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Abstract

We consider the problem of efficiently infer-
ring interventional distributions in a causal
Bayesian network from a finite number of
observations. Let P be a causal model on
a set V of observable variables on a given
causal graph G. For sets X, Y C V, and
setting x to X, Px(Y) denotes the interven-
tional distribution on Y with respect to an
intervention x to variables X. Shpitser and
Pearl (AAAI 2006), building on the work of
Tian and Pearl (AAAI 2001), proved that
the ID algorithm is sound and complete for
recovering Py (Y) from observations.

We give the first provably efficient version
of the ID algorithm. In particular, under
natural assumptions, we give a polynomial-
time algorithm that on input a causal graph
G on observable variables V, a setting x of
a set X C V of bounded size, outputs suc-
cinct descriptions of both an evaluator and
a generator for a distribution P that is e-
close (in total variation distance) to Px(Y)
where Y =V \ X| if Pc(Y) is identifiable.
We also show that when Y is an arbitrary
subset of V \ X, there is no efficient al-
gorithm that outputs an evaluator of a
distribution that is e-close to Px(Y) un-
less all problems that have statistical zero-
knowledge proofs, including the Graph Iso-
morphism problem, have efficient random-
ized algorithms.
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1 INTRODUCTION

Density estimation and parameter learning are clas-
sical problems in statistics studied since the field’s
inception (e.g., Devroye and Gyorfi| (1985); [Scott
(2015); [Silverman| (2018) and references therein). A
more recent focus has been on designing distribution
learning algorithms that are provably computation-
ally efficient, especially in high-dimensional settings.
The seminal work of Kearns, Mansour, Ron, Rubin-
feld, Schapire, and Sellie (Kearns et al.l [1994) con-
sidered distribution learning in the PAC (Probably
Approximately Correct) framework and set forth two
core computational requirements for such a learner:
the representation output by the learner should be
both an (approximate) (i) evaluator, and a (ii) sam-
pler/generator. An approximate evaluator for a dis-
tribution P takes a domain element v and outputs
the mass of another distribution P at v, where Pis
a distribution close, in total variation distance, to
P. Similarly, an approximate generator for P takes
as input a random seed and outputs an element v
distributed according to P. The authors argue that it
is desirable to learn a representation of a distribution
that is both evaluator and generator, as they can be
useful for various downstream inference tasks. We
call this framework effective PAC' learning framework
in the discussion below.

Distribution learning is especially interesting when
the algorithm cannot directly access the distribution
to be learned. One of the most prominent example
of such a situation arises in causal effect estimation.
To estimate the effect of a treatment intervention
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feasible to conduct such experiments, and the only
recourse is to make use of observational data and
learn/deduct from it the effect of the treatment in-
tervention.

In this work, we investigate the problem of efficiently
learning interventional distributions from finite ob-
servational samples in the PAC framework discussed
above where the goal is to output a representation
that is both an approximate evaluator and an ap-
proximated generator.

Our discussion of causality and intervention will be in
Pearl’s language of causal Bayesian networks (Pearl,
2009). A causal Bayes net is a standard Bayes net
that is reinterpreted causally. Specifically, it makes
the assumption of modularity: for any variable X,
the dependence of X on its parents is an autonomous
mechanism that does not change even if other parts
of the network are changed.

We fix some basic notation for causal Bayes nets to
ground the subsequent discussion. The underlying
structure of causal Bayes net P is a directed acyclic
graph G. The graph G consists of n + h nodes where
n nodes correspond to the observable variables V
while the h additional nodes correspond to the hidden
variables U. We assume that the observable variables
take values over a finite alphabet 3.

The observational distribution P on V is obtained by
interpreting P as a standard Bayes net over VUU and
marginalizing to V. An intervention is specified by
a subset X C V of variables and an assignmentﬂ X E
YIXI. In the interventional distribution, the variables
X are fixed to x, while each variable W € (VUU)\X
is sampled as it would have been in the original
Bayes net, according to the conditional distribution
W | w(W), where n(W) (parents of W) consist of
either variables previously sampled in the topological
order of G or variables in X set by the intervention.
The marginal of the resulting distribution to V is
the interventional distribution denoted by Px(V )P}
In general, for any subset Y C V of observables
variables we can define the interventional distribution
P.(Y).

The general problem of interest for us is to efficiently
learn Px(Y) for an arbitrary X and Y in the PAC
framework. If we leave aside considerations of effi-

! Consistent with the convention in the causality liter-
ature, we will use a lower case letter (e.g., x) to denote
an assignment to the subset of variables corresponding
to its upper case counterpart (e.g., X).

?In the literature the ‘do’ notation do(x) is also used
to denote the intervention process. The resulting inter-
ventional distribution is denoted by P(V | do(x)).

ciency, this problem was solved in the prior works
of [Tian| (2002)), |Shpitser and Pearl (2006]) and, in-
dependently, Huang and Valtorta, (2006). We focus
here on the work of [Shpitser and Pearl| (2006)). They
presented a characterization of the set of graphs G
for which Py(Y) is statistically identifiable from the
observational distribution P. In particular, they iso-
lated a ‘blocking structure’ which they call a hedge
and showed that Py(Y) is statistically identifiable if
and only if G does not contain a hedge with respect
to X and Y. They gave an efficient algorithm, called
the ID algorithm, to detect a hedge if it exists. If
there are no hedges, the ID algorithm explicitly gen-
erates a formula for Px(Y) in terms of conditional
probabilities of P. The ID algorithm is described in
Section 2

Representation of the interventional distribution out-
put by the ID algorithm require unbounded observa-
tional samples and strict positivity (all conditional
probabilities should be strictly > 0) condition to
compute any fixed interventional probability. In par-
ticular, it does not provide any guarantee that Py (Y)
is learned up to bounded error in total variation dis-
tance, either as an evaluator or as a generator, using
a bounded number of samples and time. Designing
an effective PAC learning algorithm for interventional
distributions is the main focus of the paper.

1.1 OUR CONTRIBUTIONS

Our first contribution can be stated as the following
theorem. For the definition of a c-component, refer
to Section 2

Theorem 1.1 (Informal). Let P be a causal Bayes
net where the underlying DAG G has in-degree at
most d and c-component size at most k. There is an
algorithm that given such a causal Bayes net G, a
subset X C 'V of size at most { such that Px(Y) is
identifiable from P where Y = V \ X, and &; with
constant probability, outputs (learns) a distribution
P as an approximate evaluator and generator so

that drv (P« (Y), P) < e. The algorithm uses m =
~ O (k) 52O (ké+kd)

) (%) samples and O(m(n+ |S[k4TF))
time, where o is the minimum probability for any non-
empty event defined by the variables in c-components
intersecting X and such c-components’ parents.

The formal version of the theorem, Theorem [3.2]
is presented in Section Note that unlike in the
ID algorithm, we do not require P to be a strictly
positive distribution. Indeed, if we let « above be a
lower bound on P(v), then a < |X]|~™, and hence, the
sample/time complexity guaranteed by the theorem
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will be exponential. So, it is crucial for efficiency
that a be a lower bound on the probability of events
defined by only a bounded number of variables.

Indeed, our sample complexities are polynomial when
the in-degree and c-component size are constants and
depends on them exponentially in general. We would
like to note that recent works on learning causal mod-
els (Acharya et al. 2018} Bhattacharyya et al.,[2020a)
also make these assumptions in order to derive finite
sample bounds. The bound on in-degree is indeed
necessary due to the lower bound of |Bhattacharyya
et al.[(2020al). The bound on the c-component size
is necessary in general even for estimating the ob-
servational marginal over a single c-component of
size k. Consider the following graph where a single
unobservable is acting on k observables. In such
cases, arbitrary distributions can be generated over
a support of size |S|¥ whose estimation will require
exponentially many samples.

Theorem is proved by showing how to implement
the ID algorithm while guaranteeing the bound on
the distance between the learned and true interven-
tional distributions. This analysis relies on recent
work of Bhattacharyya et al.| (2020bllc) which exam-
ined fixed-structure learning of discrete Bayes nets
without hidden variables. However, unlike the ‘chain-
like’ factorization P(v) = [], P(v; | Vpa@)) of the
probability mass function for a Bayes net, the inter-
ventional probability distribution may not admit a
nice factorization (see the examples in Appendix @[)
Our algorithm exposes a decomposition of Py(V)
into a product of interventional distributions that
are either on a small sample space or have a ‘chain-
like’ factorization, and we show both can be learned
efficiently using samples from P. The sample com-
plexity of Theorem [1.1]is nearly optimal in terms of
n and € but it remains an interesting open problem
to improve the dependence on d, k, ¢, « and 3.

One drawback of Theorem [l is that it considers
the interventional distribution on 'V \ X, whereas the
causal effect on only a subset Y of outcome variables
may be relevant and is considered and characterized
by earlier work (Tian,|2002; |Shpitser and Pearl, 2006;
Huang and Valtortal 2006). We show that unfortu-
nately, we cannot hope for a learning algorithm for
P(Y) in the effective PAC framework, analogous to
Theorem|[T.1] for an arbitrary subset Y. In particular,
we show that the existence of a learning algorithm
that outputs an approximate evaluator representa-
tion of Px(Y) for an arbitrary Y C V will lead to
efficient randomized algorithms for all problems in
the complexity class SZK. The complexity class SZK

contains hard computational problems including the
Graph Isomorphism problem and it is believed that
these problems do not have efficient randomized algo-
rithms. Indeed, we establish the hardness even when
the intervention set X is empty (i.e., when the goal
is to learn the marginal on a subset of variables) and
the Bayes net has in-degree at most 2. This result is
stated below.

Theorem 1.2 (Informal). Suppose there is a ran-
domized polynomial-time algorithm that on input a
Bayes net (without hidden variables) distribution P
on V, Y CV, and ; outputs a representation R of
a distribution P so that (1) dpy(P(Y),P) <e, and
(2) for every y, P(y) can be evaluated (or even mul-
tiplicatively (1 + €)-approzimated) efficiently using R.
Then all problems that have statistical zero knowl-
edge (the complezity class SZK), including the Graph
Isomorphism problem, can be solved in randomized
polynomaal time.

Thus the problem of outputting an evaluator rep-
resentation of a distribution that approximates the
effect of an interventional distribution on an arbi-
trary subset, even when it is identifiable in the sense
of the ID algorithm, is computationally hard.

Remark 1.3. Using notations of Theorem the
lower bound of Theorem corresponds to the case
d=2,k=1,l=0and a = 1.

1.2 RELATED WORK

Pearl| (1989) introduced Causal Bayesian Networks to
formally define interventions and causal effects. [Tian
and Pearl (2002) first studied the problem of identi-
fication of causal effects from observations, and gave
graphical characterizations for such identifications
when the intervention is atomic, i.e. consisting of a
single variable and we are interested to determine
the effect of this variable on the rest of the variables.
They also gave an expression for such an atomic in-
tervention in terms of observational quantities when-
ever the later is identifiable. Subsequently, [Shpitser
and Pearl (2006) and [Huang and Valtortal (2006))
independently generalized Tian and Pearl| (2002) for
non-atomic interventions on any subset of variables,
giving graphical characterizations for identifiability
and an expression of the causal effect whenever it is
identifiable.

Recently, there has been a surge of interest in design-
ing efficient estimators for causal effects to accom-
pany the above identifiability results. For estimating
the average treatment effect, classic methods are the
inverse probability weighting and regression-based
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estimators. These estimators can be combined and
made “doubly robust” in the form of the augmented
inverse probability weighted (AIPW) estimator. The
ATPW has been systematically extended to apply
to causal Bayes nets using the framework of semi-
parametric theory; see the works of [Henckel et al.
(2019), [Rotnitzky and Smucler| (2020)); |Jung et al.
(2020ay, [2021)); Bhattacharya et al.|(2020)). Also, Cher,
nozhukov et al.| (2018) quantitatively studied the
double robustness of such semiparametric estimators.
This line of work, though close to ours in terms of
motivation, differs in two significant ways: (i) our al-
gorithm learns a description of the full interventional
distribution, rather than just its mean, and (ii) we
provide PAC-style finite sample bounds instead of
a convergence statement in the form of asymptotic
normality. The recent work by [Kennedy et al.| (2021)
does study density estimation of the interventional
distribution but again does not provide finite sample
bounds.

Finite sample bounds for causal inference have been
studied only recently. |[Acharya et al. (2018)) gave
finite bounds for goodness-of-fit testing for non-
parametric causal models using observation and ex-
perimental data. In Bhattacharyya et al.|(2020al),
the authors gave finite sample bounds for learning
atomic interventions. In this setting, Tian and Pearl
(2002) gave a simple formula for the intervention as
a function of the joint distribution whenever it is
identifiable. In contrast, an intervention involving
multiple variables is more involved for deciding iden-
tifiability. In this case, [Shpitser and Pearl (2006)
gave a recursive procedure that generates a formula
for the intervention whenever it is identifiable. We
give a finite sample bound for this problem. The
finite sample and time bounds shown in this paper
can be seen as a finite-sample version of [Shpitser
and Pearl| (2006), generalizing |Bhattacharyya et al.
(2020a)) for learning non-atomic interventions on the
rest of the graph using observational samples.

At a high-level, we partition the random vari-
ables of the interventional distribution into two sub-
distributions: those which share the c-component
with an intervention and those which do not. The
final distribution is a product of these two sub-
distributions. Our technique for learning the former
sub-distribution involves a clear understanding of
how the said recursive procedure unrolls at every call
and to provide it with the required joint probability
distribution needed at every recursive call. Our tech-
nique for learning the later sub-distribution involves
a procedure for learning Bayesian networks from sam-
ples and has some similarity to the algorithm given

for the atomic case in [Bhattacharyya et al.| (2020al).

Testing various properties of polynomial-time sam-
plable distributions such as uniformity, entropy, and
closeness is a fundamental problem that characterizes
several zero-knowledge complexity classes (Watson,
2016; |Sahai and Vadhan, 2003; [Malkal, 2015). We
show our hardness result employing a connection
between testing polynomial-time samplable distri-
butions and testing Bayesian networks. Bayesian
network is an important statistical model for which
finite sample bounds for testing and learning have
been given recently (Bhattacharyya et al.l |2020b;
Canonne et al., |2020; Bhattacharyya et al., [2020c).

2 PRELIMINARIES

Notation. We use bold and non-bold fonts to de-
note sets and singleton variables respectively. We
use capital and small letters to denote variables and
values taken by them respectively.

In this paper we only consider distributions over
finite sample spaces. For two distributions P and
Q@ over a sample space 2, their total variation dis-
tance dry(P, Q) = %Zieﬂ |P; — Q;| and their KL
distance dxp(P,Q) = > ,cq Piln % Pinsker’s in-
equality says drv(P,Q) < /0.5 -dkr(P,Q). A dis-
tribution @ is (14 ¢)-approximate p.m.f. for another
distribution P if Q(z) € [(1 — €)P(x), (1 4 €)P(z)]
for every z in the sample space.

We are interested in distributions over directed graph-
ical models: Bayes nets and Causal Bayes nets. We
will introduce necessary notation to define them. Let
G be a directed acyclic graph on V. For any sub-
set S C V, An™(S) and Pa™(S) denotes the set of
all observable ancestors and parents of S (including
S) respectively; Pa~(S) = Pat(S)\ S; and G[S]
denotes the induced subgraph of G over S.
Definition 2.1. A Bayesian Network P is a distri-
bution that can be specified by a tuple (V, G, {Pr(V; |
pa~ (V) : V; € V,pa—(V;) € P2 (VOll) yhere:
(i) V.= (V1,..., V) is a set of variables over al-
phabet ¥, (ii) G is a directed acyclic graph with n
nodes corresponding to the elements of V, and (iii)
Pr[V; | pa=(V;)] is the conditional distribution of
variable V; given that its parents Pa™ (V;) in G take
the values pa= (V).

The Bayesian Network P = (V,G,{Pr[V; |
pa~ (V))]}) defines a probability distribution over
YV as follows. For all v e XV,

P(v)= ][] Prlvi | Pa(Vi) = veaq)].
Viev
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In this distribution, each variable V; is independent
of its mon-descendants given its parents in G.

For a given X C V and an assignment x to X, the
interventional distribution Pyx(V) is the Bayes net
distribution defined on the DAG where the set of
incoming edges to X are removed and X is fixed to
x with probability 1. All other variables follow the
usual parent-child relation and factorization of P.

It is standard in the literature to assume that the
unobservable variables in U have exactly two observ-
able children. In this case, Causal Bayes nets can
be represented using Acyclic Directed Mized Graph
(ADMG in short) representation over only the ob-
servable vertices V. An ADMG consists of a set of
observable variables and two kinds of edges: directed
edges £~ and bi-directed edges E¥’. The directed
edges (X — Y) denote parent-child relationship as
in a DAG. The bi-directed edges (X +— Y) denote
an indirect correlation between X and Y due to a
hidden parent U. Due to the reduction of [Verma and
Pearl (1990) from general causal graphs to ADMGs
that preserves important independence and struc-
tural properties, the results of this paper do work for
general causal graphs when the effective in-degree
and the c-component size of the original graph are
still bounded. The reasoning is similar to the one in
Appendix I of |Acharya et al.| (2018]).

The notion of a c-component, introduced by [Tian and
Pearl| (2002), plays a central role in the identification
of causal effects.

Definition 2.2 (c-component). Let G be an ADMG.
Then a set of vertices C of G is a c-component of G
if every pair of vertices in C is connected by a path
of only bi-directed edges.

Definition 2.3 (c-component factorization). For
any ADMG G over observables V, the c-component
factorization C(G) is the partition of vertices V into
{C1,Cay,...,C,,} such that the induced subgraphs
G[C;]s are (mazimal) c-components. Then the ob-
servational distribution of any causal Bayes net on
G gets factorized as: P[V] = []", Py\c,[Ci].
Definition 2.4 (Effective parents of V; in G). For
any vertex V;, let C be the c-component of G that
contains V;. Then the effective parents of V; is
Pat(C)N{Vi,Va,...,Vi1}.

Definition 2.5 (a-strong positivity for c-compo-
nents). A c-component C is said to be a-strongly pos-
itive if for every assignment z, P(pa®™(C) = z) > «a.

Other standard definitions of technical concepts re-
lated to causal Bayesian networks appear in the sup-
plementary material.

2.1 IDENTIFICATION ALGORITHM
REVISITED

Algorithm 1: ID(y,x, P, G)

: Subset X CV, Y =V\X,
Assignments x,y, Observational
distribution P, ADMG G

Output: Py(y)

if x = () then
| return P(v)

if V\ An"(Y)g # () then
L return ID(y,x N An"(Y)g, >v\ant(v)e b

G[An"(Y)g]).

if C(G\X)=1{Sy,...,S;} then
| return ], ID(s;, v \s;, P,G).

if C(G\ X) = {S} is singleton then

(a) if C(G) = G then
L return FAIL.

b if S € C(G) then
L return HilViES P(v; | v1,v9,...,0;_1).
cif 38': S C 8’ € C(G) then

return ID(y,x N S', [ y,cs P(Vi |
(V1>‘/27 . ’7‘/2‘71) N S/7 (Ulv' . '7Ui71)\
S’),S").

Input

Suppose we are given an ADMG G and an observa-
tional distribution P(V). Let X,Y C V be disjoint
subsets and x,y be assignments to X and Y. The
goal of the identification question in general is to
determine the probability Pry(y). We restrict our
attention to the case Y = V '\ X due to the hardness
result discussed in the supplementary material. Al-
gorithm (I} is the modified ID algorithm of |[Shpitser
and Pearl (2006]) restricted to this case.

Here we explain the steps of Algorithm [I]in detail.
Let X CV,Y =V\X and let x,y be assignments
to X and Y. The algorithm accepts x, y, the observa-
tional distribution P and the ADMG G as inputs and
outputs the interventional probability Px(y) or re-
turn FAIL when Py(y) is not uniquely determinable.
The steps 1 and 2 of Algorithm [I] correspond to the
base cases while 3 and 4 correspond to the non-trivial
cases.

1. Step 1 handles the base case when X is an empty
set. In this case, the algorithm directly outputs
the observational probability P(y).

2. Step 2 handles the base case when o := V \
An™(Y)g is non-empty. It is clear by definition
that the vertices of o is not affecting Y. Therefore,
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o can be removed from the original graph G (and
also from X).

. Suppose Sq, ...

, Si (for k > 1) are the c-

components of G[V \ X]. Then we get the fol-
lowing formula:

Px(y) = H Pv\si (Si)’

i€ k]

where the product term is due to c-component
factorization (Definition [2.3]).

. Suppose the c-component of G[V'\X] is a singleton
S = {V \ X}. Here we have three cases.

(a)

Consider the case where the c-component of
G is G itself. This results in the existence of
hedge (with root set S and internal nodes X,
and some edges can be removed to make sure
each internal node has exactly one outgoing
edge. Please refer |Shpitser and Pearl (2006]) for
the definition of Hedge). Hence, it is impossible
to uniquely determine the required query.
Consider the case where S is a c-component
of G. This means there is no-bidirected edge
between S and V \ S. Due to the absence of
bi-directed edges, no backdoor paths (Pearl
(2009))) exist from X to S, which results in the
following formula:

Poy)= ] P@ilvi,...,0i1)

i|Vies

whose correctness can be easily verified by
Bayes rule and marginalization. (Note: Addi-
tionally, we can also remove some of the v;’s in
the conditional terms on top of this expression
by applying conditional independence proper-
ties of the model.)

This is the final case. Suppose there exists
S’ : S C S’ which is a c-component of G.
Here, similar to 4(b), since there is no bi-
directed edge between X \ S’ and the rest of
the vertices, it is possible to identify the dis-
tribution obtained after intervening on x \ s’
- using the following formula: Py\s(S') =
[lv,es: P(VilViieyy NS’ (x\ 8')y;,_, \s/) where
Viicy ={V1,...,Vica}.

The idea here is to first intervene on X\ S’ and
then try to recursively intervene on X NS’ on
top of that — which is equivalent to intervening
on X. Hence the required query is obtained
by determining Pyng/(y) in the graph G[S’]
with observational distribution Py\g/(S’) de-
fined above.

An illustration of how the different steps and the
different recursive calls to the algorithm lead to the
bigger picture of obtaining the probability Py (y) is
presented with two examples in Appendix

3 LEARNING INTERVENTIONAL
DISTRIBUTION EFFICIENTLY

In this section, we provide an effective PAC version of
the ID Algorithm. The algorithm takes an ADMG G,
the intervention X = x, a parameter ¢, and random
samples from the observational distribution P(V)
and outputs a representation of a distribution Py(Y)
where Y = V \ X which is e-close to Px(Y) in
total variation distance. The representation of Py (Y)
returned is a collection of conditional probability
tables and hence can be used to generate samples
from Px(Y) as well as evaluate the probability at
any Y =Y.

Throughout this section, we will assume Y =V \ X
and Px(Y) is identifiable. For simplicity we also
use Px to denote the distribution Px(Y). Note that
we can run the ID Algorithm to efficiently decide
whether a particular intervention is identifiable or
not. Thus without loss of generality we can assume
that step 4a in the ID Algorithm never gets invoked.

Let {C;}; denote the c-component partition of G,
and let k be the size of the largest c-component. Let
X = ulexi be a partition of X such that X; C C;,
for i = 1 to ¢ without loss of generality. We make
the following assumption.

Assumption 3.1. pat(C;) is a-strongly positive
for every 1 <4 < /.

We call the learning algorithm FINITEID. We state
the guarantee of the algorithm FINITEID as a theo-
rem below.

Theorem 3.2. There are three algorithms
FINITEID, FINITEIDEVALUATOR, and FINITEID-
SAMPLER with the following properties. Given an
ADMG G with k and ¢ as defined above, and obser-
vations from a causal Bayes net P on G, FINITEID

~ nls 2kl+kd+k 3k 2(k+3) > 2kl 1
takes m = O (( ‘ IQMEQ 4 (k) a2€2‘ I log 5

samples from P and in O(m(n + |S[k4T5)) time
returns a description Eff oan distribution ]3x on
Y = V\ X so that drv(Px, Px) < e. FINITEI-
DEVALUATOR, given the output Eff of FINITEID
and any 'y € SY1 returns Pe(y) in O(n|X|?k!+2kd)
time. FINITEIDSAMPLER, given the output
Eff of FINITEID, generates a sample of Px in
O(n|S|?FI+2kd) time.
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Algorithm 2: FINITEID

Algorithm 3: FINITEIDSAMPLER

: Assignments x, error parameter &,
Observational dist. P, ADMG G
Output: Py (Y)

1. Q + Learn P(Cs¢ | C<¢ = c<y) for every
fixing of c<, that agrees with the intervention,
as a Bayes net factorization of |Tian and Pearl
(2002) using the add-1 estimator (Lemma [3.5)).

Input

2. R + Learn P(C</¢ | cpa) for every fixing cpa
for parents of C<; using the recursive
procedure ID from Shpitser and Pearl| (2006])
using Lemma [3.4] as follows.

(a) If the current recursive call uses the
original distribution P from which we are
sampling, then learn the required joint
distribution of the subsequent recursive call

by learning each of its factor from samples.

Example: to learn a factor P(B | A), learn
P(B | A = a) for every a. This step uses
strong positivity to learn each factor up to
a point-wise (1 £ ¢)-factor

(b) If the current recursive call uses some
distribution D # P constructed before,
then learn each factor of the required
distribution of the subsequent call by
taking appropriate ratios from Bayes’ rule,
without using any samples. Example,
DB | A)=D(AB)/D(A).

3. Return Eff < {Q; ., S; . }i.

We give an overview of the proof in the main body
of the paper and move details to the supplementary
material (Appendix ‘ Firstly we define,

Csy:=U;>¢C; and CSg = Uiggci.

Let C;\X,; = U;C;; be the c-component partitions of
G[C;\ X;]. Then any identifiable joint interventional
probability factorizes based on the following claim.

Claim 3.3. Let Y = V\ X, An"(Y) =V, and
suppose Py(y) is identifiable. Then,

PX(Y) = PC1,..,,Cg (C>€) H Pv\cij (Cij)-

4,3

The proof of the claim directly follows from step 3
of the ID algorithm. Hence it suffices for us to learn

R:= HPV\Cij (cij) = Px,c>[ (ng \ X) and

i,J

Input :Eff = {@i’z, §i)z}i7z from Algorithm
Output : Sampler for Py (Y)

1. Sample the source nodes of ﬁx(y) =

Hviecﬂ Q(Vi | Zi) HviecSZ Si(Vi ‘ Zi)a
according to their marginal distribution defined
in Eff

2. Sample the nodes which depend on the sources
according to Eff and samples from step 1

3. Sample nodes from subsequent levels according
to Eff until sink nodes are sampled

Algorithm 4: FINITEIDEVALUATOR

Input :Eff = {@i,za §i,z}i7z from Algorithm
Output : Evaluator for Py (Y)

1. Evaluate ﬁx(y) using the factorization ﬁx(y) =

[lviec., QVil Zi)Ilv,cc., Si(Vi | Zi),
according to Eff

Q = PCSg (C>é) = Pcl,...,Cg (C>Z)'

For every fixing of pa~(C<, \ X), R factorizes as
a product of at most k¢ conditional probabilities
S;, each of which has at most (kd + k) conditioning
variables. For every fixing of c<y, ) is Bayes net over
at most n variables of in-degree at most (kd+k). Our
approach would be to learn R as a set of conditional
probability tables and @ as a Bayes net, both up to
a total variation error at most €. Then our learnt
distribution will have the following factorization.

Py = [ 0wilzy [[ Silz) ()
VieCsy VieCxy

where the effective parents (Definition of V; is
denoted by Z;.

3.1 LEARNING R
Now we focus on learning the distribution
R= vac>e (CSZ \ X)

for every fixing of pa=(C<, \ X).

Lemma 3.4. Let Pa™(C;) be a-strongly positive.
Then for every fizing of Csy (in fact, every fixing of
pa~ (C<¢ \ X) without loss of generality), R can be
learnt as a product of conditional probabilities R of
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in-degree at most (kd + k) using

~ 2
m=0 (ksdezQEQ log <|E|§£)>

|kd+k) time such that with proba-

is (14(3k)**1le)-approzimate

samples and O(m|Z
bility at least (1—0), R
p.m.f. for R.

R = Hl ; Rij, where each distribution R;; =
Py\c,, (Cij) starts a recursive call of the ID algo-
rithm. Each such recursive call forms a recursion
tree whose non-leaves correspond to recursive calls
from 2, 3, or 4c, and the leaves correspond to re-
cursive calls from 1 or 4b. Our strategy would be
to give a (1 & e2)-approximate p.m.f. access to the
joint distribution for every subsequent recursive call
(compared to the true joint distribution), assuming
a (1 4 &1)-approximate p.m.f. access to the joint dis-
tribution of the current call. Inductively, we’ll get a
(1 & e3)-approximate access to the leaf distributions:
outputs by the leaf calls. Each distribution R;; is a
multiplication of the leaf distributions, possibly with
some marginalizations. Marginalization preserves the
approximation ratio of the p.m.f. and there are at
most k£ multiplicands, so that our final approximation
ratio would be (1 % e3)*. This approach gives us an
algorithm for learning R approximately.

3.2 LEARNING Q

We next focus on learning the distribution @, for
every fixing of C<,. @ is a Bayesian network on at
most n variables of indegree at most (kd 4 k) (Tian,
2002). We use conditional sampling to learn this
distribution using the add-1 estimator for the con-
ditional probabilities, which was recently analyzed
in the context of learning Bayesian networks (Bhat+
tacharyya et al., 2020c). The difference with that
work and our work is that we are trying to learn an
interventional distribution from observational sam-
ples which is different from learning the observational
distribution.

Lemma 3.5. Let Pa+(Ci) be a-strongly positive.
Then for every fizing of C<¢, @ can be learnt as
a Bayes net Q of indegree at most (kd + k) using

_ e $[kd+E+1
m =0 ("lEde log (n| | )> samples and

R 5

O(mn) time such that dir(Q, Q) < € with probability
at least (1 —0).

3.3 COMBINING Q AND R

We shall now discuss the proof of Theorem [3.2}

Proof of Theorem[3.3 It follows from Lemma
and Pinsker’s inequality that for any fixed c<y,

' - s kd+k n| o kd+E+1N
by using m = ®<Z|CS%2 log( Rl

5
samples and  O(mn)  time, we  get
drv <HVieC>g QVi|Z:),[lv,ec., QVi | Zz)) < e

with high probability.

We scale down ¢ by a (3k)**! ./ factor to achieve
an algorithm that for any fixed c~,, uses m =

(@) ((3k)2(k+3)£3da252 log (W)) samples and

O(m|S|F4+k) time, to obtain R which is (1 + e)-
approximate p.m.f. for R, with high probability,
from Lemma [3.41

Combining the above two pieces, we get at most
e(|Z[¥ 4 1) error as follows. We get the theorem by
an appropriate scaling.

dTV(PX7 ﬁx)

S IT evilzy)

c<ye>e [VieCsy

II s:vilz)-

VieCxy

I owilzy

VieCsy

S IT @iz

II sz

c<oese [V;€CSy VieC<y
I[ evilzy J] Swvilzy
VieCs, VieC<y
+ [ ewilz) [I Sivilz)
VieCs, VieC<y
- II aw: |z Si(Vi | Zs)
VieCsy V7€C§Z

<> > | II ewvilzy II sitvilzy

c>p c<y |V;€CS, VieC<y
~(1+e) J[ Q@vilzy) [[ S:ivilz)
VieCsy V,,',ECSg
2.2 I evilzo- I @vilz)
c<y c>¢ |V;ECS, VieCsy

S€ZZ H Q(Vi | Z) H Sz‘(Vz‘|Zi)+ZE

c>¢ c<p V;ECS, VieCxy Cc<y

e(1+131%).

We used gi(V,- | Z;) <1 in the fourth line.
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Now, we show how to generate samples approxi-
mately according to the distribution Px(y). Our
algorithm generates samples according to the factor-
ization Px(y) given in (I). From (I} we have

P(y)= [[ ewilz) [[ Sivilz)

VieCsy VieC<y

where Q comes from Lemma and S comes from R
of Claim 34l Note that either in Lemma 2 or Claim
8, the effective graph in any step of the recursion is
always a subgraph of G. Hence, the topological order
between V; and Z; is never violated. In particular,
we can sample each random variable of Y in the
topological order of V \ X. Then at any step of
this sampling, whenever we try to sample some v; ~
QWi | Z;) or ~ S;(Vi | Z;), Z; would always be
sampled, and hence gets assigned before it. O

Remark 3.6. It follows that we can also sample
from any T C V \ X, ignoring the unnecessary vari-
ables. However, evaluating the marginal on T in
general remains computationally expensive.

4 HARDNESS OF PAC
LEARNING MARGINALS

In this section we show that designing an algorithm
that outputs a representation of a approximate suc-
cinct evaluator for the marginal of an interventional
distribution in general is computationally hard. This
should be contrasted to our learning result in Sec-
tion [l for the case when X is of bounded size and
Y = V\ X. In Section [3| we designed a learning
algorithm for Py(Y) that outputs a representation
R which is a generator as well as an evaluator for
a distribution Py(Y) that is € close to Px(Y) in to-
tal variation distance. The result we establish in
this section implies that it is computationally hard
to design such a PAC style learning algorithm for
the general case of arbitrary X and Y. In fact we
show the hardness for the case when X is empty
intervention and Y is an arbitrary subset of observ-
able variables for a Bayesian network of in-degree
2. While there are hardness results known for com-
puting marginals of Bayes net distributions (Cooper}
1990; |Rothl, |1996)), the hardness of learning in the
PAC framework does not directly follow from these
works. Due to space limitations, the proofs of the
main hardness result and other hardness results are
moved to the supplementary material.

Definition 4.1 (Efficient e-approximate evaluator
circuit). A circuit Ep : {0,1}" — R is called an
efficient e-additive evaluator for a distribution P over

{0, 1}, if there exists a distribution P over {0,1}"
such that: (1) [Additive approzimation] drv (P, P) <
g, (2) [Evaluation query] For any x € {0,1}"™, Ep on
input = outputs a number p € [1 —e,1+ £]P(z) in
poly(n) time.

Definition 4.2. Let BAYESMARGINAL be the follow-
ing learning problem: given a parameter €, samples
from an unknown Bayes net distribution P over bi-
nary variables V, and a Y C 'V, output an efficient
e-approzimate evaluator circuit € : {0, 1}1¥I = R for
the marginal distribution of P over Y.

Now we state the main hardness result.

Theorem 4.3. If BAYESMARGINAL has a random-
ized polynomial-time learning algorithm even re-
stricted to Bayes nets of in-degree at most 2, then
the complexity class SZK C BPP.

The class SZK contains several hard computational
problems including the Graph Isomorphism prob-
lem and is believed to be computationally harder
than BPP; the class of problems that admit efficient
randomized algorithms. It is widely believed that
the class SZK does not admit efficient randomized
algorithms.

5 CONCLUSION

Identification of interventional distributions in causal
models is a significant problem with many practical
applications. There are two distinct bodies of work
on this topic. The first focuses on deriving exact
graph-theoretic characterizations of identifiability,
accompanied by identification algorithms that require
infinitely many samples. The second proposes various
estimators for estimating causal effects (commonly,
population mean of the interventional distribution)
under restrictive assumptions on the causal model.

Our work joins a recent thread of works in combining
these two perspectives. Additionally, we establish
rigorous finite-sample guarantees for the algorithm’s
output. We also showed hardness of designing simi-
lar PAC learning algorithms for identifying the effect
of intervention on a subset X to another arbitrary
subset Y of the observable variables. Some future
directions of work include: (i) considering proba-
bility densities on continuous-valued variables, (ii)
improving the sample complexity bounds or prov-
ing improved hardness results, and (iii) prove finite
sample complexity bounds for estimators that can
be used in practice.
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Supplementary Material:
Efficient Interventional Distribution Learning in the PAC
Framework

A PRELIMINARIES ON CAUSAL BAYESIAN NETWORKS

We follow Pearl’s formalism of Causal Bayesian Networks (Pearl, 2009).

Definition A.1 (Causal Bayes Net). A causal Bayes net P is a collection of interventional distributions
that can be defined in terms of a tuple (V, U, G, {Pr(V; | m(V;)) : Vi € V,w(V;) € SIVOI} {Pr[U}), where
(i) V=(1,...,V,) and U are the set of observable and hidden variables respectively, (ii) G is a directed
acyclic graph on VUU, (i) Pr[V; | w(V;)] is the conditional probability distributions of V; € V given that its
parents in V.U U, II(V;), take the values w(V;), and (iv) Pr[U] is the distribution of the hidden variables U.
G is said to be the causal graph corresponding to P.

Such a causal Bayes net P defines a unique interventional distribution Px(V) for every subset X C 'V
(including X = () and assignment x € YIXI as follows. For all v e XIVI:

Py(v) = Yullv,evx Prlvi | (v, u)g, ] - Prlu]  if v is consistent with x
* 0 otherwise.

Graphically, for a given X C V and an assignment x to X, the interventional distribution Px(V) is the Bayes
net distribution defined on the DAG where the set of incoming edges to X are removed and X is fixed to x
with probability 1. All other variables follow the usual parent-child relation and factorization of P.

It is standard in the literature to assume that the unobservable variables in U have exactly two observable
children. In this case, Causal Bayes nets can be represented using an Acyclic Directed Mixzed Graph (ADMG
in short) representation over only the observable vertices V. An ADMG consists of a set of variables and
two kinds of edges: directed edges E~ and bi-directed edges E¥*. The directed edges (X — Y) denote
parent-child relationship as in a DAG. The bi-directed edges (X <— Y') denote an indirect correlation
between X and Y due to a hidden parent U. Thus, the edge set of an ADMG is the union of the directed
edges E~ and the bidirected edges E". For ADMG we need to redefine some of the notation. For any
given set S C V, G5 denotes the graph obtained from G by removing the incoming edges to S. Note
that the bi-directed edges indicate edges from unobservables to observables and hence the bi-directed edges
incident to S in G also gets removed in Gg. Also it is not useful to explicitly represent unobservables with
a single child, hence those bi-directed edges incident to S in G will not be present in Gig. For any subset
S C V, An"(S) and Pa'(S) denotes the set of all observable ancestors and parents of S (including S)
respectively. We use Pa™ (S) = Pat(S)\ S. We assume the indices of the observable vertices of ADMG
V ={W,Vo,Vs,...,V;,Viyy,...} are arranged in a topological ordering. Finally, for any subset S C V, G[S]
denotes the induced subgraph of G over S.

The notion of a c-component introduced by [Tian and Pearl (2002) plays a central role in the identification of
causal effects.

Definition A.2 (c-component). Let G be an ADMG. Then a set of vertices C of G is a c-component of G
if every pair of vertices in C is connected by a path of only bi-directed edges.

Definition A.3 (c-component factorization). For any ADMG G over observables V, the c-component
factorization C(G) is the partition of vertices V into {C1,Cs,...,Cp} such that the induced subgraphs
G[C;]s are (mazimal) c-components. Then the observational distribution of any causal Bayes net on G gets
factorized as: P[V] =[], Py\c,[Ci].
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Definition A.4 (Effective parents of V; in G). For any vertex V;, let C be the c-component of G that contains
V;. Then the effective parents of V; is Pat(C) N {V1,Va,..., Vi_1}.

Definition A.5 (a-strong positivity for c-components). A c-component C is said to be a-strongly positive if
for every assignment z, P(pa™(C) =z) > «.

B OMITTED DETAILS FROM SECTION [3

Recursive calls are taken from steps 2, 3, or 4c. In 2 and 3, the subsequent call just uses the current
distribution (or a marginal of it). In 4c, the subsequent call uses a very different distribution. Therefore, in
a path to the leaf in the recursion tree, we need to give a new joint distribution whenever 4c is taken. We
use the following result to give this distribution, based on whether 4c was taken for the first time in this
root-to-leaf path or not.

Claim B.1. Let Pyer and Pag respectively be the two distributions just before and during the recursive call at
step 4c of ID.

o If Poer = P, we can give a (1 & 3ke)-approxzimate p.m.f. of Pog for Pag using O((kd + d)a=2c721log %)
samples and O((kd + d)|S[k4+dq =222 ]og %l) time.

o If Poet # P and we have a (1 £ &)-approximate Poot for Pyet, we can give a (1 + 3ke)-approzimate p.m.f.
Pagi for Pag using O(k|X|?*) time and no samples.

Proof. Note that each factor of the joint distribution in step 4c is of the form S(V; | Z;), where Z; consists of
the effective parents of V;.

In case 1, we take enough samples to empirically learn Pyee(V; | z;) for every fixing of z;. Due to a-
strong positivity, min(Phet(v; | 2;), Poet(2:)) > « for any v;,z,. Hence from Chernoff’s bound, using

1
0] (a‘26_2 log (5)) samples the learnt distribution would be point-wise (1 & ¢)-close with high probability.

Since |Z;| < (kd + d) our final sample complexity is m = O((kd + d)a~2e 2 log %) and the time complexity

is O(m|%|F4*4). Since each factor is (1 4 £)-approximate, the approximation for the joint distribution is at
most (1 £¢)*.

In case 2, we compute Poer(v; | 2;) = Poot(vi, 2;)/Poet(z;) by appropriate marginalizations of S, which
preserves the approximation. Since 4c is taken at least once before, the graph-size is at most k. Due to the

E
ratio, along with a maximum of & multiplications, the final approximation becomes (%) -factor. This

does not involve sampling and can be done in O(k|%X|?*) time, since in this case P,y must be over at most k
variables.

In either case, we return ﬁaft as a p.m.f. table of size |Z\’“. O

Similarly for the leaf calls from steps 1 or 4b, we approximate their (terminal) output distributions (henceforth
referred to as leaf distributions) by marginalization or conditional sampling, depending on whether the
current distribution is P or not. Inductively, we would get an approximation guarantee between the true and
estimated leaf distributions. Our output just consists of p.m.f. tables for each joint distribution Pper just
before a leaf call. In that case, each leaf distribution (denoted by S and S) is simply a marginalization (step
1) or product of conditional probabilities (step 4b) of ?bef7 which can be efficiently computed.

We now analyze the leaf calls from 1 or 4b. Again, we split into two cases, depending on whether the leaf call
was taken using the original distribution P or not. Let P,of be the distribution during the leaf call.

Claim B.2. Let S be a true leaf distribution in the recursion tree output from step 1 or 4b. Then our
corresponding learnt distribution S as mentioned above is point-wise (1 + (3k)*e)-approzimate for S.

Proof. If Pyor = P we get a sampling access to Pper. If Poor # P, we get Pper as a p.m.f. table.
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Step 1 returns the joint distribution over Y, over at most |X|* items. If Pyt = P, we learn S(Y) up to
pomt wise (1 & €)-factor using O(ka ~2) samples with high probability. If Pyt # P, we output P itself
as S. In either case, we return a p.m. f table of size at most |X|*.

If 4b is taken with Py = P, we need to learn each P(V; | z;), where Z; is the effective parent set of V;, and
is of size at most (kd + d). So, we iterate through all possible z; and learn each term :S”\(Vl | z;) = P(V; | z;)
point-wise up to (1 &£ €)-error by rejection sampling with high probability. There are at most k such terms, so
that the sample complexity would be m = O((kd+d)a~2e~2) and the time complexity would be O(m|%|Fd+d).

If 4b is taken with Py # P, then it must be preceded by a call from 4b, since only that step changes the
distribtltion by our construction. Then P is a distribution over at most k variables. We obtain all required
terms S(v; | ;) = Poet(vi | 2i) = Poet(vi,2:)/ Poet(2:) by appropriate marginalizations of Pyet using O(|X|?*)
time and no samples.

In both the above cases of 4b, we return all possible conditional probability tables required for evaluating the
output formula of this step. Note that the recursion depth is at most k& and we lose a factor of (1 & 3ke) from
(14¢) in each depth. Therefore, the approximation ratio for the leaf distributions is at most (1 £ (3k)¥e). O

Proof of Lemma 3.4 Each R;; is a product of at most & leaf distributions. Our final output distribution ﬁlj

just uses S in place of each such leaf distribution S. Since R = H - R;; is a product of at most k*¢ leaf
distributions, the lemma thus follows. O

We will now introduce some of the tools used in proving Lemma [3.5] The following Claim relates the
pm.f.s of @ and P. Here we used the c-component factorization from (Tian, 2002, Lemma 3) to write
Q =1lv,ec., P(Vi | Z;), where Z; is the effective parents of V;.

Claim B.3. Let v be an assignment to V and w be its restriction to Csy. Then alC=el < P((:V) <1.
) _ Hvi vP('Ui|Zi) o C
Proof. Q(v Hviez>z Foen = Uvieco, Pi 1 2i) 2 [y,ec., Plviozi) = alCsel, O

We closely follow the dky-learning result for Bayes nets given in[Bhattacharyya et al.|(2020c). Let Z; = Z;\C<g.
Our algorithm just learns the add-1 empirical distribution P(v; | Z! = a)) on the conditional samples from
P(v; | Z, = a). Our learnt distribution Q consists of the P(v; | Z, = a)’s, in place of every P(v; | Z! = a) in
the Bayes net factorization for Q.

Fact B.4 (Dasgupta| (1997)); |Canonne et al. (2020) Bhattacharyya et al| (2020c)). dxi(Q,Q) =
Yico., YaQ(Z; = a) - dxu(P(vi | Zj = a), P(v; | Z; = a)).

We also have the following guarantee about the add-1 estimator.

Fact B.5 (Bhattacharyya et al.[(2020c)). Let D be an unknown distribution over k items and D be its add-1
empirical distribution of m samples. Then if m 2> k log (];) <log (k) + loglog ('I;)) then di1,(D, D) < &
with probability at least (1 — §). ) )

We are now ready to prove Lemma

Proof of Lemma|[3.5. We analyze the two cases: Q(Z; = a) > and otherwise.

[
n|S[k4+E log(m+[3)

ok | kd+k+1
In the former case, P(Z, = a) > % from Clalmand m=0 <”|E|kd+k log (n| | >) samples

IC<el, §
~ kd4k+1 ’_ n|okd+E+1
would ensure at least @(nlz‘ = Q(Z;=a) log ( B2l 5

with high probability from Chernoff’s bound. Hence, dki(P(v; | Z; = a), ]3(1)1 | Z, = a)) < sz;:a)
from Fact except with probability at most s

)) conditional samples are seen from P(v; | Z, = a)
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In the later case, Q(Z; = a) < ST ogtmrTsy and dgL(P(v; | Z} = a), P(v; | Z; = a)) < log(m + |X|),

since the least add-1 probability of at most m conditional samples is ﬁlﬁ\

Combining all the cases, the summation of the RHS of Fact evaluates to at most O(e). O

Now we describe the overall construction of the evaluator for Px(Y) = Q- R, where @ =[]y, €G-y QV; | Zy),
R = HViqu Si(Vi | Z;), Z; is the conditioning set for V;, @ is the Bayes net and S;’s are the leaf distributions
defined before. This is very similar to a Bayes net factorization except that the probability distribution for
the factors need not be the same. Our evaluator is

H QV; | Z;) H Si(Vi | Zy), (2)

VieCxsy VieCxy

where @ comes from Lemma and :S’\Z comes from R in Lemma Let @Z ., = (V

| Z z) and
Si.» =8(V; | Z; = z). Our FINITEID algorithm returns a collection of tables Eff = {Qz 229, }

C HARDNESS OF PAC LEARNING MARGINALS

In this section we show that designing an algorithm that outputs a representation of a approximate succinct
evaluator for the marginal of an interventional distribution in general is computationally hard. This should
be contrasted to our learning result in Section [3| for the case when X is of bounded size and Y =V \ X. In
Section 3| we designed a learning algorithm for Py(Y) that outputs a representation R which is a generator
as well as an evaluator for a distribution Py(Y) that is e close to Py(Y) in total variation distance. The
result we establish in this section implies that it is computationally hard to design such a PAC style learning
algorithm for the general case of arbitrary X and Y. In fact we show the hardness for the case when X is
empty intervention and Y is an arbitrary subset of observable variables for a Bayesian network of in-degree 2.

We need the following definitions.

Definition C.1 (Polynomial-time samplable distributions). Given a Boolean circuit C,, mapping n bits to
m bits, the distribution sampled by C,, is obtained by uniformly choosing x € {0,1}" and evaluating C on x.
A distribution is polynomial-time samplable distribution if it is sampled by a circuit C,, of size poly(n). We
often use C itself to denote the distribution sampled by the circuit C,,.

We will use the following hardness result for the testing of two polynomial-time samplable distributions.

Definition C.2 (Testing of polynomial-time samplable distributions). Let DISTCKT be the following com-
putational problem: given an encodings of two boolean circuits C, and D,, both of which output exactly
m = poly(n) bits, distinguish between the two cases: drv(Cr,Dy) < 1/3 versus dry(Cp, Dy) > 2/3.

Theorem C.3 (Sahai and Vadhan| (2003))). DISTCKT is complete for the complexity class Statistical Zero
Knowledge (denoted SZK ).

The class SZK contains several hard computational problems including the Graph Isomorphism problem and
is believed to be computationally harder than BPP; the class of problems that admit efficient randomized
algorithms. It is widely believed that the class SZK does not admit efficient randomized algorithms.

In the following, we show that DISTCKT reduces to the problem of computing an efficient, approximate
evaluator for the marginal distribution of a Bayes net, thereby showing that the later problem is hard. We
formally define this problem now.

Definition C.4 (Efficient e-approximate evaluator circuit). A circuit Ep : {0,1}™ — R is called an efficient
e-additive evaluator for a distribution P over {0,1}", if there exists a distribution P over {0,1}" such that:

1. [Additive approzimation] drv (P, P) < ¢

2. [Evaluation query] For any x € {0,1}™, Ep on input x outputs a numberp € [1 —e, 1+ 6]13(37) in poly(n)
time.
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Definition C.5. Let BAYESMARGINAL be the following learning problem: given a parameter €, samples
from an unknown Bayes net distribution P over binary variables V, and a Y C V, output an efficient
e-approzimate evaluator circuit & : {0, 1}|Y‘ — R for the marginal distribution of P over Y.

We also need the following result for approximating the variation distance additively when there are evaluator
circuits for distributions.

Theorem C.6 (Bhattacharyya et al|(2020b))). Let P and Q be two unknown distributions over Q. Then
given access to two efficient e-approrimate evaluator circuits Ep and Eg for P and Q, we can estimate

1
drv(P,Q) up to an additive 4e error with (1 — &) probability using O(c~2 log <5>) samples from P and

1
O(e2log (5)) evaluation queries to Ep and Eg.

Now we will prove the main result of this section.

Theorem C.7. If BAYESMARGINAL has a randomized polynomial-time learning algorithm even restricted to
Bayes nets of in-degree at most 2, then DISTCKT € BPP and hence SZK C BPP.

Proof. Let A be the hypothetical randomized polynomial-time learning algorithm for BAYESMARGINAL. We
will design a randomized polynomial-time algorithm for DISTCKT using A as follows.

Let C, and D,, are the two Boolean circuits. Firstly, we assume without loss of generality all the AND, OR,
NOT gates of C,, and D,, have at most 2 input gates; if not we can convert any gate with k inputs (k — 1)
gates each with input 2 by stacking such gates. This increasing the circuit size (the number of gates) by
at most a polynomial factor. Then, the two circuits can be interpreted as Bayes nets of in-degree at most
2, whose source nodes variables take random (Bernoulli(1/2)) and intermediate nodes follow deterministic
functions. We slight abuse of notation and also denote by C,, and D,, the corresponding Bayes nets. Let
Sc and Sp denote the sets of variables corresponding output gates of C,, and D,,. Note that |Sc¢| = |Sp|.
Let Can and D,y denote the joint distributions of all the variables (all the gates) of the Bayes nets C,, and
D,,, respectively. Hence, the original samplable distributions C,, and D,, are the marginals of C,; and D,y
respectively over the sets S¢ and Sp.

We run A on (Can, Sc, 1/40) to get an efficient e-approximate evaluator E¢ for C,, with high probability.
Similarly we run A on (Chy, S, 1/40) to get an efficient e-approximate evaluator £p for D,,. Moreover, C,
can be sampled in randomized polynomial time. Hence from Theorem using E¢, Ep, and samples from
Cp, we can approximate drv(Cyp, Dy,) up to an additive error 1/10 in polynomial-time with high probability.
The algorithm finally accept if the approximate value of drv(C, D,) is > 1/2 and reject if it is < 1/2. This
shows that under the assumption on the learnability of BAYESMARGINAL, DISTCKT € BPP. O

We also show a NP-hardness result for getting a multiplicatively approximate evaluator for the marginal of a
Bayes.
Definition C.8 (Efficient c-multiplicative evaluator circuit). A circuit Ep : {0,1}" — R is called an efficient

c-multiplicative evaluator circuit for a distribution P over {0,1}™, if there exists a distribution P over {0,1}"
such that:

1. [Multiplicative approzimation] P(x)/P(z) € [1/c,c] for some constant ¢ > 1 and for any = € {0,1}".

2. [Bualuation] for any x € {0,1}", Ep on input x outputs P(z) in poly(n) time.

Definition C.9 (BAYESMARGINALMULT). Let BAYESMARGINALMULT be the following problem: given a
Bayesian network P over the binary variables V, and a S C 'V, return an efficient c-multiplicative evaluator
circuit for the marginal distribution of P over S.

We reduce from the well known NP-complete problem circuit evaluation problem.

Definition C.10 (CIRCEVAL). Given the encoding of a Boolean circuit C : {0,1}™ — {0,1} as input, decide
whether there exists an x such that C(x) =1 or not.
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Theorem C.11. CIRCEVAL is NP-complete.

We give a reduction from CIRCEVAL to BAYESMARGINALMULT, showing that the later problem is unlikely
to be in randomized polynomial-time.

Theorem C.12. If BAYESMARGINALMULT has a randomized polynomial time algorithm even for Bayes
nets of indegree at most 2, then CIRCEVAL € BPP and hence NP C BPP.

Proof. Let A be a hypothetical randomized polynomial time algorithm for BAYESMARGINALMULT. Let
C:{0,1}" — {0,1} be the instance of the CIRCEVAL problem. Let b denote the output bit of C. We also
denote by C, the joint distribution of all its gates when its input bits are chosen randomly.

As argued in the proof of Theorem C is a Bayes net of indegree at most 2 over all its gates without loss
of generality. We invoke A with the subset being {b} and the mulplicative ratio being any constant ¢ > 1.
If C has no satisfying input, then b ~ Bernoulli(0). If C' has a satisfying input, b ~ Bernoulli(p) for some
p > 1/2™. Therefore, a c-factor approximation of the bias of b would decide CIRCEVAL. O

D EXAMPLES

D.1 ID ALGORITHM

The following two examples are used here to illustrate the algorithm in action and how the different steps and
the different recursive calls to the algorithm lead to the bigger picture of obtaining the probability Py (y).

Example 1. Counsider the ADMG shown in Figure [la] taken from [Tian (2002)) and the identification of
P.(y, z1, 22) from the observational distribution on this graph. Note that the conditions in steps 1 and 2 of
the ID Algorithm do not hold and hence step 3 gets invoked. Since the c-components of G[{Z;, Z2,Y }] are
{Y,Z1} and {Z5}, we get the following formula: P,(y, 21, 22) = Py 2, (Y, 21) - Pry, 2 (22)-

For P, .,(y,z1), the recursive procedure invokes step 4b to obtain the following equivalent expression
P(z1 | 2)- P(y | #1,%2,x). For the other term P, , ., (22), since Y is not an ancestor of Zs, the intervention
on Y is not particularly useful. This simplification is taken care by step 2, which reduces to the following
query Py - (22) = Qq,z, (22) over Graph where Q(X, Z1, Z3) = Zy P(X,Zy,Za,y) = P(X, Z1, Z3).

In the next recursive step, the algorithm invokes step 4c with S’ = {Z;, X}, henceforth reduces to a new
question Q ., (22) = Rz(22) in Graph where R(Z3,X) = Q(X) - Q(Z | X, z1). Finally, the algorithm
invokes step 2, which obtains R;(z2) = R(22) = Y, Q') - Q22 | &', 21).

Example 2. Now consider the question of identifying P, ,.,(y) for Figure taken from [Jung et al.
(2020b)). Note that the conditions in steps 1, 2 and 3 do not hold for the required query, hence the algorithm
directly invokes step 4c where S’ = {X,Y, W’}. This invocation boils down to the identification question of
determining Q. . (y) in Graph where QW, X,Y) := P.(W, X, Y)=P(W)-P(X |W,r)- P(Y | W, X,r).
In the next recursive call, the algorithm will stop at step 2 resulting in the identification of R, (y) in Graph
where R(X,Y) =5, Q' X,Y)=>,, Plw) -P(X |w,r) - P(Y | X,w, r). Finally, step 4b gets invoked
in the next call which obtains the following expression:

R.(y) = R(y | z)
= Zw’ P(wl) i P(.’l? | wlar) i P(y | m,w',r)

Doy P Pz |w,r)- Py | z,w,r)
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D.2 EVALUATOR AND GENERATOR

We now illustrate our evaluator and generator with the help of the two simple examples presented before. In
the following formulas, we use a (primed random variable) X’ to denote an identical copy of the random
variable X, to distinguish it from the intervention assignment X = x.

Example 1: Consider the graph in Figure We would like to learn the intervention P (z1,22,y). The
following sequence of steps are taken in our algorithm.

1. The starting graph has two c-components (X, Z;) and (Y, Z1). Only (X, Z3) contains an intervening
variable. So, we’ll assume (X, Z1, Z2) is a-strongly positive.

2. Step 3 is taken first and generates: ID((y, z1), (z, 22), P, G) * ID(z2, (x,y, 21), P, G). Since, P is unchanged,
we don’t do anything.

3. The first ID takes step 4b and generates the formula: P(y | z,z1,22) - P(z1 | ). Note that we are
learning this distribution jointly as a Bayes net, assuming a-strong positivity of only (X, Z1, Z3).

4. Y is marginalized out in step 2 from the second ID. Hence, we don’t change the distribution. Next call
is ID(z9, (z,21), P(X, Z1, Z3), H), where H is the graph of Figure

5. Step 4c is taken next: ID(z2,x, S(X, Z3),T), where S(X,Z5) = P,,(X,Z2) = P(X) - P(Z2 | 21, X). We
learn S up to point-wise (1 & 6¢)-factor using O(a~2e~2) samples and store it as a table. T is the graph
shown in Figure

6. Step 2 next prunes X from 7. The distribution is a marginal and hence S is unchanged.

7. Step 1 generates the formula: S(z2).

At this point, we will be able to evaluate and sample P(y | x, 21, 22) - P(21 | ) - S(22) using our Bayes net P
and the explicit table for S.

Example 2: Consider the graph in Figure We are interested to learn the intervention Py ) (y). The
following sequence of steps are taken in our algorithm.
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1. The starting graph G has two c-components: {W, X, Y} and {R}. Both these components contain an
intervening variable and hence assumed a-strongly positive together with their parents.

2. First, step 4c gets invoked: which returns ID(y, (w,z), Q(W,X,Y),H), where Q(W,X,Y) =
P.W,X,)Y)=PW)-P(X|W,r)-P(Y | X,r,WW). So, we learn @) as a point-wise (1 + 9¢)-approx.
p.m.f. table using O(a~2c72) samples from P. The graph H is shown in Figure

3. Next, step 2 prunes W from H. The new distribution is the marginal of @ on X,Y and so @’s table is
passed on unchanged. The new graph T is shown in Figure So, the next call is ID(y, z, Q(X,Y),T).

4. Finally, step 4b is taken, which generates the final formula Q(y | x).

At this point, we will be able to evaluate and sample Q(y | ) using our stored table for Q.
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