of generality X can always be considered bounded
as X ⊆ B(E[x], 2ργ) with probability at least 1 − γ
due to Pr{‖x̄− E[x]‖] > ργ} ≤ γ/2. For the ex-
ample of the quadratic regression function f sq

∗ (x)
.
=

‖x‖2 /2 over the standard normal covariate, consider
f sq
∗ ∈ FX ,L with X = B(E[x], L), L = 2ργ , and ρ = 1.

2.2 Max-affine functions and partitions

Throughout the paper the hypothesis classes for the
LSEs are chosen to be “close to” max-affine function
classes with at most K ∈ N hyperplanes defined as

HK
.
=
{
f
∣∣ f(x) = max

k∈[K]
a>k x + bk

}
.

Max-affine functions induce data partitions. Define a
partition PK over the sample indices [n] with K ∈ N
cells by PK

.
= {Ck : k ∈ [K]} where the cells are

nonempty and disjoint k 6= l ⇐⇒ Ck ∩ Cl = ∅, and
cover all indices as [n] = ∪k∈[K]Ck.

2.3 Set covers and Voronoi partitions

Partitions are related to set covers. For metric space
(Z, `) and ε > 0, the set {zk ∈ Z : k ∈ [K]} is an
ε-cover of Z w.r.t. the distance ` : Z × Z → [0,∞)
if the union of the ε-balls around zk covers Z, that is
Z ⊆ ∪k∈[K]{z ∈ Z : `(zk, z) ≤ ε}. The cardinality
of the smallest ε-cover of Z is called the ε-covering
number of Z w.r.t. ` and denoted by N`(Z, ε). Due to
the volume argument (e.g., Pollard, 1990, Lemma 4.1),
the ε-covering number of a d-dimensional ball B(x0, r)
with radius r > 0 around any center x0 ∈ Rd satisfies
N‖·‖

(
B(x0, r), ε

)
≤ max{1, (3r/ε)d} for any ε > 0.

Define the Voronoi partition on Xn around K centers
xi1 , . . . ,xiK by PV ({xi1 , . . . ,xiK})

.
= {Ck : k ∈ [K]}

with Voronoi cells Ck
.
= {i ∈ [n] : ‖xi − xik‖ =

minl∈[K] ‖xi − xil‖} for all k ∈ [K] where ties are bro-
ken arbitrarily. When the centers define an ε-cover
of Xn, the Voronoi cell radii are also bounded as
maxk∈[K] maxi∈Ck ‖xi − xik‖ ≤ ε.

2.4 Intrinsic dimension of the data

To discuss adaptive (instance dependent) rates, con-
sider the box dimension (similar to Cutler, 1993;
Clarkson, 2006) of Xn which is the smallest con-
stant dX ∈ (0, d] such that N‖·‖(Xn, ε) ≤ (3ρn/ε)

dX

a.s. holds for all ε ∈ (0, 2ρn] and n ∈ N if Xn ⊆ X .
Notice that as Xn ⊆ B(x̄, ρn), the general case can
be always recovered by setting dX = d, so the box
dimension is well-defined. However, the box dimen-
sion dX (which can be non-integer for fractals) gen-
eralizes extensions of the VC-dimension like the pseu-
dodimension (Pollard, 1990, Section 4), and Assouad’s
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doubling dimension capturing sparse data and Rie-
mannian manifolds with bounded condition numbers
(Kpotufe and Dasgupta, 2011, Section 2). Notice that
such structured data might appear for convex regres-
sion in a nonlinear way as well because there is no
convexity restriction on the support of the covariate
distribution.

3 THE PROPOSED ALGORITHM

Let PK = {Ck : k ∈ [K]} be a fixed partition, β ≥ 0,
and consider the quadratic programming problem,

min
a1,...,aK∈Rd,
b1,...,bK∈R,

V ∈R

1

n

K∑
k=1

∑
i∈Ck

∣∣a>k xi + bk − yi
∣∣2 + βV 2

subject to a>k xi + bk ≥ a>l xi + bl − V
and ‖ak‖∞ ≤ L for all i ∈ Ck and k, l ∈ [K] ,

(3)

where ‖·‖∞ denotes the max-norm. Using the opti-
mized values {(ak, bk) : k ∈ [K]}, the max-affine esti-
mate is fn(x)

.
= maxk∈[K] a

>
k x + bk for all x ∈ Rd.

Notice that for β =∞ (using 0 · ∞ .
= 0), K = n, and

trivial partition Pn =
{
{i} : i ∈ [n]

}
, (3) computes

the Convex Nonparametric Least Squares (CNLS) es-
timator (Boyd and Vandenberghe, 2004, Section 6.5.5)
which is a LSE over the class of convex functions FX ,L.
However, when β < ∞ and K < n, the solution of
(3) yields a LSE over some class of (not necessarily
continuous) piecewise-linear functions and its result is
projected into the max-affine class HK by the defini-
tion of fn. The role of variable V in (3) is to bound
the distance of this projection.

To compute a partition PK , consider a slightly modi-
fied version of the Farthest-Point Clustering (FPC) al-
gorithm, which is named here Adaptive FPC (AFPC)
and it is given by Algorithm 1. Just as FPC, AFPC

Algorithm 1 PK ← AFPC(Xn)

1: input: Xn = {x1, . . . ,xn}
2: Set i1 ∈ [n] arbitrarily, K ← 1 and PK ← {[n]}
3: while ρ2

nK < n∆2(PK) and K < nd/(2+d) do
4: K ← K + 1
5: iK ∈ argmaxi∈[n] minj∈{i1,...,iK−1} ‖xi − xj‖
6: PK ← PV ({xi1 , . . . ,xiK})
7: end while
8: output: PK

also minimizes the objective function ∆(·) defined by

∆(P)
.
= max
k∈[K]

max
i,j∈Ck

‖xi − xj‖ , P = {Ck : k ∈ [K]},

over the set of all Voronoi partitions P of size K on the
covariate data Xn. The only modification of AFPC is

the early termination rule ρ2
nK < n∆2(PK) which

can detect if the clustering error ∆2(PK) achieves
a sufficient level for the regression task given by
the threshold ρ2

nK/n. Hence, AFPC inherits the
2-approximation property of FPC (Gonzalez, 1985;
Hochbaum and Shmoys, 1985) that is for everyK these
algorithms find a partition PK which has no worse ob-
jective value ∆(PK) than twice the optimal.

Finally, consider the Adaptively Partitioning CNLS
(APCNLS) estimator as given by Algorithm 2, which
is the topic of this paper. APCNLS uses AFPC

Algorithm 2 fn ← APCNLS(Dn, L)

1: input: Dn = {(xi, yi) : i ∈ [n]}, L > 0
2: PK ← AFPC({x1, . . . ,xn})
3: {(ak, bk) : k ∈ [K]} ← solution to (3) with par-

tition PK , Lipschitz constant L, and β = d ln(n)

4: output: fn(x) = maxk∈[K] a
>
k x + bk

to compute a partition PK , and searches through a
class of piecewise-linear functions which are approxi-
mately max-affine inducing PK . The distance of the
piecewise-linear estimate from the max-affine classHK
is controlled by quadratic penalization in (3) which
allows bounding the distance between the projected
max-affine estimate fn and the regression function f∗.

Notice that APCNLS requires the Lipschitz constant L
which is an upper bound on the Lipschitz constant of
the regression function f∗ ∈ FX ,L. The role of L is to
bound the steepness of the estimate and so the amount
of overfitting at the domain boundary thus avoiding in-
finite L2-error (Balázs et al., 2015, Section 4.3). In the
absence of such guess, one can choose L = Θ

(
ln(n)

)
as proposed by Blanchet et al. (2019) to ensure that
the generalization bound holds for large enough sam-
ple size n. The empirical results of Section 5 suggest
that APCNLS is much less sensitive to this Lipschitz
parameter than CNLS.

4 THEORETICAL GUARANTEES

The main result of this paper is presented by Theo-
rem 4.1 which proves an adaptive generalization bound
for APCNLS estimates scaling exponentially by the in-
trinsic dimension of the covariate data dX instead of
the domain dimension d.

Theorem 4.1. Let fn be the estimate of Algorithm 2
(APCNLS). Then for any γ > 0, it holds with proba-
bility at least 1− γ that

‖fn − f∗‖2µ = O
(
d2 n−2/(2+dX )Rµ

)
,

where Rµ
.
=
(
L2ρ2

γ + σ2 ln(B/γ)
)

ln(n) ln(n/γ), and

B
.
= n

(
ln(1/γ) + dL2ρ2

γ/σ
2
)1/2

.
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The bound Õ(n−2/(2+dX )) matches the rate of kernel
regressors in the (non-convex) Lipschitz regression set-
ting (Kpotufe, 2010, Theorem 21), and slightly im-
proves the rate Õ(n−2/(2+dX ln dX )) of tree-based esti-
mators (Kpotufe and Dasgupta, 2011, Theorem 9).

In the worst case when dX = d, the APCNLS rate
Õ(n−2/(2+d)) is slightly worse than the CNLS rate
Õ(n−2/d) for d > 4 (e.g., Kur et al., 2020). How-

ever, the difference is n−2/(d+2)/n−2/d = n4/(d2+2d)

which decreases so rapidly in d that it is negligible for
most practical settings (e.g., it is upper bounded by
constant 50 for d ≥ 10 and n ≤ 1.3 · 1050 approxi-
mating the number of atoms in the Earth). The rate
difference occurs as the generalization bound proofs
of APCNLS and CNLS are quite different. For APC-
NLS the proof balances the estimation error of a para-
metric function class within HK with its approxima-
tion error to the convex regression function f∗ lead-
ing to the bound Õ

(
K
n + K−2/dX

)
, which is vacu-

ous for the setting of CNLS when K = n. On the
other hand, CNLS uses the hypothesis class of a re-
stricted set of convex functions which has no approx-
imation error to f∗, and for d > 4 it balances the so-

called entropy integral Õ
(
n−1/2

∫ 1

δ
ε−d/4 dε + δ

)
with

δ = Θ(n−2/d). Hence proving adaptivity w.r.t. dX for
CNLS requires adaptive log-covering numbers of con-
vex functions Õ(ε−dX /2) which is only straightforward
for linear manifolds performing dimensionality reduc-
tion for max-affine functions by adapting Lemma 4.3
of Balázs et al. (2015). In contrast, the box dimension
of Section 2.4 covers many nonlinear manifolds as well.

The rate Õ(n−2/(2+dX )) is near-optimal (i.e., opti-
mal up to logarithmic factors) for Lipschitz regression
(Stone, 1982), but it is unclear whether it could be im-
proved to Õ(n−4/(4+dX )) for convex regression in gen-
eral (considering nonsmooth regression functions). On
one hand the complexity of hypothesis classes might be
smaller for convex regression, but as there is no convex-
ity restriction on the support of µ, it can be a subspace
without containing a single line (e.g., the surface of a
ball) which might fade the benefit of convexity. Sec-
tion 4.2 briefly discusses the case of smooth convex
regression when the rate improves to Õ(n−4/(4+dX )).

The result of Theorem 4.1 still provides an initial fast
learning rate in a more realistic setting when the co-
variate data lies on a low-dimensional manifold only
approximately as discussed in Section 4.3.

The bound of Theorem 4.1 can be improved by a factor
of d if one uses ‖·‖ instead of ‖·‖∞ for the Lipschitz
constraints in (3) which avoids using the bound ‖·‖ ≤√
d ‖·‖∞ in the proof. However, that turns (3) into a

quadratically constrained quadratic program which is
more challenging to solve numerically in practice.

The number of arithmetic operations of solving (3) is
Õ
(
(nK)3/2(dK)2

)
using interior-point methods (Boyd

and Vandenberghe, 2004, Section 11.5) which suggests
a significant computational saving for APCNLS using
K ≤ dnd/(2+d)e in contrast to CNLS using K = n even
for the worst-case when dX = d. The experiments in
Section 5 support this as well.

4.1 Proof sketch of Theorem 4.1

This section describes the ideas and the main steps
for the proof of Theorem 4.1. The skipped technical
details are presented in Appendix A. The proof is also
conditioned on the high-probability events Xn ⊆ X
and ρn ≤ ργ as discussed around (2).

For some Voronoi partition PK = {C1, . . . , CK} =
PV ({xi1 , . . . ,xiK}), and V0 ≥ 0, define the class

Gn(PK , V0)
.
=
{
g
∣∣ g(x) =

∑
k∈[K]

I{x ∈ Sk} (a>k x + bk),

a>k xi + bk ≥ a>l xi + bl − V0,

i ∈ Ck, k, l ∈ [K]
}
,

with Sk
.
= {x ∈ Rd : ‖x− xik‖ = minl∈[K] ‖x− xil‖},

where ties are broken arbitrarily and I{·} denotes the
{0, 1}-valued indicator function. Then (3) computes a
(regularized) LSE gn over the class of piecewise-linear
functions Gn(PK , V0) for some V0 ≥ 0.

The key observation is that for a Voronoi partition PK
there exist hyperplane parameters {(a∗k, b∗k) : k ∈ [K]}
defining a piecewise-linear function in Gn(PK , V∗) with
max-affine approximation bound V∗

.
= 2L∆(PK)

which is also close to the regression function f∗. As
for the construction of Balázs et al. (2015, Lemma
4.1), these parameters are given by a∗k

.
= ∇f∗(xik)

and b∗k
.
= f∗(xik) − ∇f∗(xik)>xik for all k ∈ [K],

where ∇f∗(x) denotes an arbitrarily fixed subgradi-
ent of the convex function f∗ at x ∈ X . Define the
max-affine function h∗(x)

.
= maxk∈[K](a

∗
k)>x+b∗k and

g∗(x)
.
=
∑
k∈[K] I{x ∈ Sk}

(
(a∗k)>x+b∗k

)
which satisfy

for any i ∈ Ck that

0 ≤ f∗(xi)− h∗(xi)
≤ f∗(xi)− g∗(xi)

≤
(
∇f∗(xi)−∇f∗(xik)

)>
(xi − xik)

≤ V∗,

(4)

due to g∗ ≤ h∗ by definition, f∗ ∈ FX ,L, and Xn ⊆ X .
Then (4) shows that maxi∈[n] |g∗(xi) − f∗(xi)| ≤ V∗,
and also bounds the max-affine violation of g∗ by V∗
due to g∗(xi) ≥ h∗(xi)− V∗, hence g∗ ∈ Gn(PK , V∗).

Let {(an,k, bn,k) : k ∈ [K]}, Vn be the solution to
(3), and define the piecewise-linear function gn(x)

.
=
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∑
k∈[K] I{x ∈ Sk}(a>n,kx + bn,k). As g∗ is considered

during the optimization of (3) due to g∗ ∈ Gn(PK , V∗),
it holds that Ln(gn) +βV 2

n ≤ Ln(g∗) +βV 2
∗ which can

be rewritten into

‖gn − g∗‖2n + βV 2
n ≤ 2〈g∗ − gn, g∗ − y〉n + βV 2

∗ (5)

using the empirical norm ‖h‖2n
.
= 1

n

∑n
i=1 |h(xi)|2 and

inner product 〈h1, h2〉n
.
= 1

n

∑n
i=1 h1(xi)h2(xi) for

any h, h1, h2 : Rd → R with the slight abuse of no-
tation of van de Geer (2000, Section 4.3) treating y as
a function inside these empirical operators by defining
y(xi)

.
= yi for all i ∈ [n]. Then using ‖g∗ − f∗‖n ≤ V∗

by (4) with ab ≤ a2 + b2/4, (5) can be turned into

‖gn − g∗‖2n + 2βV 2
n

≤ 4〈g∗ − gn, f∗ − y〉n + 2(β + 2)V 2
∗ .

(6)

Later the proof will show that the right hand side
of (6) is bounded by Õ

(
‖gn − g∗‖

√
K/n + K/n

)
, so

‖gn − g∗‖2n, and βV 2
n are both bounded by Õ(K/n).

This result, with the choice of β in Algorithm 2 and
‖fn − gn‖n ≤ Vn, implies ‖fn − f∗‖2n = Õ(K/n),
which can be extended by the techniques of Balázs
et al. (2016) to the bound ‖fn − f∗‖2µ = Õ(K/n).

As V∗ = 2L∆(PK), the next step is to bound ∆(PK)
for partition PK computed by Algorithm 1 (AFPC).
Denote the set of all Voronoi partitions of size K over
a set Z .

= {z1, . . . ,zm} with cardinality |Z| .= m ∈ N
by ΓK(Z)

.
= {PV ({zi1 , . . . ,ziK}) | i1, . . . , iK ∈ [m]},

and define the optimal clustering objective value by
∆∗K

.
= minP∈ΓK(Xn) ∆K(P). Although finding a par-

tition achieving the optimal objective value ∆∗K is NP-
hard for d ≥ 2, FPC (and so AFPC too) is proved
to be a 2-approximation algorithm, which means that
it finds a partition PK in polynomial-time O(ndK)2

which has no higher objective value than twice the op-
timal (Gonzalez, 1985; Hochbaum and Shmoys, 1985),
that is ∆(PK) ≤ 2∆∗K . This result can be turned into
an approximation bound as shown by Lemma 4.2.

Lemma 4.2. Let Xn ⊆ X and PK be the Voronoi
partition of size K returned by AFPC (Algorithm 1).
Then ∆(PK) ≤ 12ρn min

{
K−1/dX ,

√
K/n

}
, and

K ≤ min
{

1 + (144n)dX /(2+dX ), dnd/(2+d)e
}

.

Proof. First, consider proving the claim ∆(PK) ≤
12ρnK

−1/dX . As discussed above, AFPC only dif-
fers from FPC in its stopping condition, so it also
satisfies ∆(Pk) ≤ 2∆∗k for all k ∈ [K]. If ∆∗K = 0,
then ∆(PK) ≤ 2∆∗K = 0 and the claim holds. As
∆∗1 ≤ 2ρn, the claim also holds for K = 1. Then let

2There exist more efficient implementations (Feder and
Greene, 1988; Har-Peled, 2004), but those are less incre-
mental w.r.t. the partition size, so combining them with
the AFPC stopping condition might be challenging.

K > 1, ∆∗K > 0, and suppose that K > M where M
.
=

N‖·‖(Xn,∆∗K/κ) for some κ > 2. Denote a (∆∗K/κ)-
cover of Xn by {xi1 , . . . ,xiM } and define the Voronoi
partition {C1, . . . , CM}

.
= PV ({xi1 , . . . ,xiM }). Then

∆∗M ≤ maxk∈[M ] maxi,j∈Ck ‖xi − xj‖ ≤ (2/κ)∆∗K <
∆∗K by the definition of ∆∗M and the triangle inequal-
ity, which yields a contradiction as ∆∗K is a non-
increasing function of K. Hence, K ≤ M holds
and using the definition of the box dimension (Sec-
tion 2.4) with Xn ⊆ X yields K ≤ N‖·‖(Xn,∆∗K/κ) ≤
(3κρn/∆

∗
K)dX , which proves the claim by ∆(PK) ≤

2∆∗K ≤ 6κρnK
−1/dX and taking the limit κ→ 2.

If AFPC terminates by ρ2
nK ≥ n∆2(PK), then

∆(PK) ≤ ρn
√
K/n. Otherwise, if termination oc-

curs with K ≥ nd/(2+d), then K−1/dX ≤ K−1/d ≤
n−1/(2+d) =

√
nd/(2+d)/n ≤

√
K/n due to dX ≤ d,

which proves the bound on ∆(PK).

Clearly, the AFPC termination condition directly im-
poses K ≤ dnd/(2+d)e. Further, using the first part of
the proof for the (K − 1)-th (non-terminating) step,
ρ2
n(K − 1) < n∆2(PK−1) ≤ 144nρ2

n(K − 1)−2/dX ,
which proves the bound on K after rearrangement.

Now consider the term 〈g∗ − gn, f∗ − y〉n in (6). As
f∗ − y is σ-subgausian noise by (1), and the estimate
gn lies in a class Gn(PK , V0) having functions with
(d+ 1)K parameters, one expects to bound this term
by Õ

(
‖g∗ − gn‖n σ

√
dK/n

)
. Such bound requires the

parameter space to be bounded, which holds by the
Lipschitz constraints of (3) and a similar reasoning
to Balázs (2016, Lemma 5.3) showing that the bias
parameters are also bounded with high-probability as
expressed by Lemma 4.3.

Lemma 4.3. With probability at least 1−γ for γ > 0,
|bn,k + a>n,kE[x]−E[y]| ≤ B̂ for all k ∈ [K] with some

B̂ > 0 satisfying B̂2 = Θ
(
dL2ρ2

γ + σ2 ln(1/γ)
)
.

Then the idea is to write

〈g∗−gn, f∗−y〉n ≤ ‖gn − g∗‖n sup
g∈Gn

〈 g∗ − g
‖g∗ − g‖n

, f∗−y
〉
n

with the function class Gn
.
= {g ∈ Gn(PK , V0) : g(x) =∑

k∈[K] I{x ∈ Sk}(a>k x + bk), ‖ak‖∞ ≤ L, |bk +

a>k E[x] − E[y]| ≤ B̂} for some large enough V0 > 0,
and use this to upper bound the term 〈g∗−gn, f∗−y〉n
as shown by Lemma 4.4.

Lemma 4.4. With probability at least 1−γ for γ > 0,

〈g∗ − gn, f∗ − y〉n

= O
(
‖gn − g∗‖n σ

√
dK

n
ln(B/γ) + σ2 dK

n
ln(B/γ)

)
,

where B is as defined for Theorem 4.1.

Combining V 2
∗ = O(L2ρ2

γK/n) due to Lemma 4.2 and
ρn ≤ ργ , Lemma 4.4 with (6) and ab ≤ (a2 + b2)/2
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directly yields bounds on ‖gn − g∗‖n and Vn as sum-
marized by Lemma 4.5.

Lemma 4.5. With probability at least 1−γ for γ > 0,

‖gn − g∗‖2n = O
(dK
n

(
σ2 ln(B/γ) + ln(n)L2ρ2

γ

))
,

V 2
n = O

(K
n

(
σ2 ln(B/γ)

ln(n)
+ L2ρ2

γ

))
.

Using (a+b+c)2 ≤ 3(a2+b2+c2), V 2
∗ = O(L2ρ2

γK/n),
and Lemma 4.5, the empirical distance between the
APCNLS estimate fn and the regression function f∗
can be bounded with probability at least 1− γ as

‖fn − f∗‖2n ≤ 3‖fn−gn‖2n+3‖gn−g∗‖2n+3‖g∗−f∗‖2n
≤ 3V 2

n + 3 ‖gn − g∗‖2n + 3V 2
∗

= O
(dK
n

(
σ2 ln(B/γ) + ln(n)L2ρ2

γ

))
. (7)

Now by Lemma 4.2 there exists a (nonrandom) bound
K̄ > 0 on the number of hyperplanes such that
K ≤ K̄ = O(ndX /(2+dX )). Additionally, as the pa-
rameters {(an,k, bn,k) : k ∈ [K]} are shared by fn and
gn, Lemma 4.3 implies that fn belongs to a max-affine
function class with bounded parameter space, that is
fn ∈ HK ⊆ HK̄ , where

HK
.
=
{
f ∈ HK : f(x) = max

k∈[K]
a>k x + bk, ‖ak‖∞ ≤ L,

|bk + a>k E[x]− E[y]| ≤ B̂
}
,

and HK̄ is defined similarly.

Then, the approximation error of fn to f∗ is bounded
by (7), the complexity of fn is controlled through the
(nonrandom) class HK̄ , and the number of hyper-
planes of fn is bounded by K̄ = O(ndX /(2+dX )) due
to Lemma 4.2, so empirical process theory of sieved
estimators (e.g., van de Geer, 2000, Section 10.3), es-
pecially the results of Györfi et al. (2002, Theorem
11.5) as extended by Balázs et al. (2016, Theorem 1
with Lemma 3), can be used to combine the pieces
together through the decomposition,

‖fn − f∗‖2µ ≤ sup
f∈HK̄

‖f − f∗‖2µ − 2 ‖f − f∗‖2n

+ 2 ‖fn − f∗‖2n
= Õ(dK̄/n),

and to prove the result of Theorem 4.1. The details of
these steps are presented in Appendix A.2.

4.2 Smoothness of f∗

When the regression function f∗ is (first-order) smooth,
that is if ‖∇f∗(x)−∇f∗(x̂)‖ ≤ Lg ‖x− x̂‖ for some

Lg > 0 and all x, x̂ ∈ X , then (4) provides
V∗ = O

(
Lg∆

2(PK)
)
. By modifying the termina-

tion condition of Algorithm 1 (AFPC) to ρ4
nK <

n∆4(PK) and K < nd/(4+d), the result of Lemma 4.2
changes to ∆(PK) = O

(
ρn min{K−1/dX , (K/n)1/4}

)
and K = O

(
KdX /(4+dX )

)
. Then the same reasoning

as above yields the generalization bound Õ
(
K
n +V 2

∗
)

=

Õ
(
n−4/(4+dX )

)
for APCNLS using the modified AFPC

termination condition. Unfortunately this adaptation
of APCNLS to smoothness is not automatic, one might
need cross-validation to make it so. It has been also
stated as a challenging open problem to prove or dis-
prove whether CNLS achieves this rate in the smooth
convex regression setting (Kur et al., 2020, Section 6).

4.3 Measurement noise

It might happen that the covariate data comes from
a low-dimensional manifold, but it is contaminated
by “measurement noise”. In this case the defini-
tion of intrinsic dimension could be N‖·‖(Xn, ε) ≤
(ρn/ε)

dX (σm/ε)
d a.s. for all ε ∈ (0, 2ρn], where σm ≥ 0

is the level of measurement noise. Because the box di-
mension was only used in the proof of Lemma 4.2 with
ε = ∆∗K/2, the fast APCNLS rate using dX instead of
d in Theorem 4.1 still holds until σm ≤ ∆∗K/2, and de-
grades towards the full-dimensional case afterwards.

5 EXPERIMENTS

This section provides a performance comparison be-
tween APCNLS (Algorithm 2) and CNLS on some se-
lected synthetic problems. Because both algorithms
require regularization of the Lipschitz constant L, two
versions are considered for each. First, CNLS∗ and
APCNLS∗ with L measured on the union of the train-
ing and test sets, which provides a tight setting. Sec-
ond, CNLSln and APCNLSln with setting L = ln(n)
as motivated by Blanchet et al. (2019), which is here
often a looser setting. For reference, the results also
include the ordinary least squares (OLS) estimate.

I used OSQP (Stellato et al., 2020) to solve (3), which
is a first-order quadratic programming solver built on
the idea of alternating direction methods of multipli-
ers. The initial center of AFPC (Algorithm 1) was
always taken to be the closest element within Xn to
the center x̄ with respect to ‖·‖. For further details,
Python implementation is provided in the supplemen-
tary material and at github.com/gabalz/cvxreg.

All plots show the average test errors ‖fn − f∗‖2µ mea-

sured on 106 independently drawn samples of 20 ex-
periments with standard deviation error bars for each
sample size n ∈ {100, 250, 500, 750, 1000}.

https://github.com/gabalz/cvxreg
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Denote the zero vector with appropriate size by 0, the
d-dimensional identity matrix by Id, the uniform dis-
tribution over a bounded set S by U(S), and the d-
dimensional Gaussian distribution with mean m ∈ Rd
and covariance Σ ∈ Rd×d by N (m,Σ).

The regression function f∗ was chosen to be ei-
ther symmetric or truncated, and piecewise-linear
or quadratic, that is f∗ ∈ {f spl

∗ , f tpl
∗ , f sq

∗ , f
tq
∗ } with

f spl
∗ (x)

.
= ‖x‖1, f tpl

∗ (x)
.
= ‖max{0,x}‖1, f sq

∗ (x)
.
=

‖x‖2 /2, f tq
∗ (x)

.
= ‖max{0,x}‖2 /2, where max{0,x}

is meant to be coordinate-wise. These functions cover
the nonsmooth and smooth settings and the truncated
versions break the uniformity of the Lipschitz constant
around the boundary. All experiments use Gaussian
observation noise (y − f∗(x))|x ∼ N (0, σ2).

5.1 Without low-dimensional manifold

The experiments on nonsmooth and smooth problems
(Fig. 1) over a full dimensional domain (dX = d)
demonstrate a competitive performance of APCNLS
to CNLS even in the absence of a manifold.

100 500 1000
1

2

3

4

100 500 1000

0.5

1

1.5

2
OLS

CNLS∗
CNLSln

APCNLS∗
APCNLSln

Figure 1: Estimating f spl
∗ (left) over x ∼ U([−2, 2]10),

and f tq
∗ (right) over x ∼ N (0, I10), both for σ = 0.3.

However, this is reached by reducing the number of
hyperplanes (and the computational cost) of APC-
NLS quite significantly below the number of samples
n (used by CNLS) as shown by Fig. 2.

x \n 100 250 500 750 1000

U([−2, 2]10) 34± 2 62± 4 100± 6 130± 7 158± 10

N (0, I10) 25± 3 48± 5 75± 10 100± 8 118± 10

xli,10 12± 1 17± 1 23± 1 26± 1 28± 2

xpe,10 5± 1 5± 1 7± 1 8± 1 9± 1

Figure 2: Number of hyperplanes K used by AFPC
(and APCNLS) for some covariate distributions in R10.

However, the picture changes as the observation noise
increases. Then, the results of Fig. 3 indicate that
APCNLS is more robust than CNLS with respect to
overfitting to a significantly higher observation noise
(increased from σ = 0.3 of Fig. 1 to σ = 3.0).

100 500 1000
2
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10

100 500 1000
0
5
10
15 OLS

CNLS∗
CNLSln

APCNLS∗
APCNLSln

Figure 3: Estimating f spl
∗ (left) over x ∼ U([−2, 2]10),

and f tq
∗ (right) over x ∼ N (0, I10), both for σ = 3.0.

5.2 With linear low-dimensional manifold

Consider a linear 3-dimensional manifold (dX = 3),
that is define the random vector z3 ∼ U([−3, 3]3) and
set xli,10 ∼ N ([z>3 0>]>, σ2

mI10) with some measure-
ment noise level σm ≥ 0.

The results of Fig. 4 show that APCNLS delivers
slightly better performance than CNLS, while it uses
even less hyperplanes (and so requires even less com-
putational effort) than for the full dimensional cases
as presented above by Fig. 2. In particular for these
experiments with sample size n = 1000, the CNLS es-
timators needed more than half an hour to train on
average while the APCNLS estimators fitted in less
than half a minute. These results also suggest that
CNLS is adaptive to linear manifolds as well.

100 500 1000
0

1

2

3

100 500 1000
0

.2

.4

.6 OLS

CNLS∗
CNLSln

APCNLS∗
APCNLSln

Figure 4: Estimating f spl
∗ (left) and f tpl

∗ (right) over
xli,10 for σ = 0.3 and σm = 0.1.

5.3 With nonlinear low-dimensional manifold

Consider a nonlinear 1-dimensional manifold (dX = 1)
when a scalar covariate is embedded into R10 by poly-
nomial expansion with some measurement noise (Sec-
tion 4.3). Formally, let z1 ∼ U([−1, 1]) and define
xpe,10 ∼ N

(
[z1 z

2
1 . . . z

10
1 ]>, σ2

mI10

)
with some mea-

surement noise level σm ≥ 0.

The results of Fig. 5 show that APCNLS finds signif-
icantly better estimates than CNLS in these settings,
and it does so by using even less resources as presented
above by Fig. 2.

100 500 1000
0

.1

.2

100 500 1000
0

.1

.2 OLS

CNLS∗
CNLSln

APCNLS∗
APCNLSln

Figure 5: Estimating f sq
∗ (left) and f tq

∗ (right) over
xpe,10 for σ = 0.3 and σm = 0.1.
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The results of Fig. 6 demonstrate the cases of low
(zero) and high (doubled) measurement noise. In the
former no estimate exceeds OLS significantly (perhaps
as the support of x does not contain any line), while in
the latter APCNLS delivers far the lowest test error.

100 500 1000
0

.01

.02

.03

100 500 1000
0

.1

.2 OLS

CNLS∗
CNLSln

APCNLS∗
APCNLSln

Figure 6: Estimating f sq
∗ over xpe,10 for σ = 0.3 with

σm = 0.0 (left) and σm = 0.2 (right).

Further experiments are provided in Appendix B.

6 CONCLUSIONS

This paper introduced a novel partitioning max-affine
estimator (Algorithm 2) with an adaptive upper bound
on the generalization error for the general subgaus-
sian convex regression setting (Theorem 4.1) match-
ing the adaptive rates of Lipschitz regression. This
was obtained by a new analysis exploiting the prop-
erties of an appropriate Voronoi partition computed
by an adaptive version of FPC, and the relaxed max-
affine constraints in the empirical risk minimization
process which considers the linearization of the regres-
sion function over the chosen partition. As CNLS has
been recently extended to (non-convex) Lipschitz re-
gression (Siahkamari et al., 2020a), perhaps one of the
most interesting open question is whether the tech-
niques of APCNLS carry over to those more general
settings as well. For convex regression, the presented
results indicate that APCNLS is a favorable alterna-
tive to CNLS in terms of theoretical guarantee, empir-
ical performance, robustness, and computational cost.
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Supplementary Material:
Adaptively Partitioning Max-Affine Estimators

for Convex Regression

A Detailed proof of Theorem 4.1

This appendix provides the complete proofs for the lemmas of Section 4.1 and Theorem 4.1. It uses the notations
of Section 4.1, and to improve readability, the steps ignore the scaling of the γ parameter by an appropriate
absolute constant.

Recall that the result of APCNLS (Algorithm 2) is written as fn(x)
.
= maxk∈[K] a

>
n,kx + bn,k with parameters

{(an,k, bn,k) ∈ Rd+1 : k ∈ [K]}, and gn(x)
.
=
∑
k∈[K] I{x ∈ Sk}(a>n,kx + bn,k), where gn ∈ Gn(PK , Vn) meaning

that 0 ≤ fn(xi) − gn(xi) ≤ Vn for all i ∈ [n]. More generally, introduce the notation ak(f), bk(f), and
ak(g), bk(g) to denote the parameters of the piecewise-linear functions f ∈ HK and g ∈ Gn(PK , V0), that is
f(x) = maxk∈[K] ak(f)>x + bk(f) and g(x) =

∑
k∈[K] I{x ∈ Sk}

(
ak(g)>x + bk(g)

)
. Clearly, an,k = ak(gn) and

bn,k = bk(gn) for all k ∈ [K].

A.1 Proof of Lemmas 4.3, 4.4 and 4.5

First notice that the Lipschitness of f∗ and the subgaussian property of the observation noise (1) implies that
f∗(x) and y are also subgaussian random variables as given by Lemma A.1.

Lemma A.1. E
[
e|f∗(x)−E[f∗(x)]|2/(4Lρ)2]

and E[e|y−E[y]|2/ξ2

] ≤ 2 for ξ
.
= 2 max{2Lρ, σ}.

Proof. Let x̂ be an independent copy of x, and use Jensen’s inequality, the L-Lipschitzness of f∗, (a + b)2 ≤
2(a2 + b2), Jensen’s inequality again, and (1) to get that

E
[
e|f∗(x)−E[f∗(x)]|2/ξ2

0
]
≤ E

[
e|f∗(x)−f∗(x̂)|2/ξ2

0
]
≤ E

[
eL

2‖x−x̂‖2/ξ2
0
]
≤ E

[
e2L2‖x−E[x]‖2/ξ2

0
]2 ≤ 2,

with ξ0
.
= 2Lρ. Then, combine this with (a + b)2 ≤ 2(a2 + b2), E[f∗(x)] = E[y] by (1), the tower rule, Jensen’s

inequality, and (1) to show

E
[
e|y−E[y]|2/ξ2]

≤ E
[
E
[
e4|y−f∗(x)|2/ξ2∣∣x] 1

2 e2|f∗(x)−E[f∗(x)]|2/ξ2
]
≤
√

2E
[
e4|f∗(x)−E[f∗(x)]|2/ξ2] 1

2 ≤ 2,

due to ξ = 2 max{ξ0, σ}, which proves the claim.

The next result (Lemma A.2) provides a data-dependent bound for the bias parameters of gn.

Lemma A.2. |bn,k + a>n,kx̄− ȳ| ≤ 3
√
dLρn a.s. for all k ∈ [K].

Proof. Let Ĝn
.
= {g ∈ Gn(PK , Vn) : ‖ak(g)‖∞ ≤ L}, and notice that gn ∈ Ĝn. Additionally, as gn is the solution

to (3), it is a LSE over Ĝn satisfying gn ∈ argming∈Ĝn Ln(g). Because the set Ĝn is closed under constant shifting,

it holds that 0 =
[
∂λLn(gn + λ)

]
λ=0

which implies ȳ = 1
n

∑
i∈[n] gn(xi). Then, using gn(xi) = a>n,kxi + bn,k, the

triangle and Jensen’s inequalities, the L-Lipschitness of gn by ‖an,k‖∞ ≤ L with ‖·‖ ≤
√
d ‖·‖∞,

|bn,k + a>n,kx̄− ȳ| =
∣∣∣gn(xi)− a>n,k(xi − x̄)− 1

n

n∑
j=1

gn(xj)
∣∣∣ ≤ ‖an,k‖ ρn +

1

n

n∑
j=1

∣∣gn(xi)− gn(xj)
∣∣ ≤ 3

√
dLρn,

which proves the claim.
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Notice that by the subgaussian property (1), (2), Lemma A.1, the Chernoff bound and Jensen’s inequality, the
following upper bounds hold with probability at least 1− γ,

ρn ≤ ργ , ‖f∗ − y‖2n = O
(
σ2 ln(1/γ)

)
, ‖x̄− E[x]‖2 = O

(
ρ2 ln(1/γ)

)
, |ȳ − E[y]|2 = O

(
ξ2 ln(1/γ)

)
. (8)

Then the combination of Lemma A.2, (8), and ξ = O(Lρ + σ) yields that |bk(fn) + ak(fn)>E[x] − E[y]|2 =

O
(
dL2ρ2

n + (dL2ρ2 +σ2) ln(1/γ)
)

= O(B̂2) with probability at least 1−γ, which proves the claim of Lemma 4.3.

The log-covering number of a function class with bounded parameter space containing gn is needed for bounding
〈g∗ − gn, f∗ − y〉n, so consider the bounds derived from (6) and Lemma A.2 as presented by Lemma A.3.

Lemma A.3. Suppose that (8) holds for some γ > 0. Then for some V0 > 0 satisfying V 2
0 = O

(σ2 ln(1/γ)
d ln(n) +V 2

∗
)
,

it holds with probability at least 1 − γ that gn ∈ Gn for the function class Gn
.
= {g ∈ Gn(PK , V0) : ‖ak(g)‖∞ ≤

L, |bk(g)− ak(g)>E[x]− E[y]| ≤ B̂, k ∈ [K]}.

Proof. By (6), ab ≤ (a2 + b2)/2, ‖f∗ − y‖2n = O
(
σ2 ln(1/γ)

)
, β = d ln(n), and ρn ≤ ργ , the bound V 2

n = O(V 2
0 )

follows, and so the claim follows as well by Lemma 4.3.

Define the distance ψ(g, ĝ)
.
= maxk∈[K] L

−1 ‖ak(g)− ak(ĝ)‖ + B̂−1
∣∣bk(g) − bk(ĝ) +

(
ak(g) − ak(ĝ)

)>E[x]
∣∣ for

any g, ĝ ∈ Gn. By Lemma A.3, gn lies in the class Gn with probability at least 1− γ, so we can condition on the
event gn ∈ Gn. Furthermore, by the volume argument (e.g., Pollard, 1990, Lemma 4.1) there exists an ε-cover
of Gn w.r.t. ψ of cardinality Nψ(Gn, ε) ≤ max{1, (6

√
d/ε)(d+1)K} for any ε > 0. Additionally, for any g, ĝ ∈ Gn

and i ∈ [n] it holds that∣∣g(xi)− ĝ(xi)
∣∣ ≤ ∑

k∈[K]

I{xi ∈ Sk}
∣∣∣(ak(g)− ak(ĝ)

)>
xi + bk(g)− bk(ĝ)

∣∣∣ ≤ ψ(g, ĝ)
(
L ‖xi − E[x]‖+ B̂

)
, (9)

so maxi∈[n] |g(xi)− ĝ(xi)| ≤ ψ(g, ĝ)(2Lργ + B̂) due to (2) and (8).

Let ε > 0 to be chosen later, and Gn,ε be an ε-cover of Gn w.r.t. ψ of minimal cardinality, and let gn,ε be the closest
element in Gn,ε to gn, that is gn,ε ∈ argming∈Gn,ε ψ(g, gn). Clearly, by the definition of ε-cover, ψ(gn,ε, gn) ≤ ε.

Then by (9) and ‖f∗ − y‖2n = O
(
σ2 ln(1/γ)

)
by (8), we have

〈g∗ − gn, f∗ − y〉n ≤ 〈g∗ − gn,ε, f∗ − y〉n +O
(
ε (Lργ + B̂)σ

√
ln(1/γ)

)
. (10)

Define the shorthand Py{·}
.
= P{·|Xn}, denote δi(g)

.
=
(
g∗(xi) − g(xi)

)
/ ‖g∗ − g‖n, and let t0, t1 > 0 to be

chosen later. Notice that the class Gn,ε only depends on the covariates Xn because AFPC (Algorithm 1) does
not use the values y1, . . . , yn to compute the partition PK . Then by the union and Chernoff bounds, the
independence of the samples {(xi, yi) : i ∈ [n]}, the subgaussian property of the noise f∗(xi) − yi from (1)

written as sups∈R E
[
es(f∗(xi)−yi)−2s2σ2∣∣x] ≤ 1 a.s. (e.g., Boucheron et al., 2012, Section 2.3), 1 = 1

n

∑
i∈[n] δ

2
i (g)

for any g ∈ Gn,ε, it holds that

Py
{
〈g∗ − gn,ε, f∗ − y〉n > ‖gn,ε − g∗‖n t0t1

}
≤ Py

{
sup
g∈Gn,ε

〈 g∗ − g
‖g∗ − g‖n

, f∗ − y
〉
n
> t0t1

}
≤

∑
g∈Gn,ε

Py
{ 1

n

n∑
i=1

δi(g)
(
f∗(xi)− yi

)
> t0t1

}

≤
∑
g∈Gn,ε

e−t1
n∏
i=1

exp
(δi(g)

nt0

(
f∗(xi)− yi

))

≤
∑
g∈Gn,ε

exp
(2σ2

∑
i∈[n] δ

2
i (g)

(n t0)2
− t1

)

=
∣∣Gn,ε∣∣ exp

(2σ2

n t20
− t1

)
= γ,

(11)
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by t1
.
= 3σ2/(nt20) and t0

.
= σ

/√
n ln(|Gn,ε|/γ). Then putting (10) and (11) together with ln |Gn,ε| =

lnNψ(Gn, ε) = O(dK ln(d/ε)), and (9) with ψ(gn, gn,ε) ≤ ε, we get with probability at least 1− γ that

〈g∗ − gn, f∗ − y〉n = O
((
‖gn − g∗‖n + ε(Lργ + B̂)

)
σ
√
dK ln

(
d/(εγ)

)
/n+ εσ(Lργ + B̂) ln(1/γ)

)
= O

(
‖gn − g∗‖n σ

√
dK

n
ln
(
nB1/(σγ)

)
+ σ2 dK

n
ln
(
nB1/(σγ)

))
,

with ε
.
= (σ/B1)(dK/n) and B1

.
= Lργ + B̂ = O(B̂), which proves the claim of Lemma 4.4 by nB̂/σ = O(B).

Next, combining (6) with Lemma 4.4 and ab ≤ a2 + b2/4 yields

‖gn − g∗‖2n + 4βV 2
n = O

(
σ2 dK

n
ln(B/γ) + βV 2

∗

)
= O

(
dK

n

(
σ2 ln(B/γ) + ln(n)L2ρ2

γ

))
due to β = d ln(n), V 2

∗ = O
(
L2∆2(PK)

)
= O(L2ρ2

γK/n) by Lemma 4.2, which proves both claims of Lemma 4.5.

A.2 Proof of Theorem 4.1

The proof goes similarly to the combination of Theorem 1 and Lemma 3 of Balázs et al. (2016), but here the
L2-error is used instead of the excess risk.

As mentioned at the end of Section 4.1, the proof of Theorem 4.1 starts by conditioning on the events Xn ⊆ X ,
(8), and fn ∈ HK̄ holding with probability at least 1−γ by the definition of X , (1), Lemma A.1, and Lemma 4.3.
Then it considers the decomposition of the L2-error as

‖fn − f∗‖2µ ≤ r + sup
f∈HK̄(r)

{
‖f − f∗‖2µ − 2 ‖f − f∗‖2n

}
+ 2 ‖fn − f∗‖2n , (12)

where HK̄(r)
.
= {f ∈ HK̄ : ‖f − f∗‖2µ > r} and r ≥ 0 to be chosen later. As ‖fn − f∗‖n is bounded by (7), it

remains to bound the first (supremum) term of (12) for an appropriate choice of r. For this, consider a slightly
simplified version of the result of Balázs et al. (2016, Theorem 11) as stated by Lemma A.4.

Lemma A.4. Let (F , ψ) be a separable metric space, w be a random variable on some setW, and Γ : F×W → R
be a function. Define Λ(f, w)

.
= Γ(f, w) − E[Γ(f, w)] for all f ∈ F , w ∈ W, and suppose that the following

conditions hold:

(a) there exists scalars γ > 0, T ≥ 0, and a function τ : W → [0,∞) such that P{τ(w) > T} ≤ γ/2, and
Λ(f, w)− Λ(g, w) ≤ ψ(f, g) τ(w) a.s. for all f, g ∈ F and w ∈ W,

(b) there exists scalar M > 0 such that E
[

exp
(
Γ(f, w)/M

)]
≤ 1 for all f ∈ F .

Then for all ε ≥ 0, it holds with probability at least 1− γ that

sup
f∈F

Γ(f, w) ≤M ln
(
3Nψ(F , ε)/γ

)
+ 8Tε.

Proof. See Theorem 11 of Balázs et al. (2016) with S =∞ and δ = ε.

In order to apply Lemma A.4, set F .
= HK̄(r), w

.
= Xn ∪ {x}, and Γ(f, w)

.
= ‖f − f∗‖2µ − 2 ‖f − f∗‖2n =

1
n

∑
i∈[n] wi(f) with wi(f)

.
= E

[
|f(x)−f∗(x)|2

]
−2|f(xi)−f∗(xi)|2 for all i ∈ [n] and f ∈ F . Then extend distance

ψ to max-affine functions as ψ(f, f̂)
.
= maxk∈[K̄] L

−1‖ak(f)−ak(f̂)‖+B̂−1
∣∣bk(f)−bk(f̂)+

(
ak(f)−ak(f̂)

)>E[x]
∣∣

for any f, f̂ ∈ F , and notice that it still satisfies that∣∣f(x)− f̂(x)
∣∣ ≤ max

k∈[K̄]

∣∣(ak(f)− ak(f̂)
)>

x + bk(f)− bk(f̂)
∣∣ ≤ ψ(f, f̂)

(
L ‖x− E[x]‖+ B̂

)
. (13)

By writing any f ∈ HK̄ as f(x) = maxk∈[K̄] ak(f)>(x − E[x]) +
(
bk(f) + ak(f)>E[x] − E[y]

)
+ E[y] we have

|f(x)− f∗(x)|2− |f̂(x)− f∗(x)|2 ≤ |f(x)− f̂(x)| η(x) with η(x)
.
= 2(
√
dL ‖x− E[x]‖+ B̂) + 2|f∗(x)−E[f∗(x)]|

for any f, f̂ ∈ HK̄ due to E[y] = E[f∗(x)]. Then by Λ(f, w) = 2
(
‖f − f∗‖2µ − ‖f − f∗‖

2
n

)
and (13), we also have

Λ(f, w)− Λ(f̂ , w) = 2
(
‖f − f∗‖2µ − ‖f̂ − f∗‖2µ

)
+ 2
(
‖f̂ − f∗‖2n − ‖f − f∗‖2n

)
≤ ψ(f, f̂) τ(w),
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where τ(w)
.
= 2

n

∑
i∈[n] E[η2(x)] + η2(xi). As τ(w) satisfies P{τ(w) > T} ≤ γ/2 for some T > 0 such that

T = O(B̂2) due to (1), Lemma A.1, and d(Lργ)2 = O(B̂2), so the condition (a) of Lemma A.4 holds.

Now consider the following version of Bernstein’s inequality for squared subgaussian random variables as pre-
sented by Lemma A.5.

Lemma A.5. Let z be a subgaussian variable E[ez
2/σ̄2

] ≤ 2 for some σ̄ > 0. Then E[z2k] ≤ 2k!E[z2](c σ̄)2k−2

for any k ∈ N with c
.
= 2

√
ln(3K[z]) and kurtosis K[z]

.
= E[z4]/E[z2]2. Additionally, E

[
eλ(E[z2]−z2)

]
≤

exp
(
4λ2E[z2](c σ̄)2/(1− (c σ̄)2λ)

)
for all λ ∈ (0, 1/(c σ̄)2).

Proof. The first claim is trivial for k = 1, so let k ≥ 2. By the Cauchy-Schwartz inequality,

E
[
z2k
]

= E[z2k I{|z| ≤ c σ̄}] + E[z2k I{|z| > c σ̄}]
≤ E[z2](c σ̄)2k−2 + E[z4]1/2 E[z2(2k−2) I{|z| > c σ̄}]1/2

≤ E[z2]
(

(c σ̄)2k−2 + K[z]1/2 E[z4(2k−2)]1/4 P{|z| > c σ̄}1/4
)
.

(14)

By Lemma A.2 of Balázs (2016), E[z2s] ≤ 2(s/e)s σ̄2s for s = 2(2k − 2), which can be combined with (14),

P{|z| > c σ̄} ≤ E
[
ez

2/σ̄2]
e−c

2 ≤ 2e−c
2

, c > 2 as K[z] ≥ 1, and e(k/e)k ≤ k! for any k ∈ N (e.g., Robbins, 1955),
we get

E[z2k] ≤ E[z2](c σ̄)2k−2

(
1 + K[z]1/2

(
4
(4k − 4

e c2
)4k−4

e−c
2
)1/4

)
≤ E[z2](c σ̄)2k−2

(
1 + 2K[z]1/2(k − 1)! e−c

2/4
)
,

which proves the first claim on E[z2k] by the definition of c and 1 + 2(k− 1)! ≤ 2k! for k ≥ 2. Finally, the second

claim on E[eλ(E[z2]−z2)] follows by the “standard version” of Bernstein’s inequality (e.g., Boucheron et al., 2012,

Theorem 2.10) using the first claim that E
[
|z2|k

]
≤ (k!/2)

(
4E[z2](c σ̄)2

)(
(c σ̄)2

)k−2
.

Let zf
.
= f(x) − f∗(x) for a fixed f ∈ F , and notice that if f(x) = maxk∈[K̄] a

>
k x + bk, then |f(x) − f∗(x)| ≤

maxk∈[K̄] ‖ak‖ ‖x− E[x]‖ + |bk + a>k E[x] − E[y]| + |E[y] − f∗(x)| ≤
√
dL ‖x− E[x]‖ + B̂ + |f∗(x) − E[f∗(x)]|,

so E
[
ez

2
f/t

2]
≤ e3B̂2/t2E

[
e12dL2‖x−E[x]‖2/t2]1/4E[e12|f∗(x)−E[f∗(x)]|2/t2]1/4 ≤ 2 for t = 4B̂ by (a + b + c)2 ≤

3(a2 + b2 + c2), the Cauchy-Schwartz and Jensen’s inequalities, and B̂2 = Θ
(
dL2ρ2

γ + σ2 ln(1/γ)
)
. Define

cf
.
= 2
√

ln(3K[zf ]), and use Bernstein’s inequality (Lemma A.5) for z2
f with λ = 2/Mf to get for all i ∈ [n] that

E
[
ewi(f)/Mf

]
= e−E[z2

f ]/Mf E
[
e2(E[z2

f ]−z2
f )/Mf

]
≤ exp

(E[z2
f ]

Mf

(
− 1 +

16(t cf )2

Mf (1− 2(t cf )2/Mf )

))
= 1, (15)

with Mf
.
= 18(t cf )2 = O

(
(B̂cf )2

)
. Now choose r

.
= t2/n, and notice that E[z4

f ] ≤ 2(2/e)2t4 due to Balázs (2016,

Lemma A.2), so K[zf ] = O
(
t4/r2

)
= O(n2) and we get c2f = O

(
ln(n)

)
for all f ∈ HK̄(r). Then by defining

M
.
= maxf∈HK̄(r)Mf/n and using the independence of the random variables w1(f), . . . , wn(f), we get

E
[

exp
(
Γ(f, w)/M

)]
≤ E

[
exp

(
Γ(f, w)/(Mf/n)

)]
=
∏
i∈[n]

E
[
ewi(f)/Mf

]
≤ 1,

so condition (b) of Lemma A.4 holds with M = O
(
B̂2 ln(n)/n

)
. Then by applying Lemma A.4, using

lnNψ(HK̄ , ε) = O
(
dK̄ ln(1/ε)

)
, and setting ε

.
= K̄/n, we get with probability at least 1− γ that

sup
f∈HK̄(r)

‖f − f∗‖2µ − 2 ‖f − f∗‖2n = O
( B̂2 ln(n) ln(Nψ(HK̄ , ε)/γ)

n
+ B̂2ε

)
= O

(dK̄B̂2 ln(n) ln(n/γ)

n

)
.

(16)

Plugging in (7), (16), and r = O(B̂2/n) into (12), and using K ≤ K̄ with B̂2 = O
(
dL2ρ2

γ + σ2 ln(1/γ)
)
, we get

with probability at least 1− γ that

‖fn − f∗‖2µ = O
( B̂2

n
+
dK̄B̂2 ln(n) ln(n/γ)

n
+
dK

n

(
σ2 ln(B/γ) + ln(n)L2ρ2

γ

))
= O

(d2K̄

n
Rµ

)
with Rµ =

(
L2ρ2

γ + σ2 ln(B/γ)
)

ln(n) ln(n/γ), which proves the claim of Theorem 4.1 by K̄ = O(ndX /(2+dX )).
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B Further experiments

This appendix provides a few more experiments which could not fit the main text due to space limitations.

Figs. 7 to 10 complement the results of Section 5 by using the alternative piecewise-linear or quadratic choices
for the regression function. Fig. 11 repeats the experiments for f tq

∗ of Figs. 1 and 3 on a smaller domain (using

d = 5 instead of d = 10). Finally, Fig. 12 provides results for the regression functions f exp
∗ (x)

.
= ex

>1/d with 1

being the full one vector of appropriate size, and fplq
∗ (x)

.
= max{f spl

∗ (x), f tq
∗ (x)}.

The conclusion is again that while APCNLS uses smaller models than CNLS and so it slightly underfits complex
functions like fplq

∗ on Fig. 12, it is also more robust against overfitting for simpler targets like f exp
∗ on Fig. 12,

very noisy settings like on Fig. 8, and learning around a low-dimensional nonlinear manifold like on Fig. 10.
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Figure 7: Estimating f sq
∗ (left) over x ∼ N (0, I10), and f tpl

∗ (right) over x ∼ U([−2, 2]10), both for σ = 0.3.
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Figure 8: Estimating f sq
∗ (left) over x ∼ N (0, I10), and f tpl

∗ (right) over x ∼ U([−2, 2]10), both for σ = 3.0.
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Figure 9: Estimating f sq
∗ (left) and f tq

∗ (right) over xli,10 for σ = 0.3 and σm = 0.1.
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Figure 10: Estimating f spl
∗ (left) and f tpl

∗ (right) over xpe,10 for σ = 0.3 and σm = 0.1.
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Figure 11: Estimating f tq
∗ over x ∼ N (0, I5) for σ = 0.3 (left) and σ = 3.0 (right).
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Figure 12: Estimating f exp
∗ (left) and fplq

∗ (right) over x ∼ N (0, I10) for σ = 0.3.
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