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Abstract

Deep networks usually require a massive
amount of labeled data for their training.
Yet, such data may include some mistakes
in the labels. Interestingly, networks have
been shown to be robust to such errors. This
work uses spectral analysis of their learned
mapping to provide an explanation for their
robustness. In particular, we relate the
smoothness regularization that usually exists
in conventional training to the attenuation
of high frequencies, which mainly character-
ize noise. By using a connection between the
smoothness and the spectral norm of the net-
work weights, we suggest that one may fur-
ther improve robustness via spectral normal-
ization. Empirical experiments validate our
claims and show the advantage of this nor-
malization for classification with label noise.

1 INTRODUCTION

Deep neural networks (DNNs) exhibit state-of-the-art
results in many machine learning tasks (Goodfellow
et al., 2016). Still, their performance heavily relies on
the quality of the training data, which - in the super-
vised scenario - is composed of input-output pairs. In
many real-world tasks, the provided outputs, which
are commonly referred to as labels, are prone to man-
ual or automatic annotation errors (Liu et al., 2016;
Lee et al., 2018), e.g., due to insufficient expertise or
to a context-based annotation of web images. Conse-
quently, robustness to such mistakes, known as label
noise, is of critical importance for DNNs. Surprisingly,
Flatow and Penner (2017); Krause et al. (2016); Sun
et al. (2017); Rolnick et al. (2017); Wang et al. (2018)
have shown that neural networks exhibit some robust-
ness to this noise. They show that the degradation
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in network performance can be significantly smaller
than the amount of label noise in the training data.
While they empirically demonstrate this robustness,
our work focuses on analyzing and thus also improv-
ing this robustness.

Note though that the robustness of the neural net-
works to label noise happens only when the noise is
not too well structured Drory et al. (2020). We assume
that this non-structureness implies that a relatively
large part of the noise is in the spectral (Fourier) do-
main, an assumption that we validate for various noise
types and cases (see for example Figure 1). With this
assumption, we use the spectral domain to understand
the robustness of networks to such types of label noise.

Encouraged by recent advancements in the functional
analysis of neural networks (Savarese et al., 2019;
Williams et al., 2019; Ongie et al., 2020; Giryes, 2020),
we analyze the spectral coefficients of neural networks.
This point of view is used to shed light on the relation
between the network smoothness and its ability to fit
the training data. This tradeoff is controlled by the
amount of regularization on the norm of the network
derivative with respect to the input. By introducing a
bound on this norm, we conclude that the smoothness
can increase by imposing constraints on the weights.
Following that, we show that further robustness to la-
bel noise is obtained by bounding the network weights,
as this attenuates high frequencies, which we assume
to be mainly stemming from the noise. We validate
this assumption in the experiments by using a rela-
tionship that we present between the Jacobian and
spectral norm of the network to its frequencies.

Our analysis provides a justification for the effective-
ness of early stopping and weight decay for DNNs in
the presence of label noise. Our theory also suggests
using spectral normalization (SN) of the DNN weights
(Yoshida and Miyato, 2017; Miyato et al., 2018) as
an additional mean for improving robustness to la-
bel noise. We show that this simple operation im-
plies a decay in the high frequencies of the mapping
learned by the DNN. As `2-based regularization, SN
attends the entire input space at once, rather than
only sampled points, and it does not require an addi-
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tional train phase, auxiliary information or extra vari-
ables and tuning, which are common in label noise
resistance methods. With only a minor computational
cost, the trained DNN gains an improved immunity to
label noise. To support our theory, we show in various
experiments on both synthetic label noise (CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and MNIST (Le-
cun et al., 1998)) and real label noise (Clothing1M
(Xiao et al., 2015)) that adding SN to other regular-
ization techniques consistently improves the network
performance in the presence of label noise.

Contribution. Our contribution can be summarized
by the following three main steps that we perform in
it: a. Showing that regularizing the network Jacobian
either directly or through spectral normalization re-
duces the high frequency in the learned network map-
ping. b. Demonstrating empirically that having label
noise in the training data: (i) adds high frequencies
to the learned mapping in the one-dimensional case,
where we can practically draw the spectrum of the
network; and (ii) increases the Jacobian of the net-
work and its spectral norm in the high-dimensional
setting. Both of these steps support our assumption
that label noise adds high frequencies to the learned
mapping. We borrow this intuition from signal pro-
cessing, where (random) noise usually lies in all the
spectrum compared to the signal that mainly resides
in the low frequencies. c. Exhibiting that using spec-
tral normalization increases the network robustness to
noise. We show that the same holds for Jacobian reg-
ularization but more minorly as it does not regularize
all the spectrum as spectral normalization does.

2 RELATED WORK

Neural networks resistance to label noise. The
natural robustness of neural networks to label noise
was empirically investigated in several cases (Krause
et al., 2016; Sun et al., 2017; Rolnick et al., 2017; Wang
et al., 2018; Drory et al., 2020). Flatow and Pen-
ner (2017) showed that while the noise rate increases
by tens of percent, test accuracy drops by only a few
percent. Nevertheless, the effective dimension of the
learned data representation was shown to be different
for clean and noisy labels (Ma et al., 2018), suggesting
it is possible to further increase the robustness.

Various strategies were proposed to improve the intrin-
sic resistance of DNNs to label noise. They may be cat-
egorized into three groups: (1) probabilistic noise mod-
eling, (2) training data enhancement, and (3) adapted
optimization, which may include the objective func-
tion, regularization and training procedure. The most
common practice for the first is estimating a transition
matrix from correct labels to corrupted ones, which

is incorporated in the optimization process. The ap-
proach in (Patrini et al., 2017) based its matrix esti-
mation on the softmax output of a network trained on
a noisy dataset. Alternatively, another route (Gold-
berger and Ben-Reuven, 2017; Jindal et al., 2016) sug-
gested an end-to-end framework in which the noise
distribution is learned simultaneously with the net-
work parameters. Other works leveraged an additional
clean data (Xiao et al., 2015; Vahdat, 2107) or manu-
ally defined constraints (Han et al., 2018a) to further
improve the estimation quality. The second strategy
aims at reducing the noise effect by “improving” the
provided training dataset, either by rejecting (not us-
ing) part of the samples (Shen and Sanghavi, 2019;
Han et al., 2018b; Malach and Shalev-Shwartz, 2017),
assigning an appropriate weight per sample (Ren et al.,
2018; Thulasidasan et al., 2019; Jiang et al., 2018; Liu
and Tao, 2015; Guo et al., 2018; Yao et al., 2018) or
“correcting” the labels (Reed et al., 2014; Li et al.,
2017; Tanaka et al., 2018). The third approach in-
cludes the generalized cross-entropy loss (Zhang and
Sabuncu, 2018; Amid et al., 2019b,a), symmetric cross-
entropy loss (Wang et al., 2019), information-theoretic
loss function (Xu et al., 2019a), artificial neural vari-
ability Xie et al. (2021), minimum entropy (Reed et al.,
2014), mixup (Zhang et al., 2018), and early stopping
(Li et al., 2020). The method suggested in this work
(SN) falls under this category.

Functional analysis of neural networks. Re-
cently, it was empirically shown that neural networks
tend to learn the low frequencies in the data first (Xu
et al., 2019b; Bietti and Mairal, 2019; Tancik et al.,
2020). In (Rahaman et al., 2019), this behavior was
explained by analyzing the Fourier transform of ReLU
networks. Another explanation based on approximat-
ing the trained network using a linear system was given
by (Ronen et al., 2019; Basri et al., 2020). Heckel and
Soltanolkotabi (2020) studied the removal of high fre-
quencies by shallow convolutional models that can be
used for denoising, e.g., deep image prior (Ulyanov
et al., 2017). The behavior of the networks was tied to
the convolutional structure. In this work, we propose
an alternative explanation for the tendency of net-
works to prefer learning low frequencies by using the
smoothness property of neural networks with bounded
weights.

The function space generated by networks with
bounded weights was analyzed in various works.
Savarese et al. (2019) showed that univariate shallow
networks with infinite width and bounded weights rep-
resent functions with a bounded total variation of their
first derivative. This implied that the learned map-
ping smoothly interpolates (at least first-order spline)
the training points. Ongie et al. (2020) extended this
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result to the case of shallow networks with multidi-
mensional input. Williams et al. (2019) proved that
based on the parameterization of the (univariate) net-
work, one may get a guarantee for second-order spline
interpolation of the training data. Giryes (2020) devel-
oped generalization bounds for finite networks assum-
ing that the training data was generated by a band-
limited mapping. Note that all these works assume
that the network overfitted the training data.

We extend these works to the case where no perfect
overfitting of the training data is achieved. We show
that bounding the weights of the network yields a
tradeoff in the loss between fitting the training data
and having a smooth mapping. Assuming that map-
pings of true data are indeed smooth, our theory sug-
gests that the smoothness regularization imposed by
bounding the weights provides a “denoising” effect,
which helps networks to be resistant to label noise.

Spectral normalization. Yoshida and Miyato
(2017) suggested regularizing the spectral norm of neu-
ral network weights. Miyato et al. (2018) imposed
SN, which directly constrains the spectral norm of
each layer and sets it to 1, to stabilize the training of
generative adversarial networks. SN was also applied
as a means to improve robustness to adversarial at-
tacks (Farnia et al., 2019). In (Neyshabur et al., 2018;
Bartlett et al., 2017), network generalization capabil-
ities were analyzed using the weights spectral norm.
Our work ties it to label noise robustness both in the-
ory and practice.

3 THEORETICAL ANALYSIS

Notation. We use the following notation: scalars, col-
umn vectors, matrices and sets are denoted by italic
letters (x), boldface lower-case letters (x), boldface
upper-case letters (X), and calligraphic upper-case let-
ters (X ), respectively. The ith element of a vector x is
denoted by xi, and the element of the ith row and jth
column of X is denoted by Xij . ‖x‖2, ‖X‖2, and ‖X‖F
denote the Euclidean norm of x, the spectral norm of
X, and the Frobenious norm of X, respectively. The
all-zeros vector, the all-ones vector, and the identity
matrix are denoted by 0, 1, and I, respectively, with
size clear from context. The transpose operation is
denoted by T .

Vector indexing. Given a vector of indices n =
[n1, . . . , nm], we abuse notation and use it to index
vectors and matrices. This is done by simply con-
verting (uniquely) the tensor indices in n to be vector
indices as if the tensor was represented in a column-
stack. Thus, we can simply index a vector x using
xn. For a matrix Pli (with l, i ∈ Zm) denotes indexing
the entries of the matrix P after transforming the co-

(a) Uniform Noise

(b) Flip Noise

Figure 1: Squared Frobenius norm of the Jacobian
matrix of a neural network fully fitted to the CIFAR-10
training data, for various noise rates. The Frobenius
norm presened is an average over all the data. The
behaviour shown here is not unique to CIFAR-10 and
is observed also for other datasets.

ordinate in l, i to their corresponding “column-stack”
coordinates.

Theoretical analysis outline. We focus on the
case of a multivariate neural network φ with a sin-
gle output neuron, L layers, weights {Wl}Ll=1 and bi-
ases {bl}Ll=1. We consider a bounded input domain
[0, 2π]m, which is a realistic assumption in real data,
where the input range is usually limited (e.g., in images
the range is [0, 1] or [0, 255]). The network is trained
with the pairs {(xn, f(xn))}xn∈S , where S is the train-
ing set and f : [0, 2π]m → R is the labels generating
function. We assume a uniform sampling scheme of
the input domain, i.e., xn =

[
2πn1

N , . . . , 2πnmN
]
, where

ni ∈ {0, . . . , N − 1} and n ∈ {0, . . . , N − 1}m (in this
case the size of the training set is |S| = Nm). Given a
vector of indices such as n, we abuse notation and use
it to index vectors and matrices. This can be simply
done by converting the tensor indices in n to vector
indices as done when column-stacking a tensor.
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The uniform sampling assumption is used in the proofs
of Propositions 1 and 3. It is possible to extend the
analysis also to a random sampling scheme, which is
usually the case in real data. We comment in each
proof on the steps required for this extension. Yet,
we defer such a generalization of our study to a future
work. Our analysis in the sequel is done in the spec-
tral (Fourier) domain. A short reminder on Fourier
properties appears in sup. mat.

We assume φ and f are appropriate functions and de-
note by {dk}k∈Zm and {ck}k∈Zm their Fourier coeffi-
cients, respectively. We use them to analyze the net-
work mapping when optimized with various regulariza-
tion techniques. We assume that the network attains
the global optimum of the optimization in our analy-
sis below (except in our comment on early stopping).
This assumption has been shown to be valid in neural
network optimization under some assumptions (e.g.,
see Du et al. (2019)).

We start with the case of regularizing the network
derivative (equivalent to regularizing the Jacobian
spectral norm in the multidimensional case), and then
relate it to penalizing the Frobenius norm (which is
referred to as `2 regularization) and the spectral norm
of the network weights. Finally, we suggest using SN
and show that it improves robustness to label noise.
All proofs are in sup. mat.

3.1 Regularization and Its Effect on The
Neural Network Spectrum

Assume we are minimizing the `2 distance between the
outputs of the network and the input labels:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2. (1)

Note that this loss is relevant for both regression and
classification, as it was shown to perform at least as
well as cross-entropy in classification tasks (Poggio and
Liao, 2020). Clearly, without any constraints on the
network and with a sufficient number of parameters in
the network, we may bring the empirical error to zero
and even overfit the training data. Yet, let us further
assume that the mapping we are learning is smooth,
i.e., its first derivative is bounded. As we shall see
hereafter, neural networks with bounded weights obey
this assumption. To this end, we add a regularization
on the first derivative of the learned network, i.e., our
objective becomes

min
φ

1
|S|
∑
xn∈S(φ(xn)− f(xn))2 (2)

+ λ
(2π)m

∫
x∈[0,2π]m

(
dφ(x)
dx

)2
dx.

Moving to the Fourier domain provides insights about
the network bias towards low frequencies.

Proposition 1 Let φ(x) =
∑
k∈Zm dke

jkT x be the
Fourier series of the trained neural network with uni-
formly sampled training data. Then, the global opti-
mum of equation 2 obeys

dk = O

(
1

λ ‖k‖22

)
, k ∈ Zm. (3)

Clearly for k = 0, the bound is infinity as the DC com-
ponent does not alter smoothness. An exact expression
for dk is provided in sup. mat. when the training set
size satisfies N → ∞. This proposition may explain
the bias of networks with bounded derivative towards
low frequencies: the stronger the regularization, the
stronger is the decay of the spectral coefficients. As a
larger penalty is imposed on the higher frequencies, it
is expected that during the training process the net-
work will first learn the lower frequencies. This may
explain the usage of early stopping for label noise and
stands in line with the observations in (Rahaman et al.,
2019; Xu et al., 2019b; Tancik et al., 2020).

While the regularization term in equation 2 applies to
the entire input domain, it is clearly impossible to ap-
ply such a regularization in practice, as it needs to be
evaluated on all possible inputs. The trivial alterna-
tive is to apply Jacobian regularization to the training
data points (Sokolić et al., 2017; Varga et al., 2017;
Jakubovitz and Giryes, 2018; Hoffman et al., 2019).
Yet, this translates to only local regularization, which
is less effective in practice even when applied ran-
domly, e.g., with mixup (see sup. mat.). Instead, we
suggest to upper bound the derivative of the network
by its weights:

Proposition 2 [based on Lemma 1 by Sokolić et al.
(2017)] Let φ(x) be a L-layers feed-forward network
with a multidimensional input x ∈ X , Jacobian matrix
dφ(x)
dx , non-expansive activation functions, and weights

and biases {Wl}Ll=1 and {bl}Ll=1. Then, we have∥∥∥∥dφ(x)

dx

∥∥∥∥2
2

≤
L∏
l=1

‖Wl‖22 ≤
L∏
l=1

‖Wl‖2F , x ∈ X . (4)

Note that the assumption on non-expansive activation
functions holds for the currently used functions (e.g.,
ReLU, sigmoid and tanh). The above proposition pro-
vides an upper bound for the regularization term in
equation 2, which may suggest to replace the regular-
ization on the network derivative with a regularization
on the network weights, which is feasible during train-
ing. From equation 4, this can be done through a
penalty on the weights’ spectral or Frobenius norm.
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(b) Fourier domain

Figure 2: A network φ↔ dk is fitted to training data
generated from f ↔ ck with label noise e↔ rk added
to 10% of the labels. The original mapping (blue),
the network output (red) and the noisy training sam-
ples (*) are presented in the input domain (left) and
Fourier domain (right). The network “ignores” the
high frequencies stemming from the noise.

Notice that using the arithmetic-geometric mean in-
equality, we may upper bound equation 4 further by∑L
l=1 ‖Wl‖2F , which is the standard `2 regularization

(equivalent to weight decay (WD) in the case that
standard SGD optimization is performed (Loshchilov
and Hutter, 2019)). Thus, we conclude that training a
DNN with WD is expected to regularize the network
derivatives and thus lead to a similar effect to the one
described in Proposition 1, i.e., fast decay of the high
frequency components.

3.2 Network Robustness to Label Noise

We turn to relate our intermediate conclusions to
the label noise setting. Consider the case where a
noise e is added to the training set, s.t we have

{(xn, f(xn) + e(xn))}n∈S . Now, let us assume a rapid
decay of the Fourier coefficients of f , i.e., the function
that generates the realizable training set as described
above, and that e contains high frequencies compared
to the mapping f . Fig. 1 supports this assumption, by
exhibiting the existence of high frequencies in noisy
(training) data. For this purpose, a training data rep-
resentation was required. To this end, we train our
baseline network until convergence, where the network
overfits the noisy data, in the sense that the noisy train
accuracy is 100% (early stopping is not applied). High
frequencies in the training data are demonstrated by
the smoothness of the mapping (measured by the Ja-
cobian Frobenius norm of the fitted network). Fig. 1
depicts the Jacobian measure on CIFAR-10 training
data with two types of corrupted labels (see Section 4
for details). Indeed, as the noise level increases, the
Jacobian measure increases, indicating that the train-
ing data contains higher frequencies.

Since f resides mainly in the low frequencies and e
tends to have a lot of high frequencies, from Proposi-
tions 1 and 2, we expect that a network trained with
WD will learn mainly the low frequencies, i.e., the
“clean” data components. This translates to the con-
clusion that WD introduces a certain level of robust-
ness to label noise. In addition, we conclude that a
network trained with WD first learns the low frequen-
cies. Combining this with the assumption that noise
mainly resides in high frequencies, we can understand
the reason behind the efficiency of early stopping in
dealing with noisy labels (when a regularization on
the weights is applied). Since the higher frequencies
are penalized more, they are likely to be learned later.
Thus, early stopping prevents the learning of the high
frequencies, and by that filters most of the noise. To
summarize, using WD along with early stopping in-
cluded in conventional training, improves robustness
to label noise.

Fig 2 demonstrates this behavior when learning a one-
dimensional mapping f , which is composed of a ran-
dom combination of 6 sine and cosine functions (with
a DC component). The data is generated by uniformly
sampling 100 points in the range [−1, 1] and then
adding random noise to 10% of the samples (randomly
selected). We train a fully connected (FC) network
with two hidden layers of size 1000 and ReLU, using
SGD with momentum, WD, and early stopping. By
comparing the Fourier coefficients of the clean (blue)
and noisy (*) data, it can be clearly seen that the
former resides in the low frequencies, while the high
frequencies are mainly occupied by the noise. Notice
how the network (red) learns the low frequencies and
“ignores” the high frequencies, which aligns with our
analysis.
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3.3 Network Robustness to Label Noise by
Weights Spectral Normalization

Till now we used the unconstrained form of optimiza-
tion. This led us to insights on how regularizing the
weights of the network may improve its robustness to
label noise. Now, we turn to analyze the constrained
case:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2 (5)

s.t.
1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)

dx

∥∥∥∥2
2

dx ≤ α,

where α is a regularization parameter. This allows
us to attain direct bounds on the spectral attenuation
stemming from bounding the network weights. The
next proposition provides the equivalent of Proposi-
tion 1 for the constrained case discussed here under
an asymptotic regime.

Proposition 3 Let φ(x) =
∑
k∈Zm dke

jkT x and

f(x) =
∑
k∈Zm cke

jkT x be the Fourier series of the
trained neural network and the target mapping func-
tion, respectively. If the training set size satisfies
N → ∞, then the global optimum of equation 5 is
equivalent to the one of

min
{dk}k∈Zm

∑
k∈Zm

|dk − ck|2 (6)

s.t.
∑
k∈Zm

‖k‖22 |dk|
2 ≤ α,

and the optimal solution reads as

dk =

{
ck if

∑
k∈Zm ‖k‖

2
2 |ck|2 < α

ck
1+λα‖k‖22

otherwise
, (7)

where λα is the solution to the equation∑
k∈Zm ‖k‖

2
2

|ck|2

(1+λα‖k‖22)2
= α.

This proposition shows that also in the constrained
case, if the constraint is non-trivial (i.e., does not affect
the solution), then higher frequencies are more penal-
ized. To draw a relationship between constraining the
network weights and attenuating the high frequencies,
we consider the following optimization problem that
constraints the spectral norm of the network weights:

min
φ

1

|S|
∑
xn∈S

(φ(xn)− f(xn))2 (8)

s.t.

L∏
l=1

‖Wl‖22 ≤ α.

Notice that from Proposition 2, we have that the
feasible set in equation 8 is included in the one

of equation 5, i.e., if
∏
l ‖Wl‖22 ≤ α then also

1
(2π)m

∫
x∈[0,2π]m

∥∥∥dφ(x)dx

∥∥∥2
2
dx ≤ α holds. Therefore, it

is expected that applying a constraint on the network
weight matrices norms will attenuate the high frequen-
cies in the learned mapping. Clearly, we could have
used also the Frobenius norm according to Proposi-
tion 2 as a bound. Yet, since it is a weaker upper
bound (as shown in Proposition 2), we expect that
using it as a proxy will lead to inferior results com-
pared to the case of using the spectral norm. As
shown in Section 4, this is indeed the case when train-
ing neural networks with label noise. Applying the
constraint in equation 8 directly is computationally
hard. Thus, instead of bounding the product of the
layers weights norms we suggest bounding each norm
separately: ‖Wl‖2 ≤ αl, l = 1, . . . , L. Notice that if
the constraints are not trivial, they become ‖Wl‖2 =
αl, l = 1, . . . , L. For the case αl = 1, l = 1, . . . , L, this
regularization is known as SN (Miyato et al., 2018).
Combining it with an arbitrary loss function ` we have

min
φ

1

|S|
∑
xn∈S

` (φ(xn), f(xn)) (9)

s.t. ‖Wl‖2 = 1, l = 1, . . . , L.

The next proposition shows that SN encourages a de-
cay of the learned map spectral coefficients.

Proposition 4 Let φ(x) =
∑
k∈Zm dke

jkT x be the
Fourier series of the trained neural network. Then,
the global optimum of equation 9 obeys

|dk| ≤
1

‖k‖2
, k ∈ Zm. (10)

This proposition shows that SN encourages learning
a mapping with decaying spectral coefficients. Thus,
it is expected to improve network robustness to label
noise. It is possible to extend this result to normaliza-
tion to a constant other than 1. In this case, we get
the same bound as before but with α =

∏L
l=1 αl in the

nominator of the right-hand-size of equation 10.

To appreciate why using the spectral norm can be a
good approximation to a regularization on the Jaco-
bian of the network in all locations consider the fol-
lowing simple case of two layer linear network φ(x) =
W2(W1x+ b1). In this case, the norm of the Jacobian
of the network is ‖W2W1‖2, which is the spectral norm
of W2W1. In our case, we regularize each of them inde-
pendently using the bound ‖W2W1‖2 ≤ ‖W2‖2 ‖W1‖2,
which is tight since we get equality in it when the right
singular vectors of W1 are equal to the left singular
vectors of W2.

While the decay rate in Proposition 4 is weaker than
the one in Proposition 3, the actual decay rates might
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be stronger. Moreover, the guarantee in Proposition 4
is independent of the training size and the loss func-
tion used, i.e., it applies also to minimization with the
categorical cross-entropy loss in the case of classifica-
tion. Note also that for the proposition we do not need
the assumption of uniform sampling assumption. As
we show next, this regularization indeed improves the
label noise robustness in real data classification.

4 EXPERIMENTS

In this section, our theoretical findings are validated
in the framework of image classification with label
noise. We empirically examine the application of
SN in synthesized noisy datasets, with a variety
of noise patterns and rates, as well as in a real-
world noisy dataset. Our experiments demonstrate
that indeed, using SN improves performance over
conventional training, independently of both archi-
tecture and dataset. Moreover, SN improvement is
evident even when combined with other methods.
Experiments technical details are provided in sup.
mat. The code for performing the experiments
is available in https://github.com/OshratBar/A-
Spectral-Perspective-of-Neural-Networks-Robustness-
to-Label-Noise.

We added synthetic label noise of two popular statis-
tical models (uniform and flip noise; see Patrini et al.
(2017)) in various rates to CIFAR-10, CIFAR-100,
and MNIST. All convolutional network (Springenberg
et al., 2014) and LeNet-5 (LeCun et al., 1998) were
utilized to classify the CIFAR datasets and MNIST,
respectively. For the baseline networks, we used cross-
entropy loss with `2 regularization, and applied early
stopping (according to the validation set accuracy).
All details regarding the datasets, artificial noise, net-
works, training procedures and hyperparameters are
specified in sup. mat. We present here results for
CIFAR-10; The results for CIFAR-100 and MNIST are
reported in sup. mat. In addition, comparison with
Jacobian regularization is presented in sup. mat., and
confirms that SN is better.

4.1 Bounding the Network Weights Increases
its Smoothness

Before showing the effect of weight regularization on
accuracy, we first validate a core claim in our analysis:
regularizing the network weights either by `2 or by SN
improves its smoothness. To do so, we calculate the
averaged squared Frobenius norm of the network Ja-
cobian over the test data, which is a measure of the
network smoothness. We check several configurations:
without regularization (except early stopping), with
the baseline `2, 100 times increased `2 (strong `2), and

`2 with SN. Table 1 displays the Jacobian measure
for CIFAR-10 in all noise rate-regularization combi-
nations for uniform and flip noises. It can be seen
that as the level of `2 regularization rises, the DNN is
smoother, while the `2 with SN configuration provides
the smoothest result. As we show next, this is done
without compromising the classification accuracy, but
vice-versa.

Notice the difference between the Frobenius norms in
Table 1 and Figure 1. We see a different results as
early stopping (regularization) is applied in Table 1
while in Figure 1 the training data including the noisy
examples are fully overfitted. Notice that as the noise
level increases, the early stopping regularization has a
stronger effect, and the yielded network is smoother.
This can be explained by the observation that early
stopping forces the network to learn mainly from the
clean data. Therefore, as the noise level raises, the
effective train data is smaller and therefore it is easier
to explain it by a simpler (smoother) function.

4.2 Classification With Spectral
Normalization

We turn to demonstrate the contribution of adding
SN in various classification tasks with label noise. Ta-
bles 2 and 3 present the test accuracy for CIFAR-10
dataset, corrupted by uniform and flip noise, respec-
tively. The regularizations used are as in Table 1. We
also present SN alone for the uniform case. Note that
it improves over the baseline and also `2 but it can be
seen that in all noise levels, `2 regularization combined
with SN gains the highest test accuracy. Therefore, we
use them together. Note that both of them bound the
network derivatives and thus regularize its smoothness
according to our analysis in Section 3. Secondly, our
expectation that higher smoothness of the network in-
creases the resistance to label noise is correct for all
subjected cases except for strong `2. Compared to
baseline `2, strong `2 squeezes the Jacobian, but de-
grades the test accuracy. This may happen as a high `2
coefficient overshadows the cross-entropy loss weight.
In contrast, SN imposes smoothness without affecting
the learning process.

To show that the accuracy improvement is indeed
stemming from SN, we present the spectral norms of
the layers of the baseline network in Table 4. The first
thing that the table shows is that indeed the spec-
tral norm of the network layers increase as the noise
rate becomes larger. This justifies the assumption we
make in Section 3 indicating that the noise adds high
frequency components in the network mapping and
makes it less smooth. Notice that SN reduces the spec-
tral norms of the network (as they are greater than 1
in the baseline) and thus improve performance. All

https://github.com/OshratBar/A-Spectral-Perspective-of-Neural-Networks-Robustness-to-Label-Noise
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Table 1: Bounding the network weights increases its smoothness. Squared Frobenius norm of the neural network
Jacobian matrix, averaged over CIFAR-10 test data, for various noise rates and regularization methods. Notice
that early stopping is applied here, unlike 1 where there is an overfitting of the training data.

Uniform Noise Flip Noise

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0.4 0.5

No 4736 2411 1055 329 100 3125 2789 2608 2484 2426
`2 4500 2312 942 357 90 3094 2654 2620 2362 3181
Strong `2 1785 1060 378 442 23 1537 1400 1258 1128 1199
`2 + SN 465 434 362 233 79 377 343 324 349 358

Table 2: CIFAR-10 test accuracy when trained with different rates of uniform noise and different regularization
methods.

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7

No 89.61±0.11 86.87±0.21 82.95±0.36 78.53±0.39 69.80±0.20
`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
Strong `2 80.63±0.45 76.84±0.80 64.75±1.23 71.34±0.31 45.10±3.28
SN 90.60±0.07 89.18±0.13 84.93±0.16 79.88±0.26 69.55±0.38
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45

Table 3: CIFAR-10 test accuracy when trained with different rates of flip noise and different regularization
methods.

Regularization
Noise Rate

0.1 0.2 0.3 0.4 0.5

No 87.63±0.30 85.93±0.24 83.39±0.30 80.76±0.43 72.45±0.72
`2 88.41±0.40 87.55±0.23 85.81±0.52 82.47±0.38 73.19±0.98
Strong `2 78.43±0.23 76.64±0.47 72.53±0.50 68.59±0.54 61.29±0.42
`2 + SN 89.69±0.19 88.22±0.41 86.03±0.40 82.97±0.49 73.24±0.20

Table 4: Spectral norms of the baseline network layers.

Noise rate
Layer

1 2 3 4 5 6 7 8 9

0 3.60 5.01 4.33 5.94 5.89 5.93 4.99 5.89 2.04
0.1 3.46 4.96 4.35 5.87 5.94 5.65 5.00 6.91 1.99
0.3 3.46 4.96 4.35 5.87 5.94 5.65 5.00 6.91 1.99
0.5 4.24 8.68 7.37 9.90 11.11 11.47 11.04 13.96 2.48
0.7 4.09 8.17 7.03 8.36 8.35 7.87 9.00 9.25 2.47

Table 5: SN combined with mixup. CIFAR-10 test accuracy when trained with different rates of uniform noise,
using SN and mixup.

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7

`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45

`2 + Mixup 90.35±0.17 88.03±0.18 84.63±0.28 79.41±0.40 71.14±0.43
`2 + Mixup + SN 91.47±0.10 89.94±0.15 86.04±0.09 80.29±0.23 71.43±0.35
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this stand in line with our claims above that relate
smoothness to robustness.

4.3 SN Combined With Other
Regularization Methods

To emphasize the fact that SN can be combined
with other label noise resistance methods (in addi-
tion to early stopping) and still gain a performance
improvement, we also report its performance when
used along with mixup and minimum entropy regu-
larization (Grandvalet and Bengio, 2005, 2006; Lee,
2013). Mixup is a simple and data-agnostic data aug-
mentation routine, which extends the training distri-
bution via convex combinations of training examples
pairs. Mixup encourages the model to behave lin-
early in-between training examples, and by that im-
plicitly controls model complexity. Furthermore, it
was empirically found that mixup reduces the mem-
orization of corrupted labels. Table 5 reports test ac-
curacy of CIFAR-10 with different rates of uniform
noise, when regularized by SN, mixup, and their com-
bination. Mixup improves the baseline accuracy, and
the addition of SN increases it even more. Results
for SN combined with minimum entropy regulariza-
tion are reported in sup. mat. The behaviour of SN
improvement is observed also there.

4.4 Real Noise

Clothing1M dataset contains 1M images of clothing
obtained from online shopping websites. The images
are classified to one of 14 classes by using their sur-
rounding texts, and therefore the labels contain many
errors. A small portion of the noisy labels was manu-
ally refined and split into training, validation and test
sets of sizes 50K, 14K and 10K, respectively. As com-
monly done for this dataset, e.g., in (Patrini et al.,
2017; Wang et al., 2019; Xu et al., 2019a), we also used
a bottleneck ResNet-50 (He et al., 2016) pre-trained on
ImageNet (Deng et al., 2009). For preprocessing, we
used a resize to 256 × 256, middle crop to 224 × 224
and mean-subtraction as in Tanaka et al. (2018). As
opposed to most works, no data augmentation was per-
formed, and our fine-tuning did not utilize the addi-
tionally provided clean training set. We used SGD
with momentum 0.9, a batch size of 32, and an `2 reg-
ularization coefficient of 10−3, for two epochs, with
learning rates 8 · 10−4 and 8 · 10−5. As Table 6 shows,
adding SN improves test accuracy, when applied both
with and without mixup.

Table 6: Clothing1M test accuracy

`2 `2 + SN `2 + mixup `2 + mixup + SN
69.12 70.01 70.3 70.59

5 CONCLUSION

In this paper, the natural robustness of DNNs to la-
bel noise is investigated from a new point of view. A
spectral-domain analysis is used to provide theoretical
tradeoffs between the data fitting and the interpola-
tion smoothness. We show that this trade-off can be
controlled by the level of the network weights regular-
ization. We use these findings to get new insights with
respect to networks robustness to label noise. By lever-
aging the observation that label noise imposes high
frequencies in the training data, it is concluded that
bounding the network weights increases its robustness.
Consequently, we justify the commonly used `2 and
early stopping regularizations in the presence of la-
bel noise. Furthermore, we suggest using SN, which
constitutes a tighter bound on the network derivatives
(compared to `2) and attends the entire input space at
once. In addition, since the suggested method has dis-
tinct and complementary properties for the subjected
problem, it can be integrated into other strategies, to
further improve the resistance to label noise. Numeri-
cal results confirm the validity of our theoretical find-
ings and proposed strategy on various datasets.

The theory in our work holds for any non-expansive
activation function. Such activation functions include
ReLU, Tanh, Sigmoid, Leaky ReLU, etc. Our anal-
ysis is general and does not depend on the network
width or depth (that indeed impact the optimization
of the network, which we assume that is done by some
optimizer). Moreover, we believe our results can be
applied also to other learning tools such as SVM.

Our analysis of the neural network robustness assume
that the noise do not reside only in the low frequen-
cies but also has a relatively good portion in the high
frequencies, which we show to be filtered during the
network training due to the regularizations imposed.
Thus, our analysis holds for any type of noise that obey
these assumptions. Note though that for some noise
types, e.g. structured noise, which typically has few
high frequencies, neural networks are not robust and
their performance degrade a lot Drory et al. (2020). In
this work, we used two types of noise, namely random
uniform noise and flip noise, which obey our assump-
tions. Moreover, We also demonstrated our regular-
ization on real world noise (Fashion1M).
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Supplementary Material:
A Spectral Perspective of DNN Robustness to Label Noise

A CLASSIFICATION WITH JACOBIAN REGULARIZATION

During the work process, the direct regularization of the network derivatives was empirically examined, in
addition to the indirect regularization through the network weights. Here we present the effect of the Jacobian
regularization (Sokolić et al., 2017; Varga et al., 2017; Jakubovitz and Giryes, 2018; Hoffman et al., 2019) on
smoothness and accuracy, compared with SN. Table 7 reports the averaged squared Frobenius norm of the
network Jacobian matrix, over CIFAR-10 test data, for various rates of uniform and flip noises in the train data.
Almost in all cases, the addition of SN to the baseline network is more effective than the addition of Jacobian
regularization for smoothing out the network. It is interesting to note that for extremely high rates of uniform
noise, Jacobian regularization is more effective. Tables 8 and 9 present CIFAR-10 test accuracy for uniform
and flip noises, respectively. With correspondence to the smoothness results, SN increases accuracy more than
Jacobian in all cases, except for the extremely high noise rates. This correspondence between the smoothness
and the achieved accuracy coincides with our expectation that higher smoothness of the network increases the
resistance to label noise. Note that we also applied Jacobian regularization along with mixup (see Table 8).
This flavor of Jacobian regularization is broader than the vanilla form, as it attends many input-domain points,
rather than only the given training points. While this improves accuracy in most cases compared with vanilla
Jacobian, SN performance is still superior.

To summarize, even though Jacobian regularization applies directly to the network derivatives, it is not always
the best option, and regularization through the weights can be better. This conforms with our claim that
Jacobian regularization is limited by the fact that it attends only to sampled points. Thus, we choose to focus
our effort on the weight-based regularizations and leave the Jacobian regularization for future work. This may
include understanding the relations between the regularization methods, and leveraging it to compose an optimal
combination of them.

B SPECTRAL ANALYSIS REMINDER

As a reminder, we present here the relevant basics of spectral analysis. A function g : [0, 2π]m → C is considered
appropriate if the following holds (Oppenheim et al., 1997):

1. g satisfies Dirichlet condition.

2. g is squared integrable.

3. The Jacobian g′ exists and has a finite number of discontinuities.

4. In the one dimensional case g(0) = g(2π), g′(0) = g′(2π). In the multidimensional case, the same holds
when adding π to any of the coordinates.

Such an appropriate function satisfies the following properties:

• Fourier series:

g(x) =
∑
k∈Zm

αke
jkT x, (11)

αk =
1

(2π)m

∫
x∈[0,2π]m

g(x)e−jk
T xdx, k ∈ Zm.
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Table 7: Jacobian regularization - network smoothness. Squared Frobenius norm of the network Jacobian matrix,
averaged over CIFAR-10 test data for various noise rates, and when trained with SN or Jacobian regularization.

Uniform Noise Flip Noise

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7 0.1 0.2 0.3 0.4 0.5

`2 + SN 465 434 362 233 79 377 343 324 349 358
`2 + Jacob 2390 686 392 90 19 2145 1962 1904 705 547

Table 8: Jacobian regularization - network accuracy. CIFAR-10 test accuracy when trained with different rates
of uniform noise and with SN or Jacobian regularization.

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7

`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45
`2 + Jacob 89.87±0.59 87.66±0.30 84.10±0.47 79.73±0.46 72.22±0.30
`2 + Jacob + mixup 90.57±0.19 87.96±0.24 84.89±0.31 79.72±0.34 71.26±0.55

• Derivative property:

dg(x)

dxi
=
∑
k∈Zm

jkiαke
jkT x. (12)

• Parseval’s theorem: ∑
k∈Zm

‖αk‖22 =
1

(2π)m

∫
x∈[0,2π]m

|g(x)|2dx. (13)

• Norm of Jacobian property (combination of the derivative property and Parseval’s theorem)

1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dg(x)

dx

∥∥∥∥2
2

dx =
∑
k∈Zm

‖k‖22 ‖αk‖
2
2 . (14)

C PROPOSITIONS PROOFS

C.1 Proof of Proposition 1

Proof. We use the Fourier series with uniform sampling, i.e., xn =
[
2πn1

N , . . . , 2πnmN
]
, where ni ∈ {0, . . . , N − 1}

and n ∈ {0, . . . , N − 1}m. Therefore, we have that

1

Nm

∑
n∈{0,...,N−1}m

(φ(xn)− f(xn))2 (15)

=
1

Nm

∑
n∈{0,...,N−1}m( ∑
k∈Zm

(dk − ck)ejk
T xn

)∗( ∑
q∈Zm

(dq − cq)ejq
T xn

)
=
∑
k∈Zm

∑
q∈Zm

(dk − ck)
∗

(dq − cq)

· 1

Nm

∑
n∈{0,...,N−1}m

ej
2π
N (q−k)Tn

=
∑
k∈Zm

∑
l∈Zm

(dk − ck)
∗

(dk+lN − ck+lN ) .
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Table 9: Jacobian regularization - network accuracy. CIFAR-10 test accuracy when trained with different rates
of flip noise and with SN or Jacobian regularization.

Regularization
Noise Rate

0.1 0.2 0.3 0.4 0.5

`2 + SN 89.69±0.19 88.22±0.41 86.03±0.40 82.97±0.49 73.24±0.20
`2 + Jacob 88.41±0.16 87.50±0.16 85.69±0.25 82.43±0.36 75.39±1.02

The last equality is due to the fact that 1
Nm

∑
n∈{0,...,N−1}m e

j 2π
N (q−k)Tn is 1 if q = k + lN, l ∈ Zm. Otherwise,

it becomes a geometric series sum with a common ratio of ej(q−k)
2π
N , which equals 0. This can be also seen by

noticing that the sum is basically an inner product between the column-stacked columns of a multidimensional
DFT. Using Parseval’s theorem and the derivative property of the Fourier coefficients for the regularization term,
we can rewrite equation 2 as:

min{dk}k∈Zm
∑
k∈Zm

∑
l∈Zm (dk − ck)

∗
(dk+lN − ck+lN )

+λ
∑
k∈Zm ‖k‖

2
2 |dk|

2
. (16)

Taking the derivative w.r.t dk and equating to zero, we have∑
l∈Zm

(dk+lN − ck+lN ) + λ ‖k‖22 dk = 0, k ∈ Zm. (17)

Rearranging yields

λ ‖k‖22 dk +
∑
l∈Zm

dk+lN =
∑
l∈Zm

ck+lN , k ∈ Zm. (18)

equation 18 represents an infinite system of equations for all the spectral coefficients {dk}k∈Zm . Note that each
Fourier coefficient dk depends on the coefficients of φ and f , whose index distance from k is a multiple of N
(in m possible dimensions). Accordingly, we can partition the indices vectors to Nm sets, such that each set is
represented by a vector n ∈ {0, . . . , N − 1}m such that all of its vectors result with the reminder n when dividing
their elements by N . The indexes in each set are uniformly spaced and have a gap of N from each other in each
dimension. Following that, we can split equation 18 to Nm systems, each corresponding to one of the Nm index
sets. Then, for a given set, denote

• c ,
∑
l∈Zm ck+lN ∈ Cm is the sum of f coefficients with indexes belonging to the set

• u is an infinite sequence (represented as an ”infinite vector”) of the coefficients of φ with indexes belonging
to the set, i.e., ul = dk+lN , l ∈ Zm

• 1 is an “infinite vector” with all ones, i.e, 1l = 1, l ∈ Zm. Note that we could just have used l ∈ Z since it
is all ones in all indices.

• 11T is the infinite ones matrix

• Q is an infinite diagonal matrix, such that Qll = ‖k + lN‖22 , l ∈ Zm

With these notations, we can rewrite equation 18 as:(
λQ + 11T

)
u = c1. (19)

Note that Q is invertible and 11T is of rank one. Thus, using the Sherman–Morrison matrix identity we have:

u = c
(
λQ + 11T

)−1
1 =

c

λ

(
Q−1 + P

)
1, (20)

where

Pli =
1

λ+
∑
t∈Zm

1
‖k+tN‖22

1

‖k + lN‖22

1

‖k + iN‖22
, l, i ∈ Zm.
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Now, for a single unknown in u:

ul = dk+lN =
c

λ

1

‖k + lN‖22

(
1 +

∑
t∈Z

1
‖k+tN‖22

λ+
∑
t∈Z

1
‖k+tN‖22

)

≤ 2c

λ

1

‖k + lN‖22
= O

(
1

λ ‖k + lN‖22

)
, l ∈ Zm. (21)

This is correct for any k, l ∈ Z. Replacing k + lN by k ∈ Zm, we have

dk = O

(
1

λ ‖k‖22

)
. (22)

An extension of this proof to random sampling can be done by using non-orthogonal subsampled Fourier frames
(see (Giryes, 2020)). �

C.2 Proof of Proposition 2

Proof. Assume φ is represented by

φ(x) = φL(φL−1(· · ·φ2(φ1(x;θ1);θ2) · · · ;θL−1);θL), (23)

where φl(·;θl) is the l-th layer with parameters θl, l = 1, . . . , L. The output of the l-th layer is denoted by
zl ∈ RDl , i.e. zl , φl(zl−1;θl), l = 1, . . . , L, and z0 , x. Applying the chain rule to compute the network
Jacobian matrix yields

dφ(x)

dx
=

L∏
l=1

dzl
dzl−1

. (24)

By using the matrix norm submultiplicativity property, we get∥∥∥∥dφ(x)

dx

∥∥∥∥2
2

=

∥∥∥∥∥
L∏
l=1

dzl
dzl−1

∥∥∥∥∥
2

2

≤
L∏
l=1

∥∥∥∥ dzl
dzl−1

∥∥∥∥2
2

. (25)

Now we will bound the layer Jacobian matrix spectral norm
∥∥∥ dzl
dzl−1

∥∥∥
2
, for various layer types and show that it

can be expressed only by the weights’ norm:

• FC layer: an FC layer is described by

zl = φl(zl−1;θl) = σl(Wlzl−1 + bl), (26)

where σl is the layer activation function. Hence, its Jacobian matrix is given by

dzl
dzl−1

= diag
(
σ
′

l(Wlzl−1 + bl)
)

Wl. (27)

Using the matrix norm submultiplicativity property we get∥∥∥∥ dzl
dzl−1

∥∥∥∥
2

=
∥∥∥diag

(
σ
′

l(Wlzl−1 + bl)
)

Wl

∥∥∥
2

≤
∥∥∥diag

(
σ
′

l(Wlzl−1 + bl)
)∥∥∥

2
‖Wl‖2 . (28)

Since the network activation functions are non-expensive, the diagonal matrix entries are not greater then
1. Hence, its spectral norm is at most 1, and we get∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

≤ ‖Wl‖2 . (29)

Note that the commonly used activation functions such as ReLU, sigmoid and hyperbolic tangent, satisfy the
non-expensive condition. Note that this proof is also relevant for a linear layer (corresponds to an identity
activation, which is also non-expensive) and for convolutional layer (which can be expressed also as matrix
multiplication).
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• Softmax layer: The softmax function operation on t ∈ RD is defined by

σ(t) = softmax(t) =
et

1T et
, (30)

where the exponential is applied element-wise. Hence, its Jacobian matrix is given by

dσ(t)

dt
= diag(σ(t))− σT (t)σ(t). (31)

Using the Gershgorin circle theorem, we can bound its spectral norm by∥∥∥∥dσ(t)

dt

∥∥∥∥
2

≤ max
0≤i≤D−1

σi(t)− σ2
i (t) + σi(t)

D−1∑
j=0

j 6=i

σj(t)

≤ max
0≤i≤D−1

2σi(t)− σ2
i (t), (32)

where the last inequality is due to the fact that
∑D−1
j=0 σj(t) = 1. The above upper bound is the maximal

value of a concave parabola p(u) = −u2 + 2u in the interval (0, 1), which equals 1. Hence the Jacobian
matrix of a softmax layer satisfies ∥∥∥∥dσ(t)

dt

∥∥∥∥
2

≤ 1. (33)

• Pooling layer: A pooling layer can be written as

zl = φl(zl−1;θl) = Pl(zl−1)zl−1, (34)

where P(·) is not subject to learning. When the pooling layer operates on non-overlapping patches, the
matrix representing it has orthogonal rows. In that case, the singular values are equal to the squared norm
of the rows. In each row of max-pooling matrix, one entry takes the value of 1, and the rest entries equal 0.
In an average pooling matrix rows, patch size entries take the value of 1

patch size , and the rest entries equal
0. Thus, in both cases, the largest singular value is smaller or equal 1, and we get∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

= ‖Pl(zl−1)‖2 ≤ 1. (35)

To summarize, we showed that a layer with parameters involved (linear and non-linear FC and convolutional
layers) obeys the bound ∥∥∥∥ dzl

dzl−1

∥∥∥∥
2

≤ ‖Wl‖2 , (36)

and a layer with no parameters involved (softmax and pooling) obeys∥∥∥∥ dzl
dzl−1

∥∥∥∥
2

≤ 1. (37)

Combining these bounds with equation 25 and with the known relation between spectral and Frobenius matrix
norms, we get the desired result of equation 4

�

C.3 Proof of Proposition 3

Proof. We get equation 6 using the same consideration as in the derivation of equation 39. Solving equation 6
using Karush-Kuhn-Tucker multipliers and the fact that solutions in constrained optimization tend to be on the
boundary points (unless the direct solution to the `2 distance already lies within the feasible set), leads us to
equation 7. �
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C.4 Proof of Proposition 4

Proof. Using the derivative property and Parseval’s theorem, followed by Proposition 2 and the fact that
αl = 1, l = 1, . . . , L, we have∑

k∈Zm
‖k‖22 |dk|

2 =
1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)

dx

∥∥∥∥2
2

dx (38)

≤
L∏
l=1

‖Wl‖22 = 1.

By observing that ‖k‖2 |dk|2 ≤
∑
k∈Zm ‖k‖

2
2 |dk|2 and plugging it on the left-hand-side of equation 38, we get

that ‖k‖2 |dk|2 ≤ 1. Dividing by ‖k‖2 leads to equation 10. �

D ASYMPTOTIC EXTENSION OF PROPOSITION 1

Proposition 5 Let φ(x) =
∑
k∈Zm dke

jkT x and f(x) =
∑
k∈Zm cke

jkT x be the Fourier series of the trained
neural network and the target mapping function, respectively. If the training set size satisfies N →∞, then the
global optimum of equation 2 is equivalent to the one of

min
{dk}k∈Zm

∑
k∈Zm

|dk − ck|2 + λ
∑
k∈Zm

‖k‖22 |dk|
2
, (39)

and the optimal solution reads as

dk =
ck

1 + λ ‖k‖22
, k ∈ Zm. (40)

Proof. With a uniform sampling in the interval [0, 2π], when N →∞, we have

1

N

N∑
n=1

(φ(xn)− f(xn))2 (41)

−−−−→
N→∞

1

(2π)m

∫
x∈[0,2π]m

(φ(x)− f(x))2dx

=
∑
k∈Zm

|dk − ck|2,

where the last equality stems from Parseval’s theorem for φ− f . By using the derivative property and applying
Pareseval’s theorem, we have

1

(2π)m

∫
x∈[0,2π]m

∥∥∥∥dφ(x)

dx

∥∥∥∥2
2

dx =
∑
k∈Z
‖k‖22 |dk|

2
. (42)

Then, equation 40 follows simply by minimizing equation 39. We can extend the proof for random sampling of
the input domain by replacing the Riemann integral by a Lebesgue integral related to the sampling distribution.
�

E EXPERIMENTS TECHNICAL DETAILS

All experiments were averaged over 5 trials, implemented using Tensorflow 1.15 and performed on Nvidia GeForce
GTX Titan X GPU. Input pixels of the synthetic datasets were scaled to range [0, 1]. For Clothing1M dataset,
per-pixel mean subtraction was performed.

SN. We adapt the implementation proposed in (Yoshida and Miyato, 2017; Miyato et al., 2018).

Jacobian. Instead of calculating the squared Frobenius norm of the network logits Jacobian matrix, we use an
approximation of it, as proposed in (Varga et al., 2017; Hoffman et al., 2019).
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F SYNTHETIC NOISE EXPERIMENTS DETAILS

F.1 Datasets, Networks and Training

F.1.1 CIFAR-10, CIFAR-100

Datasets. CIFAR-10 and CIFAR-100 datasets consist of 32x32 color images, uniformly distributed to 10 and
100 classes, respectively. The data is divided into a training set with 50,000 examples and a test set with
10,000 examples. We retained 10% from each training set for validation, and corrupted the remaining training
examples, according to the uniform and flip schemes proposed in (Patrini et al., 2017). The flip noise for CIFAR-
10 is described by: truck → automobile, bird → airplane, deer → horse, cat ↔ dog. In CIFAR-100 the 100
classes are grouped into 20 super-classes of size 5, e.g., flowers contains orchids, poppies, roses, sunflowers, and
tulips. Within each super-class, the noise flips each class into the next, circularly.

Network. For both CIFAR-10 and CIFAR-100 we used the all convolutional network (Springenberg et al., 2014),
but replaced each stride 2 in the convolutional layers with max pooling with stride 2. The network consists of 9
convolutional layers: 3 of size 3x3x96, 5 of size 3x3x192 and last one of size 1x1x10, followed by global averaging
and a softmax output. Max pooling is used after layers 3 and 6, and each convolution layer is followed by BN
(Ioffe and Szegedy, 2015) and ReLU activation. For the baseline of the network, we used cross-entropy loss with
`2 regularization, and applied early stopping (according to the validation set accuracy).

Training. The training on CIFAR datasets was performed using ADAM optimizer (Kingma and Ba, 2014) with
default parameters, an initial learning rate of 0.001, a learning rate decay by a factor of 10 every 10 epochs, and
a batch size of 32.

F.1.2 MNIST

Dataset. MNIST is a dataset of handwritten digits, represented by 28x28 grayscale images, which are split to
a training set of size 60,000, and a test set of size 10,000. We retained 10% from the training set for validation,
and corrupted the remaining training examples, according to the flip scheme. In order to further imitate realistic
scenario, we used a bidirectional flip of similar classes: 1 ↔ 7, 2 ↔ 3, 4 ↔ 9, 5 ↔ 6.

Network. We used LeNet-5 (LeCun et al., 1998), where each layer (except the last layer) is batch normalized
before the ReLU activation. The network consists of 2 convolutional layers of sizes 5x5x6 and 5x5x16, each
followed by max pooling with stride 2; flattering layer, which vectorizes each 3-D tensor into a vector; 3 FC
layers of sizes 120, 84 and 10, and a softmax output. For the baseline of the network, we used cross-entropy loss
with `2 regularization, and applied early stopping (according to the validation set accuracy).

Training. The training was performed using SGD optimizer with momentum 0.9, an initial learning rate of
0.01, a learning rate decay by a factor of 10 every 15 epochs, and a batch size of 32.

F.2 Optimal Hyperparameters

The hyperparameters were tuned through the validation set. We started with searching the optimal `2 coeffi-
cient for the baseline network of each experiment, and fixed it. The search space was {10−6, 5 · 10−6, 10−5, 5 ·
10−5, 10−4, 5 · 10−4, 10−3}. Then, we looked for the best Jacobian regularization configuration. First, we figured
that it is better to add it after 10 epochs, rather than from the beginning. This observation stands in line with
the approach of (Jakubovitz et al., 2019). Then, for each experiment, we searched the optimal coefficient out
of {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3}, and fixed it. In the same manner, we set the entropy coefficient to be
one of {0.5, 1, 1.5, 2} and the mixup α to be in [0.2, 0.8]. Number of epochs ranged from 20 to 50, depending on
the dataset and the noise rate. Optimal hyperparameters of all experiments are specified in Table 10, Table 11,
Table 12, Table 13, and Table 14 for CIFAR-10 uniform noise, CIFAR-10 flip noise, CIFAR-100 uniform noise,
CIFAR-100 flip noise, and MNIST flip noise, respectively.
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Table 10: Optimal hyperparameters for CIFAR-10 with various uniform noise rates.

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7

`2 10−4 10−4 10−4 10−5 10−5

Jacob 10−5 10−4 10−4 5 · 10−4 10−3

Entropy 1 2 2 1 0.5
Entropy + SN 0.5 0.5 1 1 0.5
Mixup 0.2 0.3 0.5 0.4 0.4
Epochs 20 20 20 20 30

Table 11: Optimal hyperparameters for CIFAR-10 with various flip noise rates.

Regularization
Noise Rate

0.1 0.2 0.3 0.4 0.5

`2 10−4 10−4 10−4 10−4 10−4

Jacob 10−5 10−5 10−5 10−4 10−4

Epochs 20 20 20 20 20

Table 12: Optimal hyperparameters for CIFAR-100 with various uniform noise rates.

Regularization
Noise Rate

0 0.1 0.3 0.5

`2 10−4 10−4 10−4 5 · 10−5

Epochs 50 50 50 50

Table 13: Optimal hyperparameters for CIFAR-100 with various flip noise rates.

Regularization
Noise Rate

0.1 0.3 0.5

`2 10−4 10−4 10−4

Epochs 35 35 35

Table 14: Optimal hyperparameters for MNIST with various flip noise rates.

Regularization
Noise Rate

0 0.1 0.2 0.3 0.4 0.5

`2 10−4 10−4 10−4 10−4 10−4 10−3

Epochs 30 30 30 30 30 30

Table 15: CIFAR-100 test accuracy for different rates of uniform noise, when trained with and without SN.

Regularization
Noise Rate

0 0.1 0.3 0.5

`2 67.96±0.28 65.15±0.35 59.33±0.26 51.53±0.30
`2 + SN 68.75±0.32 66.59±0.23 61.23±0.15 52.56±0.69

Table 16: CIFAR-100 test accuracy for different rates of flip noise, when trained with and without SN.

Regularization
Noise Rate

0 0.1 0.3 0.5

`2 67.96±0.28 65.75±0.33 60.48±0.10 32.77±0.36
`2 + SN 68.75±0.32 67.03±0.31 63.50±0.43 33.13±0.62
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Table 17: MNIST test accuracy for different rates of flip noise, when trained with and without SN.

Regularization
Noise Rate

0 0.1 0.2 0.3 0.4 0.5

`2 99.21±0.09 98.87±0.02 98.49±0.13 97.86±0.12 91.64±1.02 65.70±1.76
`2 + SN 99.32±0.08 99.00±0.04 98.79±0.07 98.23±0.10 95.66±1.09 66.03±1.81

Table 18: SN combined with minimum entropy. CIFAR-10 test accuracy when trained with different rates of
uniform noise, using SN and entropy regularization.

Regularization
Noise Rate

0 0.1 0.3 0.5 0.7

`2 90.03±0.19 87.42±0.10 83.57±0.52 79.28±0.37 69.88±0.81
`2 + SN 90.82±0.21 89.32±0.22 85.35±0.25 80.22±0.16 69.79±0.45

`2 + Entropy 90.07±0.16 88.33±0.18 85.45±0.19 81.27±0.56 70.97±0.50
`2 + Entropy + SN 90.77±0.23 89.38±0.14 86.82±0.34 83.24±0.12 72.64±0.17

G EXTENDED EXPERIMENTS

G.1 CIFAR-100

Here, we illustrate the SN effect in a more challenging task, in which there are fewer images per class. Tables
15 and 16 shows the test accuracy of the CIFAR-100 dataset when corrupted by uniform noise and flip noise,
respectively. In all cases, the addition of SN increases accuracy.

G.2 MNIST

Here, we demonstrate the SN power in another network architecture, which has FC layers. The MNIST dataset
is considered relatively simple. Indeed, the baseline network, and even unregularized network, show very good
results for uniform noise. Flip noise introduces a small performance degradation, which, as can be seen in Table
17, is mitigated when the network weights are spectrally normalized.

H SN COMBINED WITH MINIMUM ENTROPY REGULARIZATION

Minimum entropy regularization incorporates the entropy of the network output probabilities into the loss func-
tion, and encourages the model to have high confidence in its prediction. Table 18 shows test accuracy of
CIFAR-10 with different rates of uniform noise, when regularized by SN, minimum entropy, and their combina-
tion. Indeed, entropy regularization improves the accuracy, and the addition of SN increases it even more.
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