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Abstract

An unresolved problem in Deep Learning is
the ability of neural networks to cope with
domain shifts during test-time, imposed by
commonly fixing network parameters after
training. Our proposed method Meta Test-
Time Training (MT3), however, breaks this
paradigm and enables adaption at test-time.
We combine meta-learning, self-supervision
and test-time training to learn to adapt to
unseen test distributions. By minimizing
the self-supervised loss, we learn task-specific
model parameters for different tasks. A
meta-model is optimized such that its adap-
tion to the different task-specific models leads
to higher performance on those tasks. Dur-
ing test-time a single unlabeled image is suf-
ficient to adapt the meta-model parameters.
This is achieved by minimizing only the self-
supervised loss component resulting in a bet-
ter prediction for that image. Our approach
significantly improves the state-of-the-art re-
sults on the CIFAR-10-Corrupted image clas-
sification benchmark.

1 INTRODUCTION

Deep neural networks have dramatically improved the
results in a wide range of applications. However, af-
ter they are deployed the distribution of test data may
be very different compared to the distribution of the
training data. During testing, samples may be cor-
rupted by, e.g., noise, different lighting conditions, or
environmental changes such as snow or fog (see Fig-
ure 1). These corruptions and the resulting distribu-
tion shifts can cause a dramatic drop in performance
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Figure 1: Example of a CIFAR-10 image with different
corrupted versions of the most severe level taken from
the CIFAR-10-Corrupted dataset.

(Azulay & Weiss, 2019; Hendrycks & Dietterich, 2019).
Even truly unseen test images without a large distri-
bution shift can harm the model performance (Recht,
Roelofs, Schmidt, & Shankar, 2019). Adversarial per-
turbations are examples for an intentional distribution
shift, that is not recognizable to humans, but also re-
duces model performance drastically.

To address changes in the test distribution and the
resulting performance drop, recent work has mainly
focused on the robustness to adversarial examples
(Carlini & Wagner, 2017; Chen, Liu, et al., 2020; Dong
et al., 2020; Jeddi, Shafiee, Karg, Scharfenberger, &
Wong, 2020; Szegedy et al., 2013) or the general-
ization to out-of-distribution samples (Albuquerque,
Naik, Li, Keskar, & Socher, 2020; Hendrycks et al.,
2020; Krueger et al., 2020). Both areas aim to train
a model in order to be robust against various types of
unknown corruptions, distribution shifts, or domain
shifts during testing. Another concept assumes that
during training multiple unlabeled samples of the tar-
get domain are available and therefore unsupervised
domain adaptation (UDA) can be performed (Tan et
al., 2018; M. Wang & Deng, 2018; Wilson & Cook,
2020; Zhao et al., 2020). In the extreme case of one-
shot UDA, only one unlabeled sample of the target
domain is available during training (Luo, Liu, Guan,
Yu, & Yang, 2020; Benaim & Wolf, 2018).

On the contrary, it is possible to account for distri-
bution shifts only during test-time using a single test
image under the assumption that the test image con-
tains information about the distribution it originates
from. Since the adaption to a single test sample is then
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performed by adapting the model at test-time, there
is no need for any test data or information about the
test distribution during the training stage. Addition-
ally, in contrast to UDA, neither the original training
data is needed for the adaption to a new test sam-
ple nor the test samples have to be drawn from the
same distribution, since each test sample is processed
individually. The assumption that each test sample
can be corrupted differently could occur more likely in
practice than having a persistent shift of the test distri-
bution after deployment. For the concept of adaption
during test-time, the model can be quickly adapted us-
ing only the sample itself, where in one-shot UDA the
complete training dataset is additionally used to train
a model on the target domain. If the target distri-
bution is not stationary, the one-shot UDA has to be
applied for each test sample individually, which would
result in a tremendous testing complexity.

Test-Time Training The concept of adaption dur-
ing test-time was first proposed by Sun et al. (2020)
and is called Test-Time Training (TTT). In order to
train a model which is able to adapt to unseen im-
ages, Sun et al. (2020) proposed to train the model
using a supervised and a self-supervised loss jointly,
denoted as joint training. During testing, only the self-
supervised loss on one unlabeled test image is applied
to adapt the model parameters which is hence called
test-time training. After that, the refined model is
used for inference. This test-time adaption is done for
each test sample individually starting from the initially
trained model.

The used architecture has two heads and a shared fea-
ture extractor. One head is used for the supervised
downstream task, e.g., for classification the minimiza-
tion of the categorical cross-entropy loss. The sec-
ond head enables self-supervised learning. It solves
a simple auxiliary task of rotation prediction, where
four different rotation angles have to be predicted in
a four-way classification problem (Gidaris, Singh, &
Komodakis, 2018).

During testing, a batch of augmented views of a sin-
gle image is used to minimize only the self-supervised
loss subsequently to adapt the shared feature extractor
while keeping the head for the supervised downstream
task unchanged. The adapted model is used to make
the prediction of the test sample. In addition, Sun et
al. (2020) showed under strong assumptions that mini-
mizing the self-supervised loss during testing implicitly
minimizes the supervised loss.

While for the standard test procedure the adapted
model is only used for a single image, the authors pro-
posed an online setting where the model parameters
are adapted sequentially during testing with a stream

of test samples of a stationary or gradually changing
test distribution. This online setting can be seen as
online unsupervised domain adaption. Another recent
approach for online test-time adaption is built upon
entropy minimization (D. Wang, Shelhamer, Liu, Ol-
shausen, & Darrell, 2020).

Self-Supervised Learning In the work of Sun et
al. (2020) the rather simple auxiliary task of rota-
tion prediction (Gidaris et al., 2018) is used for self-
supervision. Recent state-of-the-art approaches for
representation learning, on the other hand, rely on
contrastive learning (Chen, Kornblith, Norouzi, &
Hinton, 2020; Chen, Kornblith, Swersky, Norouzi, &
Hinton, 2020; He, Fan, Wu, Xie, & Girshick, 2020;
van den Oord, Li, & Vinyals, 2018). The key idea of
contrastive learning is to jointly maximize the similar-
ity of representations of augmented views of the same
image while minimizing the similarity of representa-
tions of other samples, so called negatives. Another
state-of-the-art technique for self-supervised represen-
tation learning is called Bootstrap Your Own Latent
(BYOL) (Grill et al., 2020). Compared to contrastive
losses, the main advantage of BYOL is that there is no
need for negative samples. This makes BYOL suitable
for test-time training since there is only a single image
available during test-time.

BYOL consists of two neural networks, the online and
target model. Both networks predict a representation
of two different augmented views of the same image.
The online network is optimized such that both the on-
line and target predictions of the two augmented views
are as similar as possible. This is realized by minimiz-
ing the mean squared euclidean distance of both l2-
normalized predictions. The parameters of the target
network are updated simultaneously using an exponen-
tial moving average of the online network parameters.

Meta-Learning Another concept of adapting to un-
known tasks or distributions is meta-learning, which
is used in many state-of-the art results, e.g., for
supervised few-shot learning (Antoniou, Edwards,
& Storkey, 2018; Finn, Abbeel, & Levine, 2017;
Hospedales, Antoniou, Micaelli, & Storkey, 2020; Li,
Zhou, Chen, & Li, 2017; Nichol, Achiam, & Schulman,
2018) or unsupervised few-short learning (Hsu, Levine,
& Finn, 2018; Khodadadeh, Bölöni, & Shah, 2018).
Meta-learning has also shown its flexibility in the
work of Metz, Maheswaranathan, Cheung, and Sohl-
Dickstein (2018) where an unsupervised update rule is
learned which can be used for pre-training a network
in order to get powerful representations of unknown
data distributions. In the work of Balaji, Sankara-
narayanan, and Chellappa (2018), meta-learning is
used to train models that generalize well to unknown
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Figure 2: MT3 training and test-time adaption: (a) In the outer loop the meta-parameters θ are updated to
minimize Ltotal which depends on multiple inner loop adaption steps. In the inner loop, different augmented
views of the same image are used to adapt the meta-model to the task-specific model. (b) Test-time adaption
to different corruptions starting from optimized meta-parameters θ∗.

domains. A widely used optimization based meta-
learning algorithm is Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017).

The main concept of MAML is to find the meta-model
parameters θ which can be adapted to a new task using
a small number of samples and gradient steps. This
means, it maximizes the sensitivity of the meta-model
to changes in the task. In few-shot learning, tasks are
defined as a set of new and unknown classes. During
training, multiple tasks Ti are sampled from a distri-
bution of tasks P (T ) and used to optimize the task-
specific parameters φi using a few gradient steps by
minimizing a task-specific loss. This is often called
the inner loop. The meta-parameters θ are then opti-
mized in the outer loop such that the adaption to φi of
each new task Ti maximizes the performance on that
task. This results in an optimization over the gradient
steps in inner loops, thus a second order optimization.

Meta Test-Time Training (MT3) In our work,
we propose a novel combination of self-supervision and
meta-learning to have the capability of adapting the
model to unknown distributions during test-time. The
combination of self-supervision and meta-learning has
shown to be beneficial especially for few-short learning
(Su, Maji, & Hariharan, 2020). In this work, a self-
supervised and a supervised loss where jointly mini-
mized by a meta-learner. In contrast to simply using
joint training (Sun et al., 2020) or minimizing the sum
of loss functions by meta-learning (Su et al., 2020), we
propose to train the model such that it directly learns
to adapt at test-time without supervision. We there-
fore train the meta-model, parameterized by θ, using
a supervised and a slightly modified version of BYOL
which are combined with MAML. During testing of a
single sample, we start with the final meta-model pa-

rameters θ∗ and fine-tune them for each unlabeled test
image to φ∗ using solely the self-supervised BYOL-like
loss. The adapted model is in turn used for inference
of that test image.

For training the meta-parameters in MT3, we define
a batch of images as a task Ti. The parameters θ are
transformed to φi for each task Ti by minimizing the
modified BYOL loss using two augmented versions of
an unlabeled image. The meta-parameters are opti-
mized such that the prediction of the updated model
parameterized by φi leads to a high performance for
task Ti. The optimization of θ is performed over multi-
ple tasks simultaneously as shown exemplarily in Fig-
ure 2 (a).

During testing, illustrated in Figure 2 (b), a batch of
different augmented views of a single test sample de-
fines a task for which we optimize the task-specific pa-
rameters with the BYOL-like loss in a self-supervised
fashion using one or several gradient steps. This cor-
responds to the standard version of test-time training
(Sun et al., 2020). The online setting of Sun et al.
(2020) or D. Wang et al. (2020) is not considered fur-
ther in our work. The optimized parameters φ∗ for a
single sample are only used for the classification pre-
diction of itself and are discarded afterwards. With
this test-time adaption we aim for compensating the
performance drop caused by unseen test distribution
or distribution shifts.

Our contributions are as follows:

• We propose a novel combination of meta-learning
and self-supervision which is able to adapt to un-
seen distribution shifts at test-time without su-
pervision.

• We analyze MT3 and show that the combination
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of meta-learning and BYOL achieves better per-
formance than just joint training.

• Our method MT3 significantly outperforms the
state-of-the-art in adapting to unseen test distri-
bution shifts.

2 METHOD

Tasks In this work, the training dataset with N
input-output pairs is defined as Dtrain = {xk,yk}Nk=1

with inputs x ∈ X and their corresponding class la-
bels y ∈ Y. Each meta-training task Ti is associ-
ated to a batch of K input-output pairs Dtrain

i =
{xki ,yki }Kk=1 uniformly sampled from Dtrain. Each up-
date of the meta-parameters is performed over a meta-
batch which consists of T tasks. In contrast to MAML,
where the meta-objective is the adaption to new tasks,
our meta-objective is to adapt the model to unknown
data distribution shifts. Therefore, we do not sample
the tasks Ti with respect to a different set of classes,
but different distributions, which is further described
in Section 2.2. During testing, a task T is defined as
adapting the meta-model on KT augmented views of
a single test sample xtest.

Architecture Similar to previous work in represen-
tation learning (Chen, Kornblith, Norouzi, & Hinton,
2020; Chen, Kornblith, Swersky, et al., 2020; Grill et
al., 2020), the overall architecture as shown in Fig-
ure 3 consists of a feature extractor f , a classifica-
tion head h for a supervised classification, a projec-
tor p and a predictor q for an auxiliary self-supervised
task. The shared representation g will either be used
for the classification prediction ŷ or to calculate the
projection z and the prediction r. As introduced by
Chen, Kornblith, Norouzi, and Hinton (2020); Chen,
Kornblith, Swersky, et al. (2020), the similarity in
the self-supervised loss is calculated in the projection
space z, instead of the representation space g. The
meta-model is parameterized by the meta-parameters
θ = [θf ,θh,θp,θq, ]

T
. The task-specific parameters

are denoted as φ = [φf ,φh,φp,φq, ]
T

.

2.1 Meta Test-Time Training

Since the final model parameters θ∗ are adapted at
test-time using a single unlabeled test sample xtest, the
sample-specific parameters φ∗ are then used for pre-
diction. This test procedure breaks the classical learn-
ing paradigm where the model parameters are fixed at
test-time.

In order to make the model adaptable at test-time,
there are two crucial problems which need to be ad-
dressed. First, we need an unsupervised loss function

fx

p q

h

g

ŷ

z r

Figure 3: Used architecture in MT3 with shared
feature extractor f , classification head h, and self-
supervision head with projector p and predictor q.

which is used to adapt the model parameters at test-
time, and second, the model has to be optimized dur-
ing training such that adaptation during test-time re-
sults in a better classification performance.

Following Sun et al. (2020), a self-supervised loss is
minimized in order to update the model parameters
at test-time. We make use of BYOL (Grill et al.,
2020), since the rather simple self-supervised rotation
loss used by Sun et al. (2020) can fail to provide enough
information for adapting the model, specifically if the
input sample is rotation invariant. Sun et al. (2020)
further proposed to jointly minimize a supervised and
a self-supervised loss during training. Although the
authors have shown a correlation between both loss
functions under strong assumptions, joint training may
not lead to a quickly adaptable model for different self-
supervised loss functions as will be shown in our ex-
periments.

In contrast to this, we propose a novel training pro-
cedure to directly train a model such that it learns to
adapt to unseen samples.

Meta-Training The goal of the meta-training phase
is to find the meta-parameters θ which are quickly
adaptable to different unseen samples at test-time
for achieving a more accurate classification under un-
known distribution shifts.

During one meta-training outer loop step, the min-
imization of the self-supervised loss Li,kBYOL leads to
the task-specific parameters φi for each task Ti in the
inner loop. The meta-parameters θ are then optimized
such that the optimization step to the task-specific pa-
rameters leads to high classification accuracy on these
T tasks Ti.

For each task Ti, two augmentations aki , ã
k
i are gen-

erated from xki using the sample augmentation A in
order to calculate a variation of the BYOL loss as ex-
plained in detail in Section 2.2. To further enlarge the
differences between the training tasks Ti, a random
batch augmentation B is applied to xi,ai and ãi. Note
that the parameters of B are fixed for all K images
within one task and differ across tasks. Therefore, B
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artificially generates a distribution shift between tasks
and and facilitates meta-learning.

To calculate our modified BYOL-like loss for each pair
aki and ãki , the predictions rkφi

and r̃kφi
are calculated

by the task-specific model parameterized by φi and the
projections zkθ and z̃kθ using the meta-model θ. This
differs from the original idea of BYOL where the tar-
get model is parameterized by an exponential moving
average (EMA) of the online model parameters. In our
approach, the meta-model model can be regarded as a
smooth version of our task-specific models and there-
fore a separate target model is obsolete. Our modified
BYOL loss for optimizing the task-specific model is
defined as

Li,kBYOL = L̄(rkφi
, z̃kθ) + L̄(r̃kφi

, zkθ), (1)

with L̄(a, b) = 2− 2 · aT b

‖a‖2 · ‖b‖2
denoting the squared l2-norm of the difference between
l2-normalized versions of two vectors a and b. The
first loss term at the right hand side of Eq. 1 mea-
sures the closeness of the prediction rkφi

of the task-

specific model to the projection z̃kθ of the meta-model.
The second loss term symmetrizes the first one. Note
that this loss is only differentiated with respect to the
task-specific model parameters φi excluding the clas-
sification head parameters φh. Hence, the M update
steps with the inner learning rate α are performed by

φi ← φi − α∇φi

1

K

∑
k

Li,kBYOL, (2)

where φi is initialized with the meta-parameters θ.

Now, making use of all optimized task-specific parame-
ters within a meta-batch, the classification predictions
for each task ŷkφi

are calculated by the task-specific
models parameterized by φi and, in combination with
yki , are used to optimize the meta-parameters by mini-
mizing the cross-entropy loss LCE(ŷkφi

,yki ). Addition-
ally, the BYOL-like loss function weighted by γ is min-
imized here since LCE is not differentiable with respect
to the parameter of the predictor p and the projector
q. The total loss function in the outer loop is defined
as

Li,ktotal = Li,kCE + γ · Li,kBYOL (3)

and is calculated using the task-specific parameters φi.
The update of the meta-parameters θ is done by

θ ← θ − β∇θ
1

KT

∑
i

∑
k

Li,ktotal, (4)

where β is the meta-learning rate. Note that the meta-
gradient ∇θ is a gradient over the optimization steps
from θ to every φi. The pseudo-code of the meta-
training procedure is described in Algorithm 1.

Algorithm 1 Meta-Training

1: Require: Training data Dtrain, number of inner
steps M , meta-batch size T , task batch size K,
meta-learning rate β, inner learning rate α, loss
weight γ, sample augmentation A, batch augmen-
tation B

2: while not converged do
3: Sample T tasks Ti each with batch size K
4: for each Ti do
5: Get augmentations aki and ãki with A(xki )
6: Apply batch augmentation B to xki ,a

k
i , ã

k
i

7: for step = 1, 2, . . . ,M do
8: Calculate rkφi

, r̃kφi
, zkθ , z̃

k
θ

9: Optimize task-specific parameters:
10: φi ← φi − α∇φi

1
K

∑
k L

i,k
BYOL . Eq. 1

11: end for
12: end for
13: Update meta-parameters:
14: θ ← θ − β∇θ

1
KT

∑
i

∑
k L

i,k
total . Eq. 3

15: end while
16: Return: θ∗

Algorithm 2 Test-Time Adaption

1: Require: Meta-model θ∗, test sample xtest, num-
ber of steps M , test batch size KT , learning rate
α, sample augmentation A

2: for step = 1, 2, . . . ,M do
3: Initialize φ with θ∗

4: Copy xtest KT times
5: Get KT pairs of augmentations (ak, ãk)

from xtest with A
6: Optimize task-specific model parameters:
7: φ← φ− α∇φ

1
KT

∑
k LkBYOL . Eq. 1

8: end for
9: Get final classification prediction ŷtest

Meta-Testing At test-time, the optimized meta-
model parameters θ∗ are adapted to a single test sam-
ple xtest using the self-supervised BYOL loss in Equa-
tion 1. Since only one sample is available during test-
ing, an artificial batch is generated using KT different
augmentation pairs of xtest by using the sample aug-
mentation A to minimize the BYOL-like loss. Using
the adapted model, the final classification prediction
ŷtest is performed. After a prediction, the adapted
parameters φ∗ are discarded and we return back to
the final meta-model parameters θ∗ for the next test
sample. The pseudo-code for processing a single test
sample is illustrated in Algorithm 2.

2.2 Implementation Details

Architecture We use a ResNet architecture (He,
Zhang, Ren, & Sun, 2016) with 26 layers as our fea-
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ture extractor f with 32 initial filters for all of our
experiments. Although the original implementation
uses batch normalization (BN), we use group normal-
ization (GN) (Wu & He, 2018) with 16 groups similar
to Sun et al. (2020). The projector p and predictor
q are each a two-layer MLP with 256 hidden neurons
and output dimension of 128. The classifier h shares
the first hidden layer with the projector p as proposed
by Chen, Kornblith, Swersky, et al. (2020) followed by
a 10-dimensional softmax activated output layer. We
empirically found that using no GN in the projector
and predictor improves performance.

Augmentations For the BYOL-like loss in Equa-
tion 1, the sample augmentation A generates two aug-
mentations of one image. Similar to Chen, Kornblith,
Norouzi, and Hinton (2020); Chen, Kornblith, Swer-
sky, et al. (2020); Grill et al. (2020), we adjusted the
random cropping for CIFAR-10 (uniform between 20
and 32 pixels) and resize back to the original image
size of 32 × 32. In contrast to other approaches, we
apply random vertical flipping with a probability of
50 %, since horizontal flipping is already used in the
batch augmentation B and could be reversed if it is ap-
plied twice. Lastly, color jittering and color dropping
are applied. We use the same types of color jittering
as in (Grill et al., 2020) with the adapted strength of
0.2 compared to 1.0 for ImageNet (Chen, Kornblith,
Swersky, et al., 2020). The color jittering is applied
with a probability of 80 % and color dropping with a
probability of 20 %.

Additionally, to simulate larger distribution shifts
between tasks Ti during meta-training, batch aug-
mentation B is applied to the complete batch
{xki ,aki , ãki }Kk=1. The parameters of B are ran-
domly chosen for each task, but fixed for each image
within the current task. Random horizontal flipping
(50 % probability), Gaussian blurring (20 % probabil-
ity) with a 3×3 filter with a standard deviation of 1.0,
brightness adjustment (uniformly distributed delta be-
tween −0.2 and 0.2) and Gaussian noise with a uni-
formly distributed standard deviation between 0 and
0.02 are applied.

Optimization We use SGD for the meta-
optimization with a fixed learning rate of β = 0.01
and a momentum of 0.9. The inner optimization is
done using only one (M = 1) gradient step with a step
size of α = 0.1. During testing, we use the same fixed
learning rate of α = 0.1 and one gradient step since
the same parameters are used during training. Weight
decay is applied to the meta-model parameters with a
strength of 1.5 · 10−6. We set the weight of the BYOL
loss to γ = 0.1. Gradient l2-norm clipping with a
clipping norm of 10 is applied to both the inner-

and meta-gradient to stabilize the training (Finn et
al., 2017). The meta-batch size is set to T = 4 and
each task consists of K = 8 images. During test-time
adaption, the batch size is set to KT = 32. In all
experiments the meta-model is trained for 200 epochs
which takes approximately 48 hours on a single RTX
2080 Ti (11 GB). Note that the hyper-parameters
are only chosen such that the training loss converges.
No extensive hyper-parameter optimization was
performed.

Dataset For training, the CIFAR-10 training
dataset (Krizhevsky, Hinton, et al., 2009) is used. For
evaluating the test-time training, we use the CIFAR-
10-Corrupted dataset (Hendrycks & Dietterich, 2019).
It consists of all 10,000 CIFAR-10 validation images
with 15 different types of simulated corruptions for 5
different levels. All our results are reported for the
most severe level 5. An example image with differ-
ent corruptions is shown in Figure 1. The corruption
types come from the four major categories noise, blur,
weather, and digital. Exemplary subcategories are im-
pulse noise, Gaussian blurring, frost, and JPEG com-
pression.

3 EXPERIMENTS

In our experiments, we first analyze the training be-
havior of our method MT31 followed by a detailed
analysis of the impact of meta-learning. For this, we
compare to our own baseline and pure joint train-
ing (JT) without the meta-learning component. Fi-
nally, we compare our results with the state-of-the art
method TTT (Sun et al., 2020). An overview of all
methods is given in Table 1.

3.1 Ablation Studies

Convergence of MT3 To show its stability and the
ability of adaption, we evaluate the classification accu-
racy during training twice. First, we measure the clas-
sification accuracy of each task Ti with the meta-model
parameters θ before applying the self-supervised adap-
tion. Second, we evaluate the model with the task-
specific parameters φi after the adaption in the inner
loop. As shown in Figure 4, the training of MT3 leads
to a stable convergence without large deviations. The
small deviations, especially after adaption, highlight
the reproducibility and stability of MT3. Furthermore,
even at an early stage of training, MT3 learns to adapt
such that the accuracy increases as shown by the large
gap before and after the self-supervised adaption. This
clearly shows that the learned meta-parameters θ∗ are

1A reference implementation is available on GitHub
https://github.com/AlexanderBartler/MT3
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Figure 4: Training accuracy of tasks Ti before and after
adaption to task-specific model parameters φi over 3
runs.

Method self-superv. B training test-time adaption

Baseline (Sun et al., 2020) - - CE -
JT (Sun et al., 2020) rotation - joint -

TTT (Sun et al., 2020) rotation - joint X

Baseline (ours) - - CE -
JT (ours) BYOL X joint -

TTT (ours) BYOL X joint X
MT (ours) BYOL X meta -
MT3 (ours) BYOL X meta X

Table 1: Component overview of all considered meth-
ods: Baseline, joint training (JT) and test-time train-
ing (TTT) with either cross-entropy (CE), rotation
augmentation (Gidaris et al., 2018) or BYOL (Grill et
al., 2020); usage of batch augmentation B; and used
training principles, joint training or meta training with
or without test-time adaption.

able to be adapted with a single gradient step and im-
age resulting in an improved classification accuracy.

Baseline In order to compare MT3 to classical su-
pervised training, we choose the same architecture as
described in Section 2.2 without the projector and pre-
dictor. This baseline model is simply trained by min-
imizing the cross-entropy loss. We use SGD with a
fixed learning rate of 0.1 and a momentum of 0.9. The
strength of weight decay is set to 5 · 10−4. We train
the baseline model for 200 epochs with a batch size of
128. We use the standard data augmentation protocol
by padding with 4 pixels followed by random cropping
to 32 × 32 pixels and random horizontal flipping (He
et al., 2016; Lee, Xie, Gallagher, Zhang, & Tu, 2015).
The hyper-parameters of the baseline training are op-
timized independently of other methods in order to
have a fair comparison.

Joint Training To show the improvement caused by
meta-learning, we compare MT3 to a second baseline,
namely joint training (JT). We use exactly the same

architecture as for MT3 and minimize the joint loss
function similar to Equation 3 but without any inner
step, i.e., without meta-learning. Additionally, we use
the exponential moving average of the online model
as the target model as originally proposed by Grill et
al. (2020) with an update momentum of 0.996. The
BYOL-like loss is weighted by γ = 0.1. For minimiz-
ing the joint loss function, we use SGD with a learning
rate of 0.1 and a momentum of 0.9. The strength of
weight decay is set to 1.5·10−6. We train the model for
200 epochs with a batch size of 128. In order to have
a fair comparison and to show the impact of meta-
learning in MT3, we use the same data augmentation
A for minimizing the BYOL-like loss. Furthermore,
we use the same batch augmentation B to simulate
distributions shifts here as well. The only major dif-
ference to MT3 is the use of joint training instead of
meta-learning.

On the one hand, we use joint training to compare it to
MT3 by fixing the learned model at test-time. On the
other hand, similar to Sun et al. (2020), we adapt our
jointly trained model at test-time using only the self-
supervised loss (TTT). During test-time adaption, we
use the same test-time parameters as for MT3 except
the learning rate is set to 0.01 which is more compa-
rable to the effective learning rate during joint train-
ing (due to γ = 0.1). The hyper-parameters of joint
training are again optimized independently of other
methods.

Comparison to our baselines We first compare
our baseline and joint training without test-time adap-
tion against our proposed method MT3. Additionally,
we show the results of MT3 with fixed parameters
at test-time (MT), thus without a gradient step at
test-time. The results on the 15 corruption types of
the CIFAR-10-Corrupted images are shown in Table
2 with their mean and standard deviation estimated
over 3 runs. Furthermore, the average accuracy over
all corruption types for each run is given by its mean
and standard deviation. In case of TTT, the model
parameters are adapted before the prediction of each
single test image. The final accuracy is then calculated
over the predictions of the 10,000 adapted models.

Our baseline model has on average the worst perfor-
mance with an accuracy of 64.3 %. In comparison, our
JT with stronger data augmentation and the utiliza-
tion of the BYOL loss leads to a 9.7 % increase in accu-
racy achieving 74.0 %. Applying test-time training to
our jointly trained model, the average accuracy drops
down to 73.5 %, contrary to our expectations. Al-
though joint training followed by test-time training is
expected to help improving the result as shown in (Sun
et al., 2020), we did not experience this in our case,



MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption

Baseline JT TTT Baseline JT TTT MT MT3
(Sun et al., 2020) (Sun et al., 2020) (Sun et al., 2020) (ours) (ours) (ours) (ours) (ours)

brit 86.5 87.4 87.8 86.7± 0.44 86.5± 0.13 86.6± 0.26 84.3± 1.15 86.2± 0.47
contr 75.0 74.7 76.1 54.0± 6.42 75.4± 2.02 75.1± 2.38 69.3± 2.63 77.6± 1.21
defoc 76.3 75.8 78.2 68.1± 2.34 84.7± 0.11 84.7± 0.09 82.7± 1.33 84.4± 0.44
elast 72.6 76.0 77.4 74.3± 0.27 74.6± 0.80 74.4± 1.19 74.2± 1.08 76.3± 1.18
fog 71.9 72.5 74.9 70.7± 0.98 70.3± 0.86 70.4± 0.67 72.0± 1.03 75.9± 1.26
frost 65.6 67.5 70.0 65.2± 0.93 79.8± 0.62 79.5± 0.73 76.6± 1.16 81.2± 0.20
gauss 49.5 50.6 54.4 49.9± 3.17 71.7± 1.13 70.4± 1.08 63.6± 1.17 69.9± 0.34
glass 48.3 51.5 53.9 50.7± 2.96 62.8± 0.97 61.9± 1.10 62.8± 1.35 66.3± 1.24
impul 43.9 46.6 50.0 43.4± 4.31 59.3± 3.04 58.5± 3.17 50.3± 1.68 58.2± 1.25
jpeg 70.2 71.3 72.8 76.0± 0.86 78.6± 0.37 79.0± 0.44 75.2± 0.06 77.3± 0.26
motn 75.7 75.2 77.0 71.6± 0.46 70.7± 0.45 69.8± 0.46 72.6± 3.17 77.2± 2.37
pixel 44.2 48.4 52.8 60.1± 2.73 65.0± 0.32 62.1± 0.44 67.8± 5.13 72.4± 2.29
shot 52.8 54.7 58.2 52.3± 2.17 72.3± 1.36 71.0± 1.09 64.0± 1.24 70.5± 0.72
snow 74.4 75.0 76.1 74.5± 0.46 77.2± 0.58 77.2± 0.55 77.1± 0.51 79.8± 0.63
zoom 73.7 73.6 76.1 67.4± 1.70 81.6± 0.69 81.7± 0.66 78.7± 1.72 81.3± 0.58

avg. 65.4 66.7 69.0 64.3± 0.42 74.0± 0.77 73.5± 0.80 71.4± 0.42 75.6± 0.30

Table 2: Performance on the CIFAR-10-Corrupted dataset for MT3 compared to the results from (Sun et al.,
2020), including their baseline, joint training with rotation loss (JT), and test-time adaption (TTT). Additionally,
we report our results of MT3 without test-time adaption (MT), our baseline, joint training (JT), and test-time
adaption (TTT) using BYOL. Mean and standard deviation are reported over 3 runs.

Figure 5: Performance on the CIFAR-10-Corrupted dataset for MT3 compared to MT3 without test-time adap-
tion (MT), joint training with BYOL (JT (ours)), joint training with rotation loss (JT) (Sun et al., 2020), and
test-time training (TTT) (Sun et al., 2020). Mean and standard deviation are reported over 3 runs.

where BYOL instead of a rotation loss is used. For
some corruption types, e.g. jpeg compression (jpeg),
a small improvement can be achieved with our TTT,
but in 9 of 15 cases the test accuracy decreases with
test-time training, e.g. for pixelate (pixel) by almost
3 %. In contrast, our method MT3 achieves a higher
classification accuracy for all types of corruption after
performing test-time adaption. MT3 raises the aver-
age accuracy of the meta-model from 71.4 % before to
75.6 % after adaption. Considering the average over
all corruptions, MT3 has the lowest standard devia-
tion, which highlights the stability and reproducibility
of our method. Similar to JT, the results of the two
corruption types Gaussian noise (gauss) and bright-
ness (brit), which overlap with the applied batch aug-
mentation B, have improved compared to our baseline.
The improvement on these datasets is mainly caused

by the applied data augmentation and should therefore
be handled carefully. Still, our method MT3 outper-
forms JT on average despite both methods using the
same data augmentations.

In summary, the results suggest that our proposed
method MT3 has learned during training to adapt at
test-time, while joint training using BYOL combined
with test-time adaption did not show that behavior.
Furthermore, our analysis shows that the absolute im-
provement of MT3 is caused by meta-training and not
only by using joint training with stronger data aug-
mentation.
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Baseline JT TTT MT MT3

brit 54.5± 0.79 53.2± 0.75 53.3± 0.79 51.7± 0.42 52.2± 0.44
contr 22.2± 1.60 29.0± 2.45 28.2± 2.49 28.7± 0.55 31.6± 1.53
defoc 37.9± 2.47 55.8± 0.32 55.9± 0.49 54.8± 0.62 55.0± 0.55
elast 45.0± 0.67 44.0± 0.90 44.0± 0.88 44.1± 0.61 44.2± 0.81
fog 30.8± 0.94 31.9± 1.31 32.0± 1.35 32.4± 0.27 33.3± 0.45
frost 31.3± 0.96 44.7± 0.78 44.5± 0.94 43.8± 0.90 45.5± 1.00
gauss 18.7± 2.86 32.8± 2.01 32.1± 1.94 30.7± 1.05 32.8± 0.84
glass 25.8± 1.21 30.5± 1.77 30.2± 1.95 31.7± 1.02 33.0± 0.93
impul 14.2± 2.33 17.1± 0.19 16.9± 0.26 17.3± 0.21 18.4± 0.09
jpeg 44.1± 1.51 43.1± 0.85 43.2± 0.83 42.4± 0.27 42.7± 0.46
motn 40.7± 2.08 44.8± 0.71 44.4± 0.74 44.4± 0.94 45.4± 0.81
pixel 28.1± 0.67 34.7± 0.59 33.2± 0.79 40.8± 1.86 41.2± 2.06
shot 20.0± 2.69 32.9± 1.52 32.2± 1.52 31.1± 1.28 33.1± 1.41
snow 38.4± 0.77 42.9± 0.85 42.7± 0.90 43.2± 0.62 43.7± 1.12
zoom 39.7± 2.10 53.8± 1.04 54.0± 1.04 52.2± 0.56 52.0± 0.62

avg. 32.8± 0.49 39.4± 0.42 39.1± 0.40 39.3± 0.37 40.3± 0.27

Table 3: Accuracy on the CIFAR-100-Corrupted dataset for MT3 compared to our baselines. Mean and standard
deviation are reported over 3 runs.

3.2 Comparison with State-of-the Art

We compare our method to the state-of-the-art TTT
(Sun et al., 2020) as shown in Table 2 and Figure 5.
Besides our results, we discuss the baseline, joint train-
ing (JT) and joint training with test-time adaption
(TTT) of Sun et al. (2020). The difference between all
analyzed methods are shown in Table 1.

Our baseline as well as the baseline of Sun et al. (2020)
have similar average performance over all corruption
types. This highlights that both models have a compa-
rable capacity or generalization capability and possible
improvements are not caused by the model structure
itself. In our work, joint training with the BYOL-like
loss leads to a much higher average accuracy compared
to the previous method where rotation classification
as self-supervision was used. The large gap of 7.3 %
might be caused by the stronger data augmentations
or the use of BYOL in our method. Despite this, one
important result is that simple joint training does not
enable the ability to adapt at test-time in general. In
the previous work of Sun et al. (2020), the adaption
with only the self-supervised loss to a single test im-
age using ten gradient steps leads on average to an
improvement of 2.3 %. In comparison, test-time adap-
tion for our jointly trained model using BYOL leads to
an average degradation of 0.5 %. We also investigated
the case of ten gradient steps at test-time, but found
that on average the performance further degrades.

Our method MT3, on the other hand, shows the ability
to adapt by a large improvement of 4.2 % before and
after a single gradient step. Furthermore, the final
average accuracy of 75.6 % over all corruption types
is the best among all considered methods. For 7 out
of 15 corruption types, MT3 has the highest accuracy
compared to our baselines and previous work. This

again highlights the ability of our method to adapt to
unseen distribution shifts using a single gradient step
during test-time.

3.3 CIFAR-100-Corrupted

To show the success and scalability of MT3, we evalu-
ate our method on the more challenging CIFAR-100-
Corrupted dataset (Krizhevsky et al., 2009; Hendrycks
& Dietterich, 2019). Since Sun et al. (2020) did not
evaluate this dataset and D. Wang et al. (2020) only
for the online adaption, we only show the results com-
pared to our baselines. We use the same hyperparam-
eter as for CIFAR-10 except the test learning rate is
lowered to α = 0.05. As shown in Table 3, our method
is also capable to learn to adapt on the more complex
dataset CIFAR-100 with a similar behavior as for the
CIFAR-10-Corrupted dataset.

4 CONCLUSION

We proposed a novel algorithm that allows to adapt
to distribution shifts during test-time using a single
sample. We show that our approach, based on meta-
learning (MAML) and self-supervision (BYOL), effec-
tively enables adaptability during test-time. In con-
trast to the previous work, where simply joint training
was used, meta-learning has the explicit purpose to
learn meta-parameters that can be rapidly adapted
which we showed in our experiments. Our combi-
nation of meta-learning and self-supervision improves
the average accuracy on the challenging CIFAR-10-
Corrupted dataset by 6.6%, a 9.57% relative increase,
compared to the state-of-the-art TTT.
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