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Abstract

The analysis of streaming PCA has gained
significant traction through the analysis of an
early simple variant: Oja’s algorithm, which
implements online projected gradient descent
for the trace objective. Several other stream-
ing PCA algorithms have been developed,
each with their own performance guarantees
or empirical studies, and the question arises
whether there is a relationship between the
algorithms. We show that the Grassmannian
Rank-One Subspace Estimation (GROUSE)
algorithm is indeed equivalent to Oja’s algo-
rithm in the sense that, at each iteration,
given a step size for one of the algorithms,
we may construct a step size for the other al-
gorithm that results in an identical update.
This allows us to apply all results on one al-
gorithm to the other. In particular, we have
(1) better global convergence guarantees of
GROUSE to the global minimizer of the PCA
objective with full data; and (2) local con-
vergence guarantees for Oja’s algorithm with
incomplete or compressed data.

1 INTRODUCTION

While the field of optimization is very established,
with well-known algorithms for solving general prob-
lems, researchers are constantly “discovering” new al-
gorithmic approaches. There is probably no one prob-
lem where this is more true than in Streaming PCA,
where researchers many times over have developed new
methodologies to solve the problem. An algorithm de-
veloped in 1982 by Oja (1982) applies projected gradi-
ent descent with rank-one gradient updates. This algo-
rithm is probably the most studied (Chen et al., 1998;
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Yi et al., 2005; Jain et al., 2016; Allen-Zhu and Li,
2017; Henriksen and Ward, 2019; Huang et al., 2021),
and it has been proved to converge under somewhat
general conditions. It also resembles many other meth-
ods in the literature, as can be seen in the following
survey papers (Comon and Golub, 1990; Balzano et al.,
2018).

The Grassmannian Rank-One Subspace Estimation
(GROUSE) (Balzano et al., 2010) algorithm is a
stochastic manifold optimization approach to stream-
ing PCA, which would not in general be equivalent to a
projected gradient algorithm like Oja’s algorithm. The
contribution of this paper is to show that these algo-
rithms are indeed equivalent, in the sense that, fixing
an initialization and step size regimen for one, there
exists a step size regimen for the other that, with the
same initialization, will give identical output at every
iteration of the algorithm. Additionally, our analysis
highlights a minor but key difference between the two
algorithms in their treatment of orthonormality dur-
ing the gradient calculation. These differences suggest
yet another projected gradient algorithm, which was
discussed by Tang (2019) and which we show is also
equivalent to GROUSE and Oja’s algorithm. These
results then allow us to use theory from one algorithm
applied to the other. In this paper we write down two
results that arise because of the equivalence: local con-
vergence guarantees of a variant of Oja’s algorithm for
incompletely observed vectors, and global convergence
guarantees for GROUSE.

2 PROBLEM FORMULATION

The Principal Component Analysis (PCA) problem1

in batch is posed in the following two ways. Suppose
we have n data vectors {xt}nt=1 ⊂ Rd and we model
them as random, zero mean, with a shared covariance
matrix Σ. To learn the top eigenvectors of that covari-
ance, so that we can project the data onto its highest

1Here we have posed the problem of learning the domi-
nant k-dimensional subspace for fixed k. PCA, more gener-
ally, also identifies the relative importance of each principal
component via the eigenvalues.
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variance subspace, we will solve for the subspace U
that maximizes Tr

(
UTΣU

)
, which in finite sample is

approximated by

maximize
U∈Rd×k,UTU=I

Tr
(
UT Σ̂U

)
, (1)

where Σ̂ =
∑n
t=1 xtx

T
t is the sample covariance ma-

trix. We also reach the same objective when we sup-
pose the data are deterministic, and we want to find
a k-dimensional subspace on which we can project the
data and preserve as much of the norm as possible.
Then we may let X =

[
x1 x2 · · · xn

]
and solve:

minimize
U∈Rd×k,UTU=I

∥∥UUTX−X
∥∥2

F
(2)

The two objective functions in (1) and (2) are equiva-
lent2. Both of these problems can be written as a sum
of functions, each of which depends on only one data
point xt:

n∑

t=1

F
(Trace)
t (U) :=

n∑

t=1

Tr(UTxtx
T
t U) , (3)

and in the matrix approximation setting using the de-
composition of the Frobenius norm:

n∑

t=1

F
(Frob)
t (U) :=

n∑

t=1

∥∥UUTxt − xt
∥∥2

2
. (4)

It is therefore natural to think about optimizing these
objectives in the streaming setting using stochastic or
incremental gradient descent (Bertsekas, 2011). In fact
we know from a great deal of work that for this ob-
jective, though it is non-convex, all local minima are
global minima (See our discussion in Section 2.1; we
believe the earliest such result is by Yang (1995)), and
so gradient descent has a chance to converge to a global
minimizer. This is the approach taken by Oja’s algo-
rithm and the GROUSE algorithm.

The Euclidean gradient for the trace objective is read
easily from Eq (3) as

∇UF
(Trace)
t = xtx

T
t U ,

which we can also write as xtw
T
t where since U is

assumed to have orthonormal columns, UTxt = wt

are the weights of the projection of xt onto the span
of U, i.e.,

wt = arg min
w

‖xt −Uw‖22 .

2This equivalence relies on the constraint that the
columns of U are orthonormal. If U is unconstrained,
then the objective in (1) is unbounded, and the two are
not equivalent. It’s an open question as to what other con-
straints might guarantee that the problems are equivalent.

The Euclidean gradient for the Frobenius norm objec-
tive is the same if we impose UTU = I, but if we take
the gradient in Euclidean space before imposing this
constraint we get a different outcome:

∇UF
(Frob)
t = (UUTxt − xt)x

T
t U = −2rtw

T
t ,

where rt is the project residual, i.e., rt = xt −Uwt.
The relationship of the two gradients can be seen as
follows – the second is a restriction of the first to the
tangent space of the Grassmannian G(d, k), the space
of all subspaces of dimension k in Rd (Edelman et al.,
1998, Sec 2.5.3). See more discussion in Appendix A.

2.1 Related Work

Subspace tracking, i.e., the problem of incrementally
updating the principal subspace of streaming data, has
been a problem of interest in a wide range of applica-
tion for several decades. New algorithms are regularly
invented. Oja’s (Oja, 1982; Oja and Karhunen, 1985)
and Krasulina’s (Krasulina, 1969; Karasalo, 1986) al-
gorithms are the oldest to the best of our knowl-
edge, and there was a flurry of activity in the 1980-
90s (Yang and Kaveh, 1988; Smith, 1993; Yang, 1995;
Mathew et al., 1995; Gustafsson, 1998; Hua et al.,
1999; Real et al., 1999; Bischof and Shroff, 1992; Moo-
nen et al., 1992; Stewart, 1992), with continued at-
tention through the modern era where subspace track-
ing is applied in the context of massive data, missing,
or corrupted / adversarially perturbed data (Attal-
lah and Abed-Meraim, 2001; Chatterjee, 2005; Badeau
et al., 2005; Chan et al., 2005; Brand, 2006; War-
muth and Kuzmin, 2008; Doukopoulos and Mous-
takides, 2008; Strobach, 2009; Balzano et al., 2010;
Chi et al., 2013; Arora et al., 2013; Hardt and Price,
2014; De Sa et al., 2015; Nie et al., 2016; Jain et al.,
2016; Ghashami et al., 2016; Zhan et al., 2016; Chan
et al., 2018; Yang et al., 2018; Javed et al., 2018; Tripu-
raneni et al., 2018; Kot lowski and Neu, 2019; Garber,
2019; Tang, 2019). Surveys are found in (Comon and
Golub, 1990; Balzano et al., 2018). Techniques from
optimization such as variance reduction have also been
applied to improve algorithms and convergence guar-
antees (Shamir, 2016; Xu et al., 2018; Arora and Mari-
nov, 2019). Streaming PCA or subspace estimation
can be formulated with updates based on a single vec-
tor at a time or a block of vectors; in this work we
focus on the single vector case.

Oja’s algorithm has long been of theoretical interest,
with results spanning decades proving convergence of
versions of the algorithm (Chen et al., 1998; Balsubra-
mani et al., 2013; Jain et al., 2016; Allen-Zhu and Li,
2017; Li et al., 2016; Henriksen and Ward, 2019; Amid
and Warmuth, 2020; Gemp et al., 2020; Lunde et al.,
2021; Huang et al., 2021; Liang, 2021). Generally for
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Algorithm 1 Oja’s algorithm

1: Given U0, a d × k matrix with orthonormal
columns, 0 < k < d;

2: Given step size scheme ηt > 0;
3: Set t := 0;
4: repeat
5: Define wt := arg minw ‖xt −Utw‖22 = UT

t xt ;
6: Update:

Ût+1 = Ut + ηtxtw
T
t (5)

Ut+1 = Π(Ût+1) (6)

7: t := t+ 1;
8: until termination

this analysis, it is assumed that the stream of data
arises i.i.d., zero mean with covariance Σ, with the
goal of estimating the principal components of Σ. One
reason that Oja’s algorithm is so amenable to analysis
is that its update can be written using only the inde-
pendent data stream xt. We will discuss this in more
detail in Section 4.

With such a wide variety of subspace tracking algo-
rithms in the literature, it has been of great inter-
est to understand the relationships among them. The
work by Wang et al. (2018) carefully studied Oja’s al-
gorithm as well as two other recent variants, GROUSE
(Balzano et al., 2010) and PETRELS (Chi et al.,
2012), with incomplete observations. Given input data
drawn from a stochastic process, each of these algo-
rithms has another stochastic process as its output.
By making several assumptions on the data-generating
process, including that the data are drawn from a low-
rank subspace with i.i.d. coefficients and i.i.d. addi-
tive noise, Wang et al. (2018) identify the determin-
istic function that exactly characterizes the stochastic
processes in the high-dimensional limit as dimension
d → ∞. They make the observation in (Wang et al.,
2018, Thm 1) that this deterministic function is identi-
cal for Oja’s algorithm and GROUSE. In contrast, but
also supporting this observation, our work shows that
the outputs of these algorithms are identical at every
step. Our result holds for finite dimension regardless
of whether the data are from a low-rank model or from
any i.i.d. random process, and regardless of whether
the algorithms even converge. In that sense ours is a
much more general equivalence result than the result
of Wang et al. (2018).

Next we discuss work examining the landscape of the
PCA problem. The following important result was
proven by Yang (1995): Assuming the data are ran-
domly drawn with zero mean and covariance Σ, U

Algorithm 2 GROUSE (Balzano et al., 2010) (with
fully observed data)

1: Given U0, a d × k matrix with orthonormal
columns, 0 < k < d;

2: Given step size scheme θt > 0;
3: Set t := 0;
4: repeat
5: Define wt := arg minw ‖xt −Utw‖22 = UT

t xt;
6: Define pt := Utwt = UtU

T
t xt and rt = xt −

pt = (I−UtU
T
t )xt.

7: Update:

Ut+1 = Ut + (cos(θt‖rt‖‖pt‖)− 1)
pt
‖pt‖

wT
t

‖wt‖

+ sin(θt‖rt‖‖pt‖)
rt
‖rt‖

wT
t

‖wt‖
(7)

8: t := t+ 1;
9: until termination

is a stationary point of E[F (Frob)] if and only if it is
a matrix with orthonormal columns, and with a col-
umn space spanned by k eigenvectors of the sample
covariance matrix Σ (equiv. for E[FTrace] assuming
the orthonormal constraint). Moreover, if λk(Σ) >
λk+1(Σ), i.e., there is a strict eigengap, then all sta-
tionary points are strict saddle points (with at least
one direction of negative curvature) except the global
optimum, where U contains the top-k eigenvectors of
Σ up to an orthonormal transformation. Several re-
cent works have repeated these results and extended
them to more modern settings: where we have finite
samples, data are observed with additive noise, or data
are observed through underdetermined linear measure-
ments (“matrix completion” or “matrix sensing”) (Li
et al., 2019; Ge et al., 2017; Zhu et al., 2021). Land-
scape results are known also for robust subspace re-
covery, despite being both nonconvex and nonsmooth;
locally around the global optima, the landscape is fa-
vorable for gradient methods (Maunu et al., 2019), and
it is possible to initialize to that local region using
PCA.

Recent work on algorithmic equivalence (Zhao et al.,
2021) has highlighted relationships between indepen-
dently derived algorithms. Many of these relationships
have long been understood in the optimization com-
munity, but were often only pointed out as ancillary
to the main contribution. Their approach does not di-
rectly apply to the algorithms we consider, though it
inspires more careful general consideration as future
work. For equivalence of PCA algorithms, Tripura-
neni et al. (2018) has argued that generic Riemannian
SGD is equivalent to Oja’s algorithm up to a correc-
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Algorithm 3 PGF – projected gradient descent on
the Frobenius norm objective

1: Given U0, a d × k matrix with orthonormal
columns, 0 < k < d;

2: Given step size scheme γt > 0;
3: Set t := 0;
4: repeat
5: Define wt := arg minw ‖xt −Utw‖22 = UT

t xt;
6: Define rt = xt −Utwt.
7: Update:

Ût+1 = Ut + γtrtw
T
t (8)

Ut+1 = Π(Ût+1) (9)

8: t := t+ 1;
9: until termination

tion, and the GROUSE algorithm has been proven to
be equivalent to a form of the truncated Incremental
SVD (Bunch and Nielsen, 1978; Balzano and Wright,
2013). In both cases this is without the same flexibil-
ity as in our work to port results in both directions.
Still, the potential of identifying more equivalencies,
and especially of connecting gradient methods to lin-
ear algebraic methods in this area, is very intriguing.

3 ALGORITHMS AND RESULT

The three algorithms we analyze are Oja’s algorithm
(Oja, 1982) given in Algorithm 1, the GROUSE al-
gorithm (Balzano et al., 2010) given in Algorithm 2,
and projected gradient descent on the Frobenius norm
objective given in Algorithm 3, which we abbreviate
PGF. The notation Π(U) represents any function that
outputs an orthonormalization of the columns of U,
e.g., Gram-Schmidt.

Before discussing the algorithmic equivalence we com-
ment on the computational complexity. Step 5 is
shared by all three algorithms and requires O(dk) op-
erations when U has orthonormal columns. The up-
date steps also require O(dk) except for the orthonor-
malization, which requires O(dk2). Given this, it
seems that GROUSE Algorithm 2 is best computation-
ally, since it doesn’t require orthonormalization. How-
ever, there are two caveats to this argument: First,
often with Oja’s algorithm (Algorithm 1) or PGF (Al-
gorithm 3), one doesn’t orthonormalize at every step,
but only periodically to keep the estimate from be-
coming ill-conditioned. Second, if we are dealing with
missing data and looking only at a subset of rows of U
(or generally if we don’t guarantee U is orthonormal
at each step), the least squares computation in Step

5 now requires O(dk2) operations (or O(mk2) opera-
tions where m is the dimension of the observation of
xt). Therefore, in these practical scenarios, the algo-
rithms’ computational complexities are very similar.

We will now discuss the equivalence of all three algo-
rithms. As seen in Appendix A, these algorithms have
only minor differences in their gradient. This then
manifests in the algorithm updates, from which we can
identify a clear geometric reason why the algorithms
are equivalent. Since the gradient update for these in-
cremental algorithms is rank-one, only one direction
of the current subspace iterate Ut will change with an
update step. In all three algorithms, that direction is
updated to be a linear combination of the projection
pt = Utwt of xt onto the current subspace and the
projection residual rt = xt−pt. The step-size is what
dictates the linear combination, and we can tweak the
step sizes of each algorithm so that the updates match
exactly.

We can make this precise as follows. Suppose that all
Ut output by the algorithms at each iteration have
orthonormal columns. Let Z be a k × k orthogonal
matrix, depending on Ut and xt:

Z =
[

wt

‖wt‖ z2 · · · zk
]
, (10)

where wt := arg minw ‖xt − Utw‖22 = UT
t xt and

z2, . . . , zk ∈ Rk are orthogonal to each other and to
wt. This matrix is such that

UtZ =
[
Utwt

‖wt‖ v2 · · · vk
]
,

where vi = Utzi for i = 2, . . . , k. Note that since Ut

has orthonormal columns and Z is a square orthogonal
matrix, span(Ut) = span(UtZ) and the columns of
UtZ are orthonormal.

All three algorithms have an update of the form Ut +
atw

T
t . If we multiply this general form on the right by

Z we get

Ut+1Z = UtZ + atw
T
t Z

=
[
Utwt

‖wt‖ v2 · · · vk
]

+
[
‖wt‖at 0 · · · 0

]
.

So we see in this change of coordinates, only one col-
umn of Ut is being updated, and it will be a linear
combination of Utwt/‖wt‖ = pt/‖wt‖ and at, which
in all three algorithms is a linear combination of pt
and rt.

The geometric picture for all three updates is shown
in Figure 1. Since xt is orthogonal to all directions in
Ut other than pt = Utwt by definition of projection,
we see that the update for all three algorithms takes
place entirely in a plane spanned by pt and rt. In other
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t+1 = Ut �

pt

kptk
wT

t

kwtk
+

yt

kytk
wT

t

kwtk

where yt = cos(✓tkrtkkptk) pt

kptk + sin(✓tkrtkkptk) rt

krtk . Rotating on the right

by Z, and noting pt = Utwt, we have that

Ugrouse
t+1 Z =

h
yt

kytk v2 · · · vk

i
. (16)

Calculations show that Ugrouse
t+1 Z is already a matrix with orthonormal columns

(as expected, since GROUSE is derived with geodesics on the Grassmannian).
Finally, the same manipulation can be applied to PGF. Take first Eq (8):

bUt+1Z = UtZ + �trtw
T
t Z

=
h

Utwt

kwtk v2 · · · vk

i
+
⇥
�tkwtkrt 0 · · · 0

⇤

=
h

Utwt

kwtk + �tkwtkrt v2 · · · vk

i
.

As in Oja’s orthonormalization step in Eq (15),

Upgf
t+1 = ⇧( bUt+1Z) =


1

kwtkUtwt+�tkwtkrt��� 1
kwtkUtwt+�tkwtkrt

���
v2 · · · vk

�
. (17)

It remains only to compute the step size to make these three vectors equal. We
drop the subscript t for the rest of the proof for cleanliness.

1
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��� 1
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���
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kpk + sin(✓krkkpk) r

krk (grouse)

1
kwkUw + �kwkr
��� 1
kwkUw + �kwkr

���
(pgf)

These three vectors are all linear combinations of p = Uw and r, and they are
all on the unit circle in the plane spanned by p and r. So to make them equal,
we can compute the step size so that their angle with Uw is all the same. We
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kwkUw + �kwkr
��� 1
kwkUw + �kwkr

���
(pgf)

These three vectors are all linear combinations of p = Uw and r, and they are
all on the unit circle in the plane spanned by p and r. So to make them equal,
we can compute the step size so that their angle with Uw is all the same. We

6

Figure 1: A cartoon of the three algorithms’ updates,
before projection onto the Grassmannian in the case
of Oja’s algorithm and PGF, with non-equivalent step
sizes. In pink, the data xt, the projection onto the
current subspace iterate pt = Utwt, and the projec-
tion residual rt = xt − pt all lie in the same 2d plane.
The light blue curve illustrates the unit sphere in that
plane. All three algorithm updates lie in this plane.
The difference between algorithm updates lies only in
the choice of linear combination of these vectors, dic-
tated by the choice of step size.

words, the update, i.e. the new direction that replaces
Utwt/‖wt‖ in the subspace estimate, is a norm-1 vec-
tor in this plane. The update for Oja’s algorithm is:

(1 + ηt‖wt‖2)
pt
‖wt‖

+ ηt‖wt‖rt . (11)

The update for the GROUSE algorithm is:

cos(θt‖rt‖‖wt‖)
pt
‖wt‖

+ sin(θt‖rt‖‖wt‖)
rt
‖rt‖

. (12)

And the update for PGF is:

pt
‖wt‖

+ γt‖wt‖rt . (13)

The careful derivation for each of these updates is
found in the proof of the theorem.

Theorem 1. Fix a step size scheme for Oja’s algo-
rithm, ηt, and an initialization U0, a d × k matrix
with orthonormal columns, 0 < k < d. Let wt ∈ Rk×1

be the weights of the projection of data xt onto the
subspace Ut, and let rt = xt − Utwt. Then if one
performs the GROUSE algorithm with step size

θt =
1

‖rt‖‖wt‖
arctan

(
ηt‖rt‖‖wt‖
1 + ηt‖wt‖2

)
, (14)

or projected gradient descent on the Frobenius norm
objective with step size

γt =
ηt

1 + ηt‖wt‖2
, (15)

the iterates of the three algorithms will be identical for
all t in the sense that

span(Uoja
t ) = span(Ugrouse

t ) = span(Upgf
t ) . (16)

Proof. We assume the conclusion is true for t and
prove the spans are the same for t + 1, since all al-
gorithms are initialized with the same U0. Let Z be
as in Eq (10). Consider first the update of Oja’s al-
gorithm in Eq (5), rotated by Z. Here we empha-
size that applying this rotation does not change the
span (span(U) = span(UZ)), and our goal is simply
to prove the span of each iterate is identical in Eq (16).

Ût+1Z = UtZ + ηtxtw
T
t Z

=
[
Utwt

‖wt‖ v2 · · · vk
]

+
[
ηt‖wt‖xt 0 · · · 0

]

=
[
Utwt

‖wt‖ + ηt‖wt‖xt v2 · · · vk
]
.

Now consider the orthogonalization in Eq (6). Since
Utwt is the orthogonal projection of xt onto Ut, by the
orthogonality principle, xt is orthogonal to v2, . . . ,vk.
Therefore Utwt

‖wt‖ +ηt‖wt‖xt is orthogonal to the vi. To

orthonormalize the columns, we must only normalize
Utwt

‖wt‖ + ηt‖wt‖xt:

Uoja
t+1 = Π

(
Ût+1Z

)
(17)

=

[
1
‖wt‖Utwt+ηt‖wt‖xt∥∥∥ 1
‖wt‖Utwt+ηt‖wt‖xt

∥∥∥
v2 · · · vk

]
.

We will now use the same manipulation for the
GROUSE update. First consider the following form
of the update from Eq (7).

Ugrouse
t+1 = Ut −

pt
‖pt‖

wT
t

‖wt‖
+

yt
‖yt‖

wT
t

‖wt‖

where yt = cos(θt‖rt‖‖pt‖) pt

‖pt‖ + sin(θt‖rt‖‖pt‖) rt
‖rt‖

(note that ‖yt‖ = 1 as defined). Rotating on the right
by Z, and noting pt = Utwt, we have that

Ugrouse
t+1 Z =

[
yt

‖yt‖ v2 · · · vk
]
.

Calculations show that Ugrouse
t+1 Z is already a ma-

trix with orthonormal columns (as expected, since
GROUSE is derived with geodesics on the Grassman-
nian).

Finally, the same manipulation can be applied to PGF.
Take first Eq (8):

Ût+1Z = UtZ + γtrtw
T
t Z

=
[
Utwt

‖wt‖ v2 · · · vk
]

+
[
γt‖wt‖rt 0 · · · 0

]

=
[
Utwt

‖wt‖ + γt‖wt‖rt v2 · · · vk
]
.
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As in Oja’s orthonormalization step in Eq (17),

Upgf
t+1 = Π(Ût+1Z) (18)

=

[
1
‖wt‖Utwt+γt‖wt‖rt∥∥∥ 1
‖wt‖Utwt+γt‖wt‖rt

∥∥∥
v2 · · · vk

]
.

It remains only to compute the step size to make these
three vectors equal. We drop the subscript t for the
rest of the proof.

U w
‖w‖ + η‖w‖x

∥∥∥U w
‖w‖ + η‖w‖x

∥∥∥
(oja)

cos(θ‖r‖‖p‖) p

‖p‖ + sin(θ‖r‖‖p‖) r

‖r‖ (grouse)

U w
‖w‖ + γ‖w‖r

∥∥∥U w
‖w‖ + γ‖w‖r

∥∥∥
(pgf)

These three vectors are all linear combinations of p =
Uw and r, and they are all on the unit circle in the
plane spanned by p and r. So to make them equal,
we can compute the step size so that their angle with
Uw is all the same. We start by computing the angle
between Uw and Oja’s update:

arccos




〈
Uw,U w

‖w‖ + η‖w‖x
〉

‖w‖
∥∥∥U w
‖w‖ + η‖w‖x

∥∥∥




= arccos


wTUTU w

‖w‖ + η‖w‖wTUT (Uw + r)

‖w‖
∥∥∥U w
‖w‖ + η‖w‖(Uw + r)

∥∥∥




= arccos


 1 + η‖w‖2∥∥∥(1 + η‖w‖2)U w

‖w‖ + η‖w‖r
∥∥∥




= arccos


 1∥∥∥U w

‖w‖ + η‖w‖
1+η‖w‖2 r

∥∥∥




We will put the other two updates’ angles into the
same form. For GROUSE3:

arccos




〈
Uw, cos(θ‖r‖‖p‖) p

‖p‖ + sin(θ‖r‖‖p‖) r
‖r‖

〉

‖w‖
∥∥∥cos(θ‖r‖‖p‖) p

‖p‖ + sin(θ‖r‖‖p‖) r
‖r‖

∥∥∥




= arccos


 cos(θ‖r‖‖w‖)∥∥∥cos(θ‖r‖‖w‖) Uw

‖w‖ + sin(θ‖r‖‖w‖) r
‖r‖

∥∥∥




= arccos


 1∥∥∥U w

‖w‖ + sin(θ‖r‖‖w‖)
‖r‖ cos(θ‖r‖‖w‖)r

∥∥∥




3We note that the update y = cos(θ‖r‖‖p‖) p
‖p‖

wT

‖w‖ +

sin(θ‖r‖‖p‖) r
‖r‖ is already norm-one, but we use its norm

in the denominator to match the form for the other two
algorithms.

For PGF:

arccos




〈
Uw, 1

‖w‖Uw + γ‖w‖r
〉

‖w‖
∥∥∥ 1
‖w‖Uw + γ‖w‖r

∥∥∥




= arccos


 1∥∥∥U w

‖w‖ + γ‖w‖r
∥∥∥




We may conclude that we must have

η‖w‖
1 + η‖w‖2 =

sin(θ‖r‖‖w‖)
‖r‖ cos(θ‖r‖‖w‖) = γ‖w‖ . (19)

For the theorem’s conclusion, we fix η and have

θ =
1

‖r‖‖w‖ arctan

(
η‖r‖‖w‖

1 + η‖w‖2
)

and
γ =

η

1 + η‖w‖2 .

4 CONSEQUENCES OF
EQUIVALENCE

Now that we have shown that with appropriate ad-
justments of step sizes Oja, GROUSE, and PGF are
equivalent, any existing results on the methods can be
ported to the others. While this is direct, we want to
write two results here so as to help the reader consol-
idate their understanding of the algorithms and bring
everything into common notation.

We first comment that Oja’s algorithm has a benefit
for analysis that the update step can be written as

Ut+1 = (I + ηtxtx
T
t )Ut ,

i.e., as the product of a random i.i.d matrix with the
current iterate. This is actually helpful across iter-
ations too, because as shown by (Allen-Zhu and Li,
2017, Lemma 2.2), for analysis purposes only, one can
wait to do the orthonormalization step of (6) at the
end. This was leveraged by Huang et al. (2021), where
novel matrix concentration for random matrix prod-
ucts was applied. GROUSE and PGF, on the other
hand, use rt in their gradient, which depends itself
on Ut, making every update dependent on the pre-
vious ones. That is in part because GROUSE was
designed for missing data or compressively sampled
data, a context in which this dependence provides a
way to interpolate the full-dimensional vector using
the current subspace estimate. There are more lim-
ited but interesting results for the GROUSE algorithm
(Balzano and Wright, 2015; Zhang and Balzano, 2022,
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2016). We hope that our equivalence result will allow
novel analysis of Oja’s algorithm with missing or com-
pressively sampled data, which has been previously
discussed in (Balzano et al., 2018; Wang et al., 2018).

4.1 Global convergence results

First, we can use the global convergence results of
Oja’s algorithm to prove the convergence of the other
two methods. In the following we restate the re-
sult from Allen-Zhu and Li (2017), which proves or-
der optimal convergence of Oja’s algorithm to the top
eigenspace of the population covariance matrix Σ, and
add convergence guarantees for GROUSE and PGF.
For a more detailed account of the state-of-the-art con-
vergence results on PCA we refer the reader to (Allen-
Zhu and Li, 2017, Table 1).

Theorem 2 (Minor extension of (Allen-Zhu and
Li, 2017), Theorem 1). Suppose we observe an i.i.d.
stream of data vectors xt drawn from a bounded4 dis-
tribution with covariance Σ. Initialize the algorithms
with a matrix drawn from a uniformly continuous dis-
tribution on the Grassmannian5. Let λi be the ith

eigenvalue of Σ, ∆ := λk − λk+1 ∈ (0, 1
k ], and

Λ :=
∑k
i=1 λi ∈ (0, 1]. Then for δ ∈ (0, 1), define

T0 = C0
kΛ

∆2δ2
, T1 = C1

Λ

∆2
,

and let the step size schedule for Oja’s algorithm be

ηt =





C2
1

∆T0
1 ≤ t ≤ T0;

C3
1

∆T1
T0 < t ≤ T0 + T1;

C4
1

∆(t−T0) t > T0 + T1.

where Ci in all cases denotes a function of absolute
constants as well as log( 1

δ ), log( 1
∆ ), and log d, but with

no other dependence on problem parameters6.

Using equation (14), set the step size schedule for

4More precisely, in (Allen-Zhu and Li, 2017), they as-
sume ‖xt‖ ≤ 1 with probability 1, but this can of course
be extended to any bound by adjusting the results.

5The result in (Allen-Zhu and Li, 2017) uses a random
Gaussian matrix, which is possible for Oja’s algorithm be-
cause it does not technically require the initialization to
have orthonormal columns. But this easily extends to a
random matrix with orthonormal columns using standard
high-dimensional probability results (Vershynin, 2018).

6This is in place of the order notation in (Allen-Zhu and

Li, 2017), where Θ̃ hides constants and log dependency on

the mentioned terms, e.g. T0 = Θ̃
(

kΛ
∆2δ2

)
.

GROUSE to be

θt =





1
‖r‖‖w‖ arctan

(
C2‖r‖‖w‖

∆T0+C2‖w‖2
)

1 ≤ t ≤ T0;

1
‖r‖‖w‖ arctan

(
C3‖r‖‖w‖

∆T1+C3‖w‖2
)

T0 < t

≤ T0 + T1;
1

‖r‖‖w‖ arctan
(

C4‖r‖‖w‖
∆(t−T0)+C4‖w‖2

)
t > T0 + T1

and using equation (15), set the step size schedule for
PGF to be

γt =





C2

∆T0+C2‖w‖2 1 ≤ t ≤ T0;
C3

∆T1+C3‖w‖2 T0 < t ≤ T0 + T1;
C4

∆(t−T0)+C4‖w‖2 t > T0 + T1.

Let Q ∈ Rd×(d−k) be a matrix with orthonormal
columns spanning the same space as all the eigenvec-
tors of Σ with eigenvalues no more than λk+1.

Then for ε ∈ (0, 1), and every T = T0 +T1 +C5
T1

ε the
outputs UT ∈ Rd×k of all three algorithms are equal
and satisfy ‖QTUT ‖2F ≤ ε with probability ≥ 1− δ.

This convergence result divides the step size schedule
into three periods. Until time T0 + T1, the step size
does not diminish with t. After that, the step size
diminishes, smoothing the effect of the random gradi-
ents.

Further results by Allen-Zhu and Li (2017) show that
these results can be extended to be “gap-free,” which
means that the error is bounded as ‖PTUT ‖2F ≤ ε,
where P includes only the eigenvectors associated
with eigenvalues of Σ no more than λk − ρ for some
ρ ∈ (0, 1). Additionally they propose a gradual initial-
ization that improves the length of the initial phase
roughly when ε < 1/k.

4.2 Local convergence with compressively
sampled data

Another interesting modern machine learning problem
is that of learning principal components when data
vectors are sampled with a compressive linear sam-
pling operator. This problem is called “low-rank ma-
trix sensing” and has been studied extensively in the
batch setting; see (Recht et al., 2010; Candes and Plan,
2011; Chi et al., 2019). A related problem is low-
rank matrix completion, where the compressive sam-
pling operator samples individual entries of the low-
rank matrix. Several matrix completion algorithms
have guarantees for recovering the underlying compo-
nents in the batch setting (Candès and Recht, 2009;
Keshavan et al., 2010; Koltchinskii et al., 2011; Zil-
ber and Nadler, 2021). For both problems, guarantees
for streaming matrix recovery algorithms are quite few
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and far between (Balzano et al., 2018). The GROUSE
algorithm, which was originally developed to handle
missing data, has local convergence guarantees in both
cases. However, these results assume that Σ is exactly
low-rank, and even further, that the nonzero eigenval-
ues of Σ are all exactly one. Here we state the theorem
for compressively sampled data, and we save the result
for missing data for the supplement.

In order to handle missing or compressively sampled
data, we introduce a m× d linear measurement oper-
ator At to measure each streaming vector. The algo-
rithms must only be altered slightly as follows. Let our
stream of data vectors xt be observed as yt = Atxt,
and we will abuse notation to create xt that is used by
the algorithms:

wt = arg min
a

‖yt −AtUtat‖2 , pt = Utwt

rt = AT
t (yt −AtUtwt) , xt = Utwt + rt .

With these substitutions, the arguments of Theorem 1
still apply. This is the GROUSE algorithm analyzed
by Zhang and Balzano (2022) to have expected local
linear convergence, which we now state formally for all
algorithms.

Theorem 3 (Adapted from (Zhang and Balzano,
2022), Theorem 8 and Corollary 13). Suppose we ob-
serve compressive measurements of an i.i.d. stream
of data vectors xt drawn from a distribution with co-
variance Σ = ŪŪT for some matrix Ū ∈ Rd×k with
orthonormal columns. Let the compressive measure-
ment operator At at each time step be of size m × d
with i.i.d N (0, 1/d) entries, i.e., we observe Atxt. At
time t, let the principal angles φi, i = 1, . . . , k be-
tween Ut and Ū be such that

∑k
i=1 sin2(φi) ≤ ε < 1.

By convention (Golub and Loan, 2012, Section 6.4.3),
0 ≤ φ1 ≤ · · · ≤ φk ≤ 1.

At time t, let the step size of GROUSE be θt =

arctan
(
‖rt‖
‖wt‖

)
, the step size of Oja’s algorithm be

ηt =
tan(θt‖rt‖‖wt‖)

‖rt‖‖wt‖ − ‖wt‖2 tan(θt‖rt‖‖wt‖)
,

and the step size of PGF to be

γt =
tan(θt‖rt‖‖wt‖)
‖rt‖‖wt‖

.

Then all three algorithms’ outputs are equal.

Let κt = 1 − det(ŪTUtU
T
t Ū); κt is small when the

subspaces are close. Then if

m ≥ C6 max{log d+ k, (tan(φk) + k)2}

for absolute constant C6, then with probability at least

1−2/d2−e−k/128 with respect to the random compres-
sive measurement operator At,

E[κt+1] ≤
(

1− 2

3

m

d

1− ε
k

)
κt ,

where expectation is taken with respect to the random
data xt.

This theorem establishes expected linear convergence
in a local region of the planted subspace Ū. This could
be extended to high-probability linear convergence if
the sequence κt were monotonic using e.g. (Richtárik
and Takáč, 2014, Theorem 1), but in general with com-
pressive measurements κt will not be monotonic. More
sophisticated Martingale arguments are more difficult
to apply because of the dependence of the gradient on
Ut, which can potentially be avoided with analysis of
Oja’s algorithm as mentioned before, though the algo-
rithm as described for compressive measurements does
introduce some dependence. The local region requires
that

∑k
i=1 sin2(φi) ≤ ε < 1; we note that this sum

could be as large as k when the initial subspace U0 is
orthogonal to the planted subspace Ū, so the require-
ment is somewhat restrictive. Since the theorem makes
a very strict assumption on the data generation pro-
cess, specifically that Σ = ŪŪT is exactly low-rank,
a step size diminishing with t is not required.

The missing-data version, where At is an operator that
samples a subset of the entries of xt, of Oja’s algo-
rithm was discussed in (Balzano et al., 2018; Wang
et al., 2018) and analyzed in the asymptotic regime
in (Wang et al., 2018). The missing-data version of
the GROUSE algorithm was analyzed in (Balzano and
Wright, 2015; Zhang and Balzano, 2016, 2022), and we
include one such result in the supplement.

5 DISCUSSION AND
CONCLUSION

This paper has proven the equivalence of Oja’s algo-
rithm and the GROUSE algorithm for streaming PCA
and subspace tracking. This equivalence result was
then used to port global convergence results from Oja’s
algorithm to GROUSE, as well as to a variant we called
PGF, which is also equivalent. We were also able to
port local convergence results for compressively sam-
pled vectors from GROUSE to Oja’s algorithm and
PGF.

PCA is used in a wide variety of scientific applica-
tions, and streaming PCA specifically seeks to reduce
the computation and memory footprint of the PCA
computation. If our theory provides insight and al-
lows others to improve streaming PCA algorithms, we
hope it has a positive impact for reducing computa-
tional requirements. An important future direction
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for streaming PCA with missing or compressed data
is to prove global convergence, possibly using ideas
from recent works such as (Ge et al., 2017) that use
regularization to improve algorithmic properties.

There is significant room for improvement and gen-
eralization in this work. As we discussed in the re-
lated work section, there are numerous algorithms for
streaming PCA, and one would not expect researchers
to go through individually and prove equivalence. Pur-
suing a direction similar to (Zhao et al., 2021), that
generalizes the notions of equivalence in algorithms
but applies to non-convex objectives or even PCA
specifically, is of great interest.
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Supplementary Material:
On the equivalence of Oja’s algorithm and GROUSE

A GRADIENT CALCULATIONS

The two objective functions are given as:

Tr(UTXXTU) =

n∑

t=1

Tr(UTxtx
T
t U) =:

n∑

t=1

F
(Trace)
t (U) ,

∥∥UUTX−X
∥∥2

F
=

n∑

t=1

∥∥UUTxt − xt
∥∥2

F
=:

n∑

t=1

F
(Frob)
t (U) .

As we know well, these two objective functions are equivalent when UTU = I. When we first derive the gradients
without enforcing this constraint, we have the following.

∇U

(
n∑

t=1

F
(Trace)
t (U)

)
= ∇U

(
n∑

t=1

Tr(UTxtx
T
t U)

)
= 2

n∑

t=1

xtx
T
t U = 2

n∑

t=1

xtw
T
t

∇U

(
n∑

t=1

F
(Frob)
t (U)

)
=

n∑

t=1

∇U

(
Tr((UUTxt − xt)

T (UUTxt − xt))
)

=

n∑

t=1

∇U

(
xTt UUTUUTxt − 2xTt UUTxt + xTt xt

)

= 2

n∑

t=1

UUTxtx
T
t U + xtx

T
t UUTU− 2xtx

T
t U

= 2

n∑

t=1

ptw
T
t + xtw

T
t (UTU− 2I) .

Now imposing UTU = I results in the gradient used by GROUSE, −2
∑n
t=1 rtw

T
t . It remains an interesting

open question as to what other constraints might guarantee that the problems or their gradient algorithms are
equivalent, such as a constraint on column norms or on Frobenius norm of U.

B EMPIRICAL VALIDATION

While the empirical validation of our results is not especially interesting, we include it for completeness. We
plot a few example runs for d = 100, k = 10 and fully observed vectors. We fixed ηt = 0.01 for Oja’s algorithm
and computed the corresponding Grouse step size θt at every iteration. We plot the error to the true subspace
in Figure 2. The errors (and the subspace estimates) are identical at every iteration. In Figure 3, the planted
subspace varies with time, and again the estimates are identical.

C THEORETICAL DETAILS

In the main paper we provided two theorems without proof, based on existing theorems in the literature. Theorem
2 provided the global convergence of GROUSE and PGF, based on (Allen-Zhu and Li, 2017, Theorem 1). There
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Figure 2: Oja and Grouse performance on a given run with the theoretical step size to make them equivalent. On
the y-axis we plot the error computed as ‖UestU

T
est−UtrueU

T
true‖F over 2000 iterations. The lines overlap exactly.

We also computed the Frobenius norm error between the projection matrices generated by the two algorithms;
the maximum error over all iterations was 2.1553× 10−14.

are no missing pieces for this theorem, as we used the result directly. Theorem 3 provided local convergence of
Oja’s algorithm and PGF, based primarily on (Zhang and Balzano, 2022, Theorem 8), but using other pieces of
that work. Additionally, we only loosely defined the algorithms using compressive measurements. Here we will
flesh out those details.

First we detail the three algorithms with compressive or missing measurements. As in the theorem, the com-
pressive measurement operator of size m× d may be, for example, a matrix with i.i.d N (0, 1/d) entries. But in
general, it could be any sketch that preserves the geometry7 of Ū, the planted subspace in Theorem 3. For the
streaming matrix completion problem, At would have a 1 in each column where that entry of xt is observed,
and a zero otherwise. The updates are easiest to interpret in that case: they are a linear combination of 1) the
predicted projection of the full data onto Ut: pt = Utwt, where wt are the best fit weights given the compressed
measurements, and 2) the residual only on the observed entries Ωt ⊂ {1, . . . , d}:

rt = AT
t (yt −Atpt) =

{
xt(i)− pt(i) i ∈ Ωt

0 otherwise
,

where we have denoted the ith vector entry by xt(i). Once again we can see that all three updates are a linear
combination of these same two vectors, pt and rt, slightly redefined.

Proof of Theorem 3. The paper we are referencing defines a similarity metric ζt = 1− κt as we defined it in the
theorem.

Our result uses the final statement of (Zhang and Balzano, 2022, Theorem 8) with their δ = 1/4. Let β = 10
9/64

and γ1 =
3
4 (1− 1

2

√
m
d )

(1+
√

5 k
m )2

. Let

m ≥ kmax

{
512 log(96d2/k), β

(
tan(φk) +

1

4
k cos(φk)

)(
tan(φk) +

1

4
k cos(φk) +

1

2

)}

then with probability at least 1− 2/d2− e−k/128 with respect to the random compressive measurement operator
At, we have

E[1− κt+1] ≥
(

1 +
1

2γ1

m

d

κt
k

)
(1− κt) ∀t ,

where expectation is taken with respect to the random data xt.

7In other words, it could be any subspace embedding (Martinsson and Tropp, 2020; Woodruff, 2014).
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Figure 3: Oja and Grouse performance in a setting where the planted subspace changes at time 1500, 2000, and
3000. Again this is the outcome on a given run with the theoretical step size to make them equivalent. On the
y-axis we plot the error computed as ‖UestU

T
est − UtrueU

T
true‖F over 5000 iterations. The lines overlap exactly.

To get our statement we first get a larger lower bound for m by seeing that β < 72, k log(96d2/k) = 2 log d +
k log(96), and since cos(φk) ≤ 1 and k ≥ 1,

(
tan(φk) +

1

4
k cos(φk)

)(
tan(φk) +

1

4
k cos(φk) +

1

2

)
< (tan(φk) + k)2 .

To get the expected decrease in κt (as opposed to increase in 1 − κt) we need to rearrange. First plug in γ1 to
see that

E[1− κt+1] ≥
(

1 +
1

2γ1

m

d

κt
k

)
(1− κt) =


1 +

(1 +
√

5 k
m )2

2 3
4 (1− 1

2

√
m
d )

m

d

κt
k


 (1− κt)

=

(
1 +

2

3

(
√
m+

√
5k)2

(d− 1
3

√
md)

κt
k

)
(1− κt) ≥

(
1 +

2

3

m

d

κt
k

)
(1− κt) .

Now we have

E[κt+1] ≤ 1−
(

1 +
2

3

m

d

κt
k

)
(1− κt) =

(
1− 2

3

m

d

1− κt
k

)
κt (25)

We will now use the assumption that
∑k
i=1 sin2(φi) ≤ ε < 1. In the proof of (Zhang and Balzano, 2022, Corollary

13), they show that

1− κt =

k∏

i=1

cos2(φk) ≥ 1−
k∑

i=1

sin2(φi) ≥ 1− ε > 0

which when we substitute into (25) gives

E[κt+1] ≤
(

1− 2

3

m

d

1− ε
k

)
κt .

D MISSING DATA

To handle missing data we need the definition of coherence.
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Definition 1. A subspace spanned by columns in U has coherence parameter µ if

max
i∈{1,...,d}

‖PUei‖22 ≤
µk

d
,

where ei is the ith standard basis vector and PU is the orthogonal projection onto the column space of U.

This definition of coherence has 1 ≤ µ ≤ d
k and can also be applied to a vector. This theorem uses µ(Ū), the

coherence of the true underlying subspace, as well as µ(rt), the coherence of the residual vector. The work in
(Balzano and Wright, 2015) argues that this µ(rt) term is generally observed to be bounded, but they do not
provide the bound; instead they provide an assumption on the bound of µ(rt) supported by empirical evidence.

Theorem 4 (Adapted from (Zhang and Balzano, 2022) Theorem 12). Suppose we observe vectors xt on a subset
of m entries selected uniformly with replacement, whose indices are stored in Ω ⊂ {1, . . . ,m}.

At each time t, let the step size of GROUSE be θt = arctan
(
‖rt‖
‖pt‖

)
, the step size of Oja’s algorithm be

ηt =
tan(θt‖rt‖‖wt‖)

‖rt‖‖wt‖ − ‖wt‖2 tan(θt‖rt‖‖wt‖)
,

and the step size of PGF to be

γt =
tan(θt‖rt‖‖wt‖)
‖rt‖‖wt‖

.

Then all three algorithms’ outputs are equal for all t.

Suppose
∑k
i=1 sin2(φk) ≤ ε. If

m > C7 max
{
kµ(Ū) log(d

√
k), µ(rt)

2 log d, kµ(Ū)µ(rt) log d
}

then with probability at least 1− 3/d2 we have

E[κt+1] ≤
(

1− 1

4

m

d

1− ε
k

)
κt .

This theorem comes almost directly from (Zhang and Balzano, 2022) Theorem 12 and Corollary 13 and our
equivalence Theorem 1. The only adjustment is in the third term for the lower bound on m, where we simplify
a term from kµ(Ū)(1 + 2

√
µ(rt) log d)2 ≤ 9kµ(Ū)µ(rt) log d.
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Algorithm 4 Oja’s algorithm with compressive or missing measurements (Balzano et al., 2018; Wang et al.,
2018)

1: Given U0, a d× k matrix with orthonormal columns, 0 < k < d;
2: Given step size scheme ηt > 0;
3: Set t := 0;
4: repeat
5: Given sampling matrix At ∈ Rm×d and observation yt = Atxt;
6: Define wt := arg minw ‖yt −AtUtw‖22;
7: Define pt := Utwt and rt = AT

t (yt −Atpt).
8: Update:

Ût+1 = Ut + ηt(pt + rt)w
T
t (20)

Ut+1 = Π(Ût+1) (21)

9: t := t+ 1;
10: until termination

Algorithm 5 GROUSE (Balzano et al., 2010; Zhang and Balzano, 2022)

1: Given U0, a d× k matrix with orthonormal columns, 0 < k < d;
2: Given step size scheme θt > 0;
3: Set t := 0;
4: repeat
5: Given sampling matrix At ∈ Rm×d and observation yt = Atxt;
6: Define wt := arg minw ‖yt −AtUtw‖22;
7: Define pt := Utwt and rt = AT

t (yt −Atpt).
8: Update:

Ut+1 = Ut + (cos(θt‖rt‖‖pt‖)− 1)
pt
‖pt‖

wT
t

‖wt‖
+ sin(θt‖rt‖‖pt‖)

rt
‖rt‖

wT
t

‖wt‖
(22)

9: t := t+ 1;
10: until termination

Algorithm 6 PGF with compressive or missing measurements

1: Given U0, a d× k matrix with orthonormal columns, 0 < k < d;
2: Given step size scheme γt > 0;
3: Set t := 0;
4: repeat
5: Given sampling matrix At ∈ Rm×d and observation yt = Atxt;
6: Define wt := arg minw ‖yt −AtUtw‖22;
7: Define pt := Utwt and rt = AT

t (yt −Atpt).
8: Update:

Ût+1 = Ut + γtrtw
T
t (23)

Ut+1 = Π(Ût+1) (24)

9: t := t+ 1;
10: until termination
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