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Abstract

Similarity learning is a general problem to
elicit useful representations by predicting the
relationship between a pair of patterns. This
problem is related to various important pre-
processing tasks such as metric learning, ker-
nel learning, and contrastive learning. A
classifier built upon the representations is ex-
pected to perform well in downstream classi-
fication; however, little theory has been given
in literature so far and thereby the relation-
ship between similarity and classification has
remained elusive. Therefore, we tackle a fun-
damental question: can similarity informa-
tion provably leads a model to perform well
in downstream classification? In this paper,
we reveal that a product-type formulation of
similarity learning is strongly related to an
objective of binary classification. We further
show that these two different problems are
explicitly connected by an excess risk bound.
Consequently, our results elucidate that sim-
ilarity learning is capable of solving binary
classification by directly eliciting a decision
boundary.

1 Introduction

Similarity learning is a learning paradigm (Kulis, 2013)
that builds a pairwise model to predict whether given
paired patterns are similar or dissimilar in the classes
that they belong to. We call such a pair of patterns
pairwise supervision, in contrast to ordinary pointwise
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supervision which binds a class label to a single input
pattern. Pairwise supervision is commonly available in
many domains such as geographical analysis (Wagstaff
et al., 2001), chemical experiment (Eisenberg et al.,
2000), click-through feedback (Davis et al., 2007), com-
puter vision (Yan et al., 2006; Wang and Gupta, 2015),
natural language processing (Mikolov et al., 2013), and
crowdsourcing (Gomes et al., 2012). Notably, feature
representations can be constructed from pairwise super-
vision when it is not straightforward to define meaning-
ful features (Chen et al., 2009; Wang et al., 2009; Kar
and Jain, 2011). This is one of the reasons why simi-
larity learning has been studied extensively—including
metric learning (Xing et al., 2003; Bilenko et al., 2004;
Davis et al., 2007; Weinberger and Saul, 2009; Bellet
et al., 2012; Niu et al., 2014), kernel learning (Cristian-
ini et al., 2002; Bach et al., 2004; Lanckriet et al., 2004;
Li and Liu, 2009; Cortes et al., 2010), and (ε, γ, τ)-good
similarity (Balcan et al., 2008; Wang et al., 2009; Kar
and Jain, 2011; Bellet et al., 2012), with different notion
of similarity and models. In recent studies, a similarity
model is trained that aligns with pairwise supervision
to capture inherent structures of data (Bellet et al.,
2012; Mikolov et al., 2013; Niu et al., 2014; Logeswaran
and Lee, 2018; Saunshi et al., 2019). The learned sim-
ilarity model is expected to help downstream tasks.
Correspondingly, it has been widely used for various
downstream tasks such as classification (Cristianini
et al., 2002; Balcan et al., 2008; Hsu et al., 2019; Saun-
shi et al., 2019; Nozawa et al., 2020), clustering (Brom-
ley et al., 1994; Xing et al., 2003; Davis et al., 2007;
Weinberger and Saul, 2009), model selection (Lanckriet
et al., 2004), and one-shot learning (Koch et al., 2015).

The early theoretical research provided error bounds
on classification based on similarity-based features by
assuming that a given similarity metric is (ε, γ, τ)-
good (Balcan et al., 2008; Wang et al., 2009) (see
related work for the details). Recently, it has been at-
tempted to investigate the relationship between learned
similarity models and downstream classification, in or-
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der to deal with more flexible data structures. Bellet
et al. (2012) proved that features based on a learned
metric are linearly separable under the framework of
(ε, γ, τ)-good similarity. Saunshi et al. (2019) analyzed
how features learned in contrastive learning are mean-
ingful in downstream classification. These results boil
down to two-step learners, which first solve similarity
learning then train classifiers. However, the latter step
often requires as many samples as the former step be-
cause the feature space constructed from the similarity
function often becomes high-dimensional (see Bellet
et al. (2012, Theorem 1) for details).

In this work, we pose a question on what formulation of
similarity learning is directly connected to downstream
classification and reveal that similarity learning with
a model f(x) · f(x′) has a monotonic relationship to
binary classification with a classifier f(x). This inter-
relation provides a new insight that a binary decision
boundary can essentially be obtained with only pairwise
supervision up to label permutation. The post-process
determining correct class assignments once classes are
separated becomes less label-demanding than the pre-
vious formulations (Bellet et al., 2012; Saunshi et al.,
2019). While it is rather straightforward to use point-
wise supervision to determine correct class assignments,
we further found that pairwise supervision is sufficient
for this purpose given that we know the majority class.
Our results are notable in that: (i) we unravel that sim-
ilarity learning enables us to implicitly elicit a binary
decision boundary without any explicit training of clas-
sifiers, and (ii) the post-process is less costly in terms of
pointwise supervision. Specifically, we will see: similar-
ity learning is tied to the binary classification error up
to label permutation (Section 3.1). The post-process to
determine correct class assignments is discussed (Sec-
tion 3.2). As a by-product, we come across a training
method of binary classifiers with only pairwise supervi-
sion (Section 3.3). A finite-sample excess risk bound
is established to connect similarity learning to binary
classification (Section 4). This theoretical finding is
numerically demonstrated (Section 5).

Remark 1 (Multi-class case). Despite that our main
result (Theorem 1) is limited to the binary case, we can
apply our training method (described in Section 3.3) in
the multi-class case by the one-vs-rest approach: given
C classes, our training method can provide an one-vs-
rest classifier for class i ∈ [C] from pairwise supervision
treating [C]\{i} as a single class. Kar and Jain (2011)
took the same one-vs-rest approach to first automati-
cally construct feature representations from similarity
information, and then train the one-vs-rest multi-class
classifier with pointwise labels. This approach is valu-
able in the domains where samples are not immediately
accessible in a Euclidean space yet sophisticated distance
metrics have been developed, such as graphs, sequences,

and logics. See Ontañón (2020) and references therein
for many examples. Nevertheless, we do not have any
theoretical grounding of this approach so far.

Related work. We review several variants of simi-
larity models used in existing literature.

(A) Reliable similarity. This line of work regards two
data as similar if the associated labels are the same.
Our study and Bellet et al. (2012) belong to this cate-
gory. Zhang and Yan (2007) proposed a method to de-
compose a model predicting pairwise labels into point-
wise classifiers and analyzed the consistency of the
model parameters. Hsu et al. (2019) have recently
extended to the multi-class setup without theoretical
justification yet. In parallel, other research solved
classification with pairwise supervision by minimiz-
ing unbiased classification risk estimators (Bao et al.,
2018; Shimada et al., 2021; Cui et al., 2020). Their ap-
proaches are blessed with generalization error bounds,
while their performance deteriorates when the class-
prior probability is close to uniform. Note that even
the reliable similarity can handle mild noise in pairwise
supervision (Remark 3). Recently, Tosh et al. (2021)
revealed that pairwise supervision is sufficient to re-
cover topic distributions under certain topic modeling
assumptions.

(B) Noisy similarity. In this category, it is assumed
that pairwise supervision aligns to the classes poten-
tially with explicit noise. For example, negative sam-
ples in contrastive learning are usually drawn from the
marginal distribution, hence they could be false nega-
tives. Recently, Chuang et al. (2020) used techniques of
unbiased risk estimators to improve the quality of nega-
tives. Further, contrastive learning often assumes that
similar pairs share the same latent category, which can
be different from downstream supervised classes. Since
contrastive learning is usually unsupervised, the super-
vised classes could be a subset or coarse-grained set of
latent categories (Saunshi et al., 2019). Other research
modeled annotation errors in pairwise supervision (Wu
et al., 2020; Dan et al., 2021).

(C) Relaxation of positive-definite kernels. Balcan
et al. (2008) introduced (ε, γ, τ)-good similarity to relax
positive-definiteness of kernel functions, which supposes
that a good similarity function is useful for downstream
linear classification. Much research in this framework
has been interested in classification given features based
on this weak similarity and derived classification er-
ror bounds (Balcan et al., 2008; Wang et al., 2009;
Kar and Jain, 2011). Note that Bellet et al. (2012)
assume reliable similarity as supervision and trains a
similarity model while they train the model based on
(ε, γ, τ)-good similarity.
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2 Problem setup

Let X ⊆ Rd be a d-dimensional pattern space, Y =
{±1} be the label space, and p(x, y) be the density
of an underlying distribution over X × Y. Denote the
positive (negative, resp.) class prior by π+ := p(y =
+1) (π− := p(y = −1), resp.). Let sign(α) = 1 for
α > 0 and −1 otherwise. Op(·) denotes the order in
probability.

Binary classification. The goal of binary classifi-
cation is to classify unseen patterns into two classes.
It can be formulated as a problem to find a classifier
h : X → Y that minimizes

Rpoint(h) := E
(X,Y )∼p(x,y)

[1{h(X) ̸= Y }] , (1)

where 1{·} is the indicator function and E(X,Y )∼p(x,y)[·]
denotes the expectation with respect to p(x, y). Typ-
ically, we specify a hypothesis class H beforehand
and find a minimizer h∗ of Rpoint in it: h∗ ∈
argminh∈HRpoint(h). The empirical mean of Rpoint

is computed with finite samples.

Similarity learning. There are a variety of for-
mulations of similarity learning such as (i) predict-
ing whether a pair of patterns belong to the same
class (Zhang and Yan, 2007; Bellet et al., 2012; Hsu
et al., 2019), (ii) learning a metric that regards a similar
pair of patterns closer (Bilenko et al., 2004; Davis et al.,
2007; Niu et al., 2014; Vogel et al., 2018), and (iii) learn-
ing a metric/representation that represents a similar
pair more closer than background samples (Wang et al.,
2009; Kar and Jain, 2011; Saunshi et al., 2019). Specif-
ically, we focus on the formulation (i) in the binary
setup, which has a direct connection to classification
(see Section 3). Hereafter, we suppose that a pair of
(x, y) and (x′, y′) is independent of each other. Let
η±1(x) := p(Y = ±1|X = x). Assume that X = x and
X ′ = x′ are observed first and pairwise supervision T
is drawn from

p(T =Y Y ′|x,x′)

=

{
η+1(x)η+1(x

′) + η−1(x)η−1(x
′) if Y Y ′ = +1,

η+1(x)η−1(x
′) + η−1(x)η+1(x

′) if Y Y ′ = −1.

The product Y Y ′ indicates whether Y and Y ′ are the
same/similar (+1) or not/dissimilar (−1). Then, we
are interested in the minimizer of the following classifi-
cation error

Rpair(h) := E
X,X′∼p(x)

T∼p(T=Y Y ′|x,x′)

[1{h(X) · h(X ′) ̸= T}] . (2)

Here, the model h(x) · h(x′) is regarded as a similar-
ity model so that we predict label agreement. We

call Rpoint the pointwise classification error and Rpair

the pairwise classification error. The empirical mean
of Rpair is computed with a finite number of triplets
(x,x′, yy′). We will discuss several benefits of the for-
mulation (2) in Section 3.4.

Remark 2 (Similarity as features). Similarity-based
features are often used in domains where Euclidean
features are unavailable (Chen et al., 2009; Wang et al.,
2009). Under such a case, similarity-based features may
be treated as x instead: given a number of “landmark”
points {z1, . . . ,zl}, a similarity function K defines
similarity-based features [K(x, z1), . . . ,K(x, zl)]

⊤ for
an input x. Our formulation assumes that x is available
for simplicity but can be replaced with similarity-based
features.

Remark 3 (T is not a hard similarity label). Even if
Y = Y ′ = +1 (similar) with high probability, we could
observe T = −1 (dissimilar) with some probability.
Assume η+1(x), η+1(x

′) ∈ ( 12 , 1). Then, the flipping
rate p(T = −1|x,x′) lies in (0, 12 ). This means that
observed pairwise supervision could be flipped stochasti-
cally under our similarity model. We expect that this
generality is useful to handle annotation noise in pair-
wise supervision.

3 Learning a binary classifier with
pairwise supervision

We draw a connection between the specific formulation
of similarity learning (2) and binary classification (The-
orem 1). This linkage enables us to train a pointwise
binary classifier with pairwise supervision (Section 3.3).
All proofs hereafter are deferred to Appendix A.

3.1 Connection between similarity learning
and classification

We first introduce a performance metric for binary
classification called the clustering error that quantifies
the discriminative power of a classifier up to label
permutation:1

Rclus(h) := min{Rpoint(h), Rpoint(−h)}. (3)

Here, Rclus is used as an evaluator of binary classifiers,
though usually used for the evaluation of clustering
methods (Fahad et al., 2014). The clustering error
differs from Rpoint in that it dismisses the difference
between +h and −h, yet a binary decision boundary
is still evaluated properly. The clustering error Rclus

can be tied to the pairwise classification error Rpair as
follows, which is our primary result.

11−Rclus is known as clustering accuracy (Fahad et al.,
2014). The number of clusters is confined to two for our
purpose.
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Theorem 1. For any classifier h : X → Y, 0 ≤
Rpair(h) ≤ 1

2 , and

Rclus(h) =
1

2
−
√
1− 2Rpair(h)

2
. (4)

An immediate corollary is the monotonic relationship
Rclus(h1) < Rclus(h2) ⇐⇒ Rpair(h1) < Rpair(h2)
for any h1 and h2. Hence, the minimization of Rpair

amounts to the minimization of Rclus, constituting
a decision boundary. That is, similarity learning
can essentially discover a binary decision boundary.
While similarity learning has previously been connected
to downstream classification via intermediate feature
spaces (Bellet et al., 2012; Saunshi et al., 2019; Nozawa
et al., 2020), our result is the first to explicate that
similarity learning is directly related to constructing a
decision boundary.

Surrogate risk minimization. Here, we discuss
surrogate losses for similarity learning. We define
a hypothesis class by H = {sign ◦f | f ∈ F}, where
F ⊆ RX is a specified class of prediction functions and
sign ◦f(·) := sign(f(·)). Theorem 1 suggests that we
may minimize Rclus by minimizing Rpair instead. As
in the standard binary classification case, the indicator
function appearing in Rpair is replaced with a surrogate
loss ℓ : R×Y → R≥0 since it is intractable to minimize
a discrete objective (Bartlett et al., 2006). Eventually,
the pairwise surrogate risk

Rℓ
pair(f) := E

X,X′,T
[ℓ(f(X)f(X ′), T )] (5)

is minimized. If ℓ is classification-calibrated (Bartlett
et al., 2006), the minimization of Rℓ

pair is expected to
lead to minimizing Rpair as well.2 This will be justified
by Lemma 1 in Section 4.

As we will discuss in Section 3.4, the formulation (5) can
be related to several existing formulations in similarity
learning in terms of the surrogate loss.

3.2 Determination of correct sign of classifiers

For a given hypothesis h, we are now interested in its
sign, i.e., +h or −h, leading to a smaller pointwise
classification error. We refer to this step as class as-
signment. The optimal class assignment is denoted by
s∗ := argmins∈{±1}Rpoint(s · h). We consider two sce-
narios. Under both, class assignment is much cheaper
in supervision than training the post-hoc linear separa-
tors.

2If a surrogate loss ℓ is classification-calibrated, the
minimization of the surrogate classification risk leads to
minimizing the target classification error Rpoint. The precise
definition can be found in Bartlett et al. (2006). Typical
loss functions such as the logistic and hinge losses are
classification-calibrated.

Class assignment with pointwise supervision. If
pointwise supervision is available, we can determine
the class assignment by minimizing the pointwise clas-
sification error Rpoint computed with the additional
data. This procedure admits the exponentially small
sample complexity (Zhang and Yan, 2007).

Class assignment without pointwise supervision.
Here, we further ask if it is possible to obtain the correct
class assignment without any class labels. Surprisingly,
we find that this is possible if the positive and negative
proportions are not equal and we know which class is
the majority. Based on the equivalent expression of
Rpoint (Shimada et al., 2021), this finding is formally
stated in the following theorem.

Theorem 2. Assume that the class prior π+ ̸= 1
2 .

Then, the optimal class assignment s∗ can be repre-
sented as s∗ = sign(2π+ − 1) · sign(1− 2Q(h)), where

Q(h) := E
X,X′,T

[
1 {h(X) ̸= T}+ 1 {h(X ′) ̸= T}

2

]
.

We approximate Q with a finite number of pairs. As we
will see in Lemma 3 in Section 4, the class assignment
error is exponentially small in the number of pairs.

Remark 4 (Necessity of Q(h)). If we know which
class is the majority, class assignment may look pos-
sible at a glance by simply looking at the average of
h(x) with unlabeled validation data, instead of The-
orem 2. Unfortunately, this does not always succeed
even asymptotically (discussed in Appendix B).

3.3 Learning a binary classifier with only
pairwise supervision is possible

As a by-product of Theorems 1 and 2, the following
two-stage method can train a pointwise classifier with
only pairwise supervision. Assume that the class prior
is not 1

2 and the majority class is known. Let Dtrain :=
{(xi,x

′
i, τi)}

npair

i=1 be a training set, where τi := yiy
′
i and

(xi, yi) and (x′
i, y

′
i) are i.i.d. samples following p(x, y).

We randomly divide npair pairs in Dtrain into two sets
D1 and D2, where |D1| = m1 and |D2| = m2 satisfying
m1 +m2 = npair.3

In Step 1, we obtain a minimizer of the empirical
pairwise classification risk with D1:

f̂ := argmin
f∈F

R̂ℓ
pair(f), (6)

where R̂ℓ
pair is the sample mean of Rℓ

pair with D1. In

3The independent two sets are necessary otherwise er-
rors of Steps 1 and 2 correlate, which leads to overfitting.
Technically, they are required because Theorem 3 relies on
the union bound.
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Step 2, we assign classes with sign ◦f̂ and D2:

ŝ := sign(2π+ − 1) · sign(1− 2Q̂(sign ◦f̂)), (7)

where Q̂ is the sample mean of Q with D2. After
all, ŝ · sign ◦f̂ is a desideratum. If class assignment is
not necessary and just separating test patterns into
two disjoint groups is the goal, we may simply set
m1 = npair and omit Step 2 of finding ŝ.
Remark 5 (Case of π = 1

2 ). With only pairwise su-
pervision, class assignment is hopeless because both
classes are essentially symmetric, while it is still pos-
sible to draw a decision boundary. Class assignment
with pointwise supervision is still possible.

3.4 Benefits of our formulation over existing
similarity learning

We reiterate that similarity learning in our formulation
directly elicits a boundary without the post-process
in contrast with Bellet et al. (2012)—their method
needs to train a classifier built on top of the learned
similarity metric in the post-process, which incurs ad-
ditional sample complexity Op(m

−1/2). Table 1 pro-
vides an overview of the comparison with related work.
We remark that the sample complexity of SLLC is
transformed into the complexity in terms of paired
data (Step 1) from the original complexity in pointwise
data (Bellet et al., 2012, Theorem 3).4 While our Step 1
is worse than SD, our formulation is valid even when
π+ = 1

2 with pointwise supervision. Subsequently, we
discuss the other perspectives of our formulation.

Generalization in terms of surrogate losses. Sev-
eral existing formulations can be related to our for-
mulation (5). Kernel alignment (Cristianini et al.,
2002) learns a kernel K approximating a similarity ma-
trix K∗ of labels by maximizing the cosine similarity

⟨K,K∗⟩√
∥K∥·∥K∗∥

, where ⟨K,K∗⟩ is the Frobenius inner prod-

uct of the Gram matrices. If the product f(x) ·f(x′) is
used as a kernel, kernel alignment is equivalent (up to
the normalization factor

√
∥K∥∥K∗∥) to minimizing

Eq. (5) with the linear loss ℓlin(z, t) := −zt. On the
other hand, metric learning based on (ε,γ,τ)-good simi-
larity (Balcan et al., 2008) regards a similarity function
inducing a good linear separator as a good similarity.
Here, the linear separability is defined via the hinge loss
ℓhinge(z, t) := [1− zt]+. Bellet et al. (2012) formulated
learning a bilinear similarity x⊤Ax′ by minimizing the
hinge loss, which is equivalent to the minimization of

4Given m pointwise data, O(m2) pairs can be gener-
ated and thereby the sample complexity is transformed.
Strictly speaking, the generated O(m2) points are not in-
dependent of each other. Nevertheless, the convergence
rate would remain the same by using the error bound with
interdependent data (Usunier et al., 2005).

Eq. (5) with ℓhinge and the choice A = ww⊤ such that
f(x) = w⊤x. In other words, we posit the rank-1 sim-
ilarity model in order to have Theorem 1. In addition
to these examples, the InfoNCE loss used in recent
contrastive learning (van den Oord et al., 2018) can be
regarded as the (multi-sample counterpart of) logistic
loss ℓlog(z, t) := log(1 + e−zt).

Thanks to this generalization, subsequent analysis sys-
tematically connects these existing formulations to
downstream classification under the model assumption.

Explicit relation to classification. Hsu et al.
(2019) formulated similarity learning in a slightly dif-
ferent way, as maximum likelihood estimation of the
pairwise label Sτ := τ+1

2 :5

min
f∈F

1

m1

∑
(x,x′,τ)∈D1

−Sτ log(q̃(f(x), f(x
′))

− (1− Sτ ) log(1− q̃(f(x), f(x′))),

(8)

where q̃(z, z′) :=
[

q(z)
1−q(z)

]⊤ [
q(z′)

1−q(z′)

]
is the inner prod-

uct of two binary probability vectors, and q(z) :=
(1 + exp(−z))−1 denotes the (inverse) logit link. On
the other hand, our formulation (6) with the logistic
loss ℓlog(z, t) = −St log(q(z))− (1−St) log(1− q(z)) is

min
f∈F

1

m1

∑
(x,x′,τ)∈D1

−Sτ log(q(f(x) · f(x′)))

− (1− Sτ ) log(1− q(f(x) · f(x′))).

(9)

In the formulation (8), similarity is defined by the in-
ner product of class probabilities, while it is defined
by the inner product of f in the formulation (9). The
latter definition is often called the inner product sim-
ilarity (IPS) model (Okuno and Shimodaira, 2020).6
While both are valid similarity learning methods, the
IPS model (9) has several benefits: one can choose
arbitrary loss functions,7 and besides, the pairwise clas-
sification risk minimization (6) admits an excess risk
bound (Lemma 1 in Section 4). For this reason, we call
our formulation CIPS (Classifier with Inner Product
Similarity) from now on.

5The multi-class formulation in Hsu et al. (2019) was
simplified in binary classification here for comparison.

6The IPS model originally defined similarity between two
vector data representations, hence is called inner product
similarity. Yet, the IPS model is applied on one-dimensional
prediction f(x) in our context. The IPS model has been
used in several domains (Tang et al., 2015; Logeswaran and
Lee, 2018; Saunshi et al., 2019; Okuno and Shimodaira,
2020).

7The formulation (8) can be extended from maximum
likelihood estimation by using an arbitrary proper scoring
rules (Gneiting and Raftery, 2007), but non-proper losses
such as the hinge loss cannot be used.
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Table 1: Comparison of closely related methods to train classifiers with pairwise supervision. They assume the availability
of reliable similarity (see Section 1). The column “π+ = 1

2
” shows whether the formulation is valid under π+ = 1

2
. In

sample complexity, m denotes the number of paired data in Step 1, and either paired or pointwise data in Step 2. The
sample complexity analysis of Step 1 is with respect to either pointwise classification or clustering error. To make the
comparison proper, we assume that the hinge loss is used and eventually ψ-transform is ψ(u) = u. This is detailed in
Section 4 (Discussion).

Sample complexity of

π+ = 1
2

Similarity learning
(Step 1)

Post-process
(Step 2) Comment

CIPS (Ours) ✓ Op(m
− 1

4 )
(Lemma 2 in §4)

Op(e
−m)

(Lemma 3 in §4) Step 2 is class assignment.

OVPC
(Zhang and Yan, 2007) ✓ (N/A) Op(e

−m)
Step 2 is class assignment. Step 1
was shown to be consistent
but complexity is not known.

SLLC
(Bellet et al., 2012) ✓ Op(m

− 1
4 ) Op(m

− 1
2 ) Step 2 is SVM training.

MCL
(Hsu et al., 2019) ✓ (N/A) (N/A)

Inner product of classifiers is fitted in
Step 1. Sample complexities have yet
to be known.

SD
(Shimada et al., 2021) – Op(m

− 1
2 ) (unnecessary) Step 1 trains classifiers directly.

4 Excess risk and sample complexity
analysis

In this section, we provide the sample complexity anal-
yses of CIPS in Table 1 and the excess risk bound to
claim that CIPS does solve binary classification.

Let f̂ and ŝ be the solutions of Eqs. (6) and (7), respec-
tively. The target excess risk for similarity learning is
denoted by

Erpoint(ŝ · sign ◦f̂) := Rpoint(ŝ · sign ◦f̂)−R∗
point,

where R∗
point := inf

f
Rpoint(sign ◦f), and inf

f
indicates

the infimum over all measurable functions. In addition,
we introduce notation for the other excess risks:

Erclus(sign ◦f) := Rclus(sign ◦f)−R∗
clus,

Erpair(sign ◦f) := Rpair(sign ◦f)−R∗
pair,

Erℓpair(f) := Rℓ
pair(f)−Rℓ,∗

pair,

where R∗
clus := inf

f
Rclus(sign ◦f). R∗

pair and Rℓ,∗
pair

are defined as the infima over all measurable func-
tions similarly. To derive the excess risk bound on
Erpoint(ŝ·sign ◦f̂), we need to handle errors of clustering
error minimization and class assignment independently,
which will be shown in Lemmas 2 and 3, respectively.
An important insight to combine two errors is that if
the class assignment is successful, Erpoint(ŝ · sign ◦f̂) is
equivalent to the excess risk of clustering error mini-
mization. That is to say,

ŝ = argmin
s∈{±1}

Rpoint(s · sign ◦f̂)

=⇒ Erpoint(ŝ · sign ◦f̂) = Erclus(sign ◦f̂).
(10)

To bound Erclus(sign ◦f̂), we use the Rademacher com-
plexity (Bartlett and Mendelson, 2002) specifically de-
fined on the class {(x,x′) 7→ f(x) · f(x′) | f ∈ F}

Rm(F) := E
Xi,X′

i

[
sup
f∈F

1

m

m∑
i=1

σif(Xi) · f(X ′
i)

]
,

where {σi}mi=1 are the Rademacher variables. Before
obtaining an excess risk bound of Rclus, we need to
bridge the excess risk Erpair and the surrogate Erℓpair.

Lemma 1. For a classification-calibrated loss ℓ
(Bartlett et al., 2006), then there exists a convex, non-
decreasing, and invertible ψ : [0, 1] → [0,+∞) such that
for any sequence (ui) in [0, 1],

ψ(ui) → 0 if and only if ui → 0

and for any measurable function f and probability dis-
tribution on X × Y,

ψ(Erpair(sign ◦f)) ≤ Erℓpair(f).

Although the similar result to Lemma 1 has already
been known for Rpoint (Bartlett et al., 2006, Theo-
rem 1), the proof for Rpair requires special care to treat
the product of prediction functions properly.

Then, the excess risk bound for Rclus is derived based
on Lemma 1 and the uniform bound.

Lemma 2. Let f∗ ∈ F be a minimizer of Rℓ
pair, and

f̂ ∈ F be a minimizer of R̂ℓ
pair defined in Eq. (6).

Assume that ℓ(·,±1) is ρ-Lipschitz (0 < ρ <∞), and
that ∥f∥∞ ≤ Cb for any f ∈ F for some Cb. Let Cℓ :=
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supt∈{±1} ℓ(C
2
b , t). For any δ > 0, with probability at

least 1− δ,

Erclus(sign ◦f̂)

≤

√√√√1

2
ψ−1

(
Erℓpair(f

∗) + 4ρRm1
(F) +

√
2C2

ℓ log
2
δ

m1

)
.

Next, the class assignment error probability using pair-
wise supervision is analyzed.

Lemma 3. Assume that π+ ̸= 1
2 . Let ŝ be the solution

defined in Eq. (7). Then, we have

Pr
(
ŝ ̸= argmin

s∈{±1}
Rpoint(s · sign ◦f̂)

)
≤ exp

(
− m2

2
(2π+ − 1)2

(
2Rpoint(sign ◦f̂)− 1

)2)
.

Several observations from Lemma 3 follow. As π+ → 1
2 ,

the upper bound becomes looser. This comes from the
fact that the estimation of the pointwise classification
error with pairwise supervision becomes more difficult
as π+ → 1

2 (Shimada et al., 2021). Moreover, the
discriminability of function f̂ , i.e., Rpoint(sign ◦f̂), ap-
pears in the inequality and thus it is directly related to
the error rate. Intuitively, if a given function classifies
a large portion of data correctly, the optimal sign can
be identified easily.

Finally, an overall excess risk bound is derived by com-
bining Lemmas 2, 3, and the fact (10). Let Erpoint(h)
denote the excess risk Rpoint(h)−R∗

point.

Theorem 3. Suppose that we have π+ ̸= 1
2 . Let r :=

exp(−m2

2 (2π+−1)2(2Rpoint(sign ◦f̂)−1)2). Under the
same assumptions as Lemma 2, for any δ > r, with
probability at least 1− δ,

Erpoint(ŝ · sign ◦f̂)

≤

√√√√1

2
ψ−1

(
Erℓpair(f

∗) + 4ρRm1
(F)+

√
2C2

ℓ log
2

δ−r

m1

)
.

In the proof of Theorem 3, the surrogate excess risk
Erℓpair(f̂) is decomposed into the estimation error and
the approximation error Erℓpair(f

∗). If Rm1
(F) = o(1),

the estimation error asymptotically vanishes and the
upper bound approaches to the approximation error in
probability. Under this condition, similarity learning
successfully minimizes our desideratum Erpoint, with
a flexible enough F entailing the small approximation
error. For example, linear-in-parameter model F ={
f(x) = w⊤ϕ(x) + b

}
satisfies Rm1(F) = O(m1

− 1
2 )

as shown in Kuroki et al. (2019, Lemma 5), where
w ∈ Rk and b ∈ R are weights and bias parameters

and ϕ : Rd → Rk are mapping functions. Note that our
result is stronger than Zhang and Yan (2007) because
they only provided the asymptotic convergence, while
Theorem 3 provides a finite sample guarantee.

Discussion. Since class assignment admits the expo-
nential decay of the error probability (Lemma 3) under
the moderate condition (π+ ̸= 1

2 ), we may setm2 ≪ m1

in practice. In contrast, our excess risk bound of clus-
tering error minimization (Lemma 2) is governed in
part by ψ. The explicit rate depends on specific choices
of loss functions: e.g., the hinge loss gives ψ(u) = u,
and under the assumption Rm1

(F) = O(m1
− 1

2 ), the
explicit rate is Op(m1

− 1
4 ).8 This rate is no slower

than the pointwisely supervised case Op(m
− 1

2 ) because
O(m2) pairwise supervision can be generated with m
pointwise labels.

Note again that CIPS assumes π+ ̸= 1
2 only in class

assignment (Step 2 & Lemma 3), not in clustering error
minimization (Step 1 & Lemma 2). This is a subtle
but notable difference from earlier similarity learning
methods based on unbiased classification risk estima-
tors, which requires π+ ̸= 1

2 even in risk minimization
(see Shimada et al. (2021)).

Our excess risk bound (Theorem 3) resembles transfer
bounds among binary classification, class probability
estimation (CPE), and bipartite ranking. Narasimhan
and Agarwal (2013) reduced classification and CPE
to ranking and showed that the excess risks of both
classification and CPE can be upper-bounded by that
of ranking. As can be seen in Narasimhan and Agar-
wal (2013), the excess risk of classification/CPE slows
down to be O(λ(m)−

1
2 ) suppose that the excess risk

of ranking is λ(m). The same decay is observed in
Theorem 3 as well, reducing classification to similarity
learning. This decay O((·)− 1

2 ) can be regarded as a
cost arising from problem reduction.

5 Experiments

This section shows simulation results to confirm our
findings: ⟨♣⟩ the sample complexity of the clustering er-
ror minimization via similarity learning (Lemma 2), ⟨♡⟩
the class-prior effect in similarity learning (Discussion
in Section 4), and ⟨♠⟩ class assignment without point-
wise supervision (Lemma 3). In addition, we compared
with baselines using benchmark and real-world datasets
(PubMed-Diabetes). All experiments except PubMed-
Diabetes were carried out with 3.60GHz Intel® CoreTM

i7-7700 CPU and GeForce GTX 1070. Experiments
8As another example, the logistic loss gives ψ(u) =

Ω(u2), entailing the explicit rate Op(m1
− 1

8 ) for the ex-
cess risk bound (Lemma 2). For more examples of ψ, see
Steinwart (2007, Table 1).
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Figure 1: (left) Mean clustering error and standard error (shaded
areas) over 20 trials on MNIST. (right) Mean clustering error and
standard error (shaded areas) over 10 trials on MNIST.
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Figure 2: ⟨♠⟩ Classification error for each
threshold classifier (upper) and the error
probability of the proposed class assign-
ment method over 10,000 trials (bottom)
on the synthetic Gaussian dataset with
π+ = 0.1

Table 2: Mean clustering error and standard error on different benchmark datasets over 20 trials. Bold numbers indicate
outperforming methods (excluding SV): among each configuration, the best one is chosen first, and then the comparable
ones are chosen by one-sided t-test with the significance level 5%.

dataset
m CIPS (Ours) MCL SD OVPC SSP CKM KM (SV)(dim., π+)

adult 100 39.8 (1.6) 38.4 (2.1) 30.8 (0.9) 45.0 (0.9) 24.7 (0.3) 28.9 (0.8) 24.9 (0.5) 21.9 (0.4)
(123, 0.24) 1000 17.6 (0.3) 17.2 (0.3) 20.5 (0.3) 45.5 (0.7) 24.2 (0.3) 27.9 (0.4) 27.9 (0.5) 15.9 (0.3)

codrna 100 24.7 (1.8) 32.3 (1.4) 28.0 (1.3) 32.0 (2.0) 45.5 (1.5) 46.7 (0.6) 42.5 (1.0) 11.0 (0.6)
(8, 0.33) 1000 6.3 (0.2) 6.5 (0.2) 8.8 (0.4) 28.3 (2.0) 44.8 (1.6) 46.1 (0.4) 45.4 (0.6) 6.3 (0.2)

ijcnn1 100 16.6 (2.3) 24.9 (2.9) 10.7 (0.3) 41.1 (1.1) 31.6 (2.0) 40.0 (1.3) 31.9 (2.4) 9.1 (0.2)
(22, 0.10) 1000 7.7 (0.2) 7.9 (0.2) 8.1 (0.2) 42.0 (1.4) 34.9 (1.7) 45.9 (0.8) 43.4 (0.7) 7.6 (0.2)

phishing 100 12.7 (2.3) 12.8 (2.3) 34.6 (1.8) 41.7 (1.0) 46.6 (0.5) 24.4 (3.4) 47.0 (0.5) 7.6 (0.2)
(44, 0.68) 1000 6.5 (0.2) 6.3 (0.2) 22.0 (1.0) 43.8 (1.1) 45.5 (0.5) 15.2 (2.7) 46.4 (0.5) 6.3 (0.2)

w8a 100 31.5 (1.9) 31.4 (2.1) 11.8 (0.3) 39.7 (1.4) 5.3 (1.2) 6.8 (1.9) 5.5 (1.3) 10.3 (0.4)
(300, 0.03) 1000 2.6 (0.2) 2.2 (0.1) 2.6 (0.2) 43.1 (0.8) 3.0 (0.1) 8.9 (2.6) 3.7 (0.5) 2.0 (0.1)

Table 3: Mean clustering error and standard error on
Pubmed-Diabetes dataset over 20 trials. Bold numbers
indicate outperforming method (excluding SV): chosen by
the one-sided t-test in the same way as Table 2.

CIPS (Ours) MCL DML (SV)

86.9 (0.4) 86.6 (0.4) 85.1 (0.2) 94.7 (0.1)

on PubMed-Diabetes were carried out with 1.40GHz
Intel® Xeon PhiTM 7250. Full results are included in
Appendix E. All simulation codes are available in the
supplementary material.

Clustering error minimization on benchmark
datasets. Tabular datasets from LIBSVM (Chang
and Lin, 2011) and UCI (Dua and Graff, 2017) repos-
itories and MNIST dataset (LeCun, 2013) were used
in benchmarks. The labels of MNIST were binarized

into even vs. odd digits. Pairwise supervision was
generated by random coupling of pointwise data in the
original datasets. We briefly introduce baselines be-
low. Constrained k-means clustering (CKM) (Wagstaff
et al., 2001) and semi-supervised spectral clustering
(SSP) (Chen and Feng, 2012) are semi-supervised clus-
tering methods based on k-means (MacQueen, 1967)
and spectral clustering (von Luxburg, 2007), respec-
tively. A method proposed by Zhang and Yan (2007)
(OVPC) and similar-dissimilar classification (SD) (Shi-
mada et al., 2021) are classification methods using
pairwise supervision, which admit the generalization
guarantee. Meta-classification likelihood (MCL) (Hsu
et al., 2019) is an approach based on maximum like-
lihood estimation over pairwise labels. For reference,
k-means clustering (KM) and supervised learning (SV)
were compared. For classification methods that require
model specification (i.e., CIPS, SD, MCL, OVPC, and
SV), a linear model f(x) = w⊤x + b was used. For
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CIPS, SD, and SV, we used the logistic loss, which is
classification-calibrated. The rest of implementation
details is deferred to Appendix E.

⟨♣⟩ First, in order to verify the sample complexity be-
havior in Lemma 2, classifiers were trained with MNIST.
The number of pairwise data m was set to each of
{1,000, 2,000, 4,000, 8,000, 12,000, 16,000, 20,000}. Fig-
ure 1(a) presents the performances of CIPS and SV.
This demonstrates that the clustering error of CIPS con-
stantly decreases as m grows, which is consistent with
Lemma 2. Moreover, CIPS performed more efficiently
than expected in terms of sample complexity—as we
discussed in Section 4, we expect that CIPS with O(m2)
pairs performs comparably to SV with m data points.

⟨♡⟩ Next, to see the effect of the class prior, we com-
pared CIPS, SD, and SV with various class priors. In
this experiment, train and test data were generated
from MNIST under the controlled class prior π+, where
π+ was set to each of { 1

7 , . . . ,
6
7}. For each trial, 10,000

pairs were randomly subsampled from MNIST for train-
ing and the performance was evaluated with another
10,000 labeled examples. The average clustering er-
rors and standard errors over ten trials are plotted in
Figure 1(b). This result indicates that CIPS is less
affected compared with SD.

Finally, we show the benchmark performances of each
method on the tabular datasets in Table 2, where each
cell contains the average clustering error and the stan-
dard error over 20 trials. For each trial, we subsampled
m ∈ {100, 1000} pairs for training data and 1,000 point-
wise examples for evaluation. This result demonstrates
CIPS performs better with large enough samples than
most of the baselines and comparably to MCL. The
performance difference between CIPS and clustering
methods implies that larger samples do improve the
downstream performance of CIPS thanks to its gener-
alization guarantee (Theorem 3).

Class assignment on synthetic dataset. The per-
formance of the proposed class assignment method
was empirically investigated on synthetic dataset. The
class-conditional distributions with the standard Gaus-
sian distributions were used as the underlying distri-
bution: p(x|y = +1) = N (x|µ+, σ+) and p(x|y =
−1) = N (x|µ−, σ−). Throughout this experiment, we
fixed (µ+, σ+, µ−, σ−) to (1, 1,−1, 2). Here, we con-
sider a 1-D thresholded classifier denoted by hθ(x) = 1
if x ≥ θ and −1 otherwise. Given the class prior
π+ ∈ (0, 1), we generated m′ pairwise examples from
the above distributions and apply the proposed class
assignment method for a fixed classifier hθ. Then, we
evaluated whether the estimated class assignment is op-
timal or not. Each parameter was set as follows: m′ ∈
{21, 23, 25, 27, 29}, π+ = 0.1, and θ ∈ {−3,−2, . . . , 3}.

For each (θ, π+,m
′), we repeated these data generation

processes, class assignment, and evaluation procedure
for 10,000 times.

⟨♠⟩ The error probabilities are depicted in Figure 2.
We find that the performance of the proposed class
assignment method improves as (i) the number of pair-
wise examples m′ grows and (ii) the classification error
for a given classifier Rpoint(hθ) gets away from 1

2 . These
results are aligned with our analysis in Section 4. More-
over, we observed that class assignment improves as
the class prior π+ becomes farther from 1

2 in additional
experiments in Appendix E.

Clustering error minimization on a real-world
dataset. Finally, we show experimental results on
a citation network dataset, PubMed-Diabetes.9 The
aim of this experiment is to verify that CIPS is robust
enough against real-world noise in pairwise supervision.

We compare CIPS (proposed) with three baselines,
MCL (described above), deep metric learning (DML),
and SV (supervised). DML combines metric learning
and k-means clustering: we first train embeddings
so that their ℓ2 distances are close for similar pairs
and vice versa, and apply k-means clustering on the
embeddings. More implementation details are deferred
to Appendix E. The results are reported in Table 3,
from which we can see that CIPS obtained a meaningful
classifier even under the presence of real-world noise,
and worked comparably to MCL and better than DML.

6 Conclusion

In this paper, we presented the underlying relationship
between similarity learning and binary classification.
Eventually, the two-step similarity learning procedure
for binary classification with only pairwise supervision
was obtained. Our similarity learning can elicit the
underlying decision boundary and is less affected by the
class prior. The post-processing class assignment is less
costly than training a new classifier. Our framework
can be related to many existing similarity learning
methods with specific losses. It remains open to discuss
the more flexible similarity model and the parallel
connection for multi-class classification, in order to
fully understand what knowledge we can elicit from
similarity information.
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A Proofs of Theorems and Lemmas

In this section, we provide complete proofs for Theorem 1, Theorem 2, Lemma 1, Lemma 2, and Lemma 3.

A.1 Proof of Theorem 1

We derive an equivalent expression of the pairwise classification error Rpair as follows.

Rpair(h) = E
(X,Y )∼p(x,y)

E
(X′,Y ′)∼p(x,y)

[1{h(X) · h(X ′) ̸= Y Y ′}]

= E
(X,Y )∼p(x,y)

E
(X′,Y ′)∼p(x,y)

[1{h(X) ̸= Y }1{h(X ′) = Y ′}]

+ E
(X,Y )∼p(x,y)

E
(X′,Y ′)∼p(x,y)

[1{h(X) = Y }1{h(X) ̸= Y ′}]

= E
(X,Y )∼p(x,y)

[1{h(X) ̸= Y }] E
(X′,Y ′)∼p(x,y)

[1{h(X ′) = Y ′}]

+ E
(X,Y )∼p(x,y)

[1{h(X) = Y }] E
(X′,Y ′)∼p(x,y)

[1{h(X ′) ̸= Y ′}]

= 2 E
(X,Y )∼p(x,y)

[1{h(X) ̸= Y }] E
(X′,Y ′)∼p(x,y)

[1{h(X ′) = Y ′}]

= 2Rpoint(h) (1−Rpoint(h)) .

(11)

We can transform the above equation as

Rpoint(h) =
1

2
±
√
1− 2Rpair(h)

2
. (12)

Then, we also have

Rpoint(−h) = 1−Rpoint(h) =
1

2
∓
√
1− 2Rpair(h)

2
. (13)

By combining the results in Eqs. (12) and (13), we finally obtain Eq. (4), which completes the proof of Theorem 1.
Remark that 0 ≤ Rpair(h) ≤ 1

2 is evident from Eq. (11) because of 0 ≤ Rpoint(h) ≤ 1.

A.2 Proof of Theorem 2

The optimal sign s∗ can be written as

s∗ = argmin
s∈{±1}

Rpoint(s · h) = sign (Rpoint(−h)−Rpoint(h)) . (14)

According to Shimada et al. (2021), Rpoint is equivalently expressed as follows.

Lemma 4 (Theorem 1 in Shimada et al. (2021)). Assume that π+ ̸= 1
2 . Then, the pointwise classification error

for a given classifier h : X → Y can be equivalently represented as

Rpoint(h)

= E
(X,Y )∼p(x,y)

E
(X′,Y ′)∼p(x,y)

[
1 {h(X) ̸= Y Y ′}+ 1 {h(X ′) ̸= Y Y ′}

2 (2π+ − 1)

]
− 1− π+

2π+ − 1
. (15)
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By plugging Eq. (15) into Eq. (14), we obtain

Rpoint(−h)−Rpoint(h)

= E
(X,Y )∼p(x,y)

E
(X′,Y ′)∼p(x,y)

[
1 {−h(X) ̸= Y Y ′}+ 1 {−h(X ′) ̸= Y Y ′}

2 (2π+ − 1)

]
− E

(X,Y )∼p(x,y)
E

(X′,Y ′)∼p(x,y)

[
1 {h(X) ̸= Y Y ′}+ 1 {h(X ′) ̸= Y Y ′}

2 (2π+ − 1)

]
= E

(X,Y )∼p(x,y)
E

(X′,Y ′)∼p(x,y)

[
1− 2 · 1 {h(X) ̸= Y Y ′}+ 1− 2 · 1 {h(X ′) ̸= Y Y ′}

2 (2π+ − 1)

]
=

1

2π+ − 1
E

(X,Y )∼p(x,y)
E

(X′,Y ′)∼p(x,y)
[1− 1 {h(X) ̸= Y Y ′} − 1 {h(X ′) ̸= Y Y ′}]

=
1

2π+ − 1
(1− 2Q(h)).

(16)

Thus, we derive the following result.

s∗h = sign (Rpoint(−h)−Rpoint(h)) = sign

(
1

2π+ − 1

)
· sign(1− 2Q(h))

= sign(2π+ − 1) · sign(1− 2Q(h)),

(17)

which completes the proof of Theorem 2. Note that s∗ can be either ±1 when Q(h) = 1
2 , which is equivalent to

Rpoint(h) = Rpoint(−h) = 1
2 . Here we arbitrarily set to s∗ = − sign(2π+ − 1) in this case.

A.3 Proof of Lemma 1

We introduce the following notation:

Sℓ
point(α, η) := ηℓ(α,+1) + (1− η)ℓ(α,−1),

Hℓ
point(η) := inf

α∈R
Sℓ
point(α, η),

Hℓ,−
point(η) := inf

α:α(2η−1)≤0
Sℓ
point(α, η).

Sℓ
point represents the conditional ℓ-risk in the following sense:

E
X
[Sℓ

point(f(X), p(Y = +1|X))] = Rℓ
point(f),

where

Rℓ
point(f) := E

(X,Y )∼p(x,y)
[ℓ(f(X), Y )].

Define the function ψpoint : [0, 1] → [0,+∞) by ψpoint = ψ̃⋆⋆
point, where ψ̃⋆⋆

point is the Fenchel-Legendre biconjugate
of ψ̃point, and

ψ̃point(ε) := Hℓ,−
point

(
1 + ε

2

)
−Hℓ

point

(
1 + ε

2

)
.

ψpoint corresponds to ψ-transform introduced by Bartlett et al. (2006) exactly.

We will show that the statement of the lemma is satisfied by ψ = ψpoint based on the calibration analysis (Steinwart,
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2007). We further introduce the following notation:

Spair(α, α
′, η, η′) := ηη′1{sign(α) sign(α′) ̸= +1}

+ η(1− η′)1{sign(α) sign(α′) ̸= −1}
+ (1− η)η′1{sign(α) sign(α′) ̸= −1}
+ (1− η)(1− η′){sign(α) sign(α′) ̸= +1},

Sℓ
pair(α, α

′, η, η′) := ηη′ℓ(αα′,+1) + η(1− η′)ℓ(αα,−1)

+ (1− η)η′ℓ(αα,−1) + (1− η)(1− η′)ℓ(αα,+1),

Hpair(η, η
′) := inf

α,α′∈R
Spair(α, α

′, η, η′),

Hℓ
pair(η, η

′) := inf
α,α′∈R

Sℓ
pair(α, α

′, η, η′).

Sℓ
pair represents the conditional ℓ-risk in the following sense:

E
X,X′

[Sℓ
pair(f(X), f(X ′), p(Y = +1|X), p(Y ′ = +1|X ′))] = Rℓ

pair(f),

and
E

X,X′
[Spair(f(X), f(X ′), p(Y = +1|X), p(Y ′ = +1|X ′))] = Rpair(sign ◦f).

Let ψ̃pair : [0, 1] → [0,+∞) be the calibration function (Steinwart, 2007, Lemma 2.16) defined by

ψ̃pair(ε) := inf
η,η∈[0,1]

inf
α,α′∈R

Sℓ
pair(α, α

′, η, η′)−Hℓ
pair(η, η

′)

s.t. Spair(α, α
′, η, η′)−Hpair(η, η

′) ≥ ε.

By the consequence of Lemma 2.9 of Steinwart (2007), ψ̃pair(ε) > 0 for all ε > 0 implies that Rℓ
pair(f) → R∗

pair =⇒
Rpair(sign ◦f) → R∗

pair. Further, under this condition, Theorem 2.13 of Steinwart (2007) implies that ψ̃pair is
non-decreasing, invertible, and satisfies

ψ̃⋆⋆
pair(Rpair(sign ◦f)−R∗

pair) ≤ Rℓ
pair(f)−Rℓ,∗

pair

for any measurable function f . Hence, it is sufficient to show that ψ̃pair(ε) > 0 for all ε > 0. Indeed, ψ̃pair = ψ̃point,
and ψ̃point(ε) > 0 for all ε > 0 because ℓ is classification-calibrated (Bartlett et al., 2006, Lemma 2). From now
on, we will see ψ̃pair = ψ̃point.

First, we simplify the constraint part of ψ̃pair. Since

Spair(α, α
′, η, η′) = (1− η − η′ + 2ηη′)1{sign(α) sign(α′) = −1}

+ (η + η′ − 2ηη′)1{sign(α) sign(α′) = +1}
= η̃1{sign(α) sign(α′) = +1}+ (1− η̃)1{sign(α) sign(α′) = −1},

where η̃ := 1− η − η′ + 2ηη′, we have Hpair(η, η
′) = min{η̃, 1− η̃}. Similarly,

Sℓ
pair(α, α

′, η, η′) = η̃ℓ(αα′,+1) + (1− η̃)ℓ(αα′,−1).

With slight abuse of notation, we may write Spair(α, α
′, η̃) = Spair(α, α

′, η, η′) (same for Sℓ
pair, Hpair, and Hℓ

pair).
By simple algebra, we obtain

Spair(α, α
′, η̃)−Hpair(η̃) = |2η̃ − 1| · 1{(2η̃ − 1) sign(α) sign(α′) ≤ 0}.

Noting that η̃ ranges over [0, 1] with η, η′ ∈ [0, 1], we have

ψ̃pair(ε) = inf
η̃∈[0,1]

inf
α,α′∈R

Sℓ
pair(α, α

′, η̃)−Hℓ
pair(η̃)

s.t. |2η̃ − 1| · 1{(2η̃ − 1) sign(α) sign(α′) ≤ 0} ≥ ε.
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If ε = 0, ψ̃pair(0) = 0 and the infimum is attained by η̃ = 1
2 and arbitrary α and α′. If ε > 0, η̃ = 1

2 cannot satisfy
the constraint. Hence, we assume η̃ ̸= 1

2 from now on. When η̃ > 1
2 , the constraint reduces to

{αα′ ≤ 0 ∧ (α, α′) ̸= (0, 0)} ∨ η̃ ≥ 1 + ε

2
.

Since Sℓ
pair contains α and α′ only in the form of αα′, the infimum over {α, α′ ∈ R | αα′ ≤ 0 ∧ (α, α′) ̸= (0, 0)} is

equal to that over {α, α′ ∈ R | αα′ ≤ 0}. If we write αα′ := α̃, then

ψ̃pair(ε) = inf
η̃∈[ 1+ε

2 ,1]
inf

α̃∈R:α̃≤0
Sℓ
pair(α, α

′, η̃)−Hℓ
pair(η̃)

= inf
η̃∈[ 1+ε

2 ,1]
inf

α̃∈R:α̃≤0
Sℓ
point(α̃, η̃)−Hℓ

point(η̃)

= inf
α̃∈R:α̃≤0

Sℓ
point

(
α̃,

1 + ε

2

)
−Hℓ

point

(
1 + ε

2

)
= Hℓ,−

point

(
1 + ε

2

)
−Hℓ

point

(
1 + ε

2

)
= ψ̃point(ε).

When η̃ < 1
2 , ψ̃pair = ψ̃point can be shown in the same way. Hence, the statement is proven.

A.4 Proof of Lemma 2

We start by introducing the following statement.
Lemma 5. For real values α and β satisfying 0 ≤ α ≤ β ≤ 1, we have√

β −
√
α ≤

√
β − α. (18)

Proof.

(β − α)− (
√
β −

√
α)2 = 2

√
αβ − 2α = 2

√
α
(√

β −
√
α
)
≥ 0, (19)

Thus we have (β − α) ≥ (
√
β −

√
α)2, which completes the proof of Lemma 5.

With this lemma, an excess risk on clustering error can be connected with that on pairwise classification error as
follows. From the equation in Eq. (4), we have

R∗
clus =

1

2
−
√
1− 2R∗

pair

2
. (20)

Thus, we can bound excess risk on the clustering error as follows.

Rclus(sign ◦f̂)−R∗
clus =

1

2
−

√
1− 2Rpair(sign ◦f̂)

2

−

(
1

2
−
√

1− 2R∗
pair

2

)

=
1

2

{√
1− 2R∗

pair −
√
1− 2Rpair(sign ◦f̂)

}

≤

√
Rpair(sign ◦f̂)−R∗

pair

2

≤
√

1

2
ψ−1

(
Rℓ

pair(f̂)−Rℓ,∗
pair

)
,

(21)

where Lemma 5 and Lemma 1 were applied to obtain the penultimate and the last inequalities, respectively. The
excess risk with respect to pairwise surrogate risk, i.e., Rℓ

pair(f̂)−Rℓ,∗
pair, can be decomposed into approximation

error and estimation error as

Rℓ
pair(f̂)−Rℓ∗

pair = Rℓ
pair(f

∗)−Rℓ∗
pair︸ ︷︷ ︸

approximation error

+Rℓ
pair(f̂)−Rℓ

pair(f
∗)︸ ︷︷ ︸

estimation error

, (22)
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where f∗ is the minimizer of Rℓ
pair(f) in a specified function space F . Now, we provide the following upper bound

for the estimation error with the Rademacher complexity.
Lemma 6. Let f∗ ∈ F be a minimizer of Rℓ

pair, and f̂ ∈ F be a minimizer of the empirical risk R̂ℓ
pair. Assume

that the loss function ℓ is ρ-Lipschitz function with respect to the first argument (0 < ρ <∞), and all functions
in the model class F are bounded, i.e., there exists an constant Cb such that ∥f∥∞ ≤ Cb for any f ∈ F . Let
Cℓ := supt∈{±1} ℓ(C

2
b , t). For any δ > 0, with probability at least 1− δ,

Rℓ
pair(f̂)−Rℓ

pair(f
∗) ≤ 4ρRm1

(F) +

√
2C2

ℓ log
2
δ

m1
. (23)

Proof. The estimation error can be bounded as

Rℓ
pair(f̂)−Rℓ

pair(f
∗) ≤

(
Rℓ

pair(f̂)− R̂ℓ
pair(f̂)

)
+
(
R̂ℓ

pair(f
∗)−Rℓ

pair(f
∗)
)

≤ 2 sup
f∈F

∣∣∣Rℓ
pair(f̂)− R̂ℓ

pair(f̂)
∣∣∣ . (24)

With the Rademacher complexity, the following inequalities hold with probability at least 1− δ.∣∣∣Rℓ
pair(f̂)− R̂ℓ

pair(f̂)
∣∣∣ ≤ 2Rm1(ℓ ◦ F) +

√
C2

ℓ log
2
δ

2m1
, (25)

where ℓ ◦ F indicates a class of composite functions defined by {ℓ ◦ f | f ∈ F}. By applying Talagrand’s lemma,
the Rademacher complexity of ℓ ◦ F can be bounded as

Rm1(ℓ ◦ F) ≤ ρRm1(F). (26)

The proofs of Eqs. (25) and (26) can be found in Mohri et al. (2018, Theorem 3.1 and Lemma 4.2), respectively.
By plugging Eqs. (25) and (26) into Eq. (24), we obtain the result in Eq. (23).

By combining Eqs. (21), (22) and Lemma 6, we obtain the following inequality with probability at least 1− δ,

Rclus(sign ◦f̂)−R∗
clus ≤

√√√√√1

2
ψ−1

Rℓ
pair(f

∗)−Rℓ,∗
pair + 4ρRm1

(F) +

√
2C2

ℓ log
2
δ

m1

. (27)

A.5 Proof of Lemma 3

We first derive a sufficient condition for the proposed class assignment fails. Let ŝ be a estimated class assignment
for a given hypothesis h : X → Y.

Pr

(
ŝ ̸= argmin

s∈{±1}
Rpoint(s · h)

)
= Pr

(
sign

(
1− 2Q̂(h)

)
̸= sign (1− 2Q(h))

)

=

Pr
(
2Q̂(h)− 1 > 0

)
(1− 2Q(h) > 0),

Pr
(
2Q̂(h)− 1 ≤ 0

)
(otherwise)

=

Pr
(
Q̂(h)−Q(h) > 1

2 −Q(h)
)

(1− 2Q(h) > 0),

Pr
(
Q(h)− Q̂(h) ≥ Q(h)− 1

2

)
(otherwise)

(28)

By applying Hoeffding’s inequality Hoeffding (1963), we obtain the following bounds.

Pr

(
Q̂(h)−Q(h) >

1

2
−Q(h)

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
, (29)

Pr

(
Q(h)− Q̂(h) ≥ Q(h)− 1

2

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
, (30)
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where m2 is the number of pairwise examples to compute Q̂(h). Therefore, we can bound the error probability of
the proposed class assignment method regardless of the value of Q(h) as

Pr

(
ŝ ̸= argmin

s∈{±1}
Rpoint(s · h)

)
≤ exp

(
−2m2

(
Q(h)− 1

2

)2
)
. (31)

Now, we further explore how the term Q(h)− 1
2 can be expressed. From the definition of Q and the equivalent

risk expression in Eq. (15), we have

Q(h) = (2π+ − 1)Rpoint(h) + 1− π+. (32)

Therefore,

Q(h)− 1

2
= (2π+ − 1)

(
Rpoint(h)−

1

2

)
. (33)

By plugging Eq. (33) into Eq. (31), we finally obtain

Pr

(
ŝ ̸= argmin

s∈{±1}
Rpoint(s · h)

)
≤ exp

(
−m2

2
(2π+ − 1)2 (2Rpoint(h)− 1)

2
)
, (34)

which completes the proof of Lemma 3.

B Discussion on Class Assignment

In this section, we discuss the impossibility of recovering the class assignment only with unlabeled validation
data. Given a real-valued prediction function f : X → R and the class prior π+, we consider the following class
assignment strategy instead of the proposed method:

s̃ := sign (2π+ − 1) · sign
(

E
X∼p(x)

[sign (f(X))]

)
. (35)

Our aim is to estimate the optimal class assignment s∗ = argmins∈{±1}Rpoint (s · sign ◦f), which can be expressed
by

s∗ = sign (Rpoint (− sign ◦f)−Rpoint (sign ◦f))
= sign ((1−Rpoint (sign ◦f))−Rpoint (sign ◦f))
= sign (1− 2Rpoint(sign ◦f)) .

(36)

Thus, the following condition is necessary and sufficient for s̃ = s∗:

sign (2π+ − 1) · sign
(

E
X∼p(x)

[sign (f(X))]

)
︸ ︷︷ ︸

=s̃

· sign (1− 2Rpoint(sign ◦f))︸ ︷︷ ︸
=s∗

> 0.
(37)

We will investigate whether this condition always holds or not. Denote

R+
point := π+ E

X∼p(x|y=+1)
[1 {sign (f(X)) ̸= +1}] , (38)

R−
point := (1− π+) E

X∼p(x|y=−1)
[1 {sign (f(X)) ̸= −1}] . (39)
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Note that 0 ≤ R+
point ≤ π+ and 0 ≤ R−

point ≤ 1− π+ always hold. Now, we have

E
X∼p(x)

[1 {sign (f(X)) = +1}] = π+ E
X∼p(x|y=+1)

[1 {sign (f(X)) = +1}]

+ (1− π+) E
X∼p(x|y=−1)

[1 {sign (f(X)) = +1}]

= π+ E
X∼p(x|y=+1)

[(1− 1 {sign (f(X)) = −1})]

+ (1− π+) E
X∼p(x|y=−1)

[1 {sign (f(X)) = +1}]

= −π+ E
X∼p(x|y=+1)

[1 {sign (f(X)) = −1}]

+ (1− π+) E
X∼p(x|y=−1)

[1 {sign (f(X)) = +1}] + π+

= −R+
point +R−

point + π+.

(40)

Similarly, we have
E

X∼p(x)
[1 {sign (f(X)) = −1}] = R+

point −R−
point + 1− π+. (41)

By combining them, the following expression can be obtained.

E
X∼p(x)

[sign (f(X))] = E
X∼p(x)

[1 {sign (f(X)) = +1}]− E
X∼p(x)

[1 {sign (f(X)) = −1}]

= −2R+
point + 2R−

point + 2π+ − 1.
(42)

Hence, the necessary and sufficient condition (37) is rewritten as

sign (2π+ − 1) · sign
(
−2R+

point + 2R−
point + 2π+ − 1

)
· sign

(
1− 2R+

point − 2R−
point

)
> 0. (43)

This condition is satisfied when π+, R+
point, and R−

point satisfy any of the following conditions.

• π+ ≥ 1
2 , R−

point ≥ R+
point +

1
2 − π+, and R−

point ≤ −R+
point +

1
2 ,

• π+ ≥ 1
2 , R−

point < R+
point +

1
2 − π+, and R−

point > −R+
point +

1
2 ,

• π+ < 1
2 , R−

point ≥ R+
point +

1
2 − π+, and R−

point > −R+
point +

1
2 ,

• π+ < 1
2 , R−

point < R+
point +

1
2 − π+, and R−

point ≤ −R+
point +

1
2 .

π+
1
2

1 − π+

1
2

π+ − 1
2

R +
point

R −
point

satisfied area
unsatisfied area

(a) π+ > 1
2

π+
1
2

1 − π+

1
2

1
2 − π+

R +
point

R −
point

(b) π+ < 1
2

Figure 3: Illustration of the areas corresponding to the condition (43) (highlighted with blue). We have s̃ = s∗ in the blue
areas and otherwise in the orange areas.

The conditions (43) are depicted in Figure 3. As can be seen from this figure, for any binary classification problem
(i.e., for any π+), there exists a case where the class assignment with unlabeled data fails (s̃ ̸= s∗).
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C Extension to semi-supervised learning

In real-world applications, we may face the situation where a large amount of unlabeled data are available along
with pairwise data. Similarly to existing weakly-supervised classification frameworks such as positive-negative-
unlabeled classification (Sakai et al., 2017) and similar-dissimilar-unlabeled classification (Shimada et al., 2021),
we can easily incorporate unlabeled data for the estimation of Rℓ

pair.

Theorem 4. For non-negative real values (γ1, γ2, γ3) that satisfies γ1 + γ2 + γ3 = 1, the risk Rℓ
pair(f) can be

equivalently expressed as:

(π2
+ + π2

−) E
(X,X′)∼p(x,x′|yy′=+1)

[(γ1 + γ2)ℓ(f(X)f(X ′),+1)− γ2ℓ(f(X)f(X ′),−1)]

+ 2π+π− E
(X,X′)∼p(x,x′|yy′=−1)

[(γ1 + γ3)ℓ(f(X)f(X ′),−1)− γ3ℓ(f(X)f(X ′),+1)]

+ E
(X,X′)∼p(x,x′)

[γ3ℓ(f(X)f(X ′),+1) + γ2ℓ(f(X)f(X ′),−1)] ,

(44)

where π+ and π− denote positive and negative class proportions, respectively.

With the expression in Eq. (44), we can use both pairwise supervision and unlabeled data for the empirical
estimation of Rℓ

pair. As well as the similar-unlabeled classification method (Bao et al., 2018), our method can be
applied with only similar-unlabeled (or dissimilar-unlabeled) data by controlling parameters (γ1, γ2, γ3).

D Training with linear model and unhinged Loss

In general, the optimization problem in Eq. (6) is non-convex. Thus, it is not guaranteed whether we can achieve
global optima with gradient descent. However, with specific model class and loss function, we can obtain an
optimal solution more efficiently. Consider the linear model f(x) = w⊤x, where w ∈ Rd are parameters. As a
loss function, we consider the unhinged loss ℓUH(z, t) := 1− tz. This loss function is originally proposed in van
Rooyen et al. (2015) to cope with label noises. Here we reformulate the optimization problem with linear model
and the unhinged loss as follows.

ŵ = argmin
w

R̂ℓUH

pair(w), s.t. ∥w∥ = 1, (45)

where

R̂ℓUH

pair(w) :=
1

m

∑
(X,X′,T )∈D1

(
1− T w⊤X ·w⊤X ′)

= 1−w⊤

 1

m

∑
(X,X′,T )∈D1

TXX ′⊤

w

= 1−w⊤

 1

2m

∑
(X,X′,T )∈D1

T
(
XX ′⊤ +X ′X⊤

)w

= 1−w⊤Mw,

(46)

where M denotes the Hermitian matrix 1
2m

∑
(X,X′,T )∈D1

T
(
XX ′⊤ +X ′X⊤

)
. The constraint ∥w∥ = 1 is

necessary to prevent the objective function from divergence. Let λ1, . . . , λd be eigenvalues of the matrix M that
satisfies λ1 ≥ · · · ≥ λd, and v1, . . . ,vd be corresponding eigenvectors that satisfy ∥vi∥ = 1 for all i ∈ {1, . . . , d}.
The following statement is known as a property of Rayleigh quotient (Horn and Johnson, 2012).

v1 = argmax
w∈Rd,∥w∥=1

w⊤Mw. (47)

Thus, the analytical solution of the constrained optimization problem in Eq. (45) is obtained as

ŵ = argmin
w∈Rd,∥w∥=1

R̂ℓUH

pair(w) = argmax
w∈Rd,∥w∥=1

w⊤Mw = v1. (48)
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E Full version of experimental results

In this section, we show the implementation details and the full versions of experimental results in Section 5,
which were omitted in the main body due to the limited space.

implementation details (clustering error minimization on benchmark datasets). The implementation
details of our method (CIPS) and each baseline were as follows.

• CIPS (Ours): The empirical pairwise classification risk Rpair (6) was computed with the logistic loss. The linear
model f(x) = w⊤x+ b was used. The risk was optimized with the stochastic gradient descent (minibatch size:
64 / learning rate: 10−2 / ℓ2-regularization parameter: 10−4 / training epochs: 500).

• MCL (Hsu et al., 2019): The loss function is based on the maximum likelihood, that is, the logistic loss as in
the original paper. The model and optimization setup were the same as CIPS.

• SD (Shimada et al., 2021): Their proposed classification risk was computed with the logistic loss. The model
and optimization setup were the same as CIPS.

• OVPC (Zhang and Yan, 2007): We followed the authors to use the squared loss and the closed-form minimizer
was evaluated.

• SSP (von Luxburg, 2007): Pairwise data were used as hard constraints. In order to construct the neighbor-
hood sets for the Laplacian matrix, 5-nearest neighbors were used. The features are obtained by constraints
propagation. In order to perform the final k-means clustering on the obtained features, scikit-learn implemen-
tation (Pedregosa et al., 2011) was used with the default parameters.

• CKM (Wagstaff et al., 2001): Pairwise data were used as hard constraints. Clustering was carried out with 10
different random initializations and the best one was reported. For each initialization, the number of maximum
iterations was set to 300 and the tolerance parameter was set to 10−4.

• KM (MacQueen, 1967): Pairwise data were used for training without all link information. Scikit-learn
implementation (Pedregosa et al., 2011) of k-means clustering was used with the default parameters.

• SV (Supervised): The true class labels were revealed during training. The model and optimization setup were
the same as CIPS.

Implementation details (clustering error minimization on a real-world dataset). Pubmed-Diabetes
dataset is a citation network dataset consists of 19,717 nodes representing scientific publications related to diabetes
and 44,338 (directed) edges representing citing relationships. Each node is described by 500-dimensional TF/IDF
features, and categorized into three classes, among which we pick class 1 (“Diabetes Mellitus, Experimental”) and
3 (“Diabetes Mellitus Type 2”) to convert it into a binary-labeled dataset.

The implementation details of our method and the baselines were as follows.

• CIPS (Ours): The 4-layer perceptron (500-8-8-8-1) with the softplus activation (Dugas et al., 2000) was used.
The softmax cross entropy was optimized with Adam (Kingma and Ba, 2015) (minibatch size: 4,096 / learning
rate: 10−3 / training epochs: 100). The ℓ2-regularization parameter is chosen from {10−2, 10−4, 10−6} by
the five-fold cross-validation. The early stopping is applied with the patience of 10 epochs. We randomly
extracted 20% of the nodes as test data. The pairwise supervision was generated as follows: first extracted the
edges whose both ends are in the training data as similar, then randomly coupled the non-connected nodes as
dissimilar, with the same numbers of similar and dissimilar pairs. About 19,000 pairs were obtained.

• MCL (Hsu et al., 2019): The setup of model, optimization, and data generation was the same as CIPS.

• DML (Chopra et al., 2005): The metric loss function proposed by Chopra et al. (2005) was used. The model
was the same as CIPS except the last layer, and 8-dimensional outputs of the penultimate layer were used as the
embeddings, on which k-means clustering was performed. Scikit-learn implementation (Pedregosa et al., 2011)
of k-means clustering was used with the default parameters. The setup of optimization and data generation
was the same as CIPS.
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• SV (Supervised): Labeled 7,889 nodes (π+ ≈ 0.65) were used during training. The setup of model and
optimization was the same as CIPS.

Full results. Table 4 shows the performance comparison with baseline methods on ten datasets from UCI
and LIBSVM repositories. Figure 4 presents the sample complexity of our method on three image classification
datasets including MNIST (LeCun, 2013), Fashion-MNIST (Xiao et al., 2017), and Kuzushiji-MNIST (Clanuwat
et al., 2018), where the original ten class categories were converted into positive/negative labels by grouping
even/odd class labels. Figure 5 demonstrates the performance of our class assignment method with various class
priors π+ ∈ {0.1, 0.4, 0.7}.

Table 4: Mean clustering error and standard error on different benchmark datasets over 20 trials. Bold numbers indicate
outperforming methods, chosen by one-sided t-test with the significance level 5%.

dataset
m CIPS (Ours) MCL SD OVPC SSP CKM KM (SV)(dim., π+)

adult 100 39.8 (1.6) 38.4 (2.1) 30.8 (0.9) 45.0 (0.9) 24.7 (0.3) 28.9 (0.8) 24.9 (0.5) 21.9 (0.4)
(123, 0.24) 500 21.5 (1.0) 19.3 (0.4) 23.2 (0.4) 44.7 (0.9) 24.3 (0.3) 28.2 (0.4) 27.5 (0.5) 16.9 (0.3)

1000 17.6 (0.3) 17.2 (0.3) 20.5 (0.3) 45.5 (0.7) 24.2 (0.3) 27.9 (0.4) 27.9 (0.5) 15.9 (0.3)

banana 100 43.6 (0.6) 44.5 (0.6) 45.3 (0.6) 46.0 (0.7) 43.0 (1.0) 46.4 (0.7) 45.8 (0.7) 44.6 (0.6)
(2, 0.45) 500 43.1 (0.8) 43.3 (0.6) 45.1 (0.7) 46.0 (0.7) 14.3 (0.7) 45.5 (0.6) 44.4 (0.4) 45.1 (0.6)

1000 44.4 (0.6) 44.3 (0.7) 44.4 (0.5) 46.2 (0.5) 11.0 (0.2) 45.0 (0.7) 44.0 (0.3) 45.1 (0.7)

codrna 100 24.7 (1.8) 32.3 (1.4) 28.0 (1.3) 32.0 (2.0) 45.5 (1.5) 46.7 (0.6) 42.5 (1.0) 11.0 (0.6)
(8, 0.33) 500 6.4 (0.2) 10.6 (0.3) 12.0 (0.6) 28.0 (2.1) 48.6 (0.3) 46.2 (0.3) 44.0 (0.7) 6.6 (0.2)

1000 6.3 (0.2) 6.5 (0.2) 8.8 (0.4) 28.3 (2.0) 44.8 (1.6) 46.1 (0.4) 45.4 (0.6) 6.3 (0.2)

ijcnn1 100 16.6 (2.3) 24.9 (2.9) 10.7 (0.3) 41.1 (1.1) 31.6 (2.0) 40.0 (1.3) 31.9 (2.4) 9.1 (0.2)
(22, 0.10) 500 7.7 (0.2) 8.2 (0.2) 8.3 (0.2) 41.6 (1.3) 33.0 (2.5) 45.4 (0.8) 41.7 (0.7) 7.9 (0.2)

1000 7.7 (0.2) 7.9 (0.2) 8.1 (0.2) 42.0 (1.4) 34.9 (1.7) 45.9 (0.8) 43.4 (0.7) 7.6 (0.2)

magic 100 24.9 (1.3) 28.7 (1.8) 30.7 (1.3) 41.9 (1.0) 47.1 (0.5) 45.5 (1.2) 44.0 (1.2) 21.8 (0.4)
(10, 0.35) 500 21.5 (0.3) 21.3 (0.3) 25.5 (0.8) 39.6 (1.5) 46.8 (0.5) 46.8 (0.4) 44.4 (0.4) 20.8 (0.3)

1000 21.3 (0.3) 20.9 (0.3) 23.8 (0.4) 39.5 (1.7) 43.6 (0.9) 46.8 (0.3) 44.6 (0.4) 20.7 (0.3)

phishing 100 12.7 (2.3) 12.8 (2.3) 34.6 (1.8) 41.7 (1.0) 46.6 (0.5) 24.4 (3.4) 47.0 (0.5) 7.6 (0.2)
(44, 0.68) 500 7.2 (0.2) 6.6 (0.1) 26.9 (1.4) 42.9 (0.8) 46.0 (0.5) 16.9 (2.6) 46.4 (0.5) 6.5 (0.2)

1000 6.5 (0.2) 6.3 (0.2) 22.0 (1.0) 43.8 (1.1) 45.5 (0.5) 15.2 (2.7) 46.4 (0.5) 6.3 (0.2)

phoneme 100 28.2 (1.2) 33.1 (1.9) 29.1 (1.2) 38.4 (1.3) 31.0 (1.3) 28.0 (1.0) 32.9 (1.2) 25.7 (0.4)
(5, 0.71) 500 25.0 (0.4) 24.2 (0.5) 26.1 (0.6) 38.6 (1.9) 25.5 (0.5) 28.0 (0.8) 32.7 (0.3) 25.0 (0.3)

1000 25.2 (0.4) 25.0 (0.4) 26.0 (0.4) 39.8 (1.5) 24.5 (0.5) 30.2 (0.6) 32.7 (0.3) 25.3 (0.2)

spambase 100 13.8 (1.0) 13.3 (1.3) 31.6 (1.5) 39.7 (1.3) 40.5 (0.4) 15.9 (2.0) 39.7 (1.3) 10.5 (0.3)
(57, 0.39) 500 9.4 (0.2) 8.6 (0.2) 22.6 (0.9) 38.0 (1.6) 40.8 (0.3) 11.5 (0.2) 37.4 (2.3) 8.5 (0.2)

1000 8.3 (0.2) 7.6 (0.1) 19.7 (0.8) 39.3 (1.2) 40.2 (0.4) 11.5 (0.2) 39.7 (1.3) 7.8 (0.2)

w8a 100 31.5 (1.9) 31.4 (2.1) 11.8 (0.3) 39.7 (1.4) 5.3 (1.2) 6.8 (1.9) 5.5 (1.3) 10.3 (0.4)
(300, 0.03) 500 5.6 (0.7) 4.2 (0.5) 3.2 (0.1) 38.3 (1.3) 3.5 (0.1) 14.0 (3.1) 5.5 (1.1) 2.6 (0.1)

1000 2.6 (0.2) 2.2 (0.1) 2.6 (0.2) 43.1 (0.8) 3.0 (0.1) 8.9 (2.6) 3.7 (0.5) 2.0 (0.1)

waveform 100 18.2 (0.3) 17.7 (0.3) 26.4 (0.9) 41.9 (1.6) 44.1 (0.6) 41.0 (1.3) 45.1 (0.6) 16.2 (0.2)
(21, 0.33) 500 15.8 (0.2) 15.1 (0.2) 20.2 (0.5) 38.9 (1.3) 44.9 (0.7) 45.1 (0.6) 47.1 (0.4) 14.8 (0.2)

1000 14.9 (0.2) 14.7 (0.2) 18.4 (0.3) 37.0 (1.7) 45.5 (0.5) 44.9 (0.5) 47.8 (0.4) 14.4 (0.2)
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Figure 4: Mean clustering error and standard error (shaded areas) over 20 trials on image classification datasets.
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Figure 5: Mean clustering error and standard error (shaded areas) over ten trials on image classification datasets under
controlled class priors.
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(b) π+ = 0.4
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Figure 6: Classification error for each threshold classifier (upper) and the error probability of the proposed class assignment
method over 10,000 trials (bottom) on the synthetic Gaussian dataset with π+ ∈ {0.1, 0.4, 0.7}. The detail of the dataset
is described in Section 5.
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