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Abstract

We propose a new strategy for best-arm iden-
tification with fixed confidence of Gaussian
variables with bounded means and unit vari-
ance. This strategy, called Exploration-
Biased Sampling, is not only asymptoti-
cally optimal: it is to the best of our knowl-
edge the first strategy with non-asymptotic
bounds that asymptotically matches the sam-
ple complexity. But the main advantage over
other algorithms like Track-and-Stop is
an improved behavior regarding exploration:
Exploration-Biased Sampling is biased
towards exploration in a subtle but natural
way that makes it more stable and inter-
pretable. These improvements are allowed by
a new analysis of the sample complexity op-
timization problem, which yields a faster nu-
merical resolution scheme and several quan-
titative regularity results that we believe of
high independent interest.

1 INTRODUCTION

Many modern systems of automatic decisions (from
recommender systems to clinical trials, through auto-
ML and parameter tuning) require to find the best
among a set of options, using noisy observations ob-
tained by successive calls to a random mechanism (see
e.g. (Lattimore and Szepesvári, 2020)). The simplest
formal model for such situations is the standard Gaus-
sian multi-armed bandit, a collection of K ≥ 2 in-
dependent Gaussian distributions called arms of un-
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known means µ = (µa)1≤a≤K ∈ RK and variances
all equal to 1. They are sampled sequentially and in-
dependently: at every discrete time step t ∈ N∗, an
agent chooses an arm At ∈ [K] = {1, . . . ,K} based on
past information, and observes an independent draw
Yt from distribution N (µAt , 1).

Among the set G of all standard Gaussian multi-armed
bandits with means in the interval [0, 1], we focus in
this work on the subset G∗ of bandits µ ∈ G that
have exactly one arm a∗(µ) ∈ [K] with the high-
est mean, that is µ∗ = µa∗(µ) > maxa∈[K]\{a∗(µ)} µa,
and we address the problem of optimally sampling the
arms in order to identify a∗(µ) as quickly as possible.
We consider the sequential statistics framework often
called fixed confidence setting (see (Even-Dar et al.,
2006; Kalyanakrishnan et al., 2012)): by defining Ft =
σ(Y1, . . . , Yt) the sigma-field generated by the observa-
tions up to time t, a strategy consists of a sampling rule
(At)t≥1 where each At is Ft−1-measurable, a stopping
rule τ with respect to (Ft)t≥0, and a Fτ -measurable
decision rule âτ . Given a risk parameter δ ∈ (0, 1), a
strategy is called δ-correct if, whatever the parameter
µ ∈ G∗, it holds that Pµ(τ < +∞, âτ 6= a∗(µ)) ≤ δ.
The goal is to find a δ-correct strategy that minimizes
the expected number of observations Eµ[τδ] needed to
identify a∗(µ).

The sample complexity of δ-correct strategies cannot
be arbitrarily good: it has been proved by Garivier
and Kaufmann (2016) that they essentially obey the
lower bound Eµ[τδ] ≥ T (µ) log(1/δ) for any µ ∈ G∗,
where the characteristic time T (µ) is the solution of
the following optimization problem

T (µ)−1 = sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
, (1)

where ΣK = {v ∈ [0, 1]K : v1 + · · · + vK = 1}
and Alt(µ) = {λ ∈ G∗ : a∗(λ) 6= a∗(µ)} is the set
of bandit models with an optimal arm different from
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a∗(µ). Moreover, this bound is tight: the authors in-
troduced Track-and-Stop, a strategy for which they
proved that lim supδ→0 Eµ[τδ]/ log(1/δ) = T (µ) (see
also (Russo, 2016)).

The information-theoretic analysis of Garivier and
Kaufmann (2016) also highlights the nature of the op-
timal sampling strategy: whatever the value of the risk
δ, one should sample the arms with frequencies pro-
portional to v = w(µ), the (unique and well-defined)
maximizer in the right-hand side of Equation (1). In-
deed, the Track-and-Stop algorithm works as fol-
lows: at every time step t, an estimate µ̂(t) of the
mean parameter µ is computed thanks to the avail-
able observations. The optimal frequencies relative to
this estimate are computed, and used to determine
which action is to be selected next: we pick the action
that lays the most behind its estimated optimal fre-
quency, unless one action was severely undersampled
(in which case its exploration is forced). A formal de-
scription of the strategy is recalled in Appendix A (see
Algorithm 3). Some improvements were proposed: for
example, Ménard (2019) proved that it is not neces-
sary to solve the optimization problem in every time
step. Instead, they perform a single gradient step in
every round which enables them to prove a similar re-
sult while reducing the computational complexity of
their algorithm (see also (Tirinzoni et al., 2020)).

The Track-and-Stop algorithm is not only a theo-
retical contribution, it also proved to be numerically
efficient, far exceeding its competitors in a wide variety
of settings. It was improved in different directions (De-
genne and Koolen, 2019; Degenne et al., 2019; Shang
et al., 2019), and also provides a simple template for
extensions, for bandit problems with structure (Kocák
and Garivier, 2020), as long as the optimization prob-
lem (1) can be solved. Yet, Track-and-Stop suffers
from certain shortcomings. First, a close look into the
proofs shows that the theoretical guarantees proved
so far are really asymptotic in nature. Second, the
forced exploration appears very arbitrary, with a rate
of
√
t that has no other justification than lying some-

where between constant and linear functions. Third,
the sampling strategy appears to be pretty unstable,
especially at the beginning: the target frequencies can
vary significantly as the estimated means fluctuate
before stabilizing around their expectations. Fourth,
Track-and-Stop does not present the intuitively de-
sirable behavior to sample uniformly in the beginning,
until sufficient information has been gathered for sig-
nificant differences between the arms to emerge. This
is in contrast with strategies like Racing (Kaufmann
and Kalyanakrishnan, 2013), which are sub-optimal
but intuitively appealing. Altogether, these issues lead
for example to unpredictable and irregular conduct at

the beginning of multiple A/B testing cases with many
arms very close to optimal.

Contributions The present paper addresses the is-
sues of Track-and-Stop and proposes a new algo-
rithm that solves all of them. We focus on Gaussian
bandits with known and equal variances. The explo-
ration is conducted very differently, in a statistically
natural way that softens the fluctuations of empirical
means and avoids arbitrary parameters. It results in
a stabilized sampling strategy, that is much easier to
follow and understand. We propose for this strategy a
non-asymptotic analysis with finite risk bounds. These
results have required developing a careful analysis of
the quantitative regularity of the solution to the op-
timization problem (1). As a by-product, we obtain
an accelerated algorithm for its numerical resolution,
allowing a significant speed-up for the Track-and-
Stop or the Gradient Ascent algorithms in the Gaus-
sian case. Actually, the algorithms discussed here ap-
ply equally to sub-Gaussian arms with a known upper
bound on the variances (in these settings, the sample
complexity bounds proved in this paper apply but are
not necessarily optimal).

While the proven optimality of Track-and-Stop is
purely asymptotic, a different approach is followed
in (Karnin et al., 2013; Jamieson et al., 2014; Chen
et al., 2017) for moderate values of δ. The proposed
strategies are sub-optimal by a multiplicative con-
stant, but are proved to satisfy explicit non-asymptotic
bounds. More recently, Degenne et al. (2019) ob-
tained a general non-asymptotic bound, a remarkable
but hardly comparable result in particular settings.
In this contribution, we try to make a link between
both approaches by introducing a strategy with a non-
asymptotic bound that asymptotically matches the
sample complexity.

The paper is organized as follows. We present in Sec-
tion 2 our new strategy with its main properties and
guarantees. We then turn in Section 3 to the analysis
of the optimization problem (1) and to the resulting
new algorithm for its numerical resolution. Lastly, we
illustrate the performance and behavior of our strategy
by numerical experiments in Section 4, and propose
concluding remarks in Section 5.

2 THE EXPLORATION-BIASED
SAMPLING STRATEGY

In this section, we introduce our new strategy
called Exploration-Biased Sampling. Instead of
Track-and-Stop’s greedy choice of actions based on
a plug-in estimate of µ, it relies on a specific estimator
that is biased toward uniform exploration.
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For µ ∈ G, let ∆(µ) = (µ∗ − µa)a∈[K] ∈ [0, 1]K be
its gap vector and a∗(µ) = {a ∈ [K] : ∆a(µ) = 0}
its set of optimal arms. When µ ∈ G∗, a∗(µ) has
one element that we also denote by a∗(µ) and we re-
call that the optimal weight vector w(µ) is the unique
maximizer of optimization problem (1). Otherwise,
when µ ∈ G \ G∗ has at least two optimal arms, we
define w(µ) = 1

card(a∗(µ)) (11∈a∗(µ), . . . ,1K∈a∗(µ))
T .

Since these quantities play a special role in the se-
quel, we set wmin(µ) = mina∈[K] wa(µ), ∆min(µ) =
mina∈[K]:∆a(µ)>0 ∆a(µ) (which is not defined when
a∗(µ) = [K]) and ∆max(µ) = maxa∈[K] ∆a(µ).

Given a sampling strategy, let Na(t) =
∑
s∈[t] 1As=a

be the random number of draws of arm a ∈ [K]
up to time t ∈ N∗, and if Na(t) ≥ 1, let µ̂a(t) =
Na(t)−1

∑
s∈[t] Ys1As=a be the maximum likelihood

estimate of µa at time t. We use the vector notations
N(t) = (Na(t))a∈[K] and µ̂(t) = (µ̂a(t))a∈[K].

In the rest of this section, we fix µ ∈ G.

2.1 Conservative Tracking

The main idea of the algorithm is to design a sampling
policy of arms that naturally encourages exploration
without forcing it like Track-and-Stop does. To do
so, the objective is to “wrap” the optimal weight vector
w(µ) “from above”, by ensuring that we never under-
estimate its minimal value. Indeed, even an arm with
low mean needs to be sampled sufficiently often until
one is very confident that it is suboptimal. The idea
is to construct a confidence region CRµ ⊂ [0, 1]K for
µ on which one can efficiently find a bandit µ̃ ∈ CRµ
maximizing the minimal weight wmin:

µ̃ ∈ argmaxν∈CRµ
wmin(ν) . (2)

As long as µ belongs to the confidence region CRµ,
choosing the target weights w(µ̃) guarantees that ev-
ery arm is explored sufficiently, as wmin(µ̃) ≥ wmin(µ).
The exploration bias decreases with the number of ob-
servations, as CRµ shrinks to {µ}, and in the end
arms are sampled with frequencies close to the opti-
mal weight vector w(µ).

This approach to exploration requires two ingredients:

• the exploration-biased bandit µ̃ needs to be effi-
ciently computable. It turns out to be the case
if the confidence region is a product of confidence
intervals on each arm (a mild requirement since
the arms are independent). We propose Algo-
rithm 1, an efficient procedure for computing µ̃.
Intuitively, maximizing wmin over CR(µ) requires
to increase and equalize all the positive gaps as
much as possible. The associated bandit will in-
deed be the one for which it is harder to iden-

tify the second best arm and thus it will require
to sample the worst arms more frequently. This
gives a candidate bandit for each potential best
arm, and our algorithm compares those candi-
dates. Figure 1 illustrates on an example the prin-
ciple of Algorithm 1, whose correctness is proved
in Proposition 1. The algorithm requires Opti-
mal Weights (Algorithm 4 of Appendix C.3), an
efficient procedure for solving optimization prob-
lem (1) (see also Section 3.2).

• the regularity of the mapping ν 7→ w(ν) needs
to be explicitly known. Indeed, the confidence
region will decrease with the number of observa-
tions, and µ̃ will come close to µ. The continu-
ity proved by Garivier and Kaufmann (2016) for
the asymptotic optimality of Track-and-Stop
is not sufficient: the first quantitative bounds are
given below in Section 3.4.

Algorithm 1: Exploration-Biased Weights

Input: confidence region CR =
∏
a∈[K][µa, µa]

Output: exploration-biased bandit µ̃ ∈ CR
exploration-biased optimal weight

vector w = w(µ̃)

maxLB← maxa∈[K] µa ; minUB← mina∈[K] µa
if minUB ≥ maxLB then

µ̃← (minUB, . . . ,minUB) ; w ← ( 1
K , . . . ,

1
K )

else
PotentialBest← {a ∈ [K] : µa > maxLB}
w ← (0, . . . , 0)
for a ∈ PotentialBest do

µ̃
test(a)
a ← µa

for b ∈ [K] \ {a} do

µ̃
test(a)
b ← max(µ

b
,minUB)

wtest(a) ← Optimal Weights(µ̃test(a))

if minb∈[K] w
test(a)
b > minb∈[K] wb then

w ← wtest(a) ; µ̃← µ̃test(a)

One can remark that as long as the confidence inter-
vals have a non-empty intersection, which means the
observations do not permit to exclude that any of them
is optimal, the exploration-biased weights returned by
Algorithm 1 are uniform and the arms are sampled in
a round-robin way (as in a Racing or Successive Elim-
ination algorithm like in (Even-Dar et al., 2006)).

Proposition 1. Let CR =
∏
a∈[K][µa, µa] ⊂ [0, 1]K

and (µ̃,w)← Exploration-Biased Weights(CR).
Then w = w(µ̃) and µ̃ satisfies Equation (2).

The proof of Proposition 1 is given in Appendix C.4
and relies on the results of Section 3.3.
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Figure 1: List of bandits (µ̃test(a))a∈PotentialBest tried by Algorithm 1 for the example confidence region in red
with PotentialBest = {1, 2, 3}. From left to right: µ̃test(1), µ̃test(2) and µ̃test(3)

2.2 The Strategy

We are now able to introduce our strategy called
Exploration-Biased Sampling. Given a risk δ ∈
(0, 1) and a threshold function β(t, δ), we compute at
each time confidence intervals for each µa that will
ensure µ to belong to each associated confidence re-
gion with probability at least 1 − γ, where γ ∈ (0, 1)
is a fixed parameter. We can then ensure enough ex-
ploration by biasing the optimal weights w(µ) using
Algorithm 1.

Confidence regions Confidence regions are de-
signed to satisfy two requirements. First we need
products of confidence intervals in order to use Al-
gorithm 1, and then we will require a time-uniform
confidence guarantee as a key ingredient for the non-
asymptotic analysis of Exploration-Biased Sam-
pling. For γ ∈ (0, 1), we define for t ∈ JK, τδK

CRµ(t) =
∏
a∈[K]

[
µ̂a(t)± Cγ/K(Na(t))

]
, (3)

where Cγ(s) = 2
√

log(4s/γ)
s . The following Lemma,

proved in Appendix B, states a time-uniform γ-
confidence guarantee for µ.

Lemma 2. For any µ ∈ G and γ ∈]0, 1[, we have

Pµ
(
∃t ∈ JK, τδK : µ /∈ CRµ(t)

)
≤ γ .

Stopping rule Following Garivier and Kaufmann
(2016), our stopping rule relies on the statistic

Z(t) = max
a∈[K]

min
b6=a

Za,b(t) ,

where Za,b(t) is the Generalized Likelihood Ratio
statistic (see (Chernoff, 1959)), equal in the Gaussian
case to

Za,b(t) =
1

2

Na(t)Nb(t)

Na(t) +Nb(t)
(µ̂a(t)−µ̂b(t))

∣∣µ̂a(t)−µ̂b(t)
∣∣ .

Algorithm 2: Exploration-Biased Sampling

Input: confidence level δ
threshold function β(t, δ)
confidence parameter γ

Output: stopping time τδ
estimated best arm âτδ

Observe each arm once ; t← K
for s = 0 to K − 1 do

w̃(s)← (1/K, . . . , 1/K)
while Z(t) ≤ β(t, δ) do
CRµ(t)←

∏
a∈[K][µ̂a(t)± Cγ/K(Na(t))]

(µ̃(t), w̃(t))← Exploration-Biased
Weights(CRµ(t))

Choose At+1 ∈ argmina∈[K]Na(t)−
∑
s∈[t]

w̃a(s)

Observe YAt+1 and increase t by 1
τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

The Exploration-Biased Sampling strategy is
summarized in Algorithm 2. As explained in Gariv-
ier and Kaufmann (2016), one can either follow the
exploration-biased weights directly (D-tracking) or
their cumulative sums (C-tracking). For the simplic-
ity of the proofs, we use C-tracking in the analy-
sis, but we ran the experiments with both options,
as D-tracking appears to perform slightly better (re-
place

∑
s∈[t] w̃a(s) by tw̃a(t) in the description of Al-

gorithm 2 for D-tracking).

It happens that the choice of confidence regions given
by Equation (3) leads to a minimal exploration rate for
each arm of order

√
t. What is surprising is that this is

exactly the arbitrary rate used by Track-and-Stop
for forced exploration, which appears here naturally.
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Lemma 3. For any choice of parameters and µ ∈ G,
Exploration-Biased Sampling satisfies

∀t ∈ J0, τδK,∀a ∈ [K], Na(t) ≥ 2

K

√
t−K .

The proof of this lemma can be found in Appendix F.1.

The practical advantages of Exploration-Biased
Sampling over Track-and-Stop are discussed in
Section 4. On the theoretical level, we now show
that (contrary to Track-and-Stop) this exploration
strategy is adequate for obtaining non-asymptotic
bounds.

2.3 Theoretical Results

A δ-correct strategy The δ-correctness of our
strategy, which relies on the same stopping rule as
Track-and-Stop, is a simple consequence of Gariv-
ier and Kaufmann (2016, Proposition 12).

Proposition 4. For any δ, γ ∈ (0, 1) and α >
1, there exists a constant R = R(K,α) such that
Exploration-Biased Sampling with parameters
δ, γ and threshold

β(t, δ) = log
(Rtα

δ

)
(4)

is δ-correct.

Our main result is to obtain high probability bounds
for τδ in finite horizon for Exploration-Biased
Sampling, which is summarized in the following the-
orem.

Theorem 5 (Non-asymptotic bound). Fix γ ∈ (0, 1),
α ∈ [1, 2], η ∈ (0, 1] and let µ ∈ G∗. There ex-
ists an event E of probability at least 1 − γ and δ0 =
δ0(µ,K, γ, η, α) > 0 such that for any 0 < δ ≤ δ0,
algorithm Exploration-Biased Sampling with the
threshold of Equation (4) satisfies

Pµ
(
τδ > t ∩ E

)
≤ 2Kt exp

(
− twmin(µ)

4T (µ)
2

1

log
2
3 ( 1
δ )

)
(5)

for any t > (1 + η)T (µ) log(1/δ), and

Eµ[τδ1E ] ≤ (1 + η)T (µ) log(1/δ)

+
27KT (µ)

4

wmin(µ)
2 exp

(
−wmin(µ)

4T (µ)
log

1
3

(1

δ

))
log2

(1

δ

)
.

(6)

Note that:

• using the results of Section 3, one can show that

wmin(µ) ≥ ∆min(µ)
2K for any µ ∈ G∗ (see Lemma 28

in Appendix F.1),

• the proof of Theorem 5 provides an explicit ex-
pression for δ0,

• the second term of Bound (6) tends to 0 when δ
decreases to 0, and hence negligible with respect
to the first term: the sample complexity is there-
fore arbitrarily close to the lower bound.

We additionally prove that, from an asymptotic point
of view, the Exploration-Biased Sampling algo-
rithm presents the same guarantees as Track-and-
Stop (see also Theorem 30 in Appendix F.2):

Theorem 6 (Asymptotic optimality in expectation).
Fix γ ∈ (0, 1), α ∈ (1, e/2] and let µ ∈ G∗. Algorithm
Exploration-Biased Sampling with the threshold
of Equation (4) satisfies

lim supδ→0
Eµ[τδ]

log(1/δ) ≤ αT (µ) .

Appendix D will be devoted to the proof of Theorem 5
while the proof of Theorem 6 can be found in Ap-
pendix F.3.

It is worth mentioning that the guarantees of
Exploration-Biased Sampling presented in this
section hold true not only for Gaussian arms, but more
generally for 1-sub-Gaussian arms with means in [0, 1]
(in which case, of course, a better lower bound might
hold); indeed, these proofs only rely on sub-Gaussian
deviation bounds.

3 ABOUT THE SAMPLE
COMPLEXITY OPTIMIZATION
PROBLEM

We now introduce a new method for solving the sample
complexity optimization problem (1). It comes with a
new analysis that yields various bounds for the ban-
dits characteristic constants together with monotonic-
ity and regularity results. Detailed discussions and
proofs are deferred to Appendix C.

In this section, letters a, b, c always refer to arm in-
dices, that is elements of [K]. In subindices for sums
and infima, we sometimes omit to explicitly mention
[K] for simplicity: for example, given a fixed arm b,∑
a 6=b denotes the sum over arms a ∈ [K] \ {b}.

For any bandit µ ∈ G and v ∈ ΣK , we define:

g(µ,v) = inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2
(7)

=
1

2
min
a6=a∗

va∗va
va∗ + va

∆a(µ)2 . (8)

The easy proof of the second equality can be found
in Appendix C.1. Function g is twice useful, as the
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solution to the inner optimization problem (1), and
for the expression of the statistic Z(t):

T (µ)−1 = g(µ,w(µ)) , (9)

and Z(t) = t g
(
µ̂(t),

N(t)

t

)
(10)

with the convention T (µ) = +∞ when µ ∈ G \ G∗.

Let in this section µ ∈ G∗ be a fixed bandit parameter.
For the simplicity of the presentation, let a∗ = a∗(µ),
∆ = ∆(µ), w = w(µ), wmin = wmin(µ) and T =
T (µ).

3.1 Solving the Optimization Problem

We define

φµ : r ∈
( 1

∆2
min

,+∞
)
7−→

∑
a 6=a∗

1

(r∆2
a − 1)2

−1 . (11)

Lemma 7. φµ is convex and strictly decreasing on
(1/∆2

min,+∞), and thus has a unique root.

The following proposition shows that solving φµ(r) =
0 directly gives a solution to Problem (1).

Proposition 8. Let r = r(µ) be the solution of
φµ(r) = 0. Then

wa∗ =
1

1 +
∑
a6=a∗

1
r∆2

a−1

, (12)

∀a 6= a∗, wa =
wa∗

r∆2
a − 1

, (13)

and T = 2
r

wa∗
. (14)

Besides,

wa∗ =

√∑
a 6=a∗

wa2 . (15)

Recall that in the case of 2 arms, w(µ) = (0.5, 0.5).
Besides, the monotonicity of the optimal weights with
respect to the gaps follows from Equation (13).

Corollary 9. Assume that K ≥ 3. Then

∀a, b ∈ [K], µa > µb =⇒ wa > wb .

Equation (13) also implies that

∀a, b 6= a∗,
wa
wb

=
∆2
b − 1/r

∆2
a − 1/r

.

Intuitively, it requires about ∆2
a samplings of arms a∗

and a before being able to distinguish them, so that

one could expect wa
wb

to be
∆2
b

∆2
a

. This would be the case

if the comparisons between arms were independent. In
our problem, sampling the best arm benefits the com-
parison with all arms, so that it is worth sampling the
optimal arm a little more than any single comparison
would require, and hence each sub-optimal arm a lit-
tle less. As a result, the ratio wa

wb
is closer to 1, and

the factor can be seen as a “discount” on each squared
gap for sharing the comparisons. We now derive other
important consequences of Proposition 8.

3.2 Bounds and Computation of the Problem
Characteristics

By Proposition 8, it suffices to compute r to obtain
the values of both T and w. As φµ is a strictly con-
vex and strictly decreasing function, Newton’s iterates
initialized with a value r0 < r converge to r from be-
low at quadratic speed. The procedure is summarized
in Algorithm 4 of Appendix C.3. The number of cor-
rect digits roughly doubles at every step, which implies
that a few iterations are sufficient to guarantee ma-
chine precision. The cost of the algorithm can hence
be considered proportional to that of evaluating φµ(r),
which is linear in the number of arms.

It remains to show that it is possible to find r0 < r,
and possibly close to r. The next proposition offers
such a lower bound as simple functions of the gaps.
This also yields tight bounds on the optimal weight
vector w and the characteristic time T .

Proposition 10. Denoting by ∆2 = 1
K−1

∑
a6=a∗ ∆2

a

the average squared gap,

max

(
2

∆2
min

,
1 +
√
K − 1

∆2

)
≤ r ≤ 1 +

√
K − 1

∆2
min

,

(16)

1

1 +
√
K − 1

≤ wmax ≤
1

2
, (17)

max

(
8

∆2
min

, 4
1 +
√
K − 1

∆2

)
≤ T ≤ 2

(
1 +
√
K − 1

)2
∆2

min

.

(18)

Note that all of these inequalities can be reached for
certain parameters µ, as discussed in Appendix C.2
after the proof of Proposition 10.

3.3 Monotonicity of the min-max Problem

We now show monotonicity results of the mappings
ν 7→ T (ν) and ν 7→ w(ν) when moving arm(s). When
K = 2, the optimization problem is simple and leads to
w(µ) = (0.5, 0.5) and T (µ) = 8∆2

2, so that we assume
in the remaining of this section that K ≥ 3.

Let µ′ ∈ G∗ be another bandit problem sharing the
same unique optimal arm a∗ as µ and define ∆′, w′,
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w′min, T ′ and r′ similarly to problem µ. The three fol-
lowing lemmas, which are the key ingredients to prove
Proposition 1, are shown in Appendix C.4.

Lemma 11. Assume that ∆′b > ∆b for a fixed b 6= a∗

while ∆′a = ∆a for all a 6= b. Then

1. w′b < wb,

2. w′a > wa for any a /∈ {a∗, b},
3. T ′ < T .

Lemma 12. Assume that ∆′a = ∆a + d for every a 6=
a∗ and some d > 0. Then w′min ≥ wmin, with strict
inequality whenever ∆a 6= ∆b for some a, b 6= a∗.

Lemma 13. Let B = argmina∈[K] µa (resp. B′ =
argmina∈[K] µ

′
a) be the set of the worst arms of µ (resp.

µ′) and assume that B ⊂ B′ and ∆′max < ∆max, while
∆′a = ∆a for all a /∈ B′. Then w′min ≥ wmin.

3.4 Regularity of w, T and g

Lastly, we show explicit bounds on the regularity of
ν 7→ w(ν) and ν 7→ T (ν). We keep the notations of
the last section.

Theorem 14. Assume that (1 − ε)∆2
a ≤ ∆′a

2 ≤ (1 +
ε)∆2

a for all a 6= a∗ and some ε ∈ [0, 1/7]. Then

(1− 3ε)T ≤ T ′ ≤ (1 + 6ε)T ,

∀a ∈ [K], (1− 10ε)wa ≤ w′a ≤ (1 + 10ε)wa .

Independently, we show the following property of g.

Proposition 15. Let v ∈ ΣK . Then:

g(µ′,v) ≥ (1− η)2

1 + η

(
g(µ,w(µ))− ε/2

)
where ε = ‖µ− µ′‖∞ and η = maxa∈[K]

|wa(µ)−va|
wa(µ) .

These results will prove to be essential to the proof of
the non-asymptotic bounds of Theorem 5.

4 NUMERICAL EXPERIMENTS

In this section, we discuss the behavior and perfor-
mance of Exploration-Biased Sampling for prac-
tical values of confidence δ. We propose a compari-
son with Track-and-Stop, Chernoff-Racing and
LUCB++, and begin with a reminder on those strate-
gies.

Track-and-Stop The strategy tracks the optimal
weights w(µ) by estimating it by w(µ̂(t)). Some ex-
ploration rate is forced to ensure that bad initial ob-
servations does not lead to an under-sampling of some
arms (the strategy ensures that each Na(t) growths at
least in

√
t). The stopping rule is the same as the one

presented for Exploration-Biased Sampling.

Chernoff-Racing The strategy is divided into
rounds during which the arms of a currently active set
are sampled once. At the end of each round, a deci-
sion is made to keep or eliminate the current worst arm
from the active set. Several decision rules are possible,
we will use the Chernoff rule presented in (Garivier and
Kaufmann, 2016), which eliminates arm b at the end
of round r if Zâr,b(t) = r

4 (µ̂âr (t) − µ̂b(t))
2 > β(t, δ)

where âr (resp. t) is the best arm (resp. the time) at
the end of round r.

LUCB++ The strategy (Simchowitz et al., 2017)
(see also (Kalyanakrishnan et al., 2012; Howard et al.,
2021)) samples two arms at each round: the one with
the current best estimate and the one in the remaining
arms with the highest optimistic indice Ua(t) which is
an upper confidence bound:

Ua(t) = µ̂a(t) +

√
3

Na(t)
log
( log(Na(t))× 2K

δ

)
(constant

√
3 appeared to be empirically optimal).

For the fairness of the comparison we will take the
same stopping condition as Track-and-Stop and
Exploration-Biased Sampling.

Exploration-Biased Sampling We ran our ex-

periments with confidence lengths Cγ(s) =
√

log(s/γ)
s ,

and for all strategies we used the same threshold

β(t, δ) = log((log(t) + 1)/δ) .

These choices are more aggressive than what the the-
oretical analysis suggests: yet, empirically, they ap-
pears to guarantee the desired failure rate. Using the
larger intervals of Section 2 would have increased the
number of rounds with uniform exploration, and using
larger thresholds unnecessarily delays the stopping for
all strategies.

We now discuss the numerical pros and cons of
Exploration-Biased Sampling.

Improving the Stability of Track-and-Stop In
Section 1, we highlighted the weaknesses of Track-
and-Stop, especially the forced exploration parame-
ter and the non-interpretable and unstable sampling
strategy during the first rounds. On Figures 2 and 3
we see the improvements of Exploration-Biased
Sampling concerning those behaviours. During the
first rounds, as for a racing algorithm, a uniform
sampling is observed as the learner has not collected
enough information (the confidence intervals on all
arms are not separated), which is the expected behav-
ior. Then the best arms are sampled more and more
often, but still in a more cautious way than Track-
and-Stop. We observe on Figure 3 the stability of
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the sampling strategies comparing to Track-and-
Stop during the first rounds: the targeted weights of
Exploration-Biased Sampling are stable and sep-
arate from each other cautiously (note that the three
last arms still have the same weight at time 1200)
whereas for Track-and-Stop, we observe an impor-
tant variation of the targeted weights with time. As
a matter of facts, there is a clear discontinuity each
time the estimated best arm changes, as we can see
with the red and green arms. We also remark that
Track-and-Stop uses forced exploration at regular
rounds (giving the yellow and blue peaks), which is
unnecessary for Exploration-Biased Sampling as
a natural exploration is always performed (Lemma 3).

Figure 2: Evolution of the Sampling Frequencies
N(t)/t on a Simulation of Exploration-Biased
Sampling and Track-and-Stop. (δ = 0.01, γ =
0.2, and µ = (0.9, 0.8, 0.6, 0.4, 0.4); the values of
w(µ) = (0.477, 0.476, 0.028, 0.010, 0.010) are dotted)

Comparisons of the Strategies The cost of the
the cautiousness of the algorithm (the exploration-
biased weights) is that it takes a little longer for the
proportions of draws of Exploration-Biased Sam-
pling to converge to the optimal weights. This re-
sults in a slightly larger stopping time than Track-
and-Stop that occurs for every bandit parame-
ter1. This can be observed on Table 1, where we
present the performances of Exploration-Biased

1Note that the cautiousness of our strategy is required
to obtain the non-asymptotic bounds of Theorem 5.

Figure 3: Evolution of the Targeted Weights w̃(t)
(resp. w(µ̂(t))) During the First 1200 Rounds on
a Simulation of Exploration-Biased Sampling
(resp. Track-and-Stop). (δ = 0.01, γ = 0.2,
µ = (0.9, 0.8, 0.6, 0.4, 0.4))

Sampling, Track-and-Stop, Chernoff-Racing
and LUCB++ with two scenarios and a set of param-
eters. Exploration-Biased Sampling globally per-
forms correctly but we see that the other strategies
are always a little more efficient. Note that when in-
creasing γ, the confidence intervals reduces so that the
targeted weights are closer to w, improving the perfor-
mance of the algorithm. For similar reasons the initial
cautiousness of the strategy disappears at long-term,
thus when δ is very small the relative performance of
Track-and-Stop and Exploration-Biased Sam-
pling gets closer. Of course, Exploration-Biased
Sampling overperforms Chernoff-Racing in the
long run when the optimal weights are far from
the sampling proportions of Chernoff-Racing (e.g.
when w1 � w2).

Chernoff-Racing shows great performance with
both µ(1) and µ(2). This strategy samples the two
last arms of the race equally often, thus can be opti-
mal only whenw(µ) has its two highest components of
similar value, e.g. when the two best arms are well sep-
arated from the others : this is the case of bandit µ(1).
For µ(2) any strategy performs well as the problem is
easy. However, Chernoff-Racing (whose theoreti-
cal analysis remains to be written) leads to a few more
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Table 1: Empirical Expected Number of Draws Eµ[τδ], Averaged over 1000 Experiments: µ(1) =
(0.9, 0.8, 0.6, 0.4, 0.4), w(µ(1)) = (0.477, 0.476, 0.028, 0.010, 0.010); µ(2) = (0.9, 0.5, 0.45, 0.4), w(µ(2)) =
(0.375, 0.286, 0.195, 0.144)

Bandit δ γ T kl(δ, 1− δ) EBS C TaS C EBS D TaS D Racing LUCB++

µ(1) 0.1 0.05 1476 4727 3597 4191 3477 3124 3353

µ(1) 0.01 0.05 3782 7363 5664 6330 5584 5419 5549

µ(1) 0.01 0.2 3782 7090 5664 6136 5584 5419 5372

µ(1) 10−5 0.2 9669 13801 12181 12376 11439 11557 11644

µ(2) 0.1 0.05 135 476 367 470 322 405 365

µ(2) 0.01 0.05 347 708 588 699 485 542 565

misidentifications in our experiments that might be
linked to the stopping rule we chose here; for fairness
reasons, it was taken identical to that of the other algo-
rithms. LUCB++ presents similar performance with
Chernoff-Racing, which can be explained by the
similar behaviour of the strategies: LUCB++ samples
half time the best arm asymptotically, and the worst
arms are eliminated one by one once their indice fall
under the two best estimates.

Finally, note that D-tracking shows better perfor-
mance than C-tracking, either for Exploration-
Biased Sampling and Track-and-Stop. D-
tracking indeed benefits directly of the current esti-
mate of µ (thus the empirical proportions of draws
converge faster to the optimal weight), while the im-
pact is diluted in time with C-tracking. However we
did not prove theoretical guarantees for D-tracking.

Additional experiments showing and interpreting the
dependence on parameter δ of Exploration-Biased
Sampling are postponed to Appendix G.

5 CONCLUSION

We introduced Exploration-Biased Sampling, a
new strategy for the problem of best arm identification
with fixed confidence. In addition to asymptotic opti-
mal results, we proved non-asymptotic bounds for this
strategy in the case of (sub-)Gaussian bandits. Those
finite risk bounds were made possible by a new anal-
ysis of the sample complexity optimization problem,
and by the design of our strategy which tackles the
shortcomings of Track-and-Stop: the procedure en-
sures exploration in an unforced way and stabilizes the
sampling strategy, observing uniformly before having
a high certainty that one arm is better than another.

It would be interesting but it remains out of reach
to generalize this approach to non-Gaussian models:
this requires to extend our results on the sample-
complexity optimization problem, technically chal-

lenging task for which the simple and clean arguments
developed here are likely to be replaced by much more
involved derivations, if this is possible. In addition, it
will be necessary to modify the confidence intervals on
the arm means in a way that ensures exploration. An-
other direction of improvement will be to investigate
if similar analysis and strategies are possible for the
problem of ε-best arm identification.
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APPENDIX OUTLINE

The appendix is organized as follows:

A. Precise description of the Track-and-Stop strategy

B. Proof of the time-uniform confidence regions guarantees for µ (Lemma 2)

C. Proofs of the results on the sample complexity for Gaussian arms (Section 3)

D. Proof of the non-asymptotic result (Theorem 5)

E. Technical results associated to the proof of Theorem 5 (complements to Appendix D)

F. Asymptotic analysis of Exploration-Biased Sampling (Theorems 6 and 30)

G. Additional experiments to see the dependency of Exploration-Biased Sampling in δ

Without loss of generality (see Garivier et al. (2019)), we assume that for any a ∈ [K], (Xa,n)n≥1 is a sequence of
random variables independent and identically distributed with distribution N (µa, 1), we set µ̂a,n = 1

n

∑
p∈[n]Xa,p

for all n ≥ 1 and assume that

∀t ≥ K, µ̂a(t) = µ̂a,Na(t) . (19)

A THE TRACK-AND-STOP STRATEGY

We recall the description of the Track-and-Stop strategy in Algorithm 3. We use the notations of Section
2 and algorithm Optimal Weights (Algorithm 4 of Appendix C.3) which efficiently computes the solution of
optimization problem (1).

Algorithm 3: Track-and-Stop

Input: confidence level δ
threshold function β(t, δ)

Output: stopping time τδ
estimated best arm âτδ

Observe each arm once ; t← K
for s = 0 to K − 1 do

w̃(s)← (1/K, . . . , 1/K)
while Z(t) ≤ β(t, δ) do

if Ut = {a ∈ [K] : Na(t) <
√
t−K/2} 6= ∅ then

Choose At+1 ∈ argmina∈Ut Na(t) /* forced exploration */

else
w̃(t)← Optimal Weights(µ̂(t))
Choose At+1 ∈ argmina∈[K]Na(t)−

∑
s∈[t] w̃a(s) /* C-tracking */

Observe YAt+1
and increase t by 1

τδ ← t ; âτδ ← argmaxa∈[K] µ̂a(t)

The presented algorithm uses C-tracking (the cumulative sums of the weights are tracked), but one can consider
D-tracking for a direct track of the current weight (by replacing

∑
s∈[t] w̃a(s) by tw̃a(t)).

B PROOF OF LEMMA 2

By union bound we only have to show that for any γ ∈ (0, 1) and a ∈ [K]:

Pµ
(
∃t ≥ K : |µ̂a(t)− µa| ≥ Cγ(Na(t))

)
≤ γ .
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Fix γ ∈ (0, 1) and a ∈ [K]. Note that as all arms are observed once at the beginning (see Algorithm 2), we have
Na(K) = 1. Thus using Equation (19):

Pµ
(
∃t ≥ K : |µ̂a(t)− µa| ≥ Cγ(Na(t))

)
= Pµ

(
∃t ≥ K :

∣∣µ̂a,Na(t) − µa
∣∣ ≥ Cγ(Na(t))

)
= Pµ

(
∃n ∈ N∗ : |µ̂a,n − µa| ≥ Cγ(n)

)
.

Then we use a peeling trick (see for instance Boucheron et al. (2013)):

Pµ
(
∃n ∈ N∗ : |µ̂a,n − µa| ≥ Cγ(n)

)
≤
∑
k≥0

P
(
∃n ∈ [2k, 2k+1] :

∣∣∣1
p

∑
p∈[n]

(Xa,p − µa)
∣∣∣ ≥ Cγ(n)

)
=
∑
k≥0

P
(
∃n ∈ [2k, 2k+1] :

∣∣∣ ∑
p∈[n]

Xa,p − µa
∣∣∣ ≥ nCγ(n)

)
(a)

≤
∑
k≥0

P
(
∃n ∈ [0, 2k+1] :

∣∣∣ ∑
p∈[n]

Xa,p − µa
∣∣∣ ≥ 2kCγ(2k)

)
(b)

≤ 2
∑
k≥0

exp
(
− (2kCγ(2k))2

2× 2k+1

)
= 2

∑
k≥0

exp
(
− log(2k+2/γ)

)
= 2γ

∑
k≥0

1

2k+2

= γ .

(a) is obtained using the fact that n 7→ nCγ(n) is non-decreasing and (b) is a well-known inequality for the sum
of sub-Gaussian variables, see for instance Lattimore and Szepesvári (2020, Theorem 9.2).

C PROOFS OF RESULTS PRESENTED IN SECTION 3

In this appendix, we first prove Proposition 8, then we focus on the consequences developed in Section 3.

For the sake of simplicity, we assume that a∗ = 1, except in the last section where there is no
uniqueness assumption on the best arm of the bandits.

C.1 Solving the Optimization Problem

Proof of Equation (8). Let v ∈ ΣK . One has:

g(µ,v) = inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2

=
1

2
min
a6=1

inf
λ1<λa

v1(µ1 − λ1)2 + va(µa − λa)2

=
1

2
min
a6=1

inf
µ1≤λ≤µa

v1(µ1 − λ)2 + va(µa − λ)2

=
1

2
min
a6=1

v1va
v1 + va

(µ1 − µa)2

since the minimum is reached at λ = v1µ1+vaµa
v1+va

.

Proof of Proposition 8. Let us define, for some v1 ∈ [0, 1]:

C(v1) = max
v2:K : v∈ΣK

min
a6=1

v1va
v1 + va

∆2
a (20)
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so that

T−1 = max
v∈ΣK

g(µ,v) =
1

2
max
v1∈[0,1]

C(v1) . (21)

Fix v1 ∈ [0, 1]. The maximum in Equation (20) is reached for v2:K such that all the ( v1va
v1+va

∆2
a)a 6=1 are equal,

which happens when the (va)a6=1 equalize those costs: C is such that

∀a 6= 1, C =
v1va
v1 + va

∆2
a

and hence:

∀a 6= 1, va =
v1C

v1∆2
a − C

. (22)

The fact that v ∈ ΣK yields:

Φ(v1, C) := v1 +
∑
a6=1

v1C

v1∆2
a − C

− 1 = 0 . (23)

By the implicit function theorem, there exists a mapping C(v1) such that Φ(v1, C(v1)) = 0 and

C ′(v1) = −
∂Φ
∂v1

(
v1, C(v1)

)
∂Φ
∂C

(
v1, C(v1)

) = −
1 +

∑
a6=1

C(v1)(v1∆2
a−C(v1))−v1C(v1)∆2

a

(v1∆2
a−C(v1))2

v2
1

∑
a6=1

∆2
a

(v1∆2
a−C(v1))2

= −
1−

∑
a 6=1

1
(v1∆2

a/C(v1)−1)2

v2
1

∑
a 6=1

∆2
a

(v1∆2
a−C(v1))2

.

Hence C(v1) is a smooth non-negative function with a continuous derivative. By Equation (21), it vanishes when
v1 → 0 and v1 → 1, and hence its maximum is reached at a point w1 where C ′(w1) = 0. Define r = w1/C(w1)
by the relation

C ′(w1) = 0 ⇐⇒ 1−
∑
a 6=1

1(
w1

C(w1)∆2
a − 1

)2 = 0

r is the unique solution of φµ(r) = 0.

Equations (12), (13) and (14) can be respectively derived from (23), (22) and (21). It remains to obtain Equa-
tion (15) by combining Equation (13) and the characterization φµ(r) = 0:∑

a6=1

w2
a = w2

1

∑
a6=1

1

(r∆2
a − 1)2

= w2
1(φµ(r) + 1) = w2

1 .

Proof of Corollary 9. When a, b are suboptimal, the result is a direct consequence of Equation (13) of Proposi-
tion 8. It remains to see that w1 > maxa6=1 wa, which is a direct consequence of Equation (15) and the fact that
all weights are positive.

C.2 Proof of Proposition 10

Defining qa = 1
r∆2

a−1 for a 6= 1, we will use that, as φµ(r) = 0, the (q2
a)a 6=1 are positive and sum to 1, hence for

any a 6= 1 one has qa ≤ 1 (with strict inequality when K ≥ 3).

Let us begin with Equation (17). As we assume a∗ = 1, wmax = w1 by Corollary 9. Using Equation (12) of
Proposition 8 one has:

• on the one hand

w1 =
(

1 +
∑
a6=1

1

r∆2
a − 1

)−1

by Equation (12) of Proposition 8

≤
(

1 +
∑
a6=1

1

(r∆2
a − 1)2

)−1

as qa ≤ 1

=
1

2
as φµ(r) = 0

giving the upper bound ;
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• on the other hand, by the Cauchy-Schwarz inequality:

w1 ≥

(
1 +

√
(K − 1)

∑
a6=1

1

(r∆2
a − 1)2

)−1

=
1

1 +
√
K − 1

.

We now prove Inequalities (16) :

• since qa ≤ 1 or equivalently r∆2
a ≥ 2 for every a 6= 1,

r ≥ 2

∆2
min

.

• since ∆2 = 1
K−1

∑
a 6=1 ∆2

a, by convexity of x 7→ 1
(rx−1)2 :

1

K − 1

∑
a6=1

1(
1+
√
K−1

∆2
∆2
a − 1

)2 ≥ 1(
1+
√
K−1

∆2
∆2 − 1

)2 =
1

K − 1

and hence φµ( 1+
√
K−1

∆2
) ≥ 0, which by decreasing of φµ (Lemma 7) gives r ≥ 1+

√
K−1

∆2
.

• one can also check that

φµ

(1 +
√
K − 1

∆2
min

)
=
∑
a6=1

1(
1+
√
K−1

∆2
min

∆2
a − 1

)2 − 1 ≤ 0

so that r ≤ 1+
√
K−1

∆2
min

.

Finally, combining the obtained inequalities with Equation (14) yields Equation (18).

To conclude this section, we discuss about the tightness of the proven inequalities.

• First note that when K = 2, lower and upper bounds match in Inequalities (16), (17) and (18). In that case
the problem is easy as we always have w = (0.5, 0.5).

• In fact, equalities r = 2/∆2
min, w1 = 1/2 and T = 8/∆2

min occur if and only if K = 2. This is because the
(qa)a 6=1 are positive and sum to 1 (thus q2 = 1 only when K = 2). The presence of other arms thus increases
r and T while decreases w1.

• If there is at least 3 arms, then the remaining equalities w1 = (1 +
√
K − 1)−1, r = (1 +

√
K − 1)/∆2,

r = (1 +
√
K − 1)/∆2

min and T = 2
(
1 +
√
K − 1

)2
/∆2

min are reached if and only if ∆min = ∆max, or in other
words ∆2 = · · · = ∆K . Indeed, the condition can be obtained by studying the equality cases in the proof
above, using the equality case of the Cauchy-Schwarz inequality for w1, the strict convexity of x 7→ 1

(rx−1)2

and the decreasing of φµ for r and finally the link T = 2r/w1 for T . Note that in that case, T grows linearly
with K.

C.3 Computing r

At the sight of Proposition 8, it suffices to compute r to obtain the values of both the optimal weight vector and
the sample complexity.

The function φµ is convex and strictly decreasing on (1/∆2
min,+∞) (Lemma 7). Hence, when initialized with a

value r0 < r, the iterates of a Newton procedure remain smaller than r. The lower bound of Inequalities (16) of
Proposition 10 permits such an initialization. The convergence is quadratic (the number of correct digits roughly
doubles at every step), which implies that a few iterations are sufficient to guarantee machine precision. The
cost of the algorithm can hence be considered proportional to that of evaluating φµ(r), which is linear in the
number of arms. See Algorithm 4 for details.
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Algorithm 4: Optimal Weights

Input: bandit µ ∈ G∗ with best arm 1
tolerance parameter tol (typically 10−10)

Output: optimal weight vector w
characteristic time T

for a = 2 to K do
∆a ← µ1 − µa

φµ(r)←
∑
a 6=1

1

(r∆2
a − 1)2

− 1 ; φ′µ(r)← −2
∑
a 6=1

∆2
a

(r∆2
a − 1)3

r ← max
( 2

∆2
min

,
1 +
√
K − 1

∆2

)
while |φµ(r)| ≥ tol do

r ← r − φµ(r)

φ′µ(r)

w1 ←
(

1 +
∑
a 6=1

1

r∆2
a − 1

)−1

for a = 2 to K do

wa ←
w1

r∆2
a − 1

T ← 2 r
w1

C.4 On the Monotonicity of the min-max Problem

In this section we prove Lemmas 11, 12 and 13, and then use those Lemmas to prove Proposition 1. We recall
that we assume K ≥ 3 in this section (note that Proposition 1 is trivial when K = 2).

Proof of Lemma 11.

1. Since ∑
a 6=1

1

(r∆′a
2 − 1)2

<
∑
a 6=1

1

(r∆2
a − 1)2

= 1 ,

it holds that r′ < r. It implies that for a /∈ {1, b} one has:

1

r′∆′a
2 − 1

>
1

r∆2
a − 1

.

As K ≥ 3, such an arm a exists and hence as φµ(r) = 0 = φµ′(r
′):

1

r′∆′b
2 − 1

<
1

r∆2
b − 1

or equivalently r′∆′b
2 − 1 > r∆2

b − 1.

Combining those inequalities with Equation (13) of Proposition 8, we have for all a /∈ {1, b}:

w′a
w′b

=
r′∆′b

2 − 1

r′∆′a
2 − 1

>
r∆2

b − 1

r∆2
a − 1

=
wa
wb

.

Besides, w′1/w
′
b = r′∆′b

2 − 1 > r∆2
b − 1 = w1/wb. Hence,

1− w′b
w′b

=
∑
a6=b

w′a
w′b

>
∑
a 6=b

wa
wb

=
1− wb
wb

and thus w′b < wb.
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2. For any ν ∈ G∗ with best arm 1, one can see w(ν) or its components as a function of ∆2(ν). Fix a /∈ {1, b}
and define Fa(∆2(ν)) as

Fa(∆2(ν)) =
1

wa(ν)
=
r(ν)∆a(ν)2 − 1

w1(ν)
= (r(ν)∆2

a − 1) +
∑
c6=1

r(ν)∆2
a − 1

r(ν)∆2
c − 1

where the right-inequalities are derived from Equations (12) and (13) of Proposition 8. Recall that r(ν)
also depends uniquely on the gaps, as the unique solution of φν = 0. In the following calculations we write
r for r(ν) but the dependency with respect to the gaps is crucial.

Fix d1 = 0 and da = ∆2
a for c 6= {1, b}. We want to see the change of Fa with respect to db = ∆2

b . We can
take the partial derivative:

∂Fa
∂db

=
∂r

∂db
da +

∑
c6=1

[
∂r
∂db

da

rdc − 1
− rda − 1

(rdc − 1)2

(
∂r

∂db
dc

)]
− rda − 1

(rdb − 1)2
r

=
∂r

∂db
da

(
1 +

∑
c 6=1

1

rdc − 1
− rdc

(rdc − 1)2

)
+

∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r

=
∂r

∂db
da
∑
c6=1

1 + (rdc − 1)− rdc
(rdc − 1)2︸ ︷︷ ︸

=0

+
∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r

=
∂r

∂db

∑
c6=1

dc
(rdc − 1)2

− rda − 1

(rdb − 1)2
r

(to obtain the third equality, we used that
∑
c 6=1

1
(rdc−1)2 = 1 by definition of r).

It remains to see that ∂r
∂db

is nonpositive, that is that r is nondecreasing when ∆b increases. In fact, we

already noticed that by showing that r′ < r in the first part of the proof of Lemma 11. Note that one can
also use the implicit function theorem to obtain

∂r

∂db
= − r(rdb − 1)−3∑

c 6=1 dc(rdc − 1)−3
< 0 .

Hence ∂Fa
∂db

< 0, so that as ∆b
′ > ∆b:

1

wa
= Fa(∆2) > Fa(∆′

2
) =

1

w′a
giving w′a > wa .

3. Using Equations (9) and (8):

T ′
−1

=
1

2
min
a 6=1

w′1w
′
a

w′1 + w′a
∆′a

2 ≥ 1

2
min
a6=1

w′1w
′
a

w′1 + w′a
∆2
a >

1

2
min
a6=1

w1wa
w1 + wa

∆2
a = T−1 ,

the first inequality comes from the assumption on µ and µ′, and the second is a consequence of the uniqueness
of the optimal weight vector w and the fact that w 6= w′, as previously obtained.

Before proving Lemmas 12 and 13, we show the following result.

Lemma 16. Assume that there exists κ > 0 such that ∆′a = κ∆a for any a 6= 1. Then w′ = w.

Proof of Lemma 16. As r is the unique solution of φµ(r) = 0, one has:

0 = φµ(r) =
∑
a6=1

1

(r∆2
a − 1)2

− 1 =
∑
a 6=1

1

( r
κ2 (κ∆a)2 − 1)2

− 1 =
∑
a6=1

1

( r
κ2 ∆′a

2 − 1)2
− 1 = φµ′

( r
κ2

)
and thus r′ = r/κ2.

This implies r∆2
a = r′∆′a

2
for any a 6= 1, hence w′ = w by Equations (12) and (13) of Proposition 8.
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Proof of Lemma 12. Let us rescale the gaps of µ′ to obtain the same maximal gap, by multiplying by constant
κ = ∆max

∆max+d . Denoting by µ′′ the obtained bandit, with ∆′′ = ∆(µ′′) = κ∆′ and w′′ = w(µ′′), we have w′′ = w′

by Lemma 16. Let a be (one of) the worst arm of µ, such that ∆a = ∆max. Then

∆′′max = ∆′′a = κ∆′a =
∆a

∆a + d
(∆a + d) = ∆a = ∆max

and for any b 6= 1, one has ∆b ≤ ∆a so that the nondecreasing of x 7→ x
x+d leads to:

∆′′b = κ∆′b =
∆a

∆a + d
(∆b + d) ≥ ∆b

∆b + d
(∆b + d) = ∆b .

Now we can apply Lemma 11 to every arm b /∈ {1, a} to go from µ to µ′′, and by Point 2 we know that those
transformations can only increase wa, so that by Corollary 9

w′min = w′a = w′′a ≥ wa = wmin .

If in addition there exists an arm b for which ∆b < ∆a, then strict inequality ∆b < ∆′′b occurs in the above
inequality and hence Lemma 11 gives a strict increasing of wmin.

Proof of Lemma 13. Using scaling argument from Lemma 16, like in the proof of Lemma 12, we can scale µ′ to
keep gap between arm 1 and arms of B unchanged. That would increase the gaps of all the other arms which in
consequence, using Point 2 of Lemma 11, would mean that corresponding wmin increases.

Finally we can prove that Algorithm 1 correctly computes the optimistic bandit.

Proof of Proposition 1. We stick to the notation of Algorithm 1, and first observe that w = w(µ̃). When
minUB ≥ maxLB the algorithm returns a constant bandit and w = (1/K, . . . , 1/K) which is its optimal weight
vector by convention. As all weight vectors belong to ΣK , the result is clear.

Now assume that minUB < maxLB and fix ν ∈ CR. If ν as several optimal arms, then wmin(ν) = 0 so
that trivially wmin(ν) ≤ wmin(µ̃). Assume now that ν has a unique optimal arm denoted by a. Note that
a ∈ PotentialBest, so that we will show that wmin(ν) ≤ wmin(µ̃test(a)) by transforming ν to µ̃test(a) with changes
that will only increase the quantity of interest wmin. Remark that the value of wmin is the vector value associated
to any of the worst arms of a bandit due to Corollary 9. The procedure, illustrated in Figure 4, is the following:

1. Transform ν into ν(1) by increasing arm a so that ν
(1)
a = µa. Using Lemma 12, one has wmin(ν(1)) ≥

wmin(ν).

2. Transform ν(1) into ν(2) by decreasing, for each arm b 6= a, µb to max(µ
b
,νmin). By several applications

of Lemma 11, one has wmin(ν(2)) ≥ wmin(ν(1)) (remark that imposing to stay above νmin ensures that the
associated worst arm stays one of the worst arms at each modification).

3. Transform ν(2) into ν(3) by increasing all the worst arms to minUB. By Lemma 13, one has wmin(ν(3)) ≥
wmin(ν(2)).

We now have ν(3) = µ̃test(a) so that wmin(ν) ≤ wmin(µ̃test(a)). We thus showed that

max
ν∈CR

wmin(ν) = max
a∈PotentialBest

wmin(µ̃test(a)) = wmin(µ̃) ,

where the last inequality comes from the procedure defining µ̃.
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Figure 4: Transformations in the proof of Proposition 1, for some instance bandit ν. From left to right: ν, ν(1),
ν(2), ν(3) = µ̃test(2)

C.5 Proof Of Theorem 14

We have that

φµ′
( r

1 + ε

)
=
∑
a6=1

1(
r

1+ε∆′a
2 − 1

)2 − 1 ≥
∑
a 6=1

1(
r

1+ε∆2
a(1 + ε)− 1

)2 − 1 = φµ(r) = 0

and

φµ′
( r

1− ε

)
=
∑
a 6=1

1(
r

1−ε∆′a
2 − 1

)2 − 1 ≤
∑
a 6=1

1(
r

1−ε∆2
a(1− ε)− 1

)2 − 1 = φµ(r) = 0

hence by monotonicity of φµ′ and definition of r′:

r

1 + ε
≤ r′ ≤ r

1− ε
.

Consequently, for every a 6= 1, r′∆′a
2 ≤ (1 + η)r∆2

a for 1 + η = (1 + ε)/(1− ε), and

1

r′∆′a
2 − 1

≥ 1(
r∆2

a − 1
)(

1 +
ηr∆2

a

r∆2
a−1

) ≥ 1

r∆2
a − 1

(
1− ηr∆2

a

r∆2
a − 1

)
=

1

r∆2
a − 1

− η 1

r∆2
a − 1

− η 1

(r∆2
a − 1)2

so that

(w′1)−1 = 1 +
∑
a6=1

1

r′∆′a
2 − 1

≥ 1 + (1− η)
∑
a6=1

1

r∆2
a − 1

− η
∑
a6=1

1

(r∆2
a − 1)2︸ ︷︷ ︸

=1

= (1− η)w−1
1 =

1− 3ε

1− ε
w−1

1 ≥ (1− 3ε)w−1
1 .

Furthermore, r∆2
a ≥ 2 (see the lower bound in Inequalities (16) of Proposition 10), hence

r∆2
a

r∆2
a−1 ≤ 2 by

decreasing of x 7→ x
x−1 on (2,+∞). Thus, for every η ≤ 1/4, u = η

r∆2
a

r∆2
a−1 ≤ 1/2 and 1

1−u ≤ 1 + 2u. One has

r′∆′a
2 ≥ (1− η)r∆2

a for 1− η = (1− ε)/(1 + ε), and one checks that η ≤ 1/4 for ε ≤ 1/7, hence

1

r′∆′a
2 − 1

≤ 1(
r∆2

a − 1
) (

1− ηr∆2
a

r∆2
a−1

) ≤ 1

r∆2
a − 1

(
1 + 2

ηr∆2
a

r∆2
a − 1

)
=

1

r∆2
a − 1

+ 2η
1

r∆2
a − 1

+ 2η
1

(r∆2
a − 1)2
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Consequently,

(w′1)−1 = 1 +
∑
a 6=1

1

r′∆′a
2 − 1

≤ 1 + (1 + 2η)
∑
a6=1

1

r∆2
a − 1

+ 2η
∑
a 6=1

1

(r∆2
a − 1)2︸ ︷︷ ︸

=1

= (1 + 2η)w−1
1 =

1 + 5ε

1 + ε
w−1

1 ≤ (1 + 5ε)w−1
1 .

To summarize, for ε ≤ 1/7, by Equation (14) of Proposition 8, on the one hand:

T ′ = 2r′w′1
−1 ≥ 2× r

1 + ε
× 1− 3ε

1− ε
w1
−1 =

1− 3ε

1 + ε2
× T ≥ (1− 3ε)T

and on the other hand

T ′ = 2r′(w′1)−1 ≤ 2× r

1− ε
× 1 + 5ε

1 + ε
w−1

1 =
1 + 5ε

1− ε2
× T ≤ (1 + 6ε)T

as 1 + 5ε ≤ (1 + 6ε)(1− ε2).

We also have
(1− 5ε)w1 ≤

w1

1 + 5ε
≤ w′1 ≤

w1

1− 3ε
≤ (1 + 6ε)w1

which yields by Equation (13) of Proposition 8, for any a 6= 1:

(1− 10ε)wa ≤
w1/(1 + 5ε)

(r∆2
a − 1)(1 + 2ε

1+ε )
≤ w′a =

w′1
r′∆′a

2 − 1

≤ w1/(1− 3ε)

(r∆2
a − 1)(1− 2 2ε

1+ε )
=

1 + ε

(1− 3ε)2
wa ≤ (1 + 10ε)wa .

C.6 Proof Of Proposition 15

We will prove Proposition 15 by combining two Lemmas. Note that in this section µ and µ′ are general bandits,
with possibly more than one best arm.

Lemma 17. Let µ,µ′ ∈ G and v ∈ ΣK be any optimal vector. Then:

g(µ′,v) ≥ g(µ,v)− ε/2

where ε = ‖µ− µ′‖∞.

Proof.

• Assume first that µ and µ′ have a common best arm. Without loss of generality we assume that this arm
is 1. Then:

g(µ′,v)− g(µ,v) =
1

2
min
a 6=1

v1va
v1 + va

∆′a
2 − 1

2
min
b 6=1

v1vb
v1 + vb

∆2
b by Equation (8)

=
1

2
min
a 6=1

max
b6=1

v1va
v1 + va

∆′a
2 − v1vb

v1 + vb
∆2
b

≥ 1

2
min
a 6=1

v1va
v1 + va

(
∆′a

2 −∆2
a

)
taking b = a .

Then for any a 6= 1, one has:

|∆a −∆′a| = |(µ1 − µ′1)− (µa − µ′a)| ≤ |µ1 − µ′1|+ |µa − µ′a| ≤ 2ε



A Non-asymptotic Approach to Best-Arm Identification for Gaussian Bandits

from which we obtain, using that the gaps are in [0, 1] in G∣∣∣∆2
a −∆′a

2
∣∣∣ = |∆a −∆′a| (∆a + ∆′a) ≤ 4ε .

As v is an optimal vector, we have 0 ≤ va ≤ v1 ≤ 1
2 using Equation (17), so that:

v1va
v1 + va

≤ 1

2

va
v1 + va

≤ 1

2

va
2va

=
1

4

hence
v1va
v1 + va

(∆′a
2 −∆2

a) ≥ −ε .

• In case µ and µ′ do not share a best arm, define the family of bandits (µ(t))t∈[0,1] by

∀t ∈ [0, 1],∀a ∈ [K], µ(t)
a = (1− t)µa + tµ′a .

One can check that

– µ = µ(0),

– µ′ = µ(1),

–
∥∥µ(t1) − µ(t2)

∥∥
∞ ≤ |t1 − t2| ε for every t1, t2 ∈ [0, 1].

Select the subdivision 0 = t0 < t1 < · · · < tN = 1 of times at which the optimal arms of µ(t) are modified.
Note that N ≥ 2 as µ and µ′ do not have a common best arm. Note that by continuity:

– for any n ∈ J1, N − 1K, µ(tn) has at least two best arms so that g(µ(tn),v) = 0,

– µ(1) and µ have a common best arm,

– µ(N−1) and µ′ have a common best arm.

Thus

g(µ′,v)− g(µ,v) = g(µ′,v)− g(µ(1),v) + g(µ(N−1),v)− g(µ,v)

≥ −
∥∥µ− µ(1)

∥∥
∞ +

∥∥µ(N−1) − µ′
∥∥
∞

2

≥ − (t1 + (1− tN−1))ε

2
≥ −ε

2
.

Lemma 18. Let µ′ ∈ G be a Gaussian bandit and u,v ∈ ΣK be such that

max
a∈ [K]

|ua − va|
ua

≤ η

for a fixed 0 ≤ η ≤ 1. Then:

g(µ′,v) ≥ (1− η)2

1 + η
g(µ′,u) .

Proof. Without loss of generality, assume that arm 1 is one of the best arms of µ′. Note that the condition of
the lemma can be rewritten as

∀a ∈ [K], (1− η)ua ≤ va ≤ (1 + η)ua .

Then for every a 6= 1:
v1va
v1 + va

≥ (1− η)2u1ua
(1 + η)(u1 + ua)

.

Thus:

g(µ′,v) = min
a6=1

v1va
v1 + va

∆′a
2 ≥ (1− η)2

1 + η
min
a 6=1

u1ua
u1 + ua

∆′a
2

=
(1− η)2

1 + η
g(µ′,u) .
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Proof of Proposition 15. The result follows directly by applying Lemmas 18 and 17 with u = w(µ):

g(µ′,v) ≥ (1− η)2

1 + η
g(µ′,w(µ)) ≥ (1− η)2

1 + η

(
g(µ,w(µ))− ε/2

)
.

D PROOF OF THE MAIN RESULT

The aim of this section is to prove Theorem 5. Let γ ∈ (0, 1) and µ ∈ G∗. We assume, without loss of generality,
that a∗(µ) = 1. We also write for simplicity ∆ = ∆(µ), w = w(µ) and T = T (µ).

Recall that the confidence regions are defined, for t ∈ JK, τδK, by

CRµ(t) =
∏
a∈[K]

[
µ̂a(t)± `a(t)

]
,

where `a(t) = Cγ/K(Na(t)) = 2
√

log(4KNa(t)/γ)
Na(t) .

Let E denotes an event such that µ belongs to all confidence regions:

E =

τδ⋂
t=K

(
µ ∈ CRµ(t)

)
and recall that the confidence regions defined by Equation (3) are chosen so as to ensure that Pµ(E) ≥ 1−γ (see
Lemma 2). Furthermore, when E occurs, Exploration-Biased Sampling has been designed so that arms are
observed with some minimal linear rate, specified by Lemma 19 and proved in Appendix E.1.

Lemma 19. On event E one has:

∀t ∈ N∗, min
a∈[K]

Na(t) ≥ twmin −K .

This inequality directly implies the following lower bound:

∀t ≥ 2K

wmin
, min

a∈[K]
Na(t) ≥ twmin

2
. (24)

Proof Outline

The proof is organized in 3 steps:

1. We first show that, on event E , the optimal vector w and the sampling frequency vectorN(t)/t are very close
for any t ≥ T1, where T1 is a (problem-dependent) constant. To do so, we will make use of the regularity
results of Section 3.4 and the fact that the confidence regions shrink with time.

2. Then, we control the event (τδ > t) ∩ E for t > T log(1/δ) by another event for which we can easily bound
the probability using Hoeffding’s inequality. This inclusion relies once again on the regularity results of
Section 3.4 and on conditions on δ, in particular we will require to have T log(1/δ) ≥ T1 with T1 obtained
at Step 1.

3. Finally, we derive the two bounds of the theorem from Hoeffding’s inequality and elementary calculations.

The proof uses some technical lemmas introduced and shown in Appendix E.

Step 1: Controlling the Difference between Vectors w and N(t)/t

In this Step we assume that event E occurs.
Let t ≥ 2K

wmin
. Equation (24) implies that

∀a ∈ [K], `a(t) = 2

√
log(4Na(t)K/γ)

Na(t)
≤

√
8

log(4tK/γ)

twmin
=: L(t) .
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L(t) is an arm-independent bound on the half-length of the confidence interval of each µa. In other words,
‖µ̃(t)− µ‖∞ ≤ L(t) as we are on event E . Note that L(t) is deterministic and goes to 0 as t goes to +∞. This
control of ‖µ̃(t)− µ‖∞ together with Theorem 14 allows to control the difference between w and w̃(t) for t large
enough, as the following Lemma claims.

Lemma 20. Let

T0 = max

(
2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
,

2K

wmin

)
. (25)

Then for every t ≥ T0, one has, introducing εt = 80L(t)
∆min

:

∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) . (26)

Proof. Let t ≥ 2K
wmin

and assume that t is such that 4L(t) < ∆min. On event E , one has µ ∈ CRµ(t) =∏
a∈[K][µa(t), µa(t)], hence for any a 6= 1:

µ
1
(t)− µa(t) ≥ µ1 − 2L(t)− (µa + 2L(t)) ≥ ∆a − 4L(t) > 0

so that the confidence interval for µ1 is strictly above all other confidence intervals. Hence µ̃(t) has a unique
optimal arm which is arm 1.

For each arm a 6= 1, define ∆̃a(t) = ∆a(µ̃(t)) = µ̃1(t)− µ̃a(t). Then

∆̃a(t)2 ≤ (∆a + 2L(t))2 = ∆2
a

(
1 +

4L(t)

∆a
+

4L(t)2

∆2
a

)
≤ ∆2

a

(
1 +

8L(t)

∆min

)
and ∆̃a(t)2 ≥ (∆a − 2L(t))2 = ∆2

a

(
1− 4L(t)

∆a
+

4L(t)2

∆2
a

)
≥ ∆2

a

(
1− 8L(t)

∆min

)
.

If t is such that 8L(t)
∆min

≤ 1/7 (this condition is stronger than 4L(t) < ∆min), we can apply Theorem 14 which
gives

∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) .

It remains to understand when the condition 8L(t)
∆min

≤ 1/7 holds. We have:

8L(t)

∆min
≤ 1/7 ⇐⇒ log(4tK/γ)

t
≤ ∆2

minwmin

(7× 8)2 × 8
=

∆2
minwmin

2× 1122

and this inequality is satisfied, by Lemma 26, for

t ≥ 2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
.

Combining with the initial condition t ≥ 2K
wmin

leads to the definition of T0.

As each Na(t)/t is nearly the Cesaro sum of the (w̃a(s))0≤s≤t−1 (see Lemma 25), and as εt →t→+∞ 0, we are
able to control the difference between w and N(t)/t after a deterministic time T1.

Lemma 21. Fix η ∈ (0, 1) and let

T1 =
max(6402, 8K)

η2∆2
minw

2
min

log
( 2× 6402eK

η2∆2
minwminγ

)
. (27)

Then for any t ≥ T1 one has:

∀a ∈ [K], wa(1− η) ≤ Na(t)

t
≤ wa(1 + η) . (28)

Proof. Let T0 be defined by Equation (25). Let t > T0 and a ∈ [K]. Equation (26) of Lemma 20 gives:∣∣∣∣∣
t−1∑
s=0

w̃a(s)− twa

∣∣∣∣∣ ≤
T0−1∑
s=0

|w̃a(s)− wa|+
t−1∑
s=T0

|w̃a(s)− wa| ≤ T0 + wa

t−1∑
s=T0

εs .
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By definition of εt one has:

t−1∑
s=T0

εs =
80
√

8

∆min
√
wmin

t−1∑
s=T0

√
log(4sK/γ)

s
≤

80
√

8
√

log(4tK/γ)

∆min
√
wmin

t−1∑
s=T0

1√
s
≤

80
√

8
√
t log(4tK/γ)

∆min
√
wmin

so that we have, using Lemma 25:∣∣∣∣Na(t)

t
− wa

∣∣∣∣ ≤ 1

t

[∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣+
∣∣∣ t−1∑
s=0

w̃a(s)− wa
∣∣∣]

≤ K + T0

t
+ wa

80
√

8
√

log(4tK/γ)

∆min

√
wmint

≤ wa

(
K + T0

twmin
+

80
√

8
√

log(4tK/γ)

∆min

√
wmint

)
.

Thus the conclusion of the Lemma holds when:

max
(K + T0

twmin
,

80
√

8
√

log(4tK/γ)

∆min

√
wmint

)
≤ η

2

and this inequality is satisfied, using Lemma 26, when:

t ≥ max
(2

η

K + T0

wmin
,

6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
.

The definition of T0 implies K + T0 ≤ 4 max(1122,K)
∆2

minwmin
log
(

2×2242eK
∆2

minwminγ

)
, hence the inequality still holds for

t ≥ max
(8 max(1122,K)

η∆2
minw

2
min

log
(2× 2242eK

∆2
minwminγ

)
,

6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
and T1 is greater than this lower bound.

Step 2: a Useful Inclusion of Events

We want to control the event (τδ > t)∩E for t > T log(1/δ). For δ small enough, we have the following inclusion
of events.

Lemma 22. Fix η ∈ (0, 0.15] and let δ be such that

T log(1/δ) ≥ T1 (C1)

where T1 is defined by Equation (27) and

log(1/δ) >
4

η
log
(8eTR1/2

η

)
. (C2)

Then for any C ∈ (0, 1]:

∀t ≥ (1 + C)
(1 + η)2

(1− η)2
T log(1/δ),

(
τδ > t

)
∩ E ⊆

(
‖µ− µ̂(t)‖∞ ≥

C

T

)
∩ E .

Remark 23. Latter, we will use this Lemma with C = 1

log
1
3 (1/δ)

.

Proof. Assume in the following that T log(1/δ) ≥ T1 and let t ≥ T log(1/δ). By definition of T1 and Lemma 21,
one has

max
a∈[K]

∣∣∣∣wa −Na(t)/t

wa

∣∣∣∣ ≤ η . (29)
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Then using Proposition 15 and Equation (9):(
τδ > t

)
∩ E ⊆

(
Z(t) = tg(µ̂(t),N(t)/t) ≤ β(t, δ)

)
∩ E

⊆
(
t
(1− η)2

1 + η

(
g(µ,w)−

‖µ− µ̂(t)‖∞
2

)
≤ β(t, δ)

)
∩ E

⊆
(‖µ− µ̂(t)‖∞

2
≥ 1

T
− 1 + η

(1− η)2

β(t, δ)

t

)
∩ E .

Consider now

f(t) =
1 + η

(1− η)2

β(t, δ)

t
=

1 + η

(1− η)2

log
(
Rtα

δ

)
t

.

As α ≤ 2, one can check that f is decreasing on (4,+∞). Let us show that

∀C ∈ (0, 1], f
(

(1 + C)
(1 + η)2

(1− η)2
T log(1/δ)

)
≤ 1

(1 + C)T
. (30)

Fix C ∈ (0, 1]. As α ≤ 2 and as η ≤ 0.15 is such that (1+η)2

(1−η)2 ≤ 2, we have:

f
(

(1 + C)
(1 + η)2

(1− η)2
T log(1/δ)

)
≤ 1 + η

(1− η)2

log
(
R(4T log(1/δ))2

δ

)
(1 + C) (1+η)2

(1−η)2T log(1/δ)

≤ 1

(1 + C)T

1

1 + η

(
1 + 2

log
(
4R1/2T log(1/δ)

)
log(1/δ)

)
.

hence Inequality (30) is satisfied if

log
(
4R1/2T log(1/δ)

)
≤ η

2
log(1/δ)

which is the case, by Lemma 26, when:

log(1/δ) >
4

η
log
(8eTR1/2

η

)
.

Finally when Inequality (30) holds we have for t ≥ (1 + C) (1+η)2

(1−η)2T log(1/δ):

(
τδ > t

)
∩ E ⊆

(
‖µ− µ̂(t)‖∞ ≥

2

T
− 2

(1 + C)T

)
∩ E

⊆
(
‖µ− µ̂(t)‖∞ ≥

C

T

)
∩ E

where we use C ≤ 1 in the last inclusion.

Step 3: Bounding Pµ
(
τδ > t ∩ E

)
and Eµ[τδ1E ].

Fix η ∈ (0, 1] and assume in the following that conditions (C1) and (C2) of Lemma 22 are satisfied with

η′ = η/7 ≤ 0.15. We set ζ = (1+η′)2

(1−η′)2 . Let C ∈ (0, 1], t > (1 + C)ζT log(1/δ) and define

Et =
(
‖µ− µ̂(t)‖∞ ≥

C

T

) ⋂
E .

Lemmas 22 and 27 – a consequence of Hoeffding’s inequality – (note that Condition (C1) ensures that t ≥ 2K
wmin

)
give the bound:

Pµ
(
τδ > t ∩ E

)
≤ Pµ(Et) ≤ 2Kt exp

(
− twmin

4T 2
C2
)
. (31)
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By taking C = 1

log
1
3 (1/δ)

, we obtained so far that

∀t >
(

1 +
1

log
1
3 (1/δ)

)
ζT log(1/δ), Pµ

(
τδ > t ∩ E

)
≤ 2Kt exp

(
− twmin

4T 2

1

log
2
3 (1/δ)

)
giving Bound (5) as long as

(
1 + 1

log
1
3 (1/δ)

)
ζ ≤ 1 + η. Note that ζ ≤ 1 + 6η′ as η′ ≤ 0.15 so that when

1

log
1
3 (1/δ)

≤ η′

2
⇐⇒ log(1/δ) ≥ 8× 73

η3
(C3)

the condition holds as (
1 +

1

log
1
3 (1/δ)

)
ζ ≤

(
1 +

η′

2

)
(1 + 6η′) ≤ 1 + 6.6η′ ≤ 1 + η.

It remains to focus on the bound of Eµ[τδ1E ]. Using Equation (31) we have:

Eµ[τδ1E ] =

b(1+C)ζT log(1/δ)c∑
t=0

Pµ
(
τδ > t ∩ E

)
+

∑
t>(1+C)ζT log(1/δ)

Pµ
(
τδ > t ∩ E

)
≤ (1 + C)ζT log(1/δ) + 1 + 2K

∑
t>(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)
.

Define

S(C) =
∑

t>CζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)
.

With some technical calculations (see Appendix E.4), one can obtain that:

Lemma 24. One has

S(C) ≤ 32T 4

w2
min

exp
(
− wmin

4T
C2 log(1/δ)

)( log(1/δ)

C2
+

1

C4

)
.

Once again, taking C = 1

log
1
3 (1/δ)

leads to

S(C) ≤ 32T 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)(
log

5
3 (1/δ) + log

4
3 (1/δ)

)
≤ 64T 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)
log2(1/δ)

thus

Eµ[τδ1E ] ≤ ζ
(

1 +
1

log
1
3 (1/δ)

)
T log(1/δ) + 1 +

27KT 4

w2
min

exp
(
− wmin

4T
log

1
3 (1/δ)

)
log2(1/δ) .

Under Condition (C3) we get

ζ
(

1 +
1

log
1
3 (1/δ)

)
T log(1/δ) + 1 ≤ (1 + 6.6η′)T log(1/δ) + 1 ≤ (1 + η)T log(1/δ)

and obtain the Bound (6) claimed in the theorem. Combining conditions (C1), (C2) and (C3) together, one can
define δ0 satisfying:

log(1/δ0) ≥ 73 ×max(2× 1602,K)

η3∆minw2
min

log
(72 × 2× 6402eKR1/2

η2∆2
minwminγ

)
,

with some simplifications allowed by Equation (18) of Proposition 10.
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E TECHNICAL DETAILS FOR THE PROOF OF APPENDIX D

E.1 Proof of Lemma 19

We will use the following deterministic Lemma:

Lemma 25. One has:

∀t > 0, max
1≤a≤K

∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣ ≤ K − 1 .

Proof. Apply Garivier and Kaufmann (2016, Lemma 15) with p(s) = w̃(s).

The claim is true for t ∈ J0,KK as Equation (17) of Proposition 10 gives

wminK −K ≤
K

2
−K ≤ 0 .

Otherwise, fix t ∈ JK + 1, τδK and a ∈ [K]. For any s ∈ J0,K − 1K, one has w̃a(s) = 1
K by convention (as all

arms are drawn once during the K first rounds, the only request is
∑K−1
s=0 w̃a(s) = 1), and thus w̃a(s) ≥ wmin

(w ∈ ΣK implies wmin ≤ 1
K ). For any s ∈ JK, τδ − 1K, one has by Proposition 1 :

w̃a(s) ≥ w̃min(s) = max
ν∈CRµ(s)

wmin(ν) ≥ wmin

as µ ∈ CRµ(s) on event E . Hence by Lemma 25

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K − 1) ≥ twmin − (K − 1) ≥ twmin −K .

E.2 A Technical Lemma

Lemma 26. For any c1, c2 > 0,

x =
2

c1
log
(c2e
c1

)
is such that c1x ≥ log(c2x).

This is a direct consequence of Garivier and Kaufmann (2016, Lemma 18).

E.3 Deviation Bound

We prove the following simple consequence of Hoeffding’s inequality.

Lemma 27. For any t ≥ 2K
wmin

and x > 0, one has

P
(

max
a∈[K]

|µ̂a(t)− µa| > x ∩ E
)
≤ 2Kt exp

(
− twmin

4
x2
)
.

Proof. Fix t ≥ 2K
wmin

and x > 0. For any a ∈ [K], one has with T = twmin

2 :

P
(
|µ̂a(t)− µa| > x ∩ E

)
=

t∑
s=T

P
(
|µ̂a(t)− µa| > x ∩ E ∩ Na(t) = s

)
by Equation (24)

≤
t∑

s=T

P
(
|µ̂a,s − µa| > x

)
by Equation (19)

≤
t∑

s=T

2 exp
(
− s

2
x2
)

by Hoeffding’s inequality

≤ 2t exp
(
− T

2
x2
)

giving the desired bound by union bound.
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E.4 Proof of Lemma 24

We have

S(C) =
∑

t>(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)

=
∑
t>B

f(t)

where f : t 7→ t exp(−At), A = wmin

4T 2 C
2 and B = (1 + C)ζT log(1/δ). f is increasing until 1/A and then

decreasing. Let n0 =
⌊

1
A

⌋
. We will show that S(C) ≤ 2

∫ +∞
B

f(t) dt.

• If B > n0 then f is decreasing on [B,+∞[ and one has S(C) ≤
∫ +∞
B

f(t) dt.

• Otherwise, one has:

S(C) =

n0−1∑
t=dBe

f(t) + f(n0) + f(n0 + 1) +
∑

t>n0+1

f(t)

≤
n0−1∑
t=dBe

∫ t+1

t

f(t) dt+ f(n0) + f(n0 + 1) +
∑

t>n0+1

∫ t

t−1

f(t) dt

≤
∫ +∞

dBe
f(t) dt+ f(n0) + f(n0 + 1)

where in the second inequality, we use the increasing of f on [B,n0] and its decreasing on [n0 + 1,+∞]. The
result will be true if

f(n0) + f(n0 + 1) ≤
∫ +∞

B

f(t) dt .

We have:

f(n0) + f(n0 + 1) =

⌊
1

A

⌋
e−Ab

1
Ac +

⌈
1

A

⌉
e−Ad

1
Ae

≤
(⌊ 1

A

⌋
+

⌈
1

A

⌉)
e−Ab

1
Ac

≤
(⌊ 1

A

⌋
1

A
+

1

A2

)
e−Ab

1
Ac as A <

1

2

=

∫ +∞

b 1
Ac

f(t) dt ≤
∫ +∞

B

f(t) dt as B ≤
⌊

1

A

⌋
= n0 .

where in the last inequality, we used the simple calculation∫ +∞

Y

t exp(−tX)dt = exp(−Y X)
(Y
X

+
1

X2

)
for X,Y > 0.

In both cases we have:

S(C) ≤ 2

∫ ∞
(1+C)ζT log(1/δ)

t exp
(
− twmin

4T 2
C2
)

dt

and using the same calculation as before

S(C) ≤ 2 exp
(
− ζwmin

4T
(1 + C)C2 log(1/δ)

)(4(1 + C)ζT 3

wmin

log(1/δ)

C2
+

16T 4

w2
min

1

C4

)
.

Bounding C ∈ (0, 1] and ζ ∈ [1, 2] (remind that ζ ≤ 1 + 6η′):

S(C) ≤ 2 exp
(
− wmin

4T
C2 log(1/δ)

)(16T 3

wmin

log(1/δ)

C2
+

16T 4

w2
min

1

C4

)
≤ 32T 4

w2
min

exp
(
− wmin

4T
C2 log(1/δ)

)( log(1/δ)

C2
+

1

C4

)
.
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F PROOF OF ASYMPTOTIC RESULTS

F.1 Proof of Lemma 3

We will need the two following lemmas. The first gives a lower bound of wmin(µ) and the second provides a
lower bound on the minimal gap of the optimistic bandit computed by Algorithm 1.

Lemma 28. For any µ ∈ G∗ one hase wmin(µ) ≥ ∆min(µ)
2K .

Proof. Let w = w(µ), wmin = wmin(µ) and ∆ = ∆(µ). We have

wmin =
wmax

r∆max − 1
by Equation (13) of Proposition 8

≥ 1√
K − 1 + 1

× 1
√
K−1+1
∆min

∆max − 1
by Inequalities (16) and (17)

≥ ∆min

(
√
K − 1 + 1)2

as ∆max(t) ≤ 1

≥ ∆min

2K
.

Lemma 29. Let CR =
∏
a∈[K][µa, µa] be a confidence region such that µ

a
< µa for a ∈ [K] and maxa∈[K] µa =

maxLB > minUB = mina∈[K] µa, and (µ̃,v)← OptimisticWeights(CR). Then

∆min(µ̃) ≥ min
a∈[K]

µa − µa .

Proof. We proceed by contradiction: let us assume that µ̃ is such that

∆min(µ̃) < min
a∈[K]

µa − µa .

By the two hypothesis and the algorithm’s procedure, it is clear that µ̃ has a unique best arm. Without loss of
generality let us arrange the arms so that µ̃1 > µ̃2 ≥ µ̃3 ≥ · · · ≥ µ̃K . Note that ∆min(µ̃) = µ̃1 − µ̃2.

As 1 is the best arm, once again the algorithm’s procedure ensures that µ̃1 = µ1. In addition, our assumption
implies ∆min(µ̃) < µ1 − µ1

, giving µ̃2 > µ
1
. Recall that µ̃2 = max(µ

2
,minUB), so that we split our analysis to

the two possible cases:

• if µ̃2 = µ
2
, then we cannot have µ2 ≤ µ1 = µ̃1 otherwise ∆min(µ̃) > µ2 − µ2

, which is impossible.

Then µ2 > µ1. By defining ν = (µ̃2, µ2, µ̃3, . . . , µ̃K), one has ν ∈ CR and wmin(ν) > wmin(µ̃) by Lemma 12.
Thus µ̃ cannot maximize wmin over CR which is in contradiction with Proposition 1.

• if µ̃2 = minUB, then µ̃2 = µ̃3 = · · · = µ̃K and thus all confidence intervals share a common point equal to
µ̃2 (recall that µ̃2 ∈ [µ

1
, µ1]), which is a contradiction with maxLB > minUB.

We can now prove Lemma 3. Let t ∈ J0, τδ − 1K. We want to lower bound w̃min(t).

• If at time t one has w̃(t) = (1/K, . . . , 1/K) then w̃min(t) = 1
K .

• Otherwise, by construction of Algorithms 1 and 2 we know that t ≥ K and the confidence region CR(t)
is such that at least two confidence intervals are separated. In that case, the optimistic bandit µ̃(t) has a
unique optimal arm and Lemma 28 gives

w̃min(t) ≥ ∆̃min(t)

2K
.
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One can use Lemma 29 and note that as t ≥ K, all arms have already been pulled at least once, hence

∆̃
(t)
min ≥ min

a∈[K]
2`a(t) ≥ 4 min

a∈[K]

√
log(4Na(t)K/γ)

Na(t)
≥ 4

√
log(4K/γ)

t
≥ 4

√
log 8

t
≥ 4√

t
.

Putting everything together one can obtain

w̃min(t) ≥ 2

K

1√
t
.

In both cases we obtained:

w̃min(t) ≥ min
( 2

K

1√
t
,

1

K

)
≥ 1

K

1√
t

hence for any a ∈ [K] and t ∈ N, we have using Lemma 25:

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K − 1) ≥
t−1∑
s=2

w̃min(s)−K ≥ 1

K

t−1∑
s=2

1√
s
−K ≥ 1

K

∫ t

1

1√
s

ds−K ≥ 2

K

√
t−K .

F.2 Almost Sure Asymptotic Bound

Theorem 30 (Almost sure asymptotic bound). Fix γ ∈ (0, 1), α ∈ [1, e/2]. For any µ ∈ G∗, Algorithm
Exploration-Biased Sampling with the threshold of Equation (4) satisfies

lim sup
δ→0

τδ
log(1/δ)

≤ αT (µ) Pµ-a.s. .

The result was obtained by Garivier and Kaufmann (2016, Proposition 13). The adaptation to Exploration-
Biased Sampling is straightforward, as soon as we prove the following result.

Proposition 31. For any choice of parameters and µ ∈ G∗, the sampling rule of Exploration-Biased
Sampling satisfies:

lim
t→+∞

µ̂(t) = µ Pµ-a.s. and lim
t→+∞

N(t)

t
= w(µ) Pµ-a.s. .

Proof. Lemma 3 implies that Na(t)→t→+∞ +∞ for all a ∈ [K], so that the law of large number gives

lim
t→+∞

µ̂(t) = µ Pµ-a.s. .

Remark that for a ∈ [K] one has

|µ̃a(t)− µ̂a(t)| ≤ Cγ/K(Na(t)) = 2

√
log(4Na(t)K/γ)

Na(t)
−→t→+∞ 0

so that we also have
lim

t→+∞
µ̃(t) = µ Pµ-a.s.

and thus by continuity of function w in µ (as µ has a unique optimal arm):

lim
t→+∞

w̃(t) = w(µ) Pµ-a.s. .

Now for all t ∈ N∗ and a ∈ [K] we have:∣∣∣∣Na(t)

t
− wa(µ)

∣∣∣∣ ≤ 1

t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)

∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣
≤ K − 1

t
+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣ by Lemma 25

→t→+∞ 0

(using the Cesaro Lemma for the second term).
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F.3 Proof of Theorem 6

Once again this is a direct adaptation of Garivier and Kaufmann (2016, Theorem 14). Indeed, we can follow the
proof as long as the two lemmas shown in this section are satisfied.

Let us recall the notations of Garivier and Kaufmann (2016). We assume that 1 is the best arm of µ. Fix ε > 0.
By continuity of w in µ, let ξ ≤ ∆min(µ)/4 be such that

max
µ′∈Iε

‖w(µ′)−w(µ)‖∞ ≤ ε where Iε =
∏
a∈[K]

[µa ± ξ] .

Let T ∈ N and define h(T ) = T 1/4 and the event

ET =

T⋂
t=h(T )

(µ̂(t) ∈ Iε) .

Lemma 32. There exist two positive constants B,C (that depend on µ and ε) such that

Pµ(EcT ) ≤ BT exp(−CT 1/8) .

Proof. We have by union bound

Pµ(EcT ) ≤
T∑

t=h(T )

∑
a∈[K]

Pµ(|µ̂a(t)− µa| > ξ) .

Then

Pµ(|µ̂a(t)− µa| > ξ) =

t∑
s= 2

K

√
t−K

Pµ(|µ̂a(t)− µa| > ξ ∩ Na(t) = s) by Lemma 3

≤
t∑

s= 2
K

√
t−K

P(|µ̂a,s − µa| > ξ) by Equation (19)

≤ 2

t∑
s= 2

K

√
t−K

exp
(
− sξ

2

2

)
by Hoeffding’s inequality

≤ 2
exp(−( 2

K

√
t−K)ξ2/2)

1− exp(−ξ2/2)
.

With

B = 2K
exp(Kξ2/2)

1− exp(−ξ2/2)
and C =

ξ2

K
,

one has

Pµ(EcT ) ≤
T∑

t=h(T )

B exp(−
√
tC) ≤ BT exp(−

√
h(T )C) ≤ BT exp(−CT 1/8) .

Lemma 33. There exists a constant Tε such that for T ≥ Tε, il holds that on ET

∀t ≥
√
T , max

a∈[K]

∣∣∣Na(t)

t
− wa(µ)

∣∣∣ ≤ 3ε .
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Proof. For any t ≥
√
T = h(T )2 and a ∈ [K] we have:∣∣∣∣Na(t)

t
− wa(µ)

∣∣∣∣ ≤ 1

t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)

∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(w̃a(s)− wa(µ))

∣∣∣∣∣
≤ K − 1

t
+
h(T )

t
+

∣∣∣∣∣∣1t
t−1∑

s=h(T )

(w̃a(s)− wa(µ))

∣∣∣∣∣∣ by Lemma 25

≤ K − 1

T 1/2
+

1

T 1/4
+ ε by definition of ET

≤ K

T 1/4
+ ε ≤ 3ε

whenever T ≥ (K/2ε)4 = Tε.

G ADDITIONAL EXPERIMENTS

In this section we present numerical experiments to compare the dependence on parameter δ of three strategies,
namely Exploration-Biased Sampling, Track-and-Stop and Uniform Sampling (that samples arms
uniformly).

On Figure 5, we plot for each strategy and several bandit parameters the estimate of Eµ[τδ] for different values
of δ (using the same threshold β as in the experiments of Section 4 and γ = 0.1 for Exploration-Biased
Sampling). We also plot in black the lower bound of Garivier and Kaufmann (2016) (∼δ→0 T (µ) log(1/δ)).

In term of performance, we observe that Exploration-Biased Sampling is always between Uniform Sam-
pling and Track-and-Stop (which is always quite close to the lower bound). More precisely there are different
behaviours:

• when the problem is difficult (with small gaps), Exploration-Biased Sampling behaves almost like
Track-and-Stop. Indeed for those parameters the uniform sampling phase of Exploration-Biased
Sampling is relatively small comparing to the required number of samples so that Exploration-Biased
Sampling has time to shrink its confidence regions close to parameter µ and thus behaves like Track-
and-Stop (see bandit µ(1)),

• when the problem is easier (with large gaps), Exploration-Biased Sampling behaves like Uniform
Sampling, as in almost all simulations the strategy does not have enough confidence to leave the uniform
sampling phase before the stopping condition is satisfied (see bandits µ(2) and µ(3)). When δ decreases,
there is a separation between Exploration-Biased Sampling and Uniform Sampling as more and more
simulations reach the non-uniform sampling phase of our strategy. If we continue to check for smaller val-
ues of δ, one can expect that Exploration-Biased Sampling will come closer to Track-and-Stop than
Uniform Sampling, for the same reasons as before: the confidence regions of Exploration-Biased Sam-
pling have more time to shrink. This is what we observe we bandit µ(4), for which Exploration-Biased
Sampling has the behaviour of Uniform Sampling for moderate values of δ and then the behaviour of
Track-and-Stop for small values of δ.
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Figure 5: Empirical Expected Number of Draws Eµ[τδ], Averaged over 500 Experiments. Top left: µ(1) =
(0.9, 0.8, 0.6, 0.4, 0.4). Top Right: µ(2) = (0.9, 0.5, 0.45, 0.4). Bottom Left: µ(3) = (0.9, 0.8, 0.75, 0.7). Bottom
Right: µ(4) = (0.9, 0.8, 0.7, 0.6)
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