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Abstract

Performing inference in graphs is a common
task within several machine learning prob-
lems, e.g., image segmentation, community
detection, among others. For a given undi-
rected connected graph, we tackle the sta-
tistical problem of exactly recovering an un-
known ground-truth binary labeling of the
nodes from a single corrupted observation of
each edge. Such problem can be formulated as
a quadratic combinatorial optimization prob-
lem over the boolean hypercube, where it has
been shown before that one can (with high
probability and in polynomial time) exactly
recover the ground-truth labeling of graphs
that have an isoperimetric number that grows
with respect to the number of nodes (e.g., com-
plete graphs, regular expanders). In this work,
we apply a powerful hierarchy of relaxations,
known as the sum-of-squares (SoS) hierarchy,
to the combinatorial problem. Motivated by
empirical evidence on the improvement in ex-
act recoverability, we center our attention on
the degree-4 SoS relaxation and set out to
understand the origin of such improvement
from a graph theoretical perspective. We show
that the solution of the dual of the relaxed
problem is related to finding edge weights of
the Johnson and Kneser graphs, where the
weights fulfill the SoS constraints and intu-
itively allow the input graph to increase its
algebraic connectivity. Finally, as byproduct
of our analysis, we derive a novel Cheeger-type
lower bound for the algebraic connectivity of
graphs with signed edge weights.
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1 INTRODUCTION

Inference in graphs spans several domains such as social
networks, natural language processing, computational
biology, computer vision, among others. For example,
let X ∈ {−1, 0,+1}n×n be some noisy observation,
e.g., a social network (represented by a graph), where
the output is a labeling y ∈ {−1,+1}n of the nodes,
e.g., an assignment of each individual to a cluster.
In the example, for the entries of X, a value of 0
means no interaction (no edge) between two individuals
(nodes), a value of +1 can represent an agreement of
two individuals, while a value of −1 can represent
disagreement. One can then predict a labeling y by
solving the following quadratic form over the hypercube
{±1}n,

max
y∈{±1}n

y>Xy. (1)

The above formulation is a well-studied problem that
arises in multiple contexts, including Ising models from
statistical physics (Barahona, 1982), finding the maxi-
mum cut of a graph (Goemans and Williamson, 1995),
the Grothendieck problem (Grothendieck, 1956; Khot
and Naor, 2011), stochastic block models (Abbe et al.,
2016), and structured prediction problems such as im-
age segmentation (Globerson et al., 2015), to name
a few. However, the optimization problem above is
NP-hard in general and only some cases are known to
be exactly solvable in polynomial time. For instance,
Chandrasekaran et al. (2008) showed that it can be
solved exactly in polynomial time for a graph with low
treewidth via the junction tree algorithm; Schraudolph
and Kamenetsky (2009) showed that the inference prob-
lem can also be solved exactly in polynomial time for
planar graphs via perfect matchings; while Boykov and
Veksler (2006) showed that (1) can be solved exactly in
polynomial time via graph cuts for binary labels and
sub-modular pairwise potentials.

In this work, we consider a generative model proposed
by Globerson et al. (2015) in the context of structured
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prediction (specifically, image segmentation), and study
which conditions on the graph allow for exact recov-
ery (inference). In this case, following up with the
example on social networks above, each individual can
have an opinion labeled by −1 or +1, and for each pair
of individuals that are connected, we observe a single
measurement of whether or not they have an agree-
ment in opinion, but the value of each measurement
is flipped with probability p. Since problem (1) is a
hard computational problem, it is common to relax
the problem to a convex one. In particular, (Abbe
et al., 2016; Amini and Levina, 2018; Bello and Hon-
orio, 2019, 2020) studied the sufficient conditions for
a semidefinite programming relaxation (SDP) of prob-
lem (1) to achieve exact recovery. In contrast to those
works, we will focus on the sum-of-squares (SoS) hierar-
chy of relaxations (Parrilo, 2000; Lasserre, 2001; Barak
and Steurer, 2014), which is a sequential tightening of
convex relaxations based on SDP. We study the SoS
hierarchy because it is tighter than other known hierar-
chies such as the Sherali-Adams and Lovász-Schrijver
hierarchies (Laurent, 2003). In addition, our motiva-
tion to study the level-2 or degree-4 SoS relaxation
stems from three reasons. First, higher-levels of the
hierarchy, while polynomial time solvable, are already
computationally very costly. This is one of the rea-
sons the SoS hierarchy have been mostly used as a
proof system for finding lower bounds in hard problems
(e.g., for the planted clique problem, see (Meka et al.,
2015)). Second, little is still known about the level-2
SoS relaxation, where (Bandeira and Kunisky, 2018)
and (Cifuentes et al., 2020) are attempts to understand
its geometry. Third, there is empirical evidence on the
non-asymptotic improvement in exact recoverability
with respect to SDP, an example of which is depicted
in Figure 1.

Contributions. While it is known that the level-2
SoS relaxation has a tighter search space than that
of SDP, it is not obvious why it can perform better
than SDP for exact recovery. In this work, we aim
to understand the origin of such improvement from
a graph theoretical perspective. We show that the
solution of the dual of the relaxed problem is related
to finding edge weights of the Johnson and Kneser
graphs, where the weights fulfill the SoS constraints
and intuitively allow the input graph to increase its
algebraic connectivity (Theorem 2). Finally, as byprod-
uct of our analysis, we derive a novel Cheeger-type
lower bound for the algebraic connectivity of graphs
with signed edge weights (Theorem 1), which can be
of independent interest.

We emphasize that the objective of this work is on
the understanding of exact recoverability by using the
degree-4 SoS. Scalability of the SoS hierarchy is an
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Figure 1: A comparison between the degree-4 SoS and
SDP relaxations in the context of structured prediction.
We observe that SoS attains a higher probability of
exact recovery, for different levels of edge noise p. (See
Section 2 for a formal problem definition.)

important open problem that is actively under study
(Weisser et al., 2016; Erdogdu et al., 2017) and is be-
yond the scope of our work.

2 PRELIMINARIES

This section introduces the notation used throughout
the paper and formally defines the problem under anal-
ysis.

Vectors and matrices are denoted by lowercase and
uppercase bold faced letters respectively (e.g., a,A),
while scalars are in normal font weight (e.g., a). For
a vector a, and a matrix A, their entries are denoted
by ai and Ai,j respectively. Indexing starts at 1, with
Ai,: and A:,i indicating the i-th row and i-th column
of A respectively. The eigenvalues of a n × n matrix
A are denoted as λi(A), where λ1 and λn correspond
to the minimum and maximum eigenvalue respectively.
Finally, the set of integers {1, . . . , n} is represented as
[n].

Problem definition. We aim to predict a vector of
n node labels y = (y1, . . . , yn)>, where yi ∈ {+1,−1},
from a set of observations X, where X corresponds to
noisy measurements of edges. These observations are
assumed to be generated from a ground truth labeling
y by a generative process defined via an undirected
connected graph G = (V,E), where V = [n], and an
edge noise p ∈ (0, 0.5). For each edge (u, v) ∈ E, we
have a single independent edge observation Xu,v =
yuyv with probability 1 − p, and Xu,v = −yuyv with
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probability p. While for each edge (u, v) /∈ E, the
observation Xu,v is always 0. Thus, we have a known
undirected connected graph G, an unknown ground
truth label vector y ∈ {+1,−1}n, noisy observations
X ∈ {−1, 0,+1}n×n. Given that we consider only edge
observations, our goal is to understand when one can
predict, in polynomial time and with high probability,
a vector label y ∈ {−1,+1}n such that y ∈ {y,−y}.

Given the aforementioned generative process, our focus
will be to solve the following optimization problem,
which stems from using maximum likelihood estimation
(Globerson et al., 2015):

max
y

y>Xy, subject to yi = ±1, ∀i ∈ [n]. (2)

In general, the above combinatorial problem is NP-
hard to compute, e.g., see results on grids by Barahona
(1982). Let ydis denote the optimizer of eq.(2). It is
clear that for any label vector y, the negative label vec-
tor −y attains the same objective value in eq.(2). Thus,
we say that one can achieve exact recovery by solving
eq.(2) if ydis ∈ {y,−y}. Given the computational hard-
ness of solving eq.(2), in the next subsections we will
revise approaches that relax problem (2) to one that
can be solved in polynomial time. Then, our focus will
be to understand the effects of the structural proper-
ties of the graph G in achieving, with high probability,
exact recovery in the continuous problem.

2.1 Semidefinite Programming Relaxation

A popular approach for approximating problem (2)
is to consider a larger search space that is simpler
to describe and is convex. In particular, let Y =
yy>, that is, Yi,j = yiyj and noting that Y is a rank-
1 positive semidefinite matrix. We can rewrite the
objective of problem (2) in matrix terms as follows,
y>Xy = Tr(Xyy>) = Tr(XY ) = 〈X,Y 〉. Thus, we
have

max
Y
〈X,Y 〉 (3)

subject to Y � 0, Yi,i = 1,∀i ∈ [n].

Let Y ∗ denote the optimizer of the problem above,
then, in this case, we say that exact recovery is realized
by solving eq.(3) if Y ∗ = yy>. The only constraint
dropped in problem (3) with respect to problem (2) is
the rank-1 constraint, which makes problem (3) con-
vex. The above relaxation is known as semidefinite
programming (SDP) relaxation and is typically used as
an approximation algorithm. That is, after obtaining
a continuous solution Y ∗ ∈ Rn×n, a rounding proce-
dure is performed to recover an approximate solution
in {±1}n, e.g., see (Goemans and Williamson, 1995;
Nesterov, 1998). However, SDP relaxations have also

been analyzed for exact inference, for instance, (Abbe
et al., 2016) and (Amini and Levina, 2018) studied ex-
act recovery in the context of stochastic block models,
while, (Bello and Honorio, 2019, 2020) studied exact
recovery in the context of structured prediction.

In the next subsection, we will introduce tighter levels
of relaxations known as the SoS hierarchy, and we will
see that it turns out that SDP relaxations correspond
to the first level of the SoS hierarchy.

2.2 Sum-of-Squares Hierarchy

We start this section by introducing additional notation
for describing the SoS hierarchy. Let [n]≤d = {∅} ∪
[n]1∪. . .∪[n]d denote the set of (possibly empty) tuples,
of length up to d, composed of the integers from 1 to
n, e.g., [2]≤2 = {∅, (1), (2), (1, 1), (1, 2), (2, 1), (2, 2)}.
Also, let the summation between two tuples be the
concatenation of all the elements in them, e.g., for
C1 = (1, 1, 2), C2 = (3, 1) we have C1 +C2 = (1, 1, 2, 3, 1).
We use ψ(C) to denote the tuple with elements from
C sorted in ascending order, e.g., for C = (2, 1, 1, 3) we
have ψ(C) = (1, 1, 2, 3). We also use |C| to denote the
cardinality of C. For two distinct tuples C1 and C2, the
expression C1 < C2 means that either |C1| < |C2|, or
|C1| = |C2| and ∃i representing the first entry where
they differ such that the i-ith entry of C2 is greater
than the i-th entry of C1. Then, for a set of tuples
C = {C1, . . . , Ck}, we say that C is in lexicographical
order if Ci < Cj for all i < j. Finally, for a matrix
Y ∈ R[n]≤`×[n]≤`

, we index its rows and columns by
using tuples in [n]≤` ordered lexicographically, e.g., for
Y ∈ R[5]≤3×[5]≤3

we have that Y(1,1,2),(5) corresponds
to the entry at row (1, 1, 2) and column (5).

It is convenient to rewrite the objective of prob-
lem (2) as a polynomial optimization problem, i.e.,∑
i

∑
j Xi,jyiyj , so that the standard machinery of

SoS optimization (Lasserre, 2001; Parrilo, 2000; Lau-
rent, 2009) can be applied to formulate the degree-d
relaxation. Then, for an even number d, the degree-d
(or level d/2) SoS relaxation of problem (2) takes the
form

max
Y ∈R[n]

≤ d
2 ×[n]

≤ d
2

n∑
i=1

n∑
j=1

Xi,jY(i),(j), (4)

subject to Y � 0,

Y(∅)(∅) = 1,

Y(i)+C1,(i)+C2 = YC1,C2 , ∀i ∈ [n], |C1|, |C2| ≤ d/2− 1,

YC1,C2 = YC′1,C′2 ,

∀ψ(C1 + C2) = ψ(C′1 + C′2), |C1|, |C2|, |C′1|, |C′2| ≤ d/2.

In the problem above, each entry of the matrix Y cor-
responds to a reparametrization that takes the form
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YC1,C2 =
∏
i∈C1 yi

∏
j∈C2 yj =

∏
i∈C1+C2 yi, which is

also known as a pseudomoment matrix (Lasserre, 2001;
Laurent, 2009). In problem (4), the second constraint
can be thought as a normalization constraint. The
third list of constraints corresponds to

∏
j∈C yj · y2

i =∏
j∈C yj ,∀|C| ≤ d − 2, which is equivalent to yi = ±1

in problem (2). Finally, the last list of constraints cor-
responds to

∏
j∈C1+C2 yj =

∏
j∈C′1+C′2

yj ,∀ψ(C1 +C2) =

ψ(C′1 + C′2), and |C1|, |C2|, |C′1|, |C′2| ≤ d/2, which states
that YC1,C2 should be invariant to all permutations of
the tuple C1 + C2. One can note that, for d = 2, the
degree-2 (or level 1) SoS relaxation is equivalent to the
SDP relaxation in eq.(3). It is clear that for a larger
d, the degree-d SoS relaxation gives a tighter convex
relaxation of problem (2). While one can solve prob-
lem (4) to a fixed accuracy using general-purpose SDP
algorithms in polynomial time in n, the computational
complexity will be of order nO(d). Thus, it is important
that d be of low order.

In the next section, we center our attention to the
degree-4 SoS relaxation and in understanding how it
can help improving the exact recovery rate with respect
to the SDP (or degree-2 SoS) relaxation.

3 ON EXACT RECOVERY FROM
THE DEGREE-4 SOS
HIERARCHY

As the focus of this section will be on the degree-4 SoS
relaxation, we start by formulating the corresponding
optimization problem. In problem (4), for d = 4, the
matrix Y is in R[n]≤2×[n]≤2

, that is, Y is a matrix of
dimension (1 + n+ n2)× (1 + n+ n2). Bandeira and
Kunisky (2018, Appendix A) showed that one can write
an equivalent formulation by using only the principal
submatrix of Y indexed by [n]2 × [n]2 (i.e., a matrix
of dimension n2 × n2). The reduced formulation takes
the form:

max
Y ∈R[n]2×[n]2

n∑
i=1

n∑
j=1

Xi,jY(1,1),(i,j), (5)

subject to Y � 0,

Y(i,i)(j,j) = 1, ∀i, j ∈ [n],

Y(i,i)(j,k) = Y(i′,i′)(j,k), ∀i, i′, j, k ∈ [n],

Y(i,j)(k,`) = Y(π1,π2)(π3,π4),

∀ i, j, k, ` ∈ [n], π ∈ Π(i, j, k, `),

where Π(i, j, k, `) is the set of all permutations of
(i, j, k, `). We will go one step further in the reduction
and show that one can indeed cast an equivalent formu-
lation to problem (5) by using only the principal subma-
trix of Y ∈ R[n]2×[n]2 indexed by

(
[n]
2

)
×
(

[n]
2

)
, i.e., a ma-

trix of dimension n(n−1)
2 × n(n−1)

2 . Here, it will be more

convenient to use sets instead of tuples for indexing the
rows and columns of Y , where

(
[n]
2

)
denotes the set of all

unordered combinations of length 2 from the numbers
in [n], e.g.,

(
[3]
2

)
= {{1, 2}, {1, 3}, {2, 3}}. For further

distinction against the matrix Y ∈ R[n]2×[n]2 , we will
use Ỹ to denote the matrix indexed by

(
[n]
2

)
×
(

[n]
2

)
.

We will also make use of the next set of definitions,
which are important for stating our results.
Definition 1 (The level-2 vector). For any vector
v ∈ Rn, its level-2 vector, denoted by v(2) ∈ R(n

2) and
indexed by

(
[n]
2

)
, is defined as v(2)

{i,j} = vivj.

We also define the level-2 version of a graph as follows.
Definition 2 (The level-2 graph). Let G = (V,E),
where V = [n], be any undirected graph of n nodes with
adjacency matrix A ∈ {0, 1}n×n. The level-2 graph of
G, denoted by G(2) = (

(
[n]
2

)
, E(2)) and with adjacency

matrix A(2) ∈ {0, 1}(
n
2)×(n

2), has its adjacency matrix
defined as A(2)

{i,k},{k,j} = 1 if (i, j) ∈ E for all i < j <

k ∈ [n], and A(2)
{i,j},{k,`} = 0 for all i < j < k < ` ∈ [n].

The next type of graphs have been studied for several
years within the graph theory community and we will
later show how they relate to the solution of the level-2
SoS relaxation.
Definition 3 (Johnson graph (Holton and Sheehan,
1993)). For a set [n], the Johnson graph J (n, k) has
all the k-element subsets of [n] as vertices, and two
vertices are adjacent if and only if the intersection of
the two vertices (subsets) contains (k − 1)-elements.
Definition 4 (Kneser graph (Lovász, 1978)). For a
set [n], the Kneser graph K(n, k) has all the k-element
subsets of [n] as vertices, and two vertices are adjacent
if and only if the two vertices (subsets) are disjoint.

From Definitions 3 and 4, we are interested in J (n, 2)
and K(n, 2), where we first note that K(n, 2) is the
complement of J (n, 2). We also note that for a graph
G of n nodes, by construction, the level-2 graph of G is
always a subgraph of the Johnson graph J (n, 2), and is
equal to J (n, 2) if and only if G is the complete graph
of n nodes. Finally, since our observation matrix X de-
pends on a graph G, one can also extendX to a matrix
in {−1, 0,+1}(

n
2)×(n

2). We will use X(2) to denote the
level-2 version of X. Specifically, X(2)

{i,k},{k,j} = Xi,j

for all i < j < k ∈ [n], and X
(2)
{i,j},{k,`} = 0 for all

i < j < k < ` ∈ [n]. For further clarity, we illustrate
the level-2 construction of X in Figure 2, where the
input graph is a 2 by 2 grid.

Next, we present an optimization problem that is equiv-
alent to problem (5) but in terms of the level-2 construc-
tions defined above. For notational convenience, we
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Figure 2: Illustration of the level-2 construction of
X. The edge values in the grid graph correspond to
the observation X, while the edge values on the right
graph correspond to level-2 matrixX(2). The solid blue
and dotted red lines indicate that the observation is
correct and corrupted, respectively.

will use S+(ijk`)
−(stuv) to denote a sparse symmetric matrix

such that the only non-zero entries are S{i,j},{k,`} = 1,
and S{s,t},{u,v} = −1.

max
Ỹ ∈R([n]

2 )×([n]
2 )

1

n− 2
〈X(2), Ỹ 〉, (6)

subject to Ỹ � 0,

ỸC,C = 1,∀C ∈
(

[n]
2

)
,

〈S+(ikkj)
−(ik′k′j), Ỹ 〉 = 0,∀i < j < k < k′,

〈S+(ijk`)
−π(ijk`), Ỹ 〉 = 0,

∀i < j < k < l ∈ [n], π ∈ Π(i, j, k, l).

Proposition 1. Problem (6) is equivalent to problem
(5).

All proofs are detailed in Appendix A.

Remark 1. Let y(2) be the level-2 vector of the ground-
truth labeling y, and let Ỹ ∗ be the optimizer of problem
(6). Then, we say that exact recovery is realized if
Ỹ ∗ = y(2)y(2)>.

3.1 The Dual Problem

A key ingredient for our analysis is the dual formulation
of problem (6), which takes the following form

min
Ṽ , µ

Tr(Ṽ ), (7)

subject to Ṽ is diagonal,

Λ̃ = Ṽ − X(2)

n− 2
+

( ∑
i<j<k<k′

µikkjik′k′jS
+(ikkj)
−(ik′k′j)+

∑
i<j<k<`
π∈Π(i,j,k,`)

µijk`π(ijk`)S
+(ijk`)
−π(ijk`)

)
� 0,

where Ṽ ∈ R([n]
2 )×([n]

2 ), µikkjik′k′j ∈ R and µijk`π(ijk`) ∈ R
are the dual variables of the second constraint, and
the third and fourth list of constraints from the primal
formulation (6), respectively. The dual variable µ
denotes all the scalars µikkjik′k′j and µ

ijk`
π(ijk`).

We have that if there exists Ỹ , Ṽ ,µ that satisfy the
Karush-Kuhn-Tucker (KKT) conditions (Boyd and
Vandenberghe, 2004), then Ỹ and Ṽ ,µ are primal
and dual optimal, and strong duality holds in this case.
Let y(2) be the level-2 vector of the ground-truth la-
beling y. Since we are interested in exact recovery, we
will consider the solution Ỹ = y(2)y(2)> for the rest of
our analysis, where it is clear that such setting satisfies
the primal constraints. Let

Ṽ =
diag

(
X(2)Ỹ

)
n− 2

−

(
diag

( ∑
i<j<k<k′

µikkjik′k′jS
+(ikkj)
−(ik′k′j)Ỹ

)

− diag
( ∑
i<j<k<`
π∈Π(ijk`)

µijk`π(ijk`)S
+(ijk`)
−π(ijk`)Ỹ

))
, (8)

where, for a matrix M , diag(M) denotes the diagonal
matrix formed from the diagonal entries ofM . Comple-
mentary slackness and stationarity require the trace of
Ṽ to be equal to the trace of the r.h.s. of eq.(8), which
is clearly satisfied by construction. Thus, if we find an
assignment of µ such that Λ̃ � 0, we would have an
optimal solution since all KKT conditions are fulfilled.
Nevertheless, we are also interested in Ỹ = y(2)y(2)>

being the unique optimal solution, where we note that
having λ2(Λ̃) > 0 suffices to guarantee a unique so-
lution. The argument follows from the fact that, by
the setting of eq.(8), we have Λ̃y(2) = 0. Thus, if
λ2(Λ̃) > 0 then y(2) spans all of the null-space of Λ̃.
Combined with the KKT conditions, we have that Ỹ
should be a multiple of y(2)y(2)>. Since Ỹ has diagonal
entries equal to 1, we must have that Ỹ = y(2)y(2)>.

Putting all pieces together, we have that under eq.(8),
if for some µ we have that Λ̃ � 0 and λ2(Λ̃) > 0,
then the optimizer of problem (6) is y(2)y(2)>, i.e.,
we obtain exact recovery. Since y(2) is an eigenvector
of Λ̃ with eigenvalue zero, we focus on controlling
the quantity λ2(Λ̃) = minv⊥y(2)

v>Λ̃v
v>v

. 1 Also, as Λ̃

depends on the noisy observationX(2), we have that Λ̃
is a random quantity. Then, by using Weyl’s theorem
on eigenvalues, we have

λ2(Λ̃) = λ2(Λ̃− E[Λ̃] + E[Λ̃])

≥ λ2(E[Λ̃]) + λ1(Λ̃− E[Λ̃]). (9)

1This expression comes from the variational characteri-
zation of eigenvalues.
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In eq.(9), let t be a lower bound to λ2(E[Λ̃]), i.e.,
λ2(E[Λ̃]) ≥ t. Then, the second summand can be
lower bounded by using matrix concentration inequali-
ties. Specifically, by using matrix Bernstein inequality
(Tropp, 2012), one can obtain that P[λ1(Λ̃− E[Λ̃]) ≤
−t] ≤ O(n2e−t). Thus, we can now focus on the first
summand, which will be lower bounded by a novel
Cheeger-type inequality. In the next subsections, we
look at the expected value of Λ̃ in more detail.

3.2 The Relation between E[Λ̃] and the
Algebraic Connectivity of the Level-2
Graph

In this section, we will show how E[Λ̃] is related to
the Laplacian matrix of G(2) (the level-2 version of
G). To do so, we will use the following definitions and
notation.

For a signed weighted graph H = (U,F ), we use WH

to denote its weight matrix, that is, the entry WH
i,j ∈ R

is the weight of edge (i, j) ∈ F and is zero if (i, j) /∈ F.
For any set T ⊂ U , its boundary is defined as ∂T =
{(i, j) | i ∈ T and j /∈ T}; while its boundary weight
is defined as ω(∂T ) =

∑
i∈T,j /∈T W

H
i,j . The number of

nodes in T is denoted by |T |. The degree of a node is
defined as deg(i) =

∑
j 6=iW

H
i,j .

Definition 5. Let H be a graph with degree matrix
DH and weight matrix WH , where DH is a diagonal
matrix such that Di,i = deg(i). The Laplacian matrix
of H is defined as LH = DH −WH .

Definition 6 (Cheeger constant (Cheeger, 1969)). For
a graph H = (U,F ) of n nodes, its Cheeger constant is
defined as φ(H) = minT⊂U, |T |≤n/2

ω(∂T )
|T | .

Remark 2. For unweighted graphs, the definitions
above match the standard definitions for node degree,
boundary of a set, and Laplacian matrix.

Next, we analyze the scenario where all the scalar dual
variables in µ are zero, we defer the case when they
are not for the next subsection.

The µ = 0 scenario. From eq.(8) we have
that Ṽ = diag(X(2)Ỹ )/(n − 2). Hence, for all
i < j ∈ [n], we have E[Ṽ{i,j},{i,j}] = (1−2p)/(n−2) ·
deg({i, j}). In addition, we have E[X

(2)
{i,k},{k,j}] =

(1 − 2p) yi yj1
[
(i, j) ∈ E

]
, for all i < j < k ∈ [n].

2 Finally, since µ = 0, we have Λ̃ = Ṽ − X(2)

n−2 . There-
fore,

E[Λ̃] =
1− 2p

n− 2
Υ̃LG

(2)

Υ̃, (10)

2Recall that if (i, j) ∈ E, then Xi,j = −yiyj with prob-
ability p, and Xi,j = yiyj otherwise. If (i, j) /∈ E then
Xi,j = 0.

where Υ̃ is a diagonal matrix with entries equal to the
entries in y(2). Recall that y(2)

{i,j} = yiyj and yi ∈ {±1}
for all i ∈ [n]. Then, we have that Υ̃−1 = Υ̃ and, thus,
the matrix E[Λ̃] and 1−2p

n−2 L
G(2)

are similar. The latter
means that both matrices share the same spectrum,
i.e.,

λ2(E[Λ̃]) =
1− 2p

n− 2
λ2(LG

(2)

). (11)

Notice that the level-2 graph G(2) is unweighted since
G is unweighted. That implies that one can lower
bound λ2(E[Λ̃]) by using existing lower bounds for the
second eigenvalue3 of the Laplacian matrix of G(2). In
particular, one can have (Mohar, 1991)

λ2(E[Λ̃]) =
1− 2p

n− 2
λ2(LG

(2)

)

≥ (1− 2p)φ(G(2))2

2(n− 2) degG
(2)

max

. (12)

Finally, we note that considering µ = 0 is equivalent
to not having the third and fourth list of constraints in
problem (6). At this point, the reader might wonder
if, setting µ = 0 and solving problem (6) yields in any
better chances of exact recovery than solving problem
(3). We answer the latter in the negative.

Proposition 2. Without the third and fourth list of
constraints, problem (6) does not improve exact recov-
erability with respect to problem (3).

The purpose of Proposition 2 is to highlight the role
that a µ 6= 0 will play in showing the improvement in
exact recoverability of the degree-4 SoS relaxation with
respect to the SDP relaxation, which is discussed next.

3.3 Connections to Systems of Sets and a
Novel Cheeger-Type Lower Bound

We start this section by showing how the third and
fourth list of constraints of problem (6) relate to find-
ing edge weights of the Johnson and Kneser graphs,
respectively, so that the Laplacian matrix of a new
graph is positive semidefinite (PSD).

Note that the third and fourth list of constraints in
the SoS relaxation (6) do not depend on the input
graph, nor on the edge observations or the ground-
truth node labels. Instead, they are constraints coming
from the SoS relaxation, as explained in the subsequent
paragraphs to problem (4). That means that they
depend only on the number of nodes, n, and on the
degree of the relaxation, d = 4. We will illustrate in

3The second eigenvalue of the Laplacian matrix is also
known as the algebraic connectivity.
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Weighted Johnson Graph Weighted Kneser Graph

Figure 3: Johnson and Kneser graphs for n = 4, where
each edge weight is related to some dual variables from
the SoS constraints. Edge weights with the same color
sum to zero, see eq.(13).

detail the case of n = 4 as it is easier to generalize from
there to any value of n.

Recall that S+(ijk`)
−(stuv) is a symmetric matrix that has

non-zero entries S{i,j},{k,`} = 1, and S{s,t},{u,v} =
−1. By taking advantage of the implicit symmetry
constraint from Ỹ � 0, for n = 4, one can realize
that the third list of constraints in problem (6) has six
different constraints in total (with their respective dual
variables), which are:

µ1224
1334 : 〈S+(1224)

−(1334) , Ỹ 〉 = 0, µ2113
2443 : 〈S+(2113)

−(2443) , Ỹ 〉 = 0,

µ1332
1442 : 〈S+(1332)

−(1442) , Ỹ 〉 = 0, µ3114
3224 : 〈S+(3114)

−(3224) , Ỹ 〉 = 0,

µ1223
1443 : 〈S+(1223)

−(1443) , Ỹ 〉 = 0, µ2334
2114 : 〈S+(2334)

−(2114) , Ỹ 〉 = 0.

Similarly, from the fourth list of constraints we have:

µ1324
1234 : 〈S+(1324)

−(1234) , Ỹ 〉 = 0, µ2314
1234 : 〈S+(2314)

−(1234) , Ỹ 〉 = 0.

In the dual formulation (7), for both lists above, the ma-
trices S are weighted by the dual variables µ. Then, the
two weighted summations can be thought of as weight
matrices of some graphs. Interestingly, such graphs
happen to be the Johnson and Kneser graphs 4 for the
first and second list of constraints above, respectively.
In Figure 3, we show an illustration of the Johnson and
Kneser graphs with edge weights corresponding to the
dual variables.

Let ⊕ denote the symmetric difference of sets. Also,
let WJ and WK denote the weight matrices of the
Johnson and Kneser graphs, respectively. Then, for any
n, the third and fourth list of constraints of problem (6)
translate to having the following constraints on WJ

and WK,∑
C1,C2

C1⊕C2={i,j}

WJ
C1,C2 = 0, ∀ i < j ∈ [n],

4For any n, whenever we write the Johnson and Kneser
graphs, we refer to J (n, 2) and K(n, 2), respectively.

∑
C1,C2

C1⊕C2={i,j,k,`}

WK
C1,C2 = 0, ∀ i < j < k < ` ∈ [n]. (13)

Thus, by using the construction in eq.(8), we have that
the PSD constraint of the dual formulation (7) can be
rewritten in terms of WJ and WK as follows,

Λ̃ =
diag

(
X(2)Ỹ

)
n− 2

− X(2)

n− 2
+

((
diag(WJ Ỹ )−WJ

)
+
(

diag(WKỸ )−WK
))
� 0.

Let G̃ = G(2) ∪ J ∪ K such that W G̃ = 1−2p
n−2 W

G(2)

+

WJ +WK, and noting that w.l.o.g. one can multiply
the weights in eq.(13) by yiyj and yiyjyky`, respec-
tively. We can use a similar argument to that of eq.(11)
and obtain

λ2(E[Λ̃]) = λ2(LG̃). (14)

The subtlety for lower bounding eq.(14) is that, un-
less all edge weights are zero, the Johnson and Kneser
graphs will both have at least one negative edge weight
in order to fulfill eq.(13). In other words, the Laplacian
matrix LG̃ is no longer guaranteed to be PSD. That
fact alone rules out almost all existing results on lower
bounding the algebraic connectivity as it is mostly
assumed that all edge weights are positive. Among
the few works that study the Laplacian matrix with
negative weights, one can find (Zelazo and Bürger,
2014; Chen et al., 2016); however, their results focus on
finding conditions for positive semidefiniteness of the
Laplacian matrix in the context of electrical circuits
and not in finding a lower bound. Our next result,
generalizes the lower bound in (Mohar, 1991) by con-
sidering negative edge weights.

Theorem 1. Let H = H+ ∪H− be a weighted graph
such that H+ and H− denote the disjoint subgraphs of
H with positive and negative weights, respectively. Also,
let degH

+

max denote the maximum node degree of H+.
Then, we have that λ2(LH) ≥ φ(H+)2

2 degH+
max

+2·mincut(H−).

In Appendix B, we provide further discussion about
Theorem 1. In the case when there are positive weights
only, the theorem above yields the typical Cheeger
bound (Mohar, 1991). When there is at least one neg-
ative weight, the bound shows an interesting trade-off
between the Cheeger constant of the positive subgraph
and the minimum cut of the negative subgraph. By
applying Theorem 1 to eq.(14), we obtain

λ2(E[Λ̃]) ≥ φ(G̃+)2

(2 degG̃
+

max)
+ 2 ·mincut(G̃−). (15)
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Figure 4: Detailed example of how the level-2 SoS relaxation improves the algebraic connectivity of the input
graph through a combination of weights of its level-2 version, and the Johnson and Kneser graphs. In the final
graph G̃, green and red lines indicate that their weights remain unchanged w.r.t. the Kneser and Johnson edge
weights, respectively; while blue lines indicate that their weights resulted from the summation of weights from
the Level-2 and Johnson graphs.

Without the weights of the Johnson and Kneser graphs,
the lower bound above is equal to that of eq.(12). Also,
recall that, by construction, the edge set of the level-2
graph G(2) is a subset of the edge set of the Johnson
graph, and that the Kneser graph is the complement
of the Johnson graph. That means that G̃ will be a
complete graph of

(
n
2

)
vertices, where the edge weights

of the Kneser graph are exclusively related to the dual
variables µ, while the edge weights of the Johnson graph
might have an interaction between the noisy edge ob-
servations and the dual variables µ. Finally, we provide
the following result that compares the probabilities of
exact recoverability of SDP (eq.(3)) vs SoS (eq.(6)).
Theorem 2. Let G be any undirected connected graph
with n nodes, whose level-2 lift is denoted by G(2). Let
also G̃ be the union of G(2) with the Johnson (J ) and
Kneser (K) graphs of the SoS dual variables µ. Then,
SDP (eq.(3)) and SoS (eq.(6)) recover exactly with prob-
abilities of at least 1 − εsdp and 1 − εsos, respectively,
where

εsdp = O

(
n2 exp

(
− 1− 2p

n− 2

φ(G(2))2

2 degG
(2)

max

))
,

εsos = O

(
n2 exp

(
− φ(G̃+)2

2 degG̃
+

max

+ 2 mincut(G̃−)

))
,

and W G̃ = 1−2p
n−2 W

G(2)

+WJ +WK.

We note two things. First, from Proposition 2, we

know that when µ = 0, SoS is equivalent to SDP,
which Theorem 2 above reflects clearly. Moreover, that
implies that SoS can never perform worse than SDP.
Second, our bound shed lights on the trade-off between
the Cheeger constant and the min-cut of the positive
and negative subgraphs of G̃, which is a new insight to
the best of our knowledge. Next, for further clarity, we
provide a detailed example of our analysis presented
in this section.

4 EXAMPLE

The goal of this section is to provide a concrete example
where the SoS relaxation (5) achieves exact recovery
but the SDP relaxation (3) does not. Since for any
input graph with n vertices, its level-2 version has

(
n
2

)
vertices, we select a value of n = 5 so that the level-2
graph has 10 nodes and the plots can still be visually
inspected in detail.

Figure (4a) shows the ground-truth labels of a graph
with 5 nodes and 8 edges. Figure (4b) corresponds
to the observation matrix X. In this case, only one
edge is corrupted (the red edge). Figure (4c) shows
the graph where an edge label of −1 or 1 indicates
whether the observed edge value was corrupted or not,
respectively. The latter graph is obtained by ΥXΥ,
where Υ denotes a diagonal matrix with entries from y,
similar to the procedure in eq.(10). Let Λ be the dual
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variable of the PSD constraint in the SDP relaxation
(3). Then, under a similar dual construction to the
one in (Bello and Honorio, 2019; Abbe et al., 2016),
we have that λ2(Λ) = minv⊥y

v>Λv
v>v

is equal to the
second eigenvalue of the Laplacian matrix of Figure
(4c). Thus, we can observe that, for SDP, the ground-
truth solution Y attains a value of λ2(Λ) = −0.24 < 0,
hence, exact recovery fails.

In Figure (4d), we show the level-2 graph of ΥXΥ,
i.e., Υ̃X(2)Υ̃. As argued by Proposition 2, by setting
µ = 0 the SoS does not do any better than SDP,
which is verified by obtaining λ2(Λ̃) = −0.24 < 0,
hence, exact recovery also fails in this case. However,
by solving problem (6), we obtain µ 6= 0 which, as
discussed in Section 3.3, relates to edge weights in the
Johnson and Kneser graphs. Those edge weights are
depicted in Figures (4e) and (4f), respectively. Finally,
after summing all the weights of the level-2 graph,
Johnson and Kneser graphs, we obtain a complete
graph depicted in Figure (4g). In the latter, we have
that λ2(Λ̃) = 0.95 > 0, which guarantees that Ỹ =

y(2)y(2)>, i.e., exact recovery succeeds.

Motivated by eq.(13) and Theorem 1, in Appendix C,
we show a non-trivial construction of the Kneser graph
weights based on only the node degrees of the level-2
graph.

5 CONCLUDING REMARKS

We studied the statistical problem of exact recovery
in graphs over the boolean hypercube. We considered
a generative model similar to that of Globerson et al.
(2015), which was motivated by an image segmentation
problem. We analyzed the level-2 SoS relaxation (6)
of problem (2), motivated by empirical evidence on
the improvement in exact recoverability over the SDP
relaxation (3). We showed how the dual formulation
of the SoS relaxation relates to finding edge weights
of Johnson and Kneser graphs so that the algebraic
connectivity of the input graph increases. Finally, we
characterized the improvement by deriving a novel
lower bound to the algebraic connectivity of graphs
with positive and negative weights, and provided a
construction of the Kneser graph weights in Appendix
C. It remains an interesting future work to study the
recent mapping of degree-2 to degree-4 solutions in
(Mohanty et al., 2020) for exact recovery.
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Supplementary Material:
A View of Exact Inference in Graphs from the Degree-4

Sum-of-Squares Hierarchy

A DETAILED PROOFS

In this section, we state the proofs of all propositions and theorem.

A.1 Proof of Proposition 1

By construction of the level-2 matrix X(2), we have that each entry Xi,j is repeated n− 2 times. Thus, it follows
that the objectives in problems (5) and (6) are equal.

Let Y be a feasible solution to problem (5), then clearly the principal submatrix indexed by
(

[n]
2

)
×
(

[n]
2

)
is a

feasible solution to problem (6). It remains to verify that if Ỹ is a feasible solution to problem (6) then there
exists a matrix Y such that it is feasible to problem (5) and has Ỹ as a principal submatrix. We define the
entries of Y as follows,

Y(i,i)(j,j) = Ỹ{i,j},{i,j}

Y(i,i)(j,k) = Ỹ{i,j},{i,k}

Y(i,j)(k,`) = Ỹ{i,j},{k,`}.

Clearly, Y will fulfill the constraints of problem (5) if Ỹ is feasible to problem (6). In particular, one can verify
that v>Y v ≥ 0 for any v if Ỹ � 0, which concludes our proof.

A.2 Proof of Proposition 2

We will show the equivalence between problem (5), without the third and fourth list of constraints, and problem
(3). Then, by Proposition 1, our claim follows.

The proof is similar to that of Section A.1, where it is clear that the objectives in problems (3) and (5) are equal.
Let Y sdp be a feasible solution to problem (3), then we define Y sos as follows,

Y sos
(i,i)(j,k) = Y sdp

i,j

Y sos
(i,j)(k,`) = 0.

Since Y sdp � 0, it follows that Y sos � 0 and, thus, Y sos is feasible to problem (5) without the third and fourth
list of constraints. Similarly, in the other direction, let Y sos be a feasible solution to problem (5) without the
third and fourth list of constraints, and define Y sdp to be the principal submatrix of Y sos with the first n rows
and columns. Then, it follows that if Y sos � 0 then Y sdp � 0, which is feasible to problem (3).

A.3 Proof of Theorem 1

For simplicity, letW and L be the weight matrix and Laplacian matrix of an undirected connected graph H of m
nodes. Also, letW+ andW− be the weight matrices of H+ and H−. For a matrixM and vector v, we use RM (v)

to denote their Rayleigh quotient, i.e., RM (v) = v>Mv
v>v

. It follows that RL(v) := v>Lv
v>v

=
∑

i<j Wi,j(vi−vj)2

v>v
, and

λ2(L) = minv⊥1RL(v). Similarly, we define R+
L(v) :=

∑
i<j W

+
i,j(vi−vj)2

v>v
, R−L(v) :=

∑
i<j W

−
i,j(vi−vj)2

v>v
. Note that

RL(v) = R+
L(v) +R−L(v). Next, we state a lemma that will be of use for the proof of Theorem 1.
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Lemma 1. Let L be a Laplacian matrix of dimension m×m. Let also 1 denote a vector of ones. Then, for any
δ ∈ R,v ∈ Rm,

∑
i vi ≥ 0, it follows that

R+
L(v) ≥ R+

L(v + δ1) .

Proof. Starting from the right-hand side, we have

R+
L(v + δ1) =

∑
i<jW

+
i,j

(
(vi + δ)− (vj + δ)

)2∑
i (vi + δ)

2

=

∑
i<jW

+
i,j

(
vi − vj

)2∑
i (vi + δ)

2

=

∑
i<jW

+
i,j

(
vi − vj

)2∑
i

(
v2
i + δ2 + 2δvi

)
=

∑
i<jW

+
i,j

(
vi − vj

)2∑
i v

2
i +mδ2 + 2δ

∑
i vi

(a)

≤
∑
i<jW

+
i,j

(
vi − vj

)2∑
i v

2
i +mδ2

≤
∑
i<jW

+
i,j

(
vi − vj

)2∑
i v

2
i

= R+
L(v),

where (a) holds by the fact that
∑
i vi ≥ 0.

We now present the proof of Theorem 1.

Proof. Let v be the eigenvector related to the eigenvalue λ2(L). Without loss of generality, we assume ‖v‖ = 1
and v1 ≤ v2 ≤ · · · ≤ vm. Recall that 1>v = 0. Then, we have that

λ2(L) = RL(v) = R+
L(v) +R−L(v).

Lower bounding R+
L(v). Set δ = v1 and denote u = v − δ1. Then, we have that 0 = u1 ≤ · · · ≤ um. Also

note that δ2 ≤ 1. Then, by Lemma 1, it follows that R+
L(v) ≥ R+

L(u).

We now define a random variable t on the support [0, um], with probability density function f(t) = 2
u2
m
t. One

can verify that
∫ um

t=0
2
u2
m
t dt = 1, thus f(t) is a valid probability density function. Then, for any interval [a, b], it

follows that the probability of t falling in the interval is

P[a ≤ t ≤ b] =

∫ b

t=a

2

u2
m

t dt =
1

u2
m

(b2 − a2).

Next, for some t, construct a random set St = {i | ui ≥ t}. Let ω+(∂St) =
∑
i∈St,j /∈St

W+
i,j .

It follows that

E[w+(∂St)] = E[
∑

i∈St,j /∈St

W+
i,j ]

=
∑
i<j

P[uj ≤ t ≤ ui]W+
i,j

=
1

u2
m

∑
i<j

(ui − uj)(ui + uj)W
+
i,j

≤ 1

u2
m

√∑
i<j

(ui − uj)2W+
i,j

√∑
i<j

(ui + uj)2W+
i,j
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=
1

u2
m

√
R+
L(u)

∑
i

u2
i

√∑
i<j

(ui + uj)2W+
i,j

≤ 1

u2
m

√
R+
L(u)

∑
i

u2
i

√
2
∑
i

u2
i degH

+

(i)

≤ 1

u2
m

√
R+
L(u)

∑
i

u2
i

√
2 degH

+

max

∑
i

u2
i

=

∑
i u

2
i

u2
m

√
2 degH

+

maxR
+
L(u).

Also note that E
[
|St|
]

=
∑
i P[ui ≥ t] =

∑
i
u2
i

u2
m
. As a result we obtain

E[ω+(∂St)] ≤ E
[
|St|
]√

2 degH
+

maxR
+
L(u).

Thus, we have E
[
ω+(∂St)− |St|

√
2 degH

+

maxR
+
L(u)

]
≤ 0. This implies that ∃St such that ω+(∂St) −

|St|
√

2 degH
+

maxR
+
L(u) ≤ 0. Rearranging we have,

R+
L(v) ≥ R+

L(u) ≥ ω+(∂St)
2

2 degH
+

max |St|
2

(16)

Lower bounding R−L(v). Set α =
√

1
v21+v2m

and denote u = αv. Then, we have that u2
1 + u2

m = 1. Note also

that R−L(v) = R−L(u).

We now define a random variable t on the support [u1, um], with probability density function f(t) = 2|t|. One
can verify that

∫ um

t=u1
2|t| dt = 1, thus f(t) is a valid probability density function. Then, for any interval [a, b], it

follows that the probability of t falling in the interval is

P[a ≤ t ≤ b] =

∫ b

a

2|t| dt = b2 sign(b)− a2 sign(a).

Since [u1, um] ⊂ [−1, 1], one can verify that (a− b)2/2 ≤ P[a ≤ t ≤ b]. Let ω−(∂St) =
∑
i∈St,j /∈St

W−i,j . For some
t, construct a random set St = {i | ui ≤ t}. It follows that

E[ω−(∂St)] = E[
∑

i∈St,j /∈St

W−i,j ]

=
∑
i<j

P[ui ≤ t ≤ uj ]W−i,j

≤ 1

2

∑
i<j

(ui − uj)2W−i,j

=
1

2
R−L(u)

∑
i

u2
i

≤ 1

2
R−L(u),

where the last inequality follows from having
∑
i u

2
i ≥ 1 and R−L(u) ≤ 0. Thus, we have E[ω−(∂St)− 1

2R
−
L(u)] ≤ 0.

This implies that ∃St such that ω−(∂St)− 1
2R
−
L(u) ≤ 0. Rearranging we have,

R−L(v) = R−L(u) ≥ 2ω−(∂St). (17)

By minimizing (16) and (17) independently, and combining them, we conclude our proof.
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A.4 Proof of Theorem 2

The proof follows by using matrix Bernstein inequality (Tropp, 2012). That is, in eq.(9), let t be a lower bound
to λ2(E[Λ̃]), i.e., λ2(E[Λ̃]) ≥ t. Then, the second summand can be lower bounded by using matrix Bernstein
inequality and thus we obtain P[λ1(Λ̃− E[Λ̃]) ≤ −t] ≤ O(n2e−t). The theorem statement follows by plugging
Theorem 1 into the inequality, where the SDP bound corresponds to µ = 0.

B FURTHER DISCUSSION ON THEOREM 1

We remark that the reason we do not consider other versions of the Laplacian matrix (e.g., the normalized
Laplacian matrix which is guaranteed to be PSD even in the presence of negative weights) is because how our
primal/dual construction (see Section 3.1) leads to a valid solution of the constraints in eq.(7) and that also
satisfies the KKT conditions. That is, using other notions of Laplacian matrix (see e.g., Kunegis et al. (2010);
Mercado et al. (2016); Cucuringu et al. (2019); Chiang et al. (2012); Knyazev (2017); Atay and Liu (2020)) would
not satisfy the optimality conditions needed for exact recovery (in particular, stationarity and complementary
slackness). In fact, one of the challenges we face in our analysis is that by having the standard Laplacian matrix,
its minimum eigenvalue can be negative, as shown in our example in Section 4 and also discussed in Knyazev
(2017), which motivated the search of a more general lower bound for the algebraic connectivity of signed graphs
(Theorem 1).

We also highlight that Theorem 1 sheds light on the subtle trade-off between the Cheeger constant of the positive
subgraph and the minimum cut of the negative subgraph. That is, intuitively, the SoS solution will try to find
negative weights for the Johnson and Kneser graphs of as low magnitude as possible, so that the minimum-cut of
the negative subgraph does not make the algebraic connectivity negative.

C A DEGREE-BASED CONSTRUCTION OF THE KNESER GRAPH

In Section 4, we used CVX (Grant and Boyd, 2014) to solve problem (6) and, thus, obtain the dual variables
µ in problem (7) from which we construct the weights of the Johnson and Kneser graphs. Motivated by the
trade-off between Cheeger constants of the positive and negative subgraphs, shown in Theorem 1, we show a
simple non-trivial way (not necessarily optimal) to directly construct the weights of the Kneser graph. The
reason why we focus in the Kneser graph weights is because the fourth list of constraints in problem (6) can be
expressed by two constraints for any i < j < k < `, as noted in Section 3.3. The latter fact implies that, for any
i < j < k < `, the edge weights WK{i,j},{k,`}, W

K
{i,k},{j,`}, and W

K
{i,`},{j,k} need to sum to zero in order to fulfill

the SoS constraints. As also noted in Section 3.3, at least one of the previous weights need to be negative unless
all three are zero. With these considerations, we present our construction in Algorithm 1, which relies only on
the node degrees and a constant real value.

The intuition behind Algorithm 1 is that the negative weight will be assigned to the edge that connects the two
nodes that have the highest combined node degree. In Lines 8-9, if all three edges have the same combined node
degree then we set all three weights to zero. In Lines 10-11, the edge with lowest combined node degree is set to
2c, while the other edges that attain the same combined node degree are set to −c. In Line 13, the edge with
highest combined node degree is set to −2c, while the other edges are set to c. It is clear that the SoS constraints
will be fulfilled for each quadruple i < j < k < `. Finally, we note that if c = 0 then simply the same input, M ,
is returned. The latter implies that, for the optimal value of c, Algorithm 1 cannot return a weight matrix with
lower algebraic connectivity than that of M .5

Recall that λ2(Λ̃) = λ2(LG̃). In Figure 5, we ran Algorithm 1 with input graph Υ̃X(2)Υ̃ equal to the graph in
Figure (4d), and c ∈ [0, 0.6]. For each c, we plotted the algebraic connectivity of our construction. We observe
that when c = 0, in effect λ2(Λ̃) = −0.24 as pointed in Figure (4d). In this example, the optimal value of c is
0.32 and attains a λ2(Λ̃) of 0.9368, which is very close to the value λ2(Λ̃) = 0.95 found by CVX (see Figure (4g)).
Finally, we also plot the Kneser graph weights for c = 0.32 following the construction in Algorithm 1.

5Recall that the SDP problem (3) would attain an algebraic connectivity equal to that of M if the optimal solution is
yy>.



Kevin Bello, Chuyang Ke, Jean Honorio

Algorithm 1 A construction of Kneser graph weights

Input: Level-2 weight matrix M = Υ̃X(2)Υ̃, constant c ∈ R.
1: deg(C1)←

∑
C2 MC1,C2 , ∀C1 ∈

(
[n]
2

)
2: Initialize WK as a zero matrix
3: for all i < j < k < ` ∈ [n] do
4: Assign the following such that ψ1 ≥ ψ2 ≥ ψ3

5: ψ1 ← deg({i, j}) + deg({k, `})
6: ψ2 ← deg({i, k}) + deg({j, `})
7: ψ3 ← deg({i, `}) + deg({j, k})
8: if ψ1 = ψ2 = ψ3 then
9: WK{i,j},{k,`} ← 0, WK{i,k},{j,`} ← 0, WK{i,`},{j,k} ← 0

10: else if ψ1 = ψ2 then
11: WK{i,j},{k,`} ← −c, WK{i,k},{j,`} ← −c, WK{i,`},{j,k} ← 2c
12: else
13: WK{i,j},{k,`} ← −2c, WK{i,k},{j,`} ← c, WK{i,`},{j,k} ← c
14: end if
15: end for
16: WK ←WK + (WK)> {To symmetrize.}
Output: W G̃ ←M +WK
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Figure 5: (Left) The blue line is the algebraic connectivity found by CVX, i.e., 0.95 as pointed in Figure (4g).
The red line is the algebraic connectivity of our construction in Algorithm 1 for different values of c ∈ [0, 0.6].
(Right) The Kneser graph weights for the optimal c = 0.32, which in effect differs from the weights found by CVX
in Figure (4f).
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