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Abstract

Gaussian Bayesian networks are widely used
to model causal interactions among contin-
uous variables. In this work, we study the
problem of learning a fixed-structure Gaussian
Bayesian network up to a bounded error in
total variation distance. We analyze the com-
monly used node-wise least squares regression
LeastSquares and prove that it has the near-
optimal sample complexity. We also study a
couple of new algorithms for the problem:
• BatchAvgLeastSquares takes the average
of several batches of least squares solutions at
each node, so that one can interpolate between
the batch size and the number of batches. We
show that BatchAvgLeastSquares has near-
optimal sample complexity.
• CauchyEst takes the median of solutions to
several batches of linear systems at each node.
We show that the algorithm specialized to
polytrees, CauchyEstTree, has near-optimal
sample complexity.
Experimentally, LeastSquares performs best
for uncontaminated data generated from the
given DAG. However, with data contami-
nation or DAG misspecification, CauchyEst,
CauchyEstTree and BatchAvgLeastSquares
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perform significantly better.

1 INTRODUCTION

Linear structural equation models (SEMs) are widely
used to model interactions among multiple variables,
and they have found applications in diverse areas, in-
cluding economics, genetics, sociology, psychology and
education; see [Mue99, Mul09] for pointers to the ex-
tensive literature in this area.

Gaussian Bayesian networks are a common form of
SEMs where (i) there are no hidden/unobserved vari-
ables, (ii) each variable is a linear combination of its
parents and a noise term, and (iii) all noise terms are
independent Gaussians. The structure of a Bayesian
network refers to the directed acyclic graph (DAG)
prescribing parent nodes for each node in the graph.

This work studies the fundamental task of learning a
Gaussian Bayesian network given its structure which
has been subject to extensive prior work. The usual
formulation of this problem is in terms of parameter
estimation, where one wants a consistent estimator
that exactly recovers the parameters of the Bayesian
network in the limit, as the number of samples ap-
proaches infinity. In contrast, we consider the problem
from the viewpoint of distribution learning [KMR+94].
Analogous to the PAC model for learning Boolean
functions [Val84], the goal here is to learn a distribu-
tion P̂ that is close to the ground-truth distribution
P with high probability using an efficient algorithm.
In this setting, pointwise convergence of the parame-
ters is no longer a requirement; the aim is rather to
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approximately learn the induced distribution. Indeed,
this relaxed objective may be achievable when the for-
mer may not be (e.g., for ill-conditioned systems) and
can be the more relevant requirement for downstream
inference tasks. Diakonikolas [Dia16] surveys the cur-
rent state-of-the-art in distribution learning from an
algorithmic perspective.

Consider a Gaussian Bayesian network P with n vari-
ables with parameters in the form of coefficients1 ai←j ’s
and variances σi’s. For each i ∈ [n], the linear struc-
tural equation for variable Xi, with parent indices
πi ⊆ [n], is Xi = ηi +

∑
j∈πi ai←jXj , ηi ∼ N(0, σ2

i )
for some unknown parameters ai←j ’s and σi’s. If a
variable Xi has no parents, then Xi ∼ N(0, σ2

i ) is
simply an independent Gaussian. Our goal is to effi-
ciently learn a distribution Q such that dTV(P,Q) ≤ ε
while minimizing the number of samples we draw
from P as a function of n, ε and relevant struc-
ture parameters. Here, dTV denotes the total vari-
ation or statistical distance between two distributions:
dTV(P,Q) = 1

2
∫
Rn |P(x)−Q(x)| dx.

One way to approach the problem is to simply view P as
an n-dimensional multivariate Gaussian. In this case,
it is known that the Gaussian Q ∼ N(0, Σ̂) defined
by the empirical covariance matrix Σ̂, computed with
O(n2/ε2) samples from P , is ε-close in TV distance to
P with constant probability [ABDH+20, Appendix C].
This sample complexity is also necessary for learning
general n-dimensional Gaussians and hence general
Gaussian Bayesian networks on n variables.

We focus therefore on the setting where the structure
of the network is sparse.
Assumption 1.1. Each variable in the Bayesian net-
work has at most d parents. i.e. |πi| ≤ d, ∀i ∈ [n].

Sparsity is a common and very useful assumption for
statistical learning problems; see the book [HTW19] for
an overview of the role of sparsity in regression. More
specifically, in our context, the assumption of bounded
in-degree is popular (e.g., see [Das97, BCD20]) and
also very natural, as it reflects the belief that in the
correct model, each linear structural equation involves
a small number of variables2.

1.1 Our contributions

1. Analysis of MLE LeastSquares and a distributed-
friendly generalization BatchAvgLeastSquares

1We write i← j to emphasize that Xj is the parent of
Xi in the Bayesian network.

2More generally, one would want to assume a bound on
the “complexity” of each equation. For linear equations,
their complexity are proportional to the in-degree.

The maximum likelihood estimator for parameter esti-
mation of Gaussian Bayesian networks is to perform
node-wise least squares regression. However, there
does not exist an explicit sample complexity bound
for this estimator. We show that the sample com-
plexity for learning P to within TV distance ε using
LeastSquares requires only Õ(nd/ε2) samples, which
is nearly optimal.

We also give a generalization which solves multiple
batches of least squares problems (on smaller systems
of equations), and then returns their mean. We call
this algorithm BatchAvgLeastSquares. As each batch
is independent from the others, they can be solved
separately before their solutions are combined. Our
analysis will later show that we can essentially inter-
polate between “batch size” and “number of batches”
while maintaining a similar total sample complexity
– LeastSquares is the special case of a single batch.
Notably, we do not require any additional assumptions
about the coefficients or variance terms in the analyses
of LeastSquares and BatchAvgLeastSquares.

2. New algorithms based on Cauchy random vari-
ables: CauchyEst and CauchyEstTree

We develop a new algorithm CauchyEst. At each node,
CauchyEst solves several small linear systems of equa-
tions and takes the component-wise median of the
obtained solution to obtain an estimate of the coeffi-
cients for the corresponding structural equation. In
the special case of bounded-degree polytree structures,
where the underlying undirected Bayesian network is
acyclic, we specialize the algorithm to CauchyEstTree
for which we give theoretical guarantees. Polytrees
are of particular interest because inference on polytree-
structured Bayesian networks can be performed effi-
ciently [KP83, Pea86]. On polytrees, we show that the
sample complexity of CauchyEstTree is also Õ(nd/ε2).
Somewhat surprisingly, our analysis (as the name of the
algorithm suggests) involves Cauchy random variables
which usually do not arise in the context of regression.

3. Hardness results
We show that our sample complexity is nearly optimal
in terms of the dependence on the parameters n, d, and
ε. In particular, we show that learning the coefficients
and noises of a linear structural equation model (on n
variables, with in-degree at most d) up to an ε-error in
dTV-distance with probability 2/3 requires Ω(ndε−2)
samples in general. We use a packing argument based
on Fano’s inequality to achieve this result.

4. Experiments on synthetic and real-world networks
We experimentally investigate how the KL distance3

between the true and learned distributions changes
3Since it’s hard to compute TV distance, we report KL
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with the number of samples when using the algorithms
studied here, as well as other well-known methods for
undirected Gaussian graphical model regression. We
find that the LeastSquares estimator performs the
best among all algorithms on uncontaminated datasets.
However, CauchyEst and CauchyEstTree outper-
form LeastSquares and BatchAvgLeastSquares by
a large margin when a fraction of the samples
are contaminated. In non-realizable/agnostic learn-
ing case, BatchAvgLeastSquares, CauchyEst and
CauchyEstTree outperform other algorithms.

1.2 Outline of paper

In Section 2, we relate KL divergence with TV dis-
tance and explain how to decompose the KL diver-
gence into n terms so that it suffices for us to esti-
mate the parameters for each variable independently.
We also give an overview of our two-phased recov-
ery approach and explain how to use recovered coeffi-
cients to estimate the variances via VarianceRecovery.
For estimating coefficients, Section 3 covers the esti-
mators based on linear least squares (LeastSquares
and BatchAvgLeastSquares) while Section 4 presents
our new Cauchy-based algorithms (CauchyEst and
CauchyEstTree). To complement our algorithmic re-
sults, we provide hardness results in Section 5 and
some experimental evaluation in Section 6. Proofs and
further experiments are deferred to the appendix.

1.3 Further related work

Bayesian networks were formally introduced by
Pearl [Pea88] in 1988 to model uncertainty in AI sys-
tems. For the continuous case, Pearl considered the case
when each node is a linear function of its parents added
with an independent Gaussian noise [Pea88, Chapter
7]. The parameter learning problem – recovering the
distribution of nodes conditioned on its parents from
data – is well-studied in practice, and maximum likeli-
hood estimators are known for various simple settings
such as when the conditional distribution is Gaussian
or the variables are discrete-valued.

The focus of our paper is to give formal guarantees for
the parameter learning in the PAC framework intro-
duced by Valiant [Val84] in 1984. Subsequently, Haus-
sler [Hau18] generalized this framework for studying
parameter and density estimation problems of contin-
uous distributions. Dasgupta [Das97] first looked at
the problem of parameter learning for fixed structure
Bayesian networks and gave finite sample complexity
bounds for these problems based on the VC-dimensions
of the hypothesis classes. In particular, he gave an algo-
rithm for learning the parameters of a Bayes net on n

distance instead.

binary variables of bounded in-degree in dKL distance
using a quadratic in n samples. Subsequently, tight (lin-
ear) sample complexity upper and lower bounds were
shown for this problem [BGMV20, BGPV20, CDKS20].
To the best of our knowledge, a finite PAC-style bound
for fixed-structure Gaussian Bayesian networks was not
known previously.

The question of structure learning for Gaussian
Bayesian networks has been extensively studied. A
number of works [PB14, GH17, CDW19, PK20, Par20,
GDA20] have proposed increasingly general condi-
tions for ensuring identifiability of the network struc-
ture from observations. Structure learning algorithms
that work for high-dimensional Gaussian Bayesian
networks have also been proposed by others (e.g.,
see [AZ15, AGZ19, GZ20]). In this work, our main
focus is parameter learning on a given graph structure.

2 PRELIMINARIES

In this section, we discuss why we upper bound the
total variational distance using KL divergence and give
a decomposition of the KL divergence into n terms, one
associated with each variable in the Bayesian network.
This decomposition motivates why our algorithms and
analysis focus on recovering parameters for a single
variable. We also present our general two-phased re-
covery approach and explain how to estimate variances
using recovered coefficients in Section 2.4. Proofs and
derivation details are deferred to the appendix.

2.1 Notation

A Bayesian network (Bayes net in short) P is a joint
distribution P over n variables X1, . . . , Xn defined by
the underlying directed acyclic graph (DAG) G. The
DAG G = (V,E) encodes the dependence between the
variables where V = {X1, . . . , Xn} and (Xj , Xi) ∈ E if
and only if Xj is a parent of Xi. For any variable Xi,
we use the set πi ⊆ [n] to represent the indices of Xi’s
parents. Under this notation, each variable Xi of P is
independent of Xi’s non-descendants conditioned on
πi. Therefore, using Bayes rule in the topological order
of G, we have P(X1, . . . , Xn) =

∏n
i=1 PrP(Xi | πi)

Without loss of generality, by renaming variables, we
may assume that each variable Xi only has ancestors
with indices smaller than i. We also define pi = |πi|
as the number of parents of Xi and davg = 1

n

∑n
i=1 pi

to be average in-degree. Furthermore, a DAG G is a
polytree if the undirected version of G is a acyclic.

We study the realizable setting where our unknown
probability distribution P is Markov with respect to the
given Bayesian network. We denote the true (hidden)
parameters associated with P by α∗ = (α∗1, . . . , α∗n).
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Our algorithms recover parameter estimates α̂ =
(α̂1, . . . , α̂n) such that the induced probability distri-
bution Q is close in total variational distance to P.
For each i ∈ [n], α∗i = (Ai, σi) is the set of ground
truth parameters associated with variable Xi, Ai is the
coefficients associated to πi, σ2

i is the variance of ηi,
α̂∗i = (Âi, σ̂i) is our estimate of α∗i .

In the course of the paper, we will often focus on the
perspective a single variable of interest. This allows
us to drop a subscript for a cleaner discussion. Let us
denote such a variable of interest by Y ∈ V and use the
index y ∈ [n]. Without loss of generality, by renaming
variables, we may further assume that the parents of
Y are X1, . . . , Xp. By Assumption 1.1, we know that
p ≤ d. We can write Y = ηy +

∑p
i=1 ay←iXi where

ηy ∼ N(0, σ2
y). We use matrixM ∈ Rp×p to denote the

covariance matrix defined by the parents of Y , where
Mi,j = E [XiXj ] andM = LL> is the Cholesky decom-
position of M . Under this notation, we see the vector
(X1, . . . , Xp) ∼ N(0,M) is distributed as a multivari-
ate Gaussian. Our goal is then to produce estimates
ây←i for each ay←i. For notational convenience, we
can group the coefficients into A = [ay←1, . . . , ay←p]>

and Â = [ây←1, . . . , ây←p]>. The vector ∆ = (Â−A)>
captures the entry-wise gap between our estimates and
the ground truth.

We write [n] to mean {1, 2, . . . , n} and |S| to mean
the size of a set S. For a matrix M , Mi,j denotes
its (i, j)-th entry. We use ‖·‖ to both mean the opera-
tor/spectral norm for matrices and L2-norm for vectors,
which should be clear from context. We hide absolute
constant multiplicative factors and multiplicative fac-
tors poly-logarithmic in the argument using standard
notations: O(·), Ω(·), and Õ(·).

2.2 Decomposing the KL divergence

For a set of parameters α = (α1, . . . , αn), denote αi
as the subset of parameters that are relevant to the
variable Xi. Following the approach of [Das97], we de-
compose dKL(P,Q) into n terms that can be computed
by analyzing the quality of recovered parameters for
each variable Xi.

For notational convenience, we write x to mean
(x1, . . . , xn), πi(x) to mean the values given to par-
ents of variable Xi by x, and P(x) to mean P(X1 =
x1, . . . , Xn = xn). Let us define dCP(α∗i , α̂i) =∫
xi,πi(x) P(xi, πi(x)) log

(
P(xi|πi(x))
Q(xi|πi(x))

)
dxi dπi(x) where

each α̂i and α∗i represent the parameters that relevant
to variable Xi from α̂ and α∗ respectively. By the
Bayesian network decomposition of joint probabilities
and marginalization, one can show that dKL(P,Q) =∑n
i=1 dCP(α∗i , α̂i).

2.3 Bounding dCP for an arbitrary variable

We now analyze dCP(α∗i , α̂i) with respect to the our
estimates α̂i = (Âi, σ̂i) and the hidden true parameters
α∗i = (Ai, σi) for any i ∈ [n].

With respect to variable Xi, one can derive
dCP(α∗i , α̂i) = ln

(
σ̂i
σi

)
+ σ2

i−σ̂
2
i

2σ̂2
i

+ ∆>i Mi∆i

2σ̂2
i

. Thus,

dKL(P,Q) =
n∑
i=1

dCP(α∗i , α̂i)

=
n∑
i=1

ln
(
σ̂i
σi

)
+ σ2

i − σ̂2
i

2σ̂2
i

+ ∆>i Mi∆i

2σ̂2
i

(1)

where Mi is the covariance matrix associated with vari-
able Xi, α∗i = (Ai, σi) is the coefficients and variance
associated with variable Xi, αi = (Âi, σ̂i) are the esti-
mates for α∗i , and ∆i = Âi −Ai.
Proposition 2.1 (Implication of KL decomposition).
Let ε ≤ 0.17 be a constant. For each i ∈ [n], define
γi = ε·pi

n·davg and suppose α̂i has the following properties:∣∣∆>i Mi∆i

∣∣ ≤ σ2
i · γi (Condition 1)

(1−√γi) · σ2
i ≤ σ̂2

i ≤ (1 +√γi) · σ2
i (Condition 2)

Then, dCP(α∗i , α̂i) ≤ 3γi = 3 · ε·pi
n·davg for all i ∈ [n].

Thus, dKL(P,Q) =
∑n
i=1 dCP(α∗i , α̂i) ≤ 3ε.4

2.4 Two-phased recovery approach

Algorithm 1 states our two-phased recovery approach.
We estimate the coefficients of the Bayesian network in
the first phase and use them to recover the variances
in the second phase.

Algorithm 1 Two-phased recovery algorithm
1: Input: DAG G and parameters m1 and m2
2: Draw m1 +m2 independent samples from G
3: Run a coefficient recovery algorithm using first m1

samples to obtain coefficients Â1, . . . , Ân
4: Run VarianceRecovery using the nextm2 samples

and Â1, . . . , Ân to obtain σ̂2
1 , . . . , σ̂

2
n

5: return Â1, . . . , Ân, σ̂
2
1 , . . . , σ̂

2
n

Motivated by Proposition 2.1, we will estimate param-
eters for each variable in an independent fashion5. We
will provide various coefficient recovery algorithms in

4For a cleaner argument, we will bound dKL(P,Q) ≤ 3ε.
This is qualitatively the same as showing dKL(P,Q) ≤ ε
since one can repeat the entire analysis with ε′ = ε/3.

5Given the samples, parameters related to each variable
can be estimated in parallel. Furthermore, it suffices to use
one batch of samples for all the nodes as we can obtain
high-probability bounds on the error events at each node.
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the subsequent sections. These algorithms will recover
coefficients Âi that satisfy Condition 1 for each variable
Xi. For variance recovery, we use VarianceRecovery
for each variable Y by computing the empirical vari-
ance6 of Y − XÂ such that the recovered variance
satisfies Condition 2. Note that if Y has no parents,
then p = 0 and Â = 0.

Algorithm 2 VarianceRecovery: Variance recovery
algorithm given coefficient estimates
1: Input: DAG G, estimates Â, and m2 samples
2: for variable Y with parents X1, . . . , Xp do
3: for s = 1, . . . ,m2 do
4: Compute Z(s) = (Y (s) − X(s)Â)2, where
Y (s) andX(s) = [X(s)

1 , . . . , X
(s)
p ] are the sth sample

of Y and X1, . . . , Xp (as a row vector) respectively.
5: end for
6: Estimate σ̂2

y = 1
m2

∑m2
i=1 Z

(s)

7: end for

To analyze VarianceRecovery, we first prove guar-
antees for an arbitrary variable and then take union
bound over n variables.
Lemma 2.2. Consider Algorithm 2. Fix any arbi-
trary variable of interest Y with p parents, parameters
(A, σy), and associated covariance matrix M . Define
γ = ε·p

n·davg . Suppose we have coefficient estimates Â
such that

∣∣∆>M∆
∣∣ ≤ σ2

yγ. Suppose 0 ≤ ε ≤ 3−2
√

2 ≤
0.17. With k = 32γ−1 · log(2δ−1) samples, we recover
variance estimate σ̂y such that

Pr
(
(1−√γ) · σ2

y ≤ σ̂2
y ≤ (1 +√γ) · σ2

y

)
≥ 1− δ.

Corollary 2.3 (Guarantees of VarianceRecovery).
Consider Algorithm 2. Define γ = ε·p

n·davg . Suppose 0 ≤
ε ≤ 3−2

√
2 ≤ 0.17 and we have coefficient estimates Âi

such that
∣∣∆>i Mi∆i

∣∣ ≤ σ2
i γ for all i ∈ [n]. With m2 ∈

O(ndavgε−1 · log(nδ−1)) samples, we recover variance
estimates σ̂1, . . . , σ̂n such that

Pr
(
∀i ∈ [n], (1−√γ) · σ2

i ≤ σ̂2
i ≤ (1 +√γ) · σ2

i

)
≥ 1− δ

The total running time is O(n2d2
avgε

−1 · log(δ−1)).

In Section 5, we show that this sample complexity is
nearly optimal with respect to n and ε.

6Except in our experiments with contaminated data in
Section 6 where we use the classical median absolute devia-
tion (MAD) estimator, which we describe in the appendix.

3 COEFFICIENT ESTIMATORS
BASED ON LINEAR LEAST
SQUARES

In this section, we provide algorithms LeastSquares
and BatchAvgLeastSquares for recovering the coeffi-
cients in a Bayesian network using linear least squares.
As discussed in Section 2.4, we will recover the co-
efficients for each variable such that Condition 1 is
satisfied. To do so, we estimate the coefficients associ-
ated with each individual variable using independent
samples. At each node, LeastSquares computes an
estimate by solving the linear least squares problem
with respect to a collection of sample observations.
BatchAvgLeastSquares generalizes this approach by
allowing any interpolation between “batch size” and
“number of batches” – LeastSquares is a special case of
a single batch. Since each solution to batch can be com-
puted independently before their results are combined,
BatchAvgLeastSquares facilitates parallelism.

3.1 Vanilla least squares

Consider an arbitrary variable Y with p parents. Us-
ing m1 independent samples, we form column vec-
tor B = [Y (1), . . . , Y (m1)]> ∈ Rm1 and matrix X ∈
Rm1×p, where the rth row consists of sample values
X

(r)
1 , . . . , X

(r)
p . Then, we define Â = (X>X)−1X>B

as the solution to the least squares problem XÂ = B.
Algorithm 3 shows the pseudocode of LeastSquares
and Theorem 3.1 states its guarantees.

Algorithm 3 LeastSquares: Coefficient recovery al-
gorithm for general Bayesian networks
1: Input: DAG G and m1 samples
2: for variable Y with parents X1, . . . , Xp do
3: Compute Â = (X>X)−1X>B as the solution

to the least squares problem XÂ = B, where col-
umn vector B = [Y (1), . . . , Y (m1)]> ∈ Rm1 and the
rth row of matrix X ∈ Rm1×p consists of sample
values X(r)

1 , . . . , X
(r)
p

4: end for

Theorem 3.1 (Distribution learning using Least-
Squares). Let ε, δ ∈ (0, 1). Suppose G is a fixed
DAG on n variables with in-degree at most d. Given
O(ndavgε−2 · log(nδ−1)) samples from an unknown
Bayesian network P over G, if we use LeastSquares
for coefficient recovery in Algorithm 1, then with prob-
ability at least 1 − δ, we recover a Bayesian network
Q over G in O(n2d2

avgdε
−2 · log(δ−1)) time such that

dTV(P,Q) ≤ ε.

In the proof of Theorem 3.1, we show that we obtain a
dKL(P,Q) ≤ ε guarantee and then appeal to Pinsker’s
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inequality to relate KL with TV. As a consequence of
our result, we can learn centered multivariate Gaussians
using Õ(n2/ε) samples up to dKL(P,Q) ≤ ε. For an
analogous dKL(Q,P) ≤ ε guarantee, see [ABDH+20].

3.2 Interpolating between batch size and
number of batches

We now generalize LeastSquares. For each vari-
able with p parents, BatchAvgLeastSquares solves b
batches of linear systems made up of k samples and
then uses the mean of the recovered solutions as an esti-
mate for the coefficients. Note that one can interpolate
between different values of k and b, as long as k ≥ p
(so that batch solutions are correlated to true parame-
ters). Algorithm 4 describes BatchAvgLeastSquares
and Theorem 3.2 states its guarantees.

Algorithm 4 BatchAvgLeastSquares: Coefficient re-
covery for general Bayesian networks
1: Input: DAG G and m1 samples
2: Let k ∈ Ω(d+ log(nε−1δ−1)) and b = m1/k
3: for variable Y with parents X1, . . . , Xp do
4: for s = 1, . . . , b do
5: Compute Ã(s) = (X>X)−1X>B as the solu-

tion to the least squares problemXÃ(s) = B, where
column vector B = [Y (s,1), . . . , Y (s,k)]> ∈ Rk and
the rth row of matrix X ∈ Rk×p consists of sample
values X(s,r)

1 , . . . , X
(s,r)
p

6: end for
7: Define Â = 1

b

∑b
s=1 Ã

(s)

8: end for

In Section 6, we also experimented on a variant of
BatchAvgLeastSquares where Â is defined to be the
coordinate-wise median of the Ã(s) vectors. How-
ever, we only provide theoretical analysis for BatchAv-
gLeastSquares and not this variant.
Theorem 3.2 (Distribution learning using BatchAv-
gLeastSquares). Let ε, δ ∈ (0, 1). Suppose G is
a fixed DAG on n variables with in-degree at most
d. Given O(ndavgε−2 · (d + log(nε−1δ−1))) samples
from an unknown Bayesian network P over G, if
we use BatchAvgLeastSquares for coefficient recov-
ery in Algorithm 1, then with probability at least
1 − δ, we recover a Bayesian network Q over G in
O(n2d2

avgdε
−2 · (d + log(nε−1δ−1))) time such that

dTV(P,Q) ≤ ε.

4 COEFFICIENT RECOVERY
ALGORITHM BASED ON
CAUCHY RANDOM VARIABLES

In this section, we provide novel algorithms CauchyEst
and CauchyEstTree for recovering the coefficients

in polytree Bayesian networks. We will show that
CauchyEstTree has near-optimal sample complexity.
Later in Section 6, we will see that both these algo-
rithms outperform LeastSquares and BatchAvgLeast-
Squares on randomly generated Bayesian networks. Of
technical interest, our analysis involves Cauchy random
variables, which are somewhat of a rarity in statistical
learning. As in LeastSquares and BatchAvgLeast-
Squares, CauchyEst and CauchyEstTree use indepen-
dent samples to recover the coefficients associated to
each individual variable in an independent fashion.

Consider an arbitrary variable Y with p parents. The
intuition is as follows: if ηy = 0, then one can form a
linear system of equations using p samples to solve for
the coefficients ay←i exactly for each i ∈ π(y). Unfor-
tunately, ηy is non-zero in general. Instead of exactly
recovering A, we partition the m1 independent samples
into k = bm1/pc batches of p fresh samples and solve
systems of linear equations (see Algorithm 5) to obtain
intermediate estimates Ã(1), . . . , Ã(k). Then, we fuse
these intermediate estimates to obtain our estimate Â
using appropriate median operations.

Algorithm 5 Batch coefficient recovery algorithm for
variable with p parents
1: Input: DAG G, variable Y , and |πY | = p samples
2: Suppose the parents of Y are X1, . . . , Xp and the
rth sample involves X(r)

1 , . . . , X
(r)
p , Y (r) for r ∈ [p]

3: Compute Ã = [ây←1, . . . , ây←p]> as any solution
to XÃ =

[
Y (1), . . . , Y (p)]> where the rth row of

matrix X ∈ Rp×p is [X(r)
1 , . . . , X

(r)
p ]

4: return Ã

Consider an arbitrary copy of recovered coefficients Ã.
Let ∆ = [∆1, . . . ,∆p]> = Ã−A be a vector measuring
the gap between these recovered coefficients and the
ground truth, where ∆i = ãy←i − ay←i. Lemma 4.1
gives a condition where a vector is term-wise Cauchy.
Using this, Lemma 4.2 shows that each entry of the
vector L>∆ is distributed according to σy ·Cauchy(0, 1),
although the entries may be correlated with each other
in general.
Lemma 4.1. Consider the matrix equation AB = E
where A ∈ Rn×n, B ∈ Rn×1, and E ∈ Rn×1 such
that entries of A and E are independent Gaussians,
elements in each column of A have the same variance,
and all entries in E have the same variance. That is,
A·,j ∼ N(0, σ2

i ) and Ei ∼ N(0, σ2
n+1). Then, we have

that Bi ∼ σn+1
σi
· Cauchy(0, 1) for all i ∈ [n].

Lemma 4.2. Consider a batch estimate Ã from Al-
gorithm 5 and define ∆ = Ã − A. Then, L>∆ is
entry-wise distributed as σy · Cauchy(0, 1). Note that
the entries of L>∆ may be correlated in general.
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If we have direct access to the matrix L, then one can
do the following: for each i ∈ [p], take medians7 of(
L> [ãy←1, . . . , ãy←n]>

)
i
to form MEDi and then es-

timate [ây←1, . . . , ây←1] = (L>)−1[MED1, . . . , MEDn]>.
By the convergence of Cauchy random variables to
their median, one can show that each ây←i converges
to the true coefficient ay←i as before. Unfortunately,
we do not have L and can only hope to estimate it with
some matrix L̂ using the empirical covariance matrix
M̂ (see Algorithm 6).

Algorithm 6 CauchyEst: Coefficient recovery algo-
rithm for general Bayesian networks
1: Input: DAG G and m samples
2: for variable Y with parents X1, . . . , Xp do
3: Let M̂ be the empirical covariance matrix with

respect to X1, . . . , Xp

4: Compute Cholesky decomposition M̂ = L̂L̂>

5: for s = 1, . . . , bm/pc do . Use Algorithm 5
6: Compute Ã(s) ∈ Rp using p fresh samples
7: end for
8: for i = 1, . . . , p do
9: Compute MEDi as the median of the value at

the ith coordinates (L̂>Ã(1))i, . . . , (L̂>Ã(bm/pc))i
10: end for
11: Define Â> = (L̂>)−1 [MED1, . . . , MEDn]>
12: end for

4.1 Polytree Bayesian networks

If the Bayesian network is a polytree, then L is diagonal.
In this case, we specialize CauchyEst to CauchyEst-
Tree and are able to give theoretical guarantees. We be-
gin with simple corollary which tells us that the ith en-
try of ∆ is distributed according to σy/σi ·Cauchy(0, 1).

Corollary 4.3. Consider a batch estimate Ã from
Algorithm 5 and define ∆ = Ã − A. If the Bayesian
network is a polytree, then ∆i = (Ã − A)i ∼ σy

σi
·

Cauchy(0, 1) for all i ∈ [n].

For each i ∈ π(y), we combine the k independent
copies of ã(1)

y←i, . . . , ã
(k)
y←i using the median. Observe

that ay←i is just an unknown constant. So, for any sam-
ple s ∈ [k] and parent index i ∈ π(y), we have ∆(s)

i =
ã

(s)
y←i − ay←i and ây←i = median{ã(1)

y←i, . . . , ã
(k)
y←i} =

median{∆(1)
i , . . . ,∆(k)

i }+ ay←i. Since each ∆(s)
i term

is i.i.d. distributed as σy · Cauchy(0, 1), the term
median{∆(1)

i , . . . ,∆(k)
i } converges to 0 with sufficiently

large k, and thus ây←i converges to the true ay←i.

7The typical strategy of averaging independent estimates
fails here as the variance of a Cauchy variable is unbounded.

Our specialized algorithm CauchyEstTree is given in
Algorithm 7 with its guarantees stated in Theorem 4.4.

Algorithm 7 CauchyEstTree: Coefficient recovery
algorithm for polytree Bayesian networks
1: Input: A polytree G and m1 samples
2: for variable Y with parents X1, . . . , Xp do
3: for s = 1, . . . , bm1/pc do . Use Algorithm 5
4: Compute Ã(s) using p fresh samples
5: end for
6: for i = 1, . . . , p do
7: Compute ây←i as the median of the value

at the ith coordinates Ã(1)
i , . . . , Ã

(bm1/pc)
i

8: end for
9: Define Â = [ây←1, . . . , ây←p]>

10: end for

Theorem 4.4 (Distribution learning using CauchyEst-
Tree). Let ε, δ ∈ (0, 1). Suppose G is a fixed DAG on
n variables with degree at most d. Given O(ndavgdε−1 ·
log(nδ−1)) samples from an unknown Bayesian network
P over G, if we use CauchyEstTree for coefficient re-
covery in Algorithm 1, then with probability at least
1− δ, we recover a Bayesian network Q over G such
that dTV(P,Q) ≤ ε in O(n2d2

avgd
ω−1ε−1 · log(nδ−1))

time.

Note that for polytrees, davg is just a constant.

5 HARDNESS FOR LEARNING
GAUSSIAN BAYESIAN
NETWORKS

In this section, we present our two hardness results.
Theorem 5.1 illustrates a tight lower-bound for the
simpler case of learning Gaussian product distributions
in total variational distance while Theorem 5.2 shows
a tight lower-bound for learning Gaussian Bayesian
networks with respect to total variational distance.
Theorem 5.1. Given samples from a n-fold Gaus-
sian product distribution P , learning a P̂ such that in
dTV(P, P̂ ) = O(ε) with success probability 2/3 needs
Ω(nε−2) samples in general.

Theorem 5.2. For any 0 < ε < 1 and n, d such that
d ≤ n/2, there exists a DAG G over [n] of in-degree
d such that learning a Gaussian Bayesian network P̂
on G such that dTV(P, P̂ ) ≤ ε with success probability
2/3 needs Ω(ndε−2) samples in general.

Both hardness results apply to the problems of learning
the covariance matrix of a centered multivariate Gaus-
sian, which is equivalent to recovering the coefficients
and noises of the underlying linear structural equation.
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6 EXPERIMENTS

General Setup For each experiment, we report the
average (over 20 random instantiations) KL divergence
between the ground truth and our learned distribution
using Eq. (1). All experiments were conducted on an In-
tel Core i7-9750H 2.60GHz CPU. Our code is available
at https://github.com/YohannaWANG/CauchyEst.

DAGs considered For our experiments, we tested
algorithms on Erdős-Rényi graphs G(n, p) with
bounded expected degrees (i.e. p = d/n for some de-
gree parameter d) using the Python package networkx
[HSSC08]. In the supplementary material, we also
present experimental results for synthetic polytree net-
works (generated using random Prüfer sequences), four
real Gaussian Bayesian networks from R package bn-
learn [Scu09], and the non-realizable/agnostic setting
where the data is not generated according to the input
graph given to the algorithms.

Synthetic data generation For each edge in the
DAG, we uniformly draw a value from the range
(−2,−1] ∪ [1, 2) as our coefficient weight. Since there
are no self-loops, this corresponds a strictly upper
triangular matrix B. Then, for sample size m ∈
{1000, 2000, . . . , 5000}, we generate our i.i.d. samples
X ∈ Rm×n by computing X = B>X + η, where
η ∼ N(0, In×n).8 To simulate contamination of data
samples, we randomly choose m/20 samples (5%) and
changed the value of some nodes to either N(1000, 1)
or Cauchy(1000, 1). In our appendix, we also experi-
mented on graphs where we assign N(0, 10−20) additive
noise instead of N(0, 1) noise to certain nodes.

Algorithms We evaluated LeastSquares, BatchAv-
gLeastSquares, BatchMedLeastSquares, CauchyEst-
Tree, CauchyEst, Graphical Lasso [FHT08], CLIME
[CLL11], and the empirical MLE estimator. We use
BatchAvg_LS+x and BatchMed_LS+x to represent the
BatchAvgLeastSquares and BatchMedLeastSquares
algorithms respectively with a batch size of p + x at
each node, where p is the number of parents of that
node. Here, we only give results for p+ 20. For other
batch sizes, please refer to Appendix F.

Analysis of selected experiment results Fig. 1
shows our experimental results for graphs with 100
variables, under the realizable setting. We show re-
sults for Erdős-Rényi graphs with uncontaminated
data in Fig. 1(a) and contaminated data in Fig. 1(b).
In both experiments, the GLASSO, CLIME and em-

8We do not report the results over the varied variance
synthetic data, because their performance are close to the
performance of the equal variance synthetic data.

pirical MLE estimators perform very poorly, with
MLE and CLIME have similar performance. For
this reason, Fig. 1 only displays the plots for Least-
Squares, BatchMedLeastSquares, BatchAvgLeast-
Squares, CauchyEstTree, and CauchyEst for a clearer
comparison. In the uncontaminated setting (Fig. 1(a)),
LeastSquares outperforms all the other estimators for
small sample sizes but we expect the gap to narrow
as the number of sample size increases (since we have
theoretical guarantees for some of these estimators).
Meanwhile, in the contaminated setting (Fig. 1(b)),
we see that the median-based estimators significantly
outperforms the other estimators. This is because the
median operator makes the estimators more robust
against such contamination.

Takeaways Across all of our experiments, the Least-
Squares estimator runs the fastest and performs the
best among all algorithms on uncontaminated datasets
(both real and synthetic). This holds even when some
nodes are assigned very small additive Gaussian noise.
However, if the data for a small fraction of the sam-
ples are contaminated, then CauchyEst, CauchyEst-
Tree and BatchMedLeastSquares outperform Least-
Squares and BatchAvgLeastSquares by a large mar-
gin. This observation holds under different noise and
graph types. Lastly, in the non-realizable/agnostic
learning setting where the data is not generated accord-
ing to the input graph, then BatchAvgLeastSquares,
CauchyEst, and CauchyEstTree empirically outper-
form other algorithms. However, we do not have a
theoretical explanation why this happens.
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Supplementary Material:
Learning Sparse Fixed-Structure Gaussian Bayesian Networks

A Preliminaries

Appendix A.1 states facts and standard results such as some standard concentration bounds and Pinsker’s
inequality which relates TV distance with KL divergence. Appendix A.2 provides the full derivation of Eq. (1)
which decomposes the KL divergence via dCP. In Appendix A.3, we give the pseudocode of the Median Absolute
Deviation (MAD) estimator.

A.1 Basic facts and results

Fact A.1. Suppose X ∼ N(0, σ2). Then, for any t > 0, Pr (X > t) ≤ exp(− t2

2σ2 ).
Fact A.2. Consider any matrix B ∈ Rn×m with rows B1, . . . , Bn ∈ Rm. For any i ∈ [m] and any vector v ∈ Rm
with i.i.d. N(0, σ2) entries, we have that (Bv)i = Biv ∼ N(0, σ2 · ‖Bi‖2).
Fact A.3 (Theorem 2.2 in [Gut09])). Let X1, . . . , Xp ∼ N(0, LL>) be p i.i.d. n-dimensional multivariate
Gaussians with covariance LL> ∈ Rn×n (i.e. L ∈ Rn×p). If X ∈ Rp×n is the matrix formed by stacking
X1, . . . , Xp as rows of X, then X = GL> where G ∈ Rp×p is a random matrix with i.i.d. N(0, 1) entries.9

Lemma A.4 (Equation 2.19 in [Wai19]). Let Y =
∑n
k=1 Z

2
k , where each Zk ∼ N(0, 1). Then, Y ∼ χ2

n and for
any 0 < t < 1, we have Pr (|Y/n− 1| ≥ t) ≤ 2 exp

(
−nt2/8

)
.

Lemma A.5 (Consequence of Corollary 3.11 in [BVH+16]). Let G ∈ Rn×m be a matrix with i.i.d. N(0, 1) entries
where n ≤ m. Then, for some universal constant C, Pr (‖G‖ ≥ 2(

√
n+
√
m)) ≤

√
n · exp (−C ·m).

Lemma A.6 ([RV09]; Theorem 6.1 and Equation 6.10 in [Wai19]). Let ` ≥ d and G ∈ R`×d be a matrix with
i.i.d. N(0, 1) entries. Denote σmin(G) as the smallest singular value of G. Then, for any 0 < t < 1, we have
Pr
(
σmin(G) ≥

√
`(1− t)−

√
d
)
≤ exp

(
−`t2/2

)
.

Lemma A.7. Let G ∈ Rk×d be a matrix with i.i.d. N(0, 1) entries. Then, for any constant 0 < c1 < 1/2 and
k ≥ d/c21,

Pr
(∥∥(G>G)−1∥∥

op
≤ 1

(1− 2c1)2
k

)
≥ 1− exp

(
−kc

2
1

2

)

Proof of Lemma A.7. Observe that G>G is symmetric, thus (G>G)−1 is also symmetric and the eigenvalues of
G>G equal the singular values of G>G. Also, note that event that G>G is singular has measure 0.10

By definition of operation norm,
∥∥(G>G)−1

∥∥ equals the square root of maximum eigenvalue of

((G>G)−1)>((G>G)−1) = ((G>G)−1)2,

where the equality is because (G>G)−1 is symmetric. Since G>G is invertible, we have ‖(G>G)−1‖ = 1/‖G>G‖,
which is equal to the inverse of minimum eigenvalue λmin(G>G) of G>G, which is in turn equal to the square of
minimum singular value σmin(G) of G.

Therefore, the following holds with probability at least 1− exp
(
−kc21/2

)
:∥∥∥(G>G)−1

∥∥∥ = 1
‖G>G‖

= 1
λmin(G>G) = 1

σ2
min(G) ≤

1(√
k(1− c1)−

√
d
)2 ≤

1
(1− 2c1)2

k

9The transformation stated in [Gut09, Theorem 2.2, page 120] is for a single multivariate Gaussian vector, thus we
need to take the transpose when we stack them in rows. Note that G and G> are identically distributed.

10Consider fixing all but one arbitrary entry of G. The event of this independent N(0, 1) entry making det(G>G) = 0
has measure 0.
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where the second last inequality is due to Lemma A.6 and the last inequality holds when k ≥ d/c21.

Lemma A.8. Let G ∈ Rk×p be a matrix with i.i.d. N(0, 1) entries and η ∈ Rk be a vector with i.i.d. N(0, σ2)
entries, where G and η are independent. Then, for any constant c2 > 0,

Pr
(∥∥G>η∥∥2 < 2σc2

√
kp
)
≥ 1− 2p exp (−2k)− p exp

(
−c

2
2
2

)
Proof of Lemma A.8. Let us denote gr ∈ Rk as the rth row of G>. Then, we see that ‖G>η‖22 =

∑p
r=1〈gr, η〉2.

For any row r, we see that 〈gr, η〉 = ‖η‖2 · 〈gr, η/‖η‖2〉. We will bound values of ‖η‖2 and |〈gr, η/‖η‖2〉| separately.

It is well-known (e.g. see [JNG+19, Lemma 2]) that the norm of a Gaussian vector concentrates around its mean. So,
Pr
(
‖η‖2 ≥ 2σ

√
k
)
≤ 2 exp (−2k). Since gr ∼ N(0, Ik) and η are independent, we see that 〈gr, η/‖η‖2〉 ∼ N(0, 1).

By standard Gaussian bounds, we have that Pr [|〈gr, η/‖η‖2〉| ≥ c2] ≤ exp
(
−c22/2

)
.

By applying a union bound over these two events, we see that ‖〈gr, η〉‖ ≥ 2σc2
√
k for any row with probability at

most 2 exp (−2k) + exp
(
−c22/2

)
. The claim follows from applying a union bound over all p rows.

The next result gives the non-asymptotic convergence of medians of Cauchy random variables. We use this result
in the analysis of CauchyEst, and it may be of independent interest.
Lemma A.9 (Non-asymptotic convergence of Cauchy median). Consider a collection of m i.i.d. Cauchy(0, 1)
random variables X1, . . . , Xm. Given a threshold 0 < τ < 1, we have

Pr (median {X1, . . . , Xm} 6∈ [−τ, τ ]) ≤ 2 exp
(
−mτ

2

8

)
Proof of Lemma A.9. Let S>τ =

∑m
i=1 1Xi>τ be the number of values that are larger than τ , where E[1Xi>τ ] =

Pr(X ≥ τ). Similarly, let S<−τ be the number of values that are smaller than −τ . If S>τ < m/2 and S<−τ < m/2,
then we see that median {X1, . . . , Xm} ∈ [−τ, τ ].

For a random variable X ∼ Cauchy(0, 1), we know that Pr(X ≤ x) = 1/2 + arctan(x)/π. For 0 < τ < 1, we see
that Pr(X ≥ τ) = 1/2− arctan(τ)/π ≤ 1/2− τ/4. By additive Chernoff bounds, we see that

Pr
(
S>τ ≥

m

2

)
≤ exp

(
−2m2τ2

16m

)
= exp

(
−mτ

2

8

)
Similarly, we have Pr (S<−τ ≥ m/2) ≤ exp

(
−mτ2/8

)
. The claim follows from a union bound over the events

S>τ ≥ m/2 and S<−τ ≥ m/2.

Recall that we are given sample access to an unknown probability distribution P and the corresponding structure
of a Bayesian network G on n variables. In this work, we aim to recover parameters such that our induced
probability distribution Q is as close as possible to P in total variational distance.
Definition A.10 (Total variational (TV) distance). Given two probability distributions P and Q over Rn, the
total variational distance between them is defined as dTV(P,Q) = supA∈Rn |P(A)−Q(A)| = 1

2
∫
Rn |P − Q| dx.

Instead of directly dealing with total variational distance, we will instead bound the Kullback–Leibler (KL)
divergence and then appeal to the Pinsker’s inequality [Tsy08, Lemma 2.5, page 88] to upper bound dTV via dKL.
We will later show algorithms that achieve dKL(P,Q) ≤ ε.
Definition A.11 (Kullback–Leibler (KL) divergence). Given two probability distributions P and Q over Rn, the
KL divergence between them is defined as dKL(P,Q) =

∫
A∈Rn P(A) log

(
P(A)
Q(A)

)
dA.

Fact A.12 (Pinsker’s inequality). For distributions P and Q, dTV(P,Q) ≤
√

dKL(P,Q)/2.

Thus, if s(ε) samples are needed to learn a distribution Q such that dKL(P,Q) ≤ ε, s(ε2) samples are needed to
ensure dTV(P,Q) ≤ ε.

For our hardness results, we will need the following fact about the variation distance between multivariate
Gaussians and a Frobenius norm ‖·‖F between the covariance matrices.
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Fact A.13 ([DMR18]). There exists two universal constants 1
100 ≤ c1 ≤ c2 ≤

3
2 , such that for any two covariance

matrices Σ1 and Σ2,

c1 ≤
dTV(N(0,Σ1), N(0,Σ2))∥∥Σ−1

1 Σ2 − I
∥∥
F

≤ c2.

A.2 Details on decomposition of KL divergence

For notational convenience, we write x to mean (x1, . . . , xn), πi(x) to mean the values given to parents of variable
Xi by x, and P(x) to mean P(X1 = x1, . . . , Xn = xn). Observe that

dKL(P,Q)

=
∫
x

P(x) log
(
P(x)
Q(x)

)
dx

=
∫
x

P(x) log
(

Πn
i=1P(xi | πi(x))

Πn
i=1Q(xi | πi(x))

)
dx (?)

=
n∑
i=1

∫
x

P(x) log
(
P(xi | πi(x))
Q(xi | πi(x))

)
dx

=
n∑
i=1

∫
xi,πi(x)

P(xi, πi(x)) log
(
P(xi | πi(x))
Q(xi | πi(x))

)
dxidπi(x) Marginalization

where (?) is due to the Bayesian network decomposition of joint probabilities. Let us define

dCP(α∗i , α̂i) =
∫
xi,πi(x)

P(xi, πi(x)) log
(
P(xi | πi(x))
Q(xi | πi(x))

)
dxidπi(x)

where each α̂i and α∗i represent the parameters that relevant to variable Xi from α̂ and α∗ respectively. Under
this notation, we can write dKL(P,Q) =

∑n
i=1 dCP(α∗i , α̂i).

Fix a variable of interest Y with parents X1, . . . , Xp, each with coefficient ci, and variance σ2. That is,
Y = ηy +

∑p
i=1 ciXi for some ηy ∼ N(0, σ2) that is independent of X1, . . . , Xp. By denoting X = x (i.e.

X1 = x1, . . . , Xp = xp) and c = (c1, . . . , cp), we can write the conditional distribution density of Y as

Pr (y | x, c, σ) = 1
σ
√

2π
exp

− 1
2σ2 ·

(
y −

p∑
i=1

ciXi

)2


We now analyze dCP(α∗y, α̂y) with respect to the our estimates α̂y = (Â, σ̂y) and the hidden true parameters
α∗y = (A, σy), where Â = (ây←1, . . . , ây←p) and A = (ay←1, . . . , ay←p).

With respect to variable Y , we see that

dCP(α∗y, α̂y)

=
∫
x,y

P(x, y) ln

 1
σy
√

2π exp
(
− 1

2σ2 · (y −
∑p
i=1 ay←iXi)

2
)

1
σ̂y
√

2π
exp

(
− 1

2σ̂2
y

· (y −
∑p
i=1 ây←iXi)

2
)
 dy dx

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· Ex,y

(
y −

p∑
i=1

ay←iXi

)2

+ 1
2σ̂2

y

· Ex,y

(
y −

p∑
i=1

ây←iXi

)2

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· Ex,y
(
y −A>X

)2 + 1
2σ̂2

y

· Ex,y
(
y − Â>X

)2
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By defining ∆ = Â−A, we can see that for any instantiation of y,X1, . . . , Xp,(
y − Â>X

)2

=
(
y − (∆ +A)>X

)2 By definition of ∆

=
(
(y −A>X)−∆>X

)2
= (y −A>X)2 − 2(y −A>X)(∆>X) +

(
∆>X

)2
= (y −A>X)2 − 2

(
y∆>X −A>X∆>X

)
+
(
∆>X

)2
= (y −A>X)2 − 2

(
yX>∆−A>XX>∆

)
+ ∆>XX>∆ Since ∆>X is just a number

Denote the covariance matrix with respect to X1, . . . , Xp as M ∈ Rp×p, where Mi,j = E [XiXj ]. Then, we can
further simplify dCP(α∗y, α̂y) as follows:

dCP(α∗y, α̂y)

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· Ex,y
(
y −A>X

)2 + 1
2σ̂2

y

· Ex,y
(
y − Â>X

)2
From above

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· Ex,y
(
y −A>X

)2
+ 1

2σ̂2
y

· Ex,y
[
(y −A>X)2 − 2

(
yX>∆−A>XX>∆

)
+ ∆>XX>∆

]
From above

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· Ex,yη2
y + 1

2σ̂2
y

· Ex,y
[
η2
y − 2

(
ηyX

>∆
)

+ ∆>XX>∆
]

(†)

= ln
(
σ̂y
σy

)
− 1

2σ2
y

· σ2
y + 1

2σ̂2
y

·
[
σ2
y − 0 + ∆>M∆

]
(∗)

= ln
(
σ̂y
σy

)
− 1

2 +
σ2
y

2σ̂2
y

+ ∆>M∆
2σ̂2

y

= ln
(
σ̂y
σy

)
+
σ2
y − σ̂2

y

2σ̂2
y

+ ∆>M∆
2σ̂2

y

where (†) is because y = ηy +A>X while (∗) is because ηy ∼ N(0, σ2
y), Ex,y

(
ηyX

>∆
)

= Ex,yηy · Ex,yX>∆ = 0,
and Ex,y∆>XX>∆ = ∆>(Ex,yXX>)∆ = ∆>M∆.

In conclusion, we have

dKL(P,Q) =
n∑
i=1

dCP(α∗i , α̂i) =
n∑
i=1

ln
(
σ̂i
σi

)
+ σ2

i − σ̂2
i

2σ̂2
i

+ ∆>i Mi∆i

2σ̂2
i

(2)

where Mi is the covariance matrix associated with variable Xi, α∗i = (Ai, σi) is the coefficients and variance
associated with variable Xi, αi = (Âi, σ̂i) are the estimates for α∗i , and ∆i = Âi −Ai.

A.3 Median absolute deviation

Algorithm 8 states a pseudocode of the well-known Median Absolute Deviation (MAD) estimator (see [Hub04] for
example) which we use for the component-wise variance recovery in the contaminated setting. The scale factor,
1/Φ−1(3/4) ≈ 1.4826 below, is needed to make the estimator unbiased.

B Appendix material for Section 2

In this section, we give the missing proofs of Proposition 2.1, Lemma 2.2, and Corollary 2.3.
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Algorithm 8 MAD: Variance recovery in the contaminated setting
1: Input: Contaminated samples {x1, x2, . . . , xm} from a univariate Gausssian
2: µ̂← median {x1, x2, . . . , xm}.
3: σ̂ ← 1.4826 ·median {|x1 − µ̂|, |x2 − µ̂|, . . . , |xm − µ̂|}.
4: return σ̂

Proposition 2.1 (Implication of KL decomposition). Let ε ≤ 0.17 be a constant. For each i ∈ [n], define
γi = ε·pi

n·davg and suppose α̂i has the following properties:∣∣∆>i Mi∆i

∣∣ ≤ σ2
i · γi (Condition 1)

(1−√γi) · σ2
i ≤ σ̂2

i ≤ (1 +√γi) · σ2
i (Condition 2)

Then, dCP(α∗i , α̂i) ≤ 3γi = 3 · ε·pi
n·davg for all i ∈ [n]. Thus, dKL(P,Q) =

∑n
i=1 dCP(α∗i , α̂i) ≤ 3ε.11

Proof of Proposition 2.1. Consider an arbitrary fixed i ∈ [n]. Denote γ = σ2
i

σ̂2
i

. Observe12 that γ − 1 − ln(γ) ≤
(γ − 1)2 for γ ≥ 0.3. Under Eq. (Condition 2), γ ≥ 0.3 always holds since 0 ≤ εpi ≤ ndavg. Then,

ln
(
σ̂i
σi

)
+ σ2

i − σ̂2
i

2σ̂2
i

= 1
2 ·
(

ln
(
σi
σ̂i

)
+ σ2

i

σ̂2
i

− 1
)

= 1
2 · (ln (γ) + γ − 1)

≤ 1
2 · (γ − 1)2 By Condition 2

≤ 1
2 ·

 1
1−

√
εpi
ndavg

− 1

2

Since
(

1−
√

εpi
ndavg

)
· σ2

i ≤ σ̂2
i

≤ 2εpi
ndavg

Holds when 0 ≤ εpi
ndavg

≤ 1
4

Meanwhile,

∆>i Mi∆i

2σ̂2
i

≤
∣∣∆>i Mi∆i

∣∣
2σ̂2

i

≤ piε

ndavg
· σ

2
i

2σ̂2
i

By Condition 1

≤ piε

2ndavg
· 1

1−
√

εpi
ndavg

Since
(

1−
√

εpi
ndavg

)
· σ2

i ≤ σ̂2
i

≤ εpi
ndavg

Holds when 0 ≤ εpi
ndavg

≤ 1
4

Putting together, we see that dCP (α∗i , α̂i) ≤
3εpi
ndavg

.

Lemma 2.2. Consider Algorithm 2. Fix any arbitrary variable of interest Y with p parents, parameters (A, σy),
and associated covariance matrix M . Define γ = ε·p

n·davg . Suppose we have coefficient estimates Â such that∣∣∆>M∆
∣∣ ≤ σ2

yγ. Suppose 0 ≤ ε ≤ 3 − 2
√

2 ≤ 0.17. With k = 32γ−1 · log(2δ−1) samples, we recover variance
estimate σ̂y such that

Pr
(
(1−√γ) · σ2

y ≤ σ̂2
y ≤ (1 +√γ) · σ2

y

)
≥ 1− δ.

11For a cleaner argument, we will bound dKL(P,Q) ≤ 3ε. This is qualitatively the same as showing dKL(P,Q) ≤ ε since
one can repeat the entire analysis with ε′ = ε/3.

12This inequality is also used in [ABDH+20, Lemma 2.9].
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Proof of Lemma 2.2. We first argue that σ̂2
y ∼

(
σ2
y + ∆>M∆

)
· χ2

k, then apply standard concentration bounds
for χ2 random variables (see Lemma A.4).

For any sample s ∈ [k], we see that Y (s)−X(s)Â = X(s)A+η(s)
y −X(s)Â = η

(s)
y −X(s)∆, where ∆ = Â−A ∈ Rp is

an unknown constant vector (because we do not actually know A). For fixed ∆, we see that X(s)∆ ∼ N(0,∆>M∆).
Since η(s)

y ∼ N(0, σ2
y) and X(s) are independent, we have that Y (s) −X(s)Â ∼ N(0, σ2

y + ∆>M∆). So, for any
sample s ∈ [k], Z(s) = (Y (s)−X(s)Â)2 ∼

(
σ2
y + ∆>M∆

)
·χ2

1. Therefore, σ̂y = 1
k

∑k
s=1 Z

(s) ∼ (σ2
y+∆>M∆)/k ·χ2

k.
Let us define

γ =
σ̂2
y

σ2
y

·

 1
1 + ∆>M∆

σ2
y

 ∼ χ2
k

k

Since p ≤ ndavg, if ε ≤ 3− 2
√

2, then εp
ndavg

≤ 3− 2
√

2 ≤ 3 + 2
√

2. We first make two observations:

1. For 0 ≤ εp
ndavg

≤ 3− 2
√

2,
(

1 +
√

εp
ndavg

)
·

(
1

1+ ∆>M∆
σ2
y

)
≥ 1 +

√
εp

4ndavg .

2. For 0 ≤ εp
ndavg

≤ 3 + 2
√

2,
(

1−
√

εp
ndavg

)
·

(
1

1+ ∆>M∆
σ2
y

)
≤ 1−

√
εp

4ndavg .

Using Lemma A.4 with the above discussion, we have

Pr
(
σ̂2
y

σ2
y

≥ 1 +
√

εp

ndavg
or

σ̂2
y

σ2
y

≤ 1−
√

εp

ndavg

)

= Pr

γ ≥ (1 +
√

εp

ndavg

)
·

 1
1 + ∆>M∆

σ2
y

 or γ ≤
(

1−
√

εp

ndavg

)
·

 1
1 + ∆>M∆

σ2
y


≤ Pr

(
γ ≥ 1 +

√
εp

4ndavg
or γ ≤ 1−

√
εp

4ndavg

)
= Pr

(
|γ − 1| ≥

√
εp

4ndavg

)
≤ 2 exp

(
− kεp

32ndavg

)

The claim follows by setting k = 32ndavg
εp log

( 2
δ

)
.

Corollary 2.3 (Guarantees of VarianceRecovery). Consider Algorithm 2. Define γ = ε·p
n·davg . Suppose 0 ≤

ε ≤ 3 − 2
√

2 ≤ 0.17 and we have coefficient estimates Âi such that
∣∣∆>i Mi∆i

∣∣ ≤ σ2
i γ for all i ∈ [n]. With

m2 ∈ O(ndavgε−1 · log(nδ−1)) samples, we recover variance estimates σ̂1, . . . , σ̂n such that
Pr
(
∀i ∈ [n], (1−√γ) · σ2

i ≤ σ̂2
i ≤ (1 +√γ) · σ2

i

)
≥ 1− δ

The total running time is O(n2d2
avgε

−1 · log(δ−1)).

Proof of Corollary 2.3. For each i ∈ [n], apply Lemma 2.2 with δ′ = δ/n and m2 = 32ndavg
ε log

( 2
δ

)
≥

maxi∈[n]
32ndavg
εpi

log
( 2
δ

)
, then take the union bound over all n variables.

The computational complexity for a variable with p parents is O(m2 ·p). Since
∑n
i=1 pi = ndavg, the total runtime

is O(m2 · n · davg).

C Appendix material for Section 3

The missing proofs of Theorem 3.1 and Theorem 3.2 are given in Appendix C.1 and Appendix C.2 respectively.
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C.1 Proof of Theorem 3.1

Our analysis begins by proving guarantees for an arbitrary variable.
Lemma C.1. Consider Algorithm 3. Fix an arbitrary variable Y with p parents, parameters (A, σy), and
associated covariance matrix M . With k ≥ 4c22

(1−c1)4 · ndavgε samples, for any constants 0 < c1 < 1/2 and c2 > 0,
we recover the coefficients Â such that

Pr
(∣∣∆>M∆

∣∣ ≥ σ2
y ·

pε

ndavg

)
≤ exp

(
−kc

2
1

2

)
+ 2p exp (−2k) + p exp

(
−c

2
2
2

)

Proof. Since
∣∣∆>M∆

∣∣ =
∣∣∆>LL>∆

∣∣ =
∥∥L>∆

∥∥2, it suffices to bound
∥∥L>∆

∥∥.
Without loss of generality, the parents of Y are X1, . . . , Xp. Define X ∈ Rk×p, B ∈ Rk, and Â ∈ Rp as in
Algorithm 3. Let η = [η(1)

y , . . . , η
(k)
y ] ∈ Rk be the instantiations of Gaussian ηy in the k samples. By the structural

equations, we know that B = XA+ η. So,

Ã = (X>X)−1X>B = (X>X)−1X>(XA+ η) = A+ (X>X)−1X>η

By Fact A.3, we can express X = GL> where matrix G ∈ Rk×p is a random matrix with i.i.d. N(0, 1) entries.
Since ∆ = Â− A, we see that ∆ = (L>)−1(G>G)−1G>η. Rearranging, we have L>∆ = (G>G)−1G>η and so
‖L>∆‖ ≤ ‖(G>G)−1‖ · ‖G>η‖. Combining Lemma A.7 and Lemma A.8, which bound ‖(G>G)−1‖ and ‖G>η‖
respectively, we get

Pr
(
‖L>∆‖ >

2σyc2
√
p

(1− 2c1)2√
k

)
≤ exp

(
−kc

2
1

2

)
+ 2p exp (−2k) + p exp

(
−c

2
2
2

)
(3)

for any constants 0 < c1 < 1/2 and c2 > 0. The claim follows by setting k = 4c22
(1−c1)4 · ndavgε .

We can now establish Condition 1 of Proposition 2.1 for LeastSquares.

Lemma C.2. Consider Algorithm 3. With m1 ∈ O
(
ndavg
ε · ln

(
n
δ

))
samples, we recover the coefficients

Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

The total running time is O
(
n2d2

avgd

ε ln
( 1
δ

))
.

Proof. By setting c1 = 1/4, c2 =
√

2 ln (3n/δ), and k = 32ndavg
ε ln

( 3n
δ

)
≥ 4c22

(1−c1)4 · ndavgε in Lemma C.1, we have

Pr
(∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

piε

ndavg

)
≤ exp

(
−kc

2
1

2

)
+ p exp (−2k) + p exp

(
−c

2
2
2

)
≤ δ

3n + δ

3n + δ

3n = δ

n

for any i ∈ [n]. The claim holds by a union bound over all n variables.

The computational complexity for a variable with p parents is O(p2 ·m1). Since maxi∈[n] pi ≤ d and
∑n
i=1 pi =

ndavg, the total runtime is O(m1 · n · davg · d).

Theorem 3.1 follows from combining the guarantees of LeastSquares and VarianceRecovery (given in Lemma C.2
and Corollary 2.3 respectively) via Proposition 2.1.
Theorem 3.1 (Distribution learning using LeastSquares). Let ε, δ ∈ (0, 1). Suppose G is a fixed DAG on n
variables with in-degree at most d. Given O(ndavgε−2 · log(nδ−1)) samples from an unknown Bayesian network
P over G, if we use LeastSquares for coefficient recovery in Algorithm 1, then with probability at least 1− δ, we
recover a Bayesian network Q over G in O(n2d2

avgdε
−2 · log(δ−1)) time such that dTV(P,Q) ≤ ε.
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Proof of Theorem 3.1. We will show sample and time complexities before giving the proof for the dTV distance.

Let m1 ∈ O
(
ndavg
ε · ln

(
n
δ

))
and m2 ∈ O

(
ndavg
ε log

(
n
δ

))
. Then, the total number of samples needed is

m = m1 + m2 ∈ O
(
ndavg
ε log

(
n
δ

))
. LeastSquares runs in O

(
n2d2

avgd

ε ln
( 1
δ

))
time while VarianceRecovery

runs in O
(
n2d2

avg

ε log
( 1
δ

))
time. Therefore, the overall running time is O

(
n2d2

avgd

ε log
( 1
δ

))
.

By Lemma C.2, LeastSquares recovers coefficients Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

By Corollary 2.3 and using the recovered coefficients from LeastSquares, VarianceRecovery recovers variance
estimates σ̂2

i such that

Pr
(
∀i ∈ [n],

(
1−

√
εpi
ndavg

)
· σ2

i ≤ σ̂2
i ≤

(
1 +

√
εpi
ndavg

)
· σ2

i

)
≥ 1− δ

As our estimated parameters satisfy Condition 1 and Condition 2, Proposition 2.1 tells us that dKL(P,Q) ≤ 3ε.
Thus, dTV(P,Q) ≤

√
dKL(P,Q)/2 ≤

√
3ε/2. The claim follows by setting ε′ =

√
3ε/2 throughout.

C.2 Proof of Theorem 3.2

Our approach for analyzing BatchAvgLeastSquares is the same as our approach for LeastSquares: we prove
guarantees for an arbitrary variable and then take union bound over n variables. At a high-level, for each node Y ,
for every fixing of the randomness in generating X1, . . . , Xp, we show that each Ã(s) is a Gaussian. Since the b
iterations are independent, 1

b

∑b
s=1 Ã

(s) is also a Gaussian. Its variance is itself a random variable but can be
bounded with high probability using concentration inequalities.
Lemma C.3. Consider Algorithm 4. Fix any arbitrary variable of interest Y with p parents, parameters (A, σy),
and associated covariance matrix M . With k > Ck ·

(
p+ ln

(
n
εδ

))
and kb = Ckb ·

(
ndavg
ε

(
d+ ln

(
n
εδ

)))
, for some

universal constants Ck and Ckb, we recover coefficients estimates Â such that

Pr
(∣∣∆>M∆

∣∣ ≤ σ2
y ·

εp

ndavg

)
≥ 1− δ

Proof. Without loss of generality, the parents of Y are X1, . . . , Xp. For s ∈ [n], define X(s) ∈ Rk×p, B(s) ∈ Rk,
and Ã(s) ∈ Rp as the quantities involved in the sth batch of Algorithm 4. Let η(s) = [η(s,1)

y , . . . , η
(s,k)
y ] ∈ Rk be

the instantiations of Gaussian ηy in the k samples for the sth batch. By the structural equations, we know that
B(s) = X(s)A+ η(s). So,

Ã(s) = ((X(s))>X(s))−1(X(s))>B
= ((X(s))>X(s))−1(X(s))>(X(s)A+ η(s))
= A+ ((X(s))>X(s))−1(X(s))>η(s)

By Fact A.3, we can express X(s) = G(s)L> where matrix G(s) ∈ Rk×p is a random matrix with i.i.d. N(0, 1)
entries. So, we see that

L>∆ = 1
b

b∑
s=1

((G(s))>G(s))−1(G(s))>η(s)

For any i ∈ [p], Fact A.2 tells us that

(
L>∆

)
i

= 1
b

b∑
s=1

(
((G(s))>G(s))−1(G(s))>η(s)

)
i
∼ N

(
0,
σ2
y

b2

b∑
s=1

∥∥∥(((G(s))>G(s))−1(G(s))>
)
i

∥∥∥2
)
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We can upper bound each
∥∥(((G(s))>G(s))−1(G(s))>

)
i

∥∥ term as follows:∥∥∥(((G(s))>G(s))−1(G(s))>
)
i

∥∥∥ ≤ ∥∥∥((G(s))>G(s))−1(G(s))>
∥∥∥ ≤ ∥∥∥((G(s))>G(s))−1

∥∥∥ · ∥∥∥G(s)
∥∥∥

When k ≥ 4p, Lemma A.7 tells us that Pr
(∥∥((G(s))>G(s))−1

∥∥ ≥ 4
k

)
≤ exp

(
− k

32
)
. Meanwhile, Lemma A.5 tells

us that Pr
(∥∥G(s)

∥∥ ≥ 2(
√
k +√p)

)
≤ √p · exp (−C · k) for some universal constant C. Let E be the event that∥∥(((G(s))>G(s))−1(G(s))>

)
i

∥∥ < 8(
√
k+√p)
k for any s ∈ [b]. Applying union bound with the conclusions from

Lemma A.7 and Lemma A.5, we have

Pr
(
E
)

= Pr
(
∃s ∈ [b],

∥∥∥(((G(s))>G(s))−1(G(s))>
)
i

∥∥∥ ≥ 8(
√
k +√p)
k

)

≤ b · exp
(
− k

32

)
+ b · √p · exp (−C · k)

Conditioned on event E , standard Gaussian tail bounds (e.g. see Fact A.1) give us

Pr
(∣∣L>∆

∣∣
i
> σy ·

√
ε

ndavg

∣∣∣ E) ≤ exp
(
−

σ2
y · ε

ndavg

2 · σ
2
y

b2

∑b
s=1

∥∥(((G(s))>G(s))−1(G(s))>
)
i

∥∥2

)

≤ exp
(
− ε · b · k2

128 · n · davg · (
√
k +√p)2

)

≤ exp
(
− ε · b · k

512 · n · davg

)
where the second last inequality is because of event E and the last inequality is because (

√
k+√p)2 ≤ (2

√
k)2 = 4k,

since k ≥ p.

Thus, applying a union bound over all p entries of L>∆ and accounting for Pr(E), we have

Pr
(∥∥L>∆

∥∥ > σy ·
√

εp

ndavg

)
≤ Pr

(∥∥L>∆
∥∥ > σy ·

√
εp

ndavg

∣∣∣ E)+ Pr
(
E
)

≤ p · exp
(
− ε · b · k

512 · n · davg

)
+ b · exp

(
− k

32

)
+ b · √p · exp (−C · k)

for some universal constant C.

The claim follows by observing that
∣∣∆>M∆

∣∣ =
∣∣∆>LL>∆

∣∣ =
∥∥L>∆

∥∥2 and applying the assumptions on k and
b.

We can now establish Condition 1 of Proposition 2.1 for BatchAvgLeastSquares.
Lemma C.4 (Coefficient recovery guarantees of BatchAvgLeastSquares). Consider Algorithm 4. With
m1 ∈ O

(
ndavg
ε

(
d+ ln

(
n
εδ

)))
samples, where k ∈ Ω

(
d+ ln

(
n
εδ

))
and b = m1

k , we recover coefficient estimates

Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

The total running time is O(m1 · n · davg · d).

Proof. For each i ∈ [n], apply Lemma C.3 with δ′ = δ/n, then take the union bound over all n variables.

The computational complexity for a variable with p parents is O(b · p2 · k) = O(p2 ·m1). Since maxi∈[n] pi ≤ d
and

∑n
i=1 pi = ndavg, the total runtime is O(m1 · n · davg · d).
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Theorem 3.2 follows from combining the guarantees of BatchAvgLeastSquares and VarianceRecovery (given in
Lemma C.4 and Corollary 2.3 respectively) via Proposition 2.1.
Theorem 3.2 (Distribution learning using BatchAvgLeastSquares). Let ε, δ ∈ (0, 1). Suppose G is a fixed
DAG on n variables with in-degree at most d. Given O(ndavgε−2 · (d+ log(nε−1δ−1))) samples from an unknown
Bayesian network P over G, if we use BatchAvgLeastSquares for coefficient recovery in Algorithm 1, then with
probability at least 1− δ, we recover a Bayesian network Q over G in O(n2d2

avgdε
−2 · (d+ log(nε−1δ−1))) time

such that dTV(P,Q) ≤ ε.

Proof of Theorem 3.2. We will show sample and time complexities before giving the proof for the dTV distance.

Let m1 ∈ O
(
ndavg
ε

(
d+ ln

(
n
εδ

)))
and m2 ∈ O

(
ndavg
ε log

(
n
δ

))
. Then, the total number of samples needed is m =

m1+m2 ∈ O
(
ndavg
ε

(
d+ ln

(
n
εδ

)))
. BatchAvgLeastSquares runs in O(m1ndavgd) time while VarianceRecovery

runs in O
(
n2d2

avg

ε log
( 1
δ

))
time. Therefore, the overall running time is O

(
n2d2

avgd

ε

(
d+ ln

(
n
εδ

)))
.

By Lemma C.4, BatchAvgLeastSquares recovers coefficients Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

By Corollary 2.3 and using the recovered coefficients from BatchAvgLeastSquares, VarianceRecovery recovers
variance estimates σ̂2

i such that

Pr
(
∀i ∈ [n],

(
1−

√
εpi
ndavg

)
· σ2

i ≤ σ̂2
i ≤

(
1 +

√
εpi
ndavg

)
· σ2

i

)
≥ 1− δ

As our estimated parameters satisfy Condition 1 and Condition 2, Proposition 2.1 tells us that dKL(P,Q) ≤ 3ε.
Thus, dTV(P,Q) ≤

√
dKL(P,Q)/2 ≤

√
3ε/2. The claim follows by setting ε′ =

√
3ε/2 throughout.

D Appendix material for Section 4

In this section, we give the missing proofs of Lemma 4.1, Lemma 4.2, Corollary 4.3, and Theorem 4.4. As the
proof of Theorem 4.4 requires a few steps, we dedicate a subsection Appendix D.1 to it for a cleaner presentation.
Lemma 4.1. Consider the matrix equation AB = E where A ∈ Rn×n, B ∈ Rn×1, and E ∈ Rn×1 such that
entries of A and E are independent Gaussians, elements in each column of A have the same variance, and
all entries in E have the same variance. That is, A·,j ∼ N(0, σ2

i ) and Ei ∼ N(0, σ2
n+1). Then, we have that

Bi ∼ σn+1
σi
· Cauchy(0, 1) for all i ∈ [n].

Proof of Lemma 4.1. As the event that A is singular has measure zero, we can write B = A−1E. By Cramer’s
rule,

A−1 = 1
det(A) · adj(A) = 1

det(A) · C
>

where det(A) is the determinant of A, adj(A) is the adjugate/adjoint matrix of A, and C is the cofactor matrix
of A. Recall that the det(A) can defined with respect to elements in C: For any column i ∈ [n],

det(A) = A1,i · C1,i +A2,i · C2,i + . . .+An,i · Cn,i

So, det(A) ∼ N
(
0, σ2

i (C1,i + . . .+ Cn,i)
)
. Thus, for any i ∈ [n],

Bi =
(

1
det(A)C

>E

)
i

∼
N
(
0, σ2

n+1 (C1,i + . . .+ Cn,i)
)

N (0, σ2
i (C1,i + . . .+ Cn,i))

= σn+1

σi
· Cauchy(0, 1)

Lemma 4.2. Consider a batch estimate Ã from Algorithm 5 and define ∆ = Ã−A. Then, L>∆ is entry-wise
distributed as σy · Cauchy(0, 1). Note that the entries of L>∆ may be correlated in general.
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Proof of Lemma 4.2. Observe that each row of X is an independent sample drawn from a multivariate Gaussian
N(0,M). By denoting η =

[
η

(1)
y , . . . , η

(p)
y

]>
as the p samples of ηy, we can write XÃ = XA+ η and thus X∆ = η

by rearranging terms. By Fact A.3, we can express X = GL> where matrix G ∈ Rp×p is a random matrix with
i.i.d. N(0, 1) entries. By substituting X = GL> into X∆ = η, we have L>∆ = G−1η.13

By applying Lemma 4.1 with the following parameters: A = G,B = L>∆, E = η, we conclude that each entry of
L>∆ is distributed as σy · Cauchy(0, 1). However, note that these entries are generally correlated.

Corollary 4.3. Consider a batch estimate Ã from Algorithm 5 and define ∆ = Ã−A. If the Bayesian network
is a polytree, then ∆i = (Ã−A)i ∼ σy

σi
· Cauchy(0, 1) for all i ∈ [n].

Proof of Corollary 4.3. Observe that each row of X is an independent sample drawn from a multivariate Gaussian
N(0,M). By denoting η =

[
η

(1)
y , . . . , η

(p)
y

]>
as the p samples of ηy, we can write XÃ = XA+ η and thus X∆ = η

by rearranging terms. Since the parents of any variable in a polytree are not correlated, each element in the ith
column of X is a N(0, σ2

i ) Gaussian random variable.

By applying Lemma 4.1 with the following parameters: A = X,B = ∆E = η, we conclude that ∆i = (Ã−A)i ∼
σy
σi
· Cauchy(0, 1).

D.1 Proof of Theorem 4.4

We will first prove guarantees for an arbitrary variable and then take union bound over n variables.
Lemma D.1. Consider Algorithm 7. Fix an arbitrary variable of interest Y with p parents, parameters (A, σy),
and associated covariance matrix M . With k = 8ndavg

ε log
( 2
δ

)
samples, we recover coefficient estimates Â such

that
Pr
(∣∣∆>M∆

∣∣ ≤ σ2
y ·

εp

ndavg

)
≥ 1− δ

Proof. Since M = LL>, it suffices to bound ‖L>∆‖. Lemma 4.2 tells us that each entry of the vector L>∆
is the median of k copies of Cauchy(0, 1) random variables multiplied by σy. Setting k = 8ndavg

ε log
( 2
δ

)
and

0 < τ =
√
ε/(ndavg) < 1 in Lemma A.9, we see that

Pr
(
median of k i.i.d. Cauchy(0, 1) random variables 6∈

[
−
√

ε

ndavg
,

√
ε

ndavg

])
≤ δ

That is, each entry of L>∆ has absolute value at most σy ·
√

ε
ndavg

. By summing across all p entries of L>∆, we
see that

|∆>M∆| = |∆>LL>∆| = ‖L>∆‖2 ≤ p · σ2
y ·

ε

ndavg
= σ2

y ·
εp

ndavg

We can now establish Condition 1 of Proposition 2.1 for CauchyEstTree.

Lemma D.2. Consider Algorithm 7. Suppose the Bayesian network is a polytree. With m1 ∈ O
(
ndavgd

ε log
(
n
δ

))
samples, we recover coefficient estimates Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

The total running time is O
(
n2d2

avgd
ω−1

ε log
(
n
δ

))
where ω is the matrix multiplication exponent.

13Note that event that G is singular has measure 0.
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Proof. For each i ∈ [n], apply Lemma D.1 with δ′ = δ/n and m1 = 8ndavg
ε log

( 2n
δ

)
, then take the union bound

over all n variables.

The runtime of Algorithm 5 is the time to find the inverse of a p× p matrix, which is O(pω) for some 2 < ω < 3.
Therefore, the computational complexity for a variable with p parents is O(pω−1 ·m1). Since maxi∈[n] pi ≤ d and∑n

i=1 pi = ndavg, the total runtime is O(m1 · n · davg · dω−2).

We are now ready to prove Theorem 4.4.

Theorem 4.4 follows from combining the guarantees of CauchyEstTree and VarianceRecovery (given in
Lemma D.2 and Corollary 2.3 respectively) via Proposition 2.1.
Theorem 4.4 (Distribution learning using CauchyEstTree). Let ε, δ ∈ (0, 1). Suppose G is a fixed DAG on n
variables with degree at most d. Given O(ndavgdε−1 · log(nδ−1)) samples from an unknown Bayesian network P
over G, if we use CauchyEstTree for coefficient recovery in Algorithm 1, then with probability at least 1− δ, we
recover a Bayesian network Q over G such that dTV(P,Q) ≤ ε in O(n2d2

avgd
ω−1ε−1 · log(nδ−1)) time.

Proof of Theorem 4.4. We will show sample and time complexities before giving the proof for the dTV distance.

Let m1 ∈ O
(
ndavgd

ε log
(
n
δ

))
and m2 ∈ O

(
ndavg
ε log

(
n
δ

))
. Then, the total number of samples needed is m =

m1 + m2 ∈ O
(
ndavgd

ε log
(
n
δ

))
. CauchyEstTree runs in O

(
n2d2

avgd
ω−1

ε log
(
n
δ

))
time while VarianceRecovery

runs in O
(
n2d2

avg

ε log
( 1
δ

))
time, where ω is the matrix multiplication exponent. Therefore, the overall running

time is O
(
n2d2

avgd
ω−1

ε log
(
n
δ

))
.

By Lemma D.2, CauchyEstTree recovers coefficients Â1, . . . , Ân such that

Pr
(
∀i ∈ [n],

∣∣∆>i Mi∆i

∣∣ ≥ σ2
i ·

εpi
ndavg

)
≤ δ

By Corollary 2.3 and using the recovered coefficients from CauchyEstTree, VarianceRecovery recovers variance
estimates σ̂2

i such that

Pr
(
∀i ∈ [n],

(
1−

√
εpi
ndavg

)
· σ2

i ≤ σ̂2
i ≤

(
1 +

√
εpi
ndavg

)
· σ2

i

)
≥ 1− δ

As our estimated parameters satisfy Condition 1 and Condition 2, Proposition 2.1 tells us that dKL(P,Q) ≤ 3ε.
Thus, dTV(P,Q) ≤

√
dKL(P,Q)/2 ≤

√
3ε/2. The claim follows by setting ε′ =

√
3ε/2 throughout.

E Appendix material for Section 5

In this section, we give the missing proofs of Theorem 5.1 and Theorem 5.2.
Theorem 5.1. Given samples from a n-fold Gaussian product distribution P , learning a P̂ such that in
dTV(P, P̂ ) = O(ε) with success probability 2/3 needs Ω(nε−2) samples in general.

Proof of Theorem 5.1. Let C ⊆ {0, 1}n be a set with the following properties: 1) |C| = 2Θ(n) and 2) every
i 6= j ∈ C have a Hamming distance Θ(n). Existence of such a set is well-known. We create a class of Gaussian
product distributions PC based on C as follows. For each s ∈ C, we define a distribution Ps ∈ PC such that if the
i-th bit of s is 0, we use the distribution N(0, 1) for the i-th component of Ps; else if the i-th bit is 1, we use the
distribution N(0, 1 + ε√

n
). Then for any Ps 6= Pt, dKL(Ps, Pt) = O(ε2). Fano’s inequality tells us that guessing a

random distribution from PC correctly with 2/3 probability needs Ω(nε−2) samples.

Fact A.13 tells us that for any Ps 6= Pt ∈ PC , dTV(Ps, Pt) ≥ c3ε for some constant c3. Consider any algorithm for
learning a random distribution P = N(0,Σ) from PC in dTV-distance at most c4ε for a sufficiently small constant
c4. Let the learnt distibution be P̂ = N(0, Σ̂). Due to triangle inequality, Fact A.13, and an appropriate choice
of c4, P must be the unique distribution from PC satisfying ||Σ̂−1Σ− I||F ≤ c5ε for an appropriate choice of c5.
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. . . . . .

. . . . . .

a1→j

ai→j
ad→j

X1 Xi Xd

Xd+1 Xj Xn

Figure 2: Bipartite DAG on n vertices with maximum degree d. For i ∈ {1, . . . , d}, Xi = ηi where ηi ∼ N(0, 1).
For j ∈ {d+ 1, . . . , n}, Xj = ηj +

∑d
i=1 ai→jXi where ηj ∼ N(0, 1). Furthermore, each Xj is associated with a

d-bit string and each coefficients a1→j , . . . , ad→j is either 1√
d(n−d)

or 1+ε√
d(n−d)

, depending on the ith bit in the
associated d-bit string.

We can find this unique distribution by computing ||Σ̂−1Σ′ − I||F for every covariance matrix Σ′ from PC and
guess the random distribution correctly. Hence, the lower-bound follows.

Now, we present the lower-bound for learning general Bayes nets.
Theorem 5.2. For any 0 < ε < 1 and n, d such that d ≤ n/2, there exists a DAG G over [n] of in-degree d such
that learning a Gaussian Bayesian network P̂ on G such that dTV(P, P̂ ) ≤ ε with success probability 2/3 needs
Ω(ndε−2) samples in general.

Let C ⊆ {0, 1}d be a set with the following properties: 1) |C| = 2Θ(d) and 2) every i 6= j ∈ C have a Hamming
distance Θ(d). Existence of such a set is well-known. We define a class of distributions PC based on C and the graph
G shown in Fig. 2 as follows. Each vertex of each distribution in PC has a N(0, 1) noise, and hence no learning

is required for the noises. Each coefficient ai→j takes one of two values
{

1√
d(n−d)

, 1+ε√
d(n−d)

}
corresponding

to bits {0, 1} respectively. For each s ∈ C, we define As to be the vector of coefficients corresponding to the
bit-pattern of s as above. We have 2Θ(d) possible bit-patterns, which we use to define each conditional probability
(Xi | X1, X2, . . . , Xd). Then, we have a class QP of |C|(n−d) distributions for the overall Bayes net. We prune
some of the distributions to get the desired subclass PC ⊆ QC, such that PC is the largest-sized subset with
any pair of distributions in the subset differing in at least (n− d)/2 bit-patterns (out of (n− d) many) for the
(Xi | X1, X2, . . . , Xd)’s.
Claim E.1. |PC | ≥ 2Θ(d(n−d)).

Proof. Let ` = |C| = 2Θ(d) and m = n − d. Then, there are N = `m possible coefficient-vectors/distributions
in QC. We create an undirectred graph G consisting of a vertex for each coefficient, and edges between any
pair of vertices differing in at least m/2 bit-patterns. Note that G is r-regular for r =

(
m

0.5m
)
(`− 1)0.5m + · · ·+(

m
0.5m+j

)
(`− 1)0.5m+j + · · ·+ (`− 1)m. Turan’s theorem says that there is a clique of size α = (1− r

N )−1. We
define PC to be the vertices of this clique.

To show that α is as large as desired, it suffices to show N − r ≤ N/2Θ(dm). The result follows by noting
N − r = 1 +

(
m
1
)
(`− 1) + · · ·+

(
m
j

)
(`− 1)j + · · ·+

(
m

0.5m
)
(`− 1)0.5m ≤ m · (4(`− 1))0.5m.

We also get for any two distributions Pa, Pb in this model with the coefficients a, b respectively, dKL(Pa, Pb) =
1
2 ||a− b||

2
2 from (1). Hence, any pair of PC has dKL = Θ(ε2). Then, Fano’s inequality tells us that given a random

distribution P ∈ PC , it needs at least Ω(d(n− d)ε−2) samples to guess the correct one with 2/3 probability. We
need the following fact about the dTV-distance among the members of PC .
Claim E.2. Let Pa, Pb ∈ PC be two distinct distributions (i.e. Pa 6= Pb) with coefficient-vectors a, b respectively.
Then, dTV(Pa, Pb) ∈ Θ(ε).

Proof. By Pinsker’s inequality, we have dTV(Pa, Pb) ∈ O(ε). Here we show dTV(Pa, Pb) ∈ Ω(ε). Let n− d = m.
By construction, a and b differ in m′ ≥ m/2 conditional probabilities. Let a′ ⊆ a, b′ ⊆ b be the coefficient-vectors
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on the coordinates where they differ. Let Pa′ ,Σa′ and Pb′ ,Σb′ be the corresponding marginal distributions on
(m′ + d) variables, and their covariance matrices. In the following, we show ||Σ−1

a′ Σb′ − I||F = Ω(ε). This proves
the claim from Fact A.13.

Let Ma′ =
[
0m′×m′ 0m′×d
Ad×m′ 0d×d

]
be the adjacency matrix for Pa, where the sources appear last in the rows and

columns and in the matrix A, each Aij ∈ { 1√
md
, 1+ε√

md
} denote the coefficient from source i to sink j. Similarly,

we define Mb′ using a coefficient matrix Bd×m′ . Let {Ai : 1 ≤ i ≤ m′} and {Bi : 1 ≤ i ≤ m′} denote the columns
of A and B. Then for every i, Ai and Bi differ in at least Θ(d) coordinates by construction.

By definition Σb′ =
[
• BT

B Id×d

]
and Σ−1

a′ =
[
Im′×m′ −AT
−A •

]
, where • corresponds to certain matrices not relevant

to our discussion14. Let J = Σ−1
a′ Σb′ =

[
• Xm′×d
• •

]
. It can be checked that Xij = (Bi(j) − Ai(j)) for every

1 ≤ i ≤ m′ and m′ + 1 ≤ j ≤ m′ + d. Now for every i, each of the Θ(d) places that Ai and Bi differ, Xij ∈ ±ε√
md

.
Hence, their total contribution in ||J − I||2F = Ω(ε2).

Proof of Theorem 5.2. Consider any algorithm which learns a random distribution P = N(0,Σ) from PC in dTV
distance c3ε, for a small enough constant c3. Let the learnt distribution be P̂ = N(0, Σ̂). Then, from Fact A.13,
and triangle inequality of dTV, only the unique distribution P with Σ′ = Σ would satisfy ||Σ̂−1Σ′ − I||F ≤ c4ε for
every covariance matrix Σ′ from PC , for an appropriate choice of c4. This would reveal the random distribution,
hence the lower-bound follows.

F Detailed experiment results

Algorithms The algorithms used in our experiments are as follows: LeastSquares, BatchAvgLeastSquares,
BatchMedLeastSquares, CauchyEstTree, CauchyEst, Graphical Lasso [FHT08], MLE (empirical) estimator, and
CLIME [CLL11]. Specifically, we use BatchAvg_LS+x and BatchMed_LS+x to represent the BatchAvgLeast-
Squares and BatchMedLeastSquares algorithms respectively with a batch size of p+ x at each node. p is the
number of parents of that node.

Synthetic data Fig. 3 compares the KL divergence between the ground truth and our learned distribution
over 100 variables between the eight estimators mentioned above. The first three estimators are for undirected
graph structure learning. For this reason, we are not using Eq. (1) but the common equation in [Duc07, page 13]
for calculating the KL divergence between multivariate Gaussian distributions. Fig. 3(a) and Fig. 3(b) shows the
results on ER graphs while Fig. 3(c) shows the results for random tree graphs. The performances of MLE and
CLIME are very close to each other, thus are overlapped in Fig. 3(a). In figure Fig. 3(b), we take a closer look at
the results from Fig. 3(a) for LeastSquares, BatchMedLeastSquares, BatchAvgLeastSquares, CauchyEstTree,
and CauchyEst estimators for a clear comparison. In our experiments, we find that the latter five outperform
the GLASSO, CLIME and MLE (empirical) estimators. With a degree 5 ER graph, CauchyEst performs better
than CauchyEstTree, while LeastSquares performs best. In our experiments for our random tree graphs with
in-degree 1 (see Fig. 3(c), we find that the performances between CauchyEstTree and CauchyEst are very close
to each other and their plots overlap.

In our experiments, CauchyEst outperforms CauchyEstTree when the G(n, p) graph is generated with a higher
degree parameter d (e.g. d > 5) and the resultant graph is unlikely to yield a polytree structure.

Real-world datasets We also evaluated our algorithms on four real Gaussian Bayesian networks from R
package bnlearn [Scu09]. The ECOLI70 graph provided by [SS05] contains 46 nodes and 70 edges. The
MAGIC-NIAB graph from [SHBM14] contains 44 nodes and 66 edges. The MAGIC-IRRI graph contains
64 nodes and 102 edges, and the ARTH150 [ORS07] graph contains 107 nodes and 150 edges. Experimental
results in Fig. 4 show that the error for LeastSquares is smaller than CauchyEst and CauchyEstTree for all the
above datasets.

14The missing (symmetric) submatrix of Σb′ is the identity matrix added with the entries 〈Bi, Bj〉. The missing
(symmetric) submatrix of Σ−1

a′ is the identity matrix added with the inner products of the rows of A.
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(a) Eight algorithms evaluated on ER graph with d = 5 (b) A closer look at some of the algorithms in the plot
of Fig. 3(a)

(c) A closer look at some of the algorithms evaluated
on random tree graphs

Figure 3: Experiment on well-conditioned uncontaminated data

(a) Ecoli70 46 nodes (b) Magic-niab 44 nodes

(c) Magic-irri 64 nodes (d) Arth150 107 nodes

Figure 4: Experiment results over bnlearn real graph
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(a) all algorithms (b) BatchMed_LS, CauchyEst, and CauchyEstTree

Figure 5: Experiment results on contaminated data (random tree with Gaussian noise)

(a) all algorithms (b) BatchMed_LS, CauchyEst, and CauchyEstTree

Figure 6: Experiment results on contaminated data (ER graph with Cauchy noise)

Contaminated synthetic data The contaminated synthetic data is generated in the following way: we
randomly choose 5% samples with 5 nodes to be contaminated from the well-conditioned data over n = 100
node graphs. The well-conditioned data has a N(0, 1) noise for every variable, while the small proportion of the
contaminated data has either N(1000, 1) or Cauchy(1000, 1). In our experiments in Fig. 5 and Fig. 6, CauchyEst,
CauchyEstTree, and BatchMedLeastSquares outperform BatchAvgLeastSquares and LeastSquares by a large
margin. With more than 1000 samples, BatchMedLeastSquares with a batch size of p+ 20 performs similar to
CauchyEst and CauchyEstTree, but performs worse with less samples. When comparing the performance between
LeastSqures and BatchAvgLeastSquares over either a random tree or a ER graph, the experiment in Fig. 5(a)
based on a random tree graph shows that LeastSqures performs better than BatchAvgLeastSquares when
sample size is smaller than 2000, while BatchAvgLeastSquares performs relatively better with more samples.
Experiment results in Fig. 6(a) based on ER degree 5 graphs is slightly different from Fig. 5(a). In Fig. 6(a),
BatchAvgLeastSquares performs better than LeastSqures by a large margin. Besides, we can also observe that
the performances of CauchyEst, CauchyEstTree, and BatchMedLeastSquares are better than the above two
estimators and are consistent over different types of graphs. For all five algorithms, we use the median absolute
devation for robust variance recovery [Hub04] in the contaminated case only (see Algorithm 8 in Appendix).

This is because both LeastSquares and BatchAvgLeastSquares use the sample covariance (of the entire dataset
or its batches) in the coefficient estimators for the unknown distribution. The presence of a small proportion
of outliers in the data can have a large distorting influence on the sample covariance, making them sensitive to
atypical observations in the data. On the contrary, our CauchyEstTree and BatchMedLeastSquares estimators
are developed using the sample median and hence are resistant to outliers in the data.

Contaminated real-world datasets To test the robustness of the real data in the contaminated condition,
we manually contaminate 5% samples of 5 nodes from observational data in ECOLI70 and ARTH150. The
results are reported in Fig. 7 and Fig. 8. In our experiments, CauchyEst and CauchyEstTree outperforms
BatchAvgLeastSquares and LeastSquares by a large margin, and therefore are stable in both contaminated and
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(a) Ecoli70, 5/46 noisy nodes (b) CauchyEst and CauchyEstTree

Figure 7: Ecoli70 under contaminated condition

(a) Arth150, 5/107 noisy nodes (b) CauchyEst and CauchyEstTree

Figure 8: Arth150 under contaminated condition

well-conditioned case. Besides, note that different from the well-conditioned case, here CauchyEstTree performs
slightly better than CauchyEst. This is because the Cholesky decomposition used in CauchyEst estimator takes
contaminated-data into account.

Ill-conditioned synthetic data The ill-conditioned data is generated in the following way: we classify the
node sets V into either well-conditioned or ill-conditioned nodes. The well-conditioned nodes have a N(0, 1) noise,
while ill-conditioned nodes have a N(0, 10−20) noise. In our experiments, we choose 3 ill-conditioned nodes over
100 nodes. Synthetic data is sampled from either a random tree or a Erdős Rényi (ER) model with an expected
number of neighbors d = 5. Experiments over ill-conditioned Gaussian Bayesian networks through 20 random
repetitions are presented in Fig. 9. For the ill-conditioned settings, we sometimes run into numerical issues when
computing the Cholesky decomposition of the empirical covariance matrix M̂ in our CauchyEst estimator. Thus,
we only show the comparision results between LeastSquares, BatchAvgLeastSquares, BatchMedLeastSquares,
and CauchyEstTree. Here also, the error for LeastSquares decreases faster than the other three estimators.
The performance of BatchMedLeastSquares is worse than BatchAvgLeastSquares but slightly better than
CauchyEstTree estimator.

Agnostic Learning Our theoretical results treat the case that the data is realized by a distribution consistent
with the given DAG. In this section, we explore learning of non-realizable inputs, so that there is a non-zero KL
divergence between the input distribution P and any distribution consistent with the given DAG.

We conduct agnostic learning experiments by fitting a random sub-graph of the ground truth graph. To do this,
we first generate a 100-node ground truth graph G, either a random tree with 4 random edges removed or a
random ER graph with 9 random edges removed. Our algorithm will try to fit the data from the original Bayes
net on G on the edited graph G∗. Fig. 10 reports the KL divergence learned over our five estimators. We find
that BatchAvgLeastSquares estimator performs slightly better than all other estimators in both cases.
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(a) ER graph, d = 5 (b) Random tree

Figure 9: Experiment results on ill-conditioned data

(a) Random tree: 4 edges removed (b) ER graph, d=5: 9 edges removed

Figure 10: Agnostic learning

(a) ER graph, d = 2 (b) ER graph, d = 5

Figure 11: Effect of changing batch size over Batch Average
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(a) ER graph, d = 2 (b) ER graph, d = 5

Figure 12: Effect of changing batch size over Batch Median (ER)

Effect of changing batch size Next, we experiment the trade off between the batch-size (eg. batch size = [5,
20, 100]15) and the KL-divergence of our BatchAvgLeastSquares and BatchMedLeastSquares estimators in detail.
As shown in Fig. 11 and Fig. 12, when batch size increases, the results are closer to the LeastSquares estimator.
In other words, LeastSquares can be seen as a special case of either BatchAvgLeastSquares or BatchMedLeast-
Squares with one batch only. Thus, when batch size increases, the performances of BatchAvgLeastSquares
and BatchMedLeastSquares are closer to the LeastSquares estimator. On the contrary, the CauchyEstTree
estimator can be seen as the estimator with a batch size of p. Therefore, with smaller batch size (eg. batch size
= p+ 5), BatchAvgLeastSquares and BatchMedLeastSquares performs closer to the CauchyEstTree estimator.

Runtime comparison We now give the amount of time spent by each algorithm to process a degree-5 ER
graph on 100 nodes with 5000 samples. LeastSquares algorithm takes 0.0186 seconds, BatchAvgLeastSquares
with a batch size of p+ 20 takes 0.9080 seconds, BatchMedLeastSquares with a batch size of p+ 20 takes 0.94218
seconds, CauchyEstTree takes 10.4443 seconds, and CauchyEst takes 25.1891 seconds. The timings given above
are representative of the relative running times of these algorithms across different graph sizes.

15We use batch size up to 100 to ensure there are enough batch size from simulation data, so that either mean and
median can converge.
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