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Abstract

Markov Chain Monte Carlo (MCMC) meth-
ods are a powerful tool for computation with
complex probability distributions. However
the performance of such methods is criti-
cally dependent on properly tuned parame-
ters, most of which are difficult if not im-
possible to know a priori for a given target
distribution. Adaptive MCMC methods aim
to address this by allowing the parameters to
be updated during sampling based on previ-
ous samples from the chain at the expense
of requiring a new theoretical analysis to en-
sure convergence. In this work we extend
the convergence theory of adaptive MCMC
methods to a new class of methods built on a
powerful class of parametric density estima-
tors known as normalizing flows. In particu-
lar, we consider an independent Metropolis-
Hastings sampler where the proposal distri-
bution is represented by a normalizing flow
whose parameters are updated using stochas-
tic gradient descent. We explore the practical
performance of this procedure on both syn-
thetic settings and in the analysis of a physi-
cal field system, and compare it against both
adaptive and non-adaptive MCMC methods.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) methods are
procedures for generating samples from probability
distributions, typically given knowledge of the den-
sity of the distribution up to proportionality. These
MCMC samplers often depend on parameters; for in-
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stance, in the random walk Metropolis procedure on
Rn, one may treat the covariance matrix of a normal
proposal distribution as a parameter of the method;
see, for instance, Haario et al. (2001). The perfor-
mance of an MCMC procedure will depend on these
parameters. It would be preferable if these parameters
could be adapted during sampling at every step of the
chain, however such adaptions can violate the Markov
property of the chain and undermine its convergence
to the desired target distribution.

An important variation of MCMC is the independent
Metropolis-Hastings sampler. This method samples
from a target distribution by first sampling from an
auxiliary proposal distribution (independently from
the current state of the chain) and accepts or rejects
those proposals according to the Metropolis-Hastings
criterion. The effectiveness of this algorithm depends
on the ratio of the target density to the ratio of the pro-
posal density (Robert and Casella, 2005): if the ratio
is bounded over the support of the target distribution,
the algorithm enjoys a powerful theory of geometric
ergodicity. The independent Metropolis-Hastings al-
gorithm is the focus of the present work.

Recently in the machine learning community, normal-
izing flows have emerged as a powerful mechanism
for expressing complex densities, see (Kobyzev et al.,
2020; Papamakarios et al., 2021) for recent reviews.
Normalizing flows are defined by a parametric, smooth
and invertible function which transforms a simple dis-
tribution (e.g., a Gaussian) into a more complex one
(e.g., natural images) and uses the change-of-variables
formula to exactly determine the resulting probabil-
ity density function in the complex space. Provided
that the family of normalizing flows under consider-
ation is sufficiently expressive, any distribution can
be constructed in theory this way. In practice, many
normalizing flows exhibit a universal approximation
property whereby, given suitable model capacity, they
can approximate any distribution arbitrarily well, e.g.,
(Huang et al., 2018; Jaini et al., 2019). Indeed, nor-
malizing flows are distinguished among parameteric
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families of distributions by their expressiveness and
tractability of sampling and log-density evaluation;
the precise attributes that one requires for a proposal
distribution in the independent Metropolis-Hastings
sampler. By incorporating normalizing flows into the
MCMC framework we seek to leverage their expressiv-
ity along with the ergodicity of the MCMC procedure
in order to produce samples from a target distribution
(see fig. 1). The principle computational challenge as-
sociated to normalizing flows is the identification of
parameters that produce the best approximation of a
target density. Therefore, a question of principle the-
oretical interest and practical importance is, “During
the course of sampling, under what conditions can the
parameters of the normalizing flow be adapted at every
step of the chain?”

The outline of this paper is as follows. In sec-
tion 2 we review important concepts from the anal-
ysis of Markov chains; we provide the independent
Metropolis-Hastings algorithm and state the condi-
tions under which it enjoys geometric ergodicity; we
devise a metric space over transition kernels, which will
be important for analyzing notions of continuity. We
review recent experimental works that demonstrated
the benefit of normalizing flow proposals in MCMCs
and related theoretical literature in section 3. In sec-
tion 4 we state our theories for the continual adapta-
tion of Markov chains. We begin by considering deter-
ministic adaptations wherein parameter updates are
determined sequentially and deterministically without
regard to the state of the chain; this case can be used
to motivate the adaptation of normalizing flows as a
gradient flow. We then proceed to consider stochas-
tic adaptations wherein the state of the chain and the
adaptation of the parameters of the normalizing flow
at the nth step are not necessarily independent given
the history of the chain up to the (n− 1)th step. This
circumstance includes the case wherein the accepted
proposal sampled from the normalizing flow is also
used in the computation of the adaptation, as neces-
sary for the “pseudo-likelihood” algorithm we examine
numerically in section 5.

2 PRELIMINARIES

In giving an overview of Markov chains and their asso-
ciated theory, we emulate the notation and presenta-
tion of Meyn and Tweedie (1993). Refer to appendix A
for a review of total variation distances. Throughout,
we let X denote a set which we equip with its Borel
σ-algebra, denoted B(X ). We associate to (X ,B(X ))
a measure µ : B(X )→ [0,∞) – satisfying µ(A) ≥ 0 for
allA ∈ B(X ), µ(∅) = 0, and the condition of countable
additivity – to create the measure space (X ,B(X ), µ).
A probability measure is a measure which satisfies Kol-

mogorov’s axioms (Kolmogorov, 1960). A signed mea-
sure relaxes the condition of non-negativity. If X is
an X -valued random variable and Π is a probability
measure on (X ,B(X )) we write X ∼ Π(·) to mean
that for any A ∈ B(X ) we have Pr [X ∈ A] = Π(A).
If a probability measure Π has a density with respect
to a dominating measure µ, this means that for all
A ∈ B(X ), Π(A) =

∫
A
π(x) µ(dx). The support of a

density π is Supp(π) = {x ∈ X : π(x) > 0}. When we
turn our attention to the discussion of parameteriza-
tions of transition kernels, we will write Y as a generic
parameter space and use the symbol θ ∈ Y to refer to
a particular parameterization. We denote the Dirac
measure concentrated at x ∈ X by δx(·).

2.1 Transition Kernels

In MCMC, we generate a sequence of X -valued ran-
dom variables, denoted (X0, X1, . . .) that satisfy the
Markov property. The transition to state Xn+1 given
Xn = xn is formally captured by the notion of a tran-
sition kernel.

Definition 2.1 (Robert and Casella (2005)). A transi-
tion kernel on X is a function X ×B(X ) 3 (x,A) 7→
K(x,A) that satisfies the following two properties: (i)
For all x ∈ X , K(x, ·) is a probability measure and (ii)
For all A ∈ B(X ), K(·, A) is B(X )-measurable.

Thus, the propagation of the state from step n to step
n+1 is represented by Xn+1 ∼ K(xn, ·). When consid-
ering Markov chains, we will frequently be interested
in the n-step transition probability measure from some
initial state X0 = x0; we denote this probability mea-
sure by Kn(x0, ·) = Pr [Xn ∈ ·|X0 = x0], which has
the following expression:

Kn(x0, A) =

∫
X
· · ·
∫
X︸ ︷︷ ︸

(n−1)−times

K(x0,dx1)K(x1,dx2)

· · ·K(xn−2,dxn−1)K(xn−1, A).

(1)

Of principle interest to the theory of Markov chains is
the limiting behavior of the n-step transition proba-
bility measure.

Definition 2.2. The transition kernel K with n-step
transition law Kn is ergodic for Π if, for every x ∈ X ,
limn→∞ ‖Kn(x, ·)−Π(·)‖TV = 0.

In the sequel, we will require continuity of sequences
of transition kernels, which necessitates that we equip
the space of transition kernels with a metric. A natural
metric considers the worst-case total variation distance
between kernels.

Definition 2.3. Two transition kernels K and K ′ on
X ×B(X ) are equal if supx∈X ‖K(x, ·)−K ′(x, ·)‖TV =
0.
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Figure 1: This work examines the convergence of adaptive Markov chain Monte Carlo algorithms using the
independent Metropolis-Hastings algorithm when the proposal distribution is parameterized by a normalizing
flow. In this illustration, we seek to draw samples from a target distribution. We begin with an initial parameter
Θ0 which parameterizes a simple proposal distribution, denoted Π̃Θ0

, which is a normalizing flow, and an initial
state of the chain X0; a sample from this proposal is accepted or rejected according to the Metropolis-Hastings
criterion, yielding a transition to the state X1. The parameters of the normalizing flow are thereafter adapted
to produce a new proposal distribution Π̃Θ1 , which we hope is closer to the target distribution. Iterating this
procedure we obtain both a sequence of states (Xn)n∈N and a sequence of normalizing flow parameters (Θn)n∈N.
The principle question of this work is to establish when the sequence of states converges to the target density.

Proposition 2.4. Let K and K ′ be transition ker-
nels on X × B(X ). Then the function, d(K,K ′) =
supx∈X ‖K(x, ·) − K ′(x, ·)‖TV is a distance function
on transition kernels.

A proof is given in appendix D.

2.2 Independent Metropolis-Hastings

Definition 2.5. Let Π and Π̃ be two probability mea-
sures on B(X ) with densities with respect to some
dominating measure µ given by π and π̃, respectively.
Consider a Markov chain (X0, X1, X2, . . .) constructed
via the following procedure given an initial state of
the Markov chain X0 = x0. First, randomly sam-
ple X̃ ∼ Π̃. Then set Xn+1 = X̃ with probability

min
{
π(X̃)π̃(Xn)

π(Xn)π̃(X̃)
, 1
}

and otherwise set Xn+1 = Xn.

The Markov chain (X0, X1, X2, . . .) is called the in-
dependent Metropolis-Hastings sampler of Π given Π̃.

Proposition 2.6. Let K denote the transition ker-
nel of the independent Metropolis-Hastings sampler.
The stationary distribution of (X0, X1, X2, . . .) is Π

and if there exists a constant M ≥ 1 such that π(x)
π̃(x) ≤

M, ∀ x ∈ Supp(π), then the independent Metropolis-
Hastings sampler is uniformly ergodic in the sense that
‖Kn(x, ·)−Π(·)‖TV ≤ 2

(
1− 1

M

)n
.

For a proof of these results, refer to Meyn and Tweedie
(1993); Robert and Casella (2005). There is a question
of when such a M as in proposition 2.6 will exist. Un-
der a compactness condition and assumptions of con-
tinuity on both the proposal and target densities, then
an affirmative existence result can be given.

Corollary 2.7. If, in addition, X is a compact set and
if π and π̃ are continuous on X , and if Supp(π) ⊆
Supp(π̃) then there exists such an M as in proposi-
tion 2.6.

A proof is given in appendix E. The transition kernel
of the independent Metropolis-Hastings sampler has
the form

K(x, dx′) = min

{
1,
π(x′)π̃(x)

π(x)π̃(x′)

}
π̃(x′) µ(dx′)+(

1−
∫
X

min

{
1,
π(w)π̃(x)

π(x)π̃(w)

}
π̃(w) µ(dw)

)
δx(dx′).

(2)

The first term in eq. (2) is the probability of an ac-
cepted transition from x to the region dx′ whereas the
second term is the probability of remaining at x, which
only contributes if x lies in the region dx′.

2.3 Adaptive Transition Kernels

As alluded to in section 1, the transition kernel may
depend on parameters, denoted by θ and taking val-
ues in a set Y. In this case, we express the depen-
dency of the kernel K on its parameters by writing
Kθ. In adaptive MCMC, given a target probability
measure Π, we seek to strategically construct a se-
quence of transition kernels (KΘn)n∈N where (Θn)n∈N
is a sequence of Y-valued random variables. Ide-
ally, the sequence (Θn)n∈N will enable sampling from
Π that becomes more effective with each step. In
the adaptive MCMC framework, the one-step transi-
tion laws for Xn+1 given Xn = xn and Θn = θn is
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Xn+1 ∼ Kθn(xn, ·). The n-step transition law given
X0 = x0 and (Θ0 = θ0, . . . ,Θn−1 = θn−1) is

Kn
(θi)

n−1
i=0

(x0, A) =

∫
X
· · ·
∫
X︸ ︷︷ ︸

(n−1)−times

Kθ0(x0,dx1)Kθ1(x1,dx2)

· · ·Kθn−2(xn−2,dxn−1)Kθn−1(xn−1, A)

.

(3)

Therefore, by the law of total expectation, the n-
step transition law given X0 = x0 is Gn(x0, A) =

E
(Θ0,...,Θn−1)

Kn
(Θi)

n−1
i=0

(x0, A), where the expectation is

computed over the marginal distribution of the pa-
rameters. We now give a precise definition for what it
means for an adaptive MCMC procedure to be ergodic.

Definition 2.8. The n-step transition law Gn is said to
be ergodic for the probability measure Π if, for every
x ∈ X , limn→∞ ‖Gn(x, ·)−Π(·)‖TV = 0.

The principal theoretical tools of our analysis are the
definitions of containment, simultaneous uniform er-
godicity, and diminishing adaptation. Diminishing
adaptation together with either containment or si-
multaneous uniform ergodicity implies ergodicity of
the adaptive MCMC procedure in the sense of defi-
nition 2.8. The remainder of this section is a review of
Roberts and Rosenthal (2007); Bai et al. (2011).

Definition 2.9. The sequence of Markov transition ker-
nels {KΘn}n∈N is said to exhibit diminishing adapta-
tion if limn→∞ d(KΘn+1

,KΘn) = 0 in probability.

Lemma 2.10 (Roberts and Rosenthal (2007)). Sup-
pose that Θn+1 = Θn w.p. 1 − αn and otherwise
Θn+1 = Θ′n where Θ′n ∈ Y is any other element of
the index set. If limn→∞ αn = 0, then (KΘ0

,KΘ1
, . . .)

exhibits diminishing adaptation.

Definition 2.11. Define Wε(x,K) =
inf {n ≥ 1 : ‖Kn(x, ·)−Π(·)‖TV < ε}. The sequence
(Θn)n∈N is said to exhibit containment if, for every
ε > 0, the sequence (Wε(X0,KΘ0),Wε(X1,KΘ1), . . .)
is bounded in probability given X0 = x0 and Θ0 = θ0,
where Xn+1 ∼ KΘn(Xn, ·).

Containment states that for a particular stochastic se-
quence of adaptations (Θn)n∈N there is, with arbitrar-
ily high probability, a finite number of steps one may
take with any of the parameters in the sequence in
order to be arbitrarily close to the target distribu-
tion. The following theorems give the relationships be-
tween diminishing adaptation, simultaneous uniform
ergodicity, containment, and ergodicity of the adap-
tive MCMC procedure. The proofs of these results
may be found in (Roberts and Rosenthal, 2007).

Theorem 2.12. Let {Kθ}θ∈Y be a family of Markov
chain transition kernels that are all stationary for the
same distribution Π. Suppose that the family satisfies

definition N.1 and that the sequence (Θ0,Θ1, . . .) sat-
isfies definition 2.9. Then the chain whose transitions
are governed by Xn+1 ∼ KΘn(Xn, ·) is ergodic for the
distribution Π.

Theorem 2.13. Let {Kθ}θ∈Y be a family of Markov
chain transition kernels that are all stationary for
the same distribution Π. Suppose that the sequence
(Θ0,Θ1, . . .) satisfies definitions 2.9 and 2.11. Then
the chain whose transitions are governed by Xn+1 ∼
KΘn(Xn, ·) is ergodic for the distribution Π.

3 RELATED WORK

A series of works recently investigated the learning of a
proposal distribution for the independent Metropolis-
Hastings sampler with normalizing flows, in particular
for statistical mechanics field theories. For such mod-
els, Albergo et al. (2019) followed by Nicoli et al. (2020,
2021) used stochastic independent adaptations mod-
els following the optimization of the reverse Kullback-
Leibler divergence (KL), as in Example 2 of the next
section. While this strategy is successful when the tar-
get is unimodal, it is known to yield underdispersed
approximation of the target distribution and to be
prone to mode collapse. Within the framework of vari-
ational inference, Naesseth et al. (2020) proposed to
address these issues by optimizing instead an approxi-
mate forward KL using simple parametric families for
the proposal. In this case, adaptations are stochastic
and rely on the previous states of the chain to esti-
mate gradients of the approximate forward KL, called
“pseudo-likelihood” in example 3 of the present paper.
Incorporating normalizing flows, Gabrié et al. (2021a)
successfully sampled multimodal distributions using
an initialization that echoes the containment prop-
erty. In the context of statistical field theories, Hackett
et al. (2021) also demonstrated the need for forward
KL training to assist sampling of multimodal distri-
butions while surveying strategies to obtain training
samples different from the adaptive MCMC discussed
here. Hoffman et al. (2019) focuses on using normal-
izing flows to adapt Hamiltonian Monte Carlo to un-
favorable posterior geometry by transforming a com-
plicated posterior into a isotropic Gaussian.

Among the works above, ergodicity was only tested
numerically. One exception is Gabrié et al. (2021a)
where a convergence argument based on a continuous
time analysis is developed under the assumption of
perfect adaptation. The present paper provides a the-
oretical framework to analyze for the ergodicity of the
methods presented in the body of work above. Though
our work has focused on establishing ergodicity via the
mechanism of Roberts and Rosenthal (2007), we note
the work of Andrieu and Moulines (2006), which may
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be used to establish an ergodicity theory. We concur
with the statement in Roberts and Rosenthal (2007)
that Andrieu and Moulines (2006) “requir[es] other
technical hypotheses which may be difficult to verify
in practice” and that diminishing adaptation and con-
tainment are “somewhat simpler conditions.” Holden
et al. (2009) considered the case of independent adap-
tations of the independent Metropolis-Hastings algo-
rithm; however, this technique requires that accepted
and rejected states be treated identically in the adap-
tation procedure, so we do not consider it further. We
also note that Parno and Marzouk (2018) investigated
the ergodicity of an adaptive MCMC using invertible
maps. These works have similar aims but differ in
several key details. For instance Parno and Marzouk
(2018) focuses on establishing an ergodicity theory of
triangular transformations of a Gaussian base mea-
sure, representing a local proposal distribution, which
in practice is accomplished by employing third-degree
Hermite polynomials. Our work, on the other hand,
employs normalizing flows as global proposal mecha-
nisms (independent of the current state of the chain).
This necessitates a somewhat different treatment in
order to establish ergodicity of the adaptive chain. As
in this work, a pseudo-likelihod objective (see exam-
ple 3) is employed in order to inform adaptations, but
their objective is concave due to the choice of Hermite
polynomials, whereas in the case of neural networks,
the objective is more complex. Parno and Marzouk
(2018) also assumes that parameter space Y is com-
pact, which is untrue for typical parameterizations of
normalizing flows, and insists on enforcing diminishing
adaptation probabilistically (lemma 2.10) whereas we
allow parameters to converge in probability (lemma 4.2
and theorem 4.3).

4 ANALYTICAL APPARATUS

We now consider the principle problem of this pa-
per: When can the adaptive independent Metropolis-
Hastings sampler with proposal distribution parame-
terized by a normalizing flow be given an ergodicity
theory? We separate our discussion into two compo-
nents wherein the adaptations are either deterministic
or not necessarily independent of the state of the chain.

4.1 Deterministic Adaptations

Theorem 4.1. Let Π be a probability measure with
density π. Suppose that every θ ∈ Y parameter-
izes a probability measure Π̃θ on B(X ) with den-
sity π̃θ. Suppose that (θ0, θ1, . . .) is a determinis-
tic Y-valued sequence. Let (Kθn)n∈N be an associ-
ated sequence of Markov transition kernels of the inde-
pendent Metropolis-Hastings sampler of Π given Π̃θn .

Let Kn(x0, A) denote the n-step transition probabil-
ity from x0 to A ∈ B(X ) with law eq. (3). Then Π
is the stationary distribution for Kn. Suppose fur-
ther that for each n ∈ N there exists Mn satisfy-
ing π(x) ≤ Mnπ̃θn(x) for all x ∈ Supp(π) Then,

‖Kn(x0, ·)−Π(·)‖TV ≤ 2
∏n−1
i=0

(
1− 1

Mi

)
.

A proof is given in appendix B. We note that theo-
rem 4.1 permits great generality in how θ parameter-
izes Πθ; indeed, our analysis here, and subsequently,
applies to any parameterized family of distributions.

Example 1. Let Π be a probability measure with den-
sity π. Let Y = Rm and suppose that every θ ∈ Y
smoothly parameterizes a probability measure Π̃θ on
B(X ) with density π̃θ for which Supp(π) = Supp(π̃θ).
Consider the initial value problem

d

dt
θ(t) = −∇θKL(π̃θ(t)‖π), θ(0) = θ0, (4)

where θ0 ∈ Y. Let (t0, t1, . . .) be a deterministic se-
quence of times and let θn = θ(tn) for n ∈ N. Consider
the family of Markov chain transition operators of the
independent Metropolis-Hastings sampler of Π given
Π̃θn with transition kernels Kθn . Then Π is the sta-
tionary distribution of the Markov chain whose transi-
tions satisfy Xn+1 ∼ Kθn(Xn, ·). From the condition
Supp(π) = Supp(π̃θ) it follows that Π is the stationary
distribution for each Kθ. Since (θ0, θ1, . . .) is a deter-
ministic sequence, it follows from theorem 4.1 that Π is
the stationary distribution. The particular mechanism
of producing a deterministic sequence was not impor-
tant; however, the time derivative eq. (4) was chosen
because it begins to imitate the evolution encountered
in normalizing flow loss functions. ‖

4.2 Non-Independent Adaptations

Notice that the decision to make the adaptation and
the subsequent state of the chain dependent is not ar-
tificial or contrived; in fact, if such a procedure can
be equipped with an ergodicity theory, then the re-
sulting algorithm would have an important computa-
tional advantage. Specifically, it would require fewer
evaluations of the target density (or the gradient of the
target density) than the corresponding procedure with
independent adaptations. For instance, the following
adaptation scheme does not fall into the category of
independent adaptations.

Example 2. Let Π be a probability measure with den-
sity π on a space X . Let Y = Rm and suppose that ev-
ery θ ∈ Y smoothly parameterizes a probability mea-
sure Π̃θ on B(X ) with density π̃θ for which Supp(π) =
Supp(π̃θ). Let X̃ ∼ Π̃θn−1

be the proposal produced
by the independent Metropolis-Hastings sampler of Π
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given Π̃θn−1 . Consider the adaptation

θn = θn−1 − ε∇θ log
π̃θn−1(X̃(θn−1))

π(X̃(θn−1))
, (5)

which can be interpreted as the single-sample approx-
imation of the gradient flow of KL(π̃θn−1

‖π). ‖

This motivates us to explore this direction. Defini-
tion 2.9 and the continuous mapping theorem (see the-
orem D.1) leads immediately to the following result.

Lemma 4.2. Suppose that the map θ 7→ Kθ is contin-
uous and that the sequence (Θ0,Θ1, . . .) converges in
probability in Y. Then (KΘ0 ,KΘ1 , . . .) exhibits dimin-
ishing adaptation.

A proof is given in appendix D. We now consider the
question of the continuity of the mapping θ 7→ Kθ.

Theorem 4.3. Let (θ1, θ2, . . .) be a Y-valued sequence
converging to θ. Let π be a probability density function
on a space X and let π̃θ be a family of density func-
tions on X indexed by θ such that the map θ 7→ π̃θ
is continuous. Suppose further that Supp(π̃θ) = X for
every θ ∈ Y. Let Π be the probability measure on B(X )
with density π and let Π̃θ be the probability measure on
B(X ) with density π̃θ. Let Kθ be the transition kernel
of the independent Metropolis-Hastings sampler of Π
given Π̃θ. Then limn→∞Kθn = Kθ (i.e. the mapping
θ 7→ Kθ is continuous).

A proof is given in appendix D. When training nor-
malizing flows, it is typical to apply stochastic gradi-
ent descent to the minimization of some loss function.
The question of when the iterates of stochastic gra-
dient descent converge is an important question that
has been recently treated in the case of non-convex
losses. We refer the interested reader to Bottou (1999);
Mertikopoulos et al. (2020) for conditions and results
guaranteeing the convergence of stochastic gradient
descent. In practice, the convergence of the sequence
of normalizing flow parameters can be further encour-
aged by a decreasing learning rate schedule. In ap-
pendix N we discuss simultaneous uniform ergodicity
on compact spaces and give some examples of normal-
izing flows works in these cases. The condition for
geometric ergodicity of the independent Metropolis-
Hastings sampler is that there exists M ≥ 1 such that
π(x) ≤ M · π̃(x) for all x ∈ Supp(π) where π is the
density of the target distribution and π̃ is the pro-
posal density. By taking the logarithm of both sides
and rearranging we obtain the equivalent inequality,
log π(x)− log π̃(x) ≤ logM for all x ∈ Supp(x).

Proposition 4.4. Suppose that every θ ∈ Y parame-
terizes a probability measure Π̃θ on B(X ) with density
π̃θ. Let (Θ0,Θ1, . . .) be a sequence of Y-valued ran-
dom variables and consider the family of Markov chain

transition operators of the independent Metropolis-
Hastings sampler of Π given Π̃Θn with transition ker-
nels KΘn . Suppose that for all δ > 0, there exists
M ≡M(δ) ∈ [1,∞) such that

Pr [log π(x)− log π̃Θn(x) < logM ∀ x ∈ X ] ≥ 1− δ,
(6)

for all n ∈ N. Then, (Θn)n∈N exhibits containment.

A proof is given in appendix F. Regarding the tail
condition in eq. (6), we note that the tail behaviour of
the most popular normalizing flow architectures can be
explicitly controlled, as shown by Jaini et al. (2020).
Specifically, with Lipschitz triangular bijections (in-
cluding most affine coupling flow implementations) the
tail behaviour remains identical to that of the base
measure. Thus, to ensure heavy tails in a flow one
can simply replace the typical Gaussian base measure
with a heavier tailed one, e.g., a Laplace or Student-
t. An even stronger condition than eq. (6) is that
Pr [|log π(x)− log π̃Θn(x)| < logM ∀ x ∈ X ] ≥ 1−δ.
Thus, we see that containment can be obtained for
the transition kernels of the independent Metropolis-
Hastings sampler if, for every n, log π̃Θn is within
logM of log π with probability 1 − δ. Note that M
does not need to even be close to unity (equivalently,
logM need not be close to zero) in order for contain-
ment to hold; it is sufficient merely that, with high
probability, the sequence (Θn)n∈N does not produce
arbitrarily poor approximations of log π.

The loss functions used in estimating normalizing flows
are chosen to encourage closeness of the approximation
and the target density. For instance, if one chooses
to minimize KL(π̃θ‖π) as a function of θ ∈ Y then
KL(π̃θ‖π) = 0 ⇐⇒ π̃θ = π. The minimization of
a loss function that encourages the closeness of the
approximation and the target density is certainly no
guarantee that eq. (6) holds; however, it gives an in-
dication that eq. (6) might be true. We turn our at-
tention in the next section to the empirical evaluation
of adaptive samplers using normalizing flows. Some
obstacles that could prevent the conditions of propo-
sition 4.4 from holding are stated in appendix L.

Example 3. Recently, Gabrié et al. (2021a,b) proposed
to sample from Boltzmann distributions and posteri-
ors over the parameters of physical systems by alter-
nating between an independence Metropolis-Hastings
algorithm whose proposal is represented as a RealNVP
normalizing flow and local updates computed by the
Metropolis-adjusted Langevin algorithm (MALA). In
Gabrié et al. (2021a) the authors “demonstrate the im-
portance of initializing the training with some a priori
knowledge of the relevant modes.” This incorpora-
tion of prior knowledge is done to avert mode-collapse.
We can connect knowledge of modes to the property
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of containment: by ensuring that the proposal den-
sity of the independent Metropolis-Hastings sampler
places sufficient mass on all modes with high prob-
ability, one satisfies containment by proposition 4.4.
The specific training procedure used by these sam-
plers is to adapt parameters of the normalizing flow as
Θn+1 = Θn + εn

1
n

∑n
i=0∇ log π̃Θn(Xi) where (Xi)

n
i=0

are the states of the chain to the nth step and (εi)
∞
i=0

are a sequence of adaptation step-sizes. Because the
states of the chain can only be regarded as approx-
imate samples from the target distribution, we un-
derstand this update as seeking to update a “pseudo-
likelihood.” Diminishing adaptation of this procedure
can be enforced using either lemma 2.10 or via con-
vergence and continuity using lemma 4.2. When di-
minishing adaptation and containment are satisfied,
this adaptative algorithm produces an ergodic chain
by theorem 2.13. ‖

5 EXPERIMENTS

Here we evaluate the adaptive independent
Metropolis-Hastings algorithm following the “pseudo-
likelihood objective”, with non-independent adapta-
tions, summarized in algorithm 1 in appendix M. As
a baseline adaptive MCMC technique, we consider
the random walk Metropolis method of Haario et al.
(2001); we also compare against Langevin dynamics.
To assess the ergodicity of samplers, we compare
MCMC samples against analytic samples drawn from
the target density, except in the case of the physical
system wherein we use domain knowledge to compare
against Langevin dynamics. Specifically, we choose
10,000 random unit vectors and project the samples
of the adaptive chain onto the vector space spanned
by the chosen unit vector; we then compare these
one-dimensional quantities to the projection of the
baseline samples from the target distribution and
compute the two-sample Kolmogorov-Smirnov (KS)
test statistic (Smirnov, 1948; Cuesta-Albertos et al.,
2006). In appendix J, we show how adaptation can
actually degrade sample quality at finite time.

Code implementing the experiments in the brow-
nian bridge, the two-dimensional multimodal ex-
ample, and the experiments of appendix J can
be found at https://github.com/JamesBrofos/

Adaptive-Normalizing-Flow-Chains.

5.1 Affine Flows in a Brownian Bridge

We consider sampling from a Gaussian process with
the following mean and covariance functions: µ(t) =
sin(πt) and Σ(t, s) = min(t, s) − st. For 0 < t, s < 1,
the covariance function identifies this distribution as a
Brownian bridge whose mean is a sinusoid. We seek

to sample this Gaussian process at 50 equally spaced
times in the unit interval, yielding a fifty-dimensional
target distribution. We estimate an affine normaliz-
ing flow from a Gaussian base distribution in order to
sample from the target. Since the base distribution of
the flow is Gaussian, and since affine transformations
of Gaussian random variables remain Gaussian, in ad-
dition to the pseudo-likelihood training objective, we
also consider gradient descent on the exact KL diver-
gence between the target and the current proposal dis-
tribution. Minimization of the exact KL divergence is
equivalent to maximum likelihood training, and there-
fore allows us to compare the efficiency lost by train-
ing with the pseudo-likelihood objective compared to
the true likelihood. To enforce diminishing adapta-
tion, we set a learning rate schedule for the gradient
steps on the shift and scale of the affine transforma-
tion that converges to zero. In addition to Langevin
dynamics, we also consider a preconditioned variant
of the Metropolis-adjusted Langevin algorithm that
uses the Hessian of the log-density to adapt propos-
als to the geometry of the target distribution (Giro-
lami and Calderhead, 2011). Results shown in fig. 2
demonstrate the advantages of the adaptive indepen-
dent Metropolis-Hastings samplers.

5.2 Two-Dimensional Examples

We use a RealNVP architecture to model a multimodal
distribution and Neal’s funnel distribution, both in
R2. The multimodal density is a mixture of two
Gaussians with a shared covariance structure given by
Σ = diag(1/100, 1/100). The two means of the compo-
nent Gaussians are (−2, 2) and (2,−2). Neal’s funnel
distribution is defined by generating v ∼ Normal(0, 9)
and x ∼ Normal(0, e−v), which defines a distribution
in R2. To enforce diminishing adaptation, we set a
learning rate schedule for the gradient steps on pa-
rameters of the RealNVP bijections that converges to
zero. Results are shown in fig. 3. The expressivity of
the RealNVP normalizing flow is key to building effi-
cient proposals accommodating the distinct modes or
the challenging multi-scale structure of Neal’s funnel.

5.3 Analysis of a Physical Field System

We finally revisit a high-dimensional bi-modal exam-
ple: the 1d-φ4 system studied in Gabrié et al. (2021a).
The statistics of a field φ : [0, 1]→ R are given by the
Boltzmann weight e−βU with the energy functional

U(φ) =

∫ 1

0

[
a

2
(∂sφ)2 +

1

4a

(
1− φ2(s)

)2]
ds, (7)

assuming boundary conditions φ(0) = φ(1) = 0. We
discretize the field at 100 equally spaced locations be-
tween 0 and 1, for a = 0.1 and β = 20. Examples of

https://github.com/JamesBrofos/Adaptive-Normalizing-Flow-Chains
https://github.com/JamesBrofos/Adaptive-Normalizing-Flow-Chains
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(a) Kolmogorov-Smirnov Statistics (b) ESS per Second (c) Acceptance Probability

Figure 2: Result of the Brownian bridge experiment. In assessing ergodicity according to the distribution of
Kolmogorov-Smirnov statistics along random one-dimensional sub-spaces, the methods based on the indepen-
dent Metropolis-Hastings algorithm and preconditioned Langevin dynamcis perform best. Langevin dynamics
struggles in this posterior due to the multi-scale phenomena present in this distribution. In terms of the effective
sample size per second of computation, the near-independent proposals and high acceptance rate of the indepen-
dent Metropolis-Hastings sampler cause these algorithms to dominate. We also show the acceptance probability
of the adaptive methods; we observe that the independent Metropolis-Hastings procedures enjoy adaptations
that cause the acceptance probability to consistently improve over the course of learning.

(a) (Multimodal) Acc. Prob. (b) (Multimodal) KS (c) (Neal Funnel) KS

Figure 3: Examination of the performance of MCMC methods on sampling from the multimodal mixture of
Gaussians and Neal’s funnel distribution. Both adaptive methods enjoy increasing acceptance rates in the
multimodal distribution as a function of sampling iteration, but only the adaptive independent Metropolis-
Hastings algorithm exhibits ergodicity for this distribution. Indeed, for the adaptive random walk and Langevin
sampling methods, which are based on local updates, the multimodal distribution poses distinct challenges. In
fact, both methods get stuck in one of the modes. By contrast, the adaptive independent Metropolis-Hastings
samplers exhibit the best ergodicity of all methods considered. In Neal’s funnel distribution, the adaptive
independent Metropolis-Hastings algorithm possesses the best ergodicity.

states are plotted in fig. 6 of appendix O. The algo-
rithm proposed in Gabrié et al. (2021a) is adapted
with a learning rate schedule enforcing diminishing
adaptations and a mixture transition kernel stochas-
tically choosing from local Langevin updates or pro-
posal sampling from the normalizing flow (appendix I
shows that we can expect this mixture kernel to ex-
hibit containment and diminishing adaption). Because
the distribution is high-dimensional and multimodal,
it is necessary1 to run multiple parallel walkers ini-

1This necessity can be lifted by employing an auxiliary
fixed set of “training samples” featuring the two modes,
in arbitrary proportions. These samples would drive the
learning towards relevant regions, so that a random walker

tialized around the different modes. In this specific
case, the energy and the distributions are even func-
tions of φ. In the experiments, we initialize 100 walk-
ers with uneven proportions in each mode (20-80) and
test for the ergodicity of the parallel chains. Results
are shown in fig. 4. Unlike the adaptive independent
Metropolis-Hastings samplers, MALA single walkers
are stuck in the mode they were initialized in and can-
not recover the correct equal weights of the positive
and negative mode. We also compare with the Jump
Adaptive Multimodal Sampler (JAMS) of Pompe et al.
(2020), using a MALA sampler for the local steps and

can then inform the adaption about the relative statistical
weights of different modes



James A. Brofos, Marylou Gabrié, Marcus A. Brubaker, Roy R. Lederman

0.0 0.2 0.4 0.6 0.8

Kolmogorof-Smirnoff Statistic

Pseudo-Likelihood
parallel (I.M.H.)

Pseudo-Likelihood
(I.M.H.)

parallel Langevin

Langevin

JAMS best

JAMS collapsed

(a) Kolmogorov-Smirnov Statistics

0 250 500 750 1000 1250

Effective Sample Size per Second

Pseudo-Likelihood
parallel (I.M.H.) burn-in

parallel Langevin burn-in

Pseudo-Likelihood
parallel (I.M.H.) late

parallel Langevin late

Pseudo-Likelihood
parallel (I.M.H.) early

(b) ESS per Second

0 2500 5000 7500 10000 12500 15000 17500 20000

Sampling Iteration × 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ep
ta

n
ce

P
ro

b
ab

ili
ty

Pseudo-Likelihood(I.M.H.)

JAMS best

JAMS collapsed

(c) Acceptance Probability

Figure 4: Results of the φ4 field experiment. As Langevin dynamics is unable to mix between the two modes, the
better ergodicity of the independent Metropolis Hastings algorithm is reflected in Kolmogorov-Smirnov statistics
as expected. The single chain Langevin has poorer ergodicity than its parallel chain equivalent, while for the
I.M.H. a single chain approaches the ergodicity of the parallel setting. The Effective Sample Sizes are reported
for chains of 1000 steps extracted at burn-in, after 4 × 104 iterations (early) and (late) when the NF proposal
acceptance probability has reached 50%. Note that periodic jumps in acceptance correspond to iterations where
learning rate was decreased.

an adaptive Gaussian mixture for the jumps and re-
port results for the best of 10 runs and a typical failed
run where the chains collapsed in one mode. We ob-
serve a KS mean statistic of 0.12 for one chain (best
of 10 runs), compared to a KS mean statistic of 0.024
for the normalizing flow IMH, with the same number
of iterations. The acceptance rate of jumps in JAMS
reaches around 40% while the IMH gets to 55%. Ad-
ditional details can be found in appendix O. Codes
to reproduce this experiment can be found at https:

//github.com/marylou-gabrie/adapt-flow-ergo.

6 CONCLUSION

We have examined the question of when an adap-
tive independent Metropolis-Hastings sampler can be
equipped with an ergodicity theory. We specifically
consider the case wherein the proposal distribution is
parameterized as a normalizing flow. We have consid-
ered the cases of deterministic adaptations, indepen-
dent adaptations, and non-independent adaptations.
For the non-independent adaptations case, we exam-
ine mechanisms by which to enforce the diminishing
adaptation and containment conditions that together
imply ergodicity.
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Supplementary Material:
Adaptation of the Independent Metropolis-Hastings Sampler with

Normalizing Flow Proposals

A Review of Total Variation Distance

Similarity of probability measures can be assessed with respect to several criteria. A ubiquitous notion of distance
between probability measures is given by the total variation norm of their difference.

Definition A.1. Let ν1 and ν2 be probability measures on (X ,B(X )). Then the total variation distance between
ν1 and ν2 is defined by,

‖ν1(·)− ν2(·)‖TV = 2 sup
A∈B(X )

|ν1(A)− ν2(A)| . (8)

The total variation distance is easily verified to be a proper distance in that it satisfies non-negativity, discern-
ability, symmetry, and the triangle inequality. The total variation distance can therefore be understood as the
largest possible disagreement between the probabilities assigned to any measurable set by ν1 and ν2. The total
variation norm has the following equivalent representations which are occasionally useful.

Proposition A.2. Within the context of definition A.1, the total variation distance between ν1 and ν2 is equiv-
alently expressed as,

‖µ‖TV = sup
f∈M

∣∣∣∣∫
X
f(x) ν1(dx)−

∫
X
f(x) ν2(dx)

∣∣∣∣ (9)

where M def.
= {f : X → R s.t. |f(x)| ≤ 1 ∀ x ∈ X}.

For a proof of this result, and other equivalent characterizations of the total variation distance, we refer the
interested reader to Roberts and Rosenthal (2004); Pollard (2001).
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B Proofs Concerning Deterministic Adaptations

Proposition B.1 (Roberts and Rosenthal (2007)). Suppose that (θ0, θ1, . . .) is a deterministic Y-valued sequence.
Let (Kθn)n∈N be an associated sequence of Markov transition kernels. If Π is stationary for each Kθn , then Π is
also the stationary distribution of the Markov chain whose transitions satisfy Xn+1 ∼ Kθn(Xn, ·).

Proof. Let A ∈ B(X ) and suppose Xn ∼ Π. We will show Xn+1 ∼ Π.

Pr [Xn+1 ∈ A] =

∫
X

Pr [Xn+1 ∈ A|Xn = x] · Pr [Xn ∈ dx] (10)

=

∫
X

∫
Y

Pr [Xn+1 ∈ A|Xn = x,Θn = θ] · δθn(dθ) · Pr [Xn ∈ dx] (11)

=

∫
X
Kθn(x,A) · Pr [Xn ∈ dx] (12)

= E
x∼Π

[Kθn(x,A)] (13)

= Π(A). (14)

Lemma B.2. For each n ∈ N,

Kθn(x,dx′) ≥ πΠ(x′)

Mn
µ(dx′). (15)

Proof. From eq. (2),

Kθn(x, dx′) ≥ min

{
1,
π(x′)π̃θn(x)

π(x)π̃θn(x′)

}
π̃θn(x′) µ(dx′) (16)

= min

{
π̃θn(x′),

π(x′)π̃θn(x)

π(x)

}
µ(dx′) (17)

≥ min

{
π̃θn(x′),

π(x′)

Mn

}
µ(dx′) (18)

=
π(x′)

Mn
µ(dx′) (19)

Corollary B.3. For any set A ∈ B(X )

Kθn(x,A) ≥ 1

Mn
Π(A). (20)

Proof. Integrate both sides of eq. (15) over the set A.

Proof of Theorem 4.1. From corollary B.3 it follows that we may express the transition kernel at step n ∈ N as

Kθn(x,A) =
1

Mn
Π(A) +

(
1− 1

Mn

)
·
Kθn(x,A)− 1

Mn
Π(A)

1− 1
Mn︸ ︷︷ ︸

K̃θn (x,A)

(21)

=
1

Mn
Π(A) +

(
1− 1

Mn

)
K̃θn(x,A), (22)

where K̃θn(x,A) is another probability measure. With eq. (22), Kθn may be given the following interpretation:
With probability 1/Mn generate the next state by the distribution Π and with probability 1−1/Mn generate the
next state from the distribution K̃θn . Given an initial state X0 = x0, consider the Markov chain whose transitions



Adaptation of the Independent Metropolis-Hastings Sampler with Normalizing Flow Proposals

are generated according to Xn+1 ∼ Kθn(Xn, ·) with marginal laws Xn ∼ Kn(x0, ·). From the representation in
eq. (22) and proposition B.1, it follows that the total variation distance is zero as soon as we generate the next
state from Π. Let T be the random variable representing the first step at which Xn is generated from Π. Then
Kn(x0, ·) = Pr [T ≤ n] Π(·) + Pr [T > n] K̃n(x0, ·), where K̃n is the mixture component of Kn that is possibly
not Π. Thus,

‖Kn(x0, ·)−Π(·)‖TV = ‖Pr [T ≤ n] Π(·) + Pr [T > n] K̃n(x0, ·)−Π(·)‖TV (23)

= ‖Pr [T > n] K̃n(x0, ·)− Pr [T > n] Π(·)‖TV (24)

= Pr [T > n] · ‖K̃n(x0, ·)−Π(·)‖TV (25)

≤ 2

n−1∏
i=0

(
1− 1

Mi

)
, (26)

since T > n only if we generate the next state from K̃θi for i = 1, . . . , n−1, each of which occurs with probability
1− 1/Mi.

Proposition B.4. Suppose that (θ0, θ1, . . .) is a deterministic Y-valued sequence. Let (Kθn)n∈N be an associated
sequence of Markov transition kernels. If Π is stationary for each Kθn , then

‖Kn+1(x0, ·)−Π(·)‖TV ≤ ‖Kn(x0, ·)−Π(·)‖TV, (27)

where Kn is defined in eq. (3).

Proof.

‖Kn+1(x0, ·)−Π(·)‖TV = sup
f∈M

∣∣∣∣∫
X
f(y)Kn+1(x0,dy)−

∫
X
f(y)Π(dy)

∣∣∣∣ (28)

= sup
f∈M

∣∣∣∣∫
X
f(y)Kn+1(x0,dy)−

∫
X
f(y)

∫
X
Kθn(w,dy)Π(dw)

∣∣∣∣ (29)

= sup
f∈M

∣∣∣∣∫
X
f(y)

∫
X
Kn(x0,dw)Kθn(w,dy)−

∫
X
f(y)

∫
X
Kθn(w,dy)Π(dw)

∣∣∣∣ (30)

= sup
f∈M

∣∣∣∣∫
X

(∫
X
f(y)Kθn(w,dy)

)
Kn(x0,dw)−

∫
X

(∫
X
f(y)Kθn(w,dy)

)
Π(dw)

∣∣∣∣ (31)

≤ sup
f∈M

∣∣∣∣∫
X
f(w)Kn(x0,dw)−

∫
X
f(w)Π(dw)

∣∣∣∣ (32)

= ‖Kn(x0, ·)−Π(·)‖TV. (33)

Definition B.5. Let Π be a probability measure with density π. Suppose that every θ ∈ Y parameterizes a
probability measure Π̃θ on B(X ) with density π̃θ. Define the ergodic set of Π given Y as

Q = {θ ∈ Y : there exists Mθ <∞ such that π(x) ≤Mθπ̃θ(x) ∀ x ∈ Supp(π)} . (34)

The combination of proposition B.4 and definition B.5 allows one to give a slight generalization of theorem 4.1.

Corollary B.6. Let Π be a probability measure with density π. Suppose that every θ ∈ Y parameterizes a
probability measure Π̃θ on B(X ) with density π̃θ. Suppose that (θ0, θ1, . . .) is a deterministic Y-valued sequence.
Let (Kθn)n∈N be an associated sequence of Markov transition kernels of the independent Metropolis-Hastings
sampler of Π given Π̃θn . Let Kn(x0, A) denote the n-step transition probability from x0 to A ∈ B(X ). Then

‖Kn(x0, ·)−Π(·)‖TV ≤ 2

n−1∏
i=0

(1− Li) , (35)

where

Li =

{
1
Mi

if θi ∈ Q
0 otherwise.

(36)
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Proof. The proof proceeds by induction. If θ0 ∈ Q then by argument in the proof of theorem 4.1 we have

‖K1(x0, ·)−Π(·)‖TV = ‖Kθ0(x0, ·)−Π(·)‖TV (37)

≤ 2

(
1− 1

M0

)
. (38)

If θ0 6∈ Q then we obtain the vacuously true inequality ‖K1(x0, ·)−Π(·)‖TV ≤ 1. Now assume that ‖Kn(x0, ·)−
Π(·)‖TV ≤

∏n−1
i=0 (1− Li). If θn 6∈ Q then by proposition B.4 we have

‖Kn+1(x0, ·)−Π(·)‖TV ≤ ‖Kn(x0, ·)−Π(·)‖TV (39)

≤ 2

n−1∏
i=0

(1− Li) (40)

= 2

n−1∏
i=0

(1− Li) · 1 (41)

= 2

n∏
i=0

(1− Li), (42)

since Ln = 0. On the other hand, if θn ∈ Q then, using the same argument as in the proof of theorem 4.1, the
probability that none of (X0, . . . , Xn) were drawn from Π is at most

n−1∏
i=0

(1− Li) . (43)

Correspondingly, the probability that Xn+1 is also not drawn from Π is 1 − 1/Mn so that the probability that
none of (X0, . . . , Xn, Xn+1) is drawn from Π is at most(

1− 1

Mn

) n−1∏
i=0

(1− Li) =

n∏
i=0

(1− Li) . (44)

From this the conclusion follows.
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C Proofs Concerning Independent Adaptations

Theorem C.1. Let Π be a probability measure with density π. Suppose that every θ ∈ Y parameterizes a
probability measure Π̃θ on B(X ) with density π̃θ. Suppose that (Θ0,Θ1, . . .) is a stochastic Y-valued sequence.
Let (KΘn)n∈N be an associated sequence of Markov transition kernels of the independent Metropolis-Hastings
sampler of Π given Π̃Θn . Suppose that Xn and Θn are independent given the history of the chain to step n− 1.
Let Gn(x0, A) be the associated marginal transition law. Then

‖Gn(x0, ·)−Π(·)‖TV ≤ 2 E
(Θ0,...,Θn−1)

[
n−1∏
i=0

(1− Li)
]

(45)

where Li = 1/Mi if Mi <∞ and otherwise Li = 0.

A proof is given in appendix C. This result was previously demonstrated in Holden et al. (2009), though we have
offered a different proof procedure.

Example 4. Let Π be a probability measure with density π. Let Y = Rm and suppose that every θ ∈ Y smoothly
parameterizes a probability measure Π̃ on B(X ) with density π̃θ for which Supp(π) = Supp(π̃θ). Consider the
sequence of updates,

θn = θn−1 − ε∇θ
(

1

s

s∑
i=1

log
π̃θn−1(Ys(θn−1))

π(Ys(θn−1))

)
(46)

where Y1, . . . , Ys
i.i.d.∼ Π̃θn−1 . This corresponds to the stochastic gradient approximation of example 1. Consider

the family of Markov chain transition operators of the independent Metropolis-Hastings sampler of Π given
Π̃θn with transition kernels Kθn . Then Π is the stationary distribution of the Markov chain whose transitions
satisfy Xn+1 ∼ Kθn(Xn, ·). To see this, let X̃ be a sample from Π̃θn−1

independent of (Y1, . . . , Ys) and let

U ∼ Uniform(0, 1) be independent of both. Then Xn = g(xn−1, θn−1, X̃, U) where g is given by,

g(x, θ, x̃, u) =

{
x̃ if u < min

{
1, π(x̃)π̃θ(x)

π(x)π̃θ(x̃)

}
x otherwise

(47)

and Θn = f(θn−1, Y1, . . . , Ys) where f is given by,

f(θ, y1(θ), . . . , ys(θ)) = θ − ε∇θ
(

1

s

s∑
i=1

log
π̃θ(ys(θ))

π(ys(θ))

)
. (48)

By lemma C.2, Θn and Xn are independent given the history of the chain to step n − 1 and therefore, by
proposition J.1, Π is the stationary distribution. ‖

Lemma C.2. Suppose that (X
(a)
1 , . . . , X

(a)
r ) and (X

(b)
1 , . . . , X

(b)
s ) are two sets of random variables which are

independent given the history of the chain to step n − 1. Suppose that Θn = f(xn−1, θn−1, X
(a)
1 , . . . , X

(a)
r ) and

Xn = g(xn−1, θn−1, X
(b)
1 , . . . , X

(b)
s ) for two functions f and g. Then Xn and Θn are independent given the

history of the chain to step n− 1.

Proof. The σ-algebra generated by Θn is a subset of the σ-algebra generated by (X
(a)
1 , . . . , X

(a)
r ). Likewise, the

σ-algebra generated by Xn is a subset of the σ-algebra generated by (X
(b)
1 , . . . , X

(b)
s ). Since (X

(a)
1 , . . . , X

(a)
r ) and

(X
(b)
1 , . . . , X

(b)
s ) are assumed independent given the history of the chain to step n−1, the conclusion follows.
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Proof of Theorem C.1.

‖Gn(x0, ·)−Π(·)‖TV = ‖ E
(Θ0,...,Θn−1)

Kn
(Θ0,...,Θn−1)(x0, ·)−Π(·)‖TV (49)

= 2 sup
A∈B(X )

∣∣∣∣ E
(Θ0,...,Θn−1)

Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣∣ (50)

≤ E
(Θ0,...,Θn−1)

2 sup
A∈B(X )

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ (51)

= E
(Θ0,...,Θn−1)

‖Kn
(Θ0,...,Θn−1)(x0, ·)−Π(·)‖TV (52)

≤ 2 E
(Θ0,...,Θn−1)

[
n−1∏
i=0

(1− Li)
]
, (53)

where the first inequality can be deduced as follows: By Jensen’s inequality,∣∣∣∣ E
(Θ0,...,Θn−1)

Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣∣ ≤ E
(Θ0,...,Θn−1)

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ . (54)

Moreover,∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ ≤ sup
A∈B(X )

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ (55)

=⇒ E
(Θ0,...,Θn−1)

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ ≤ E
(Θ0,...,Θn−1)

sup
A∈B(X )

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ (56)

=⇒ sup
A∈B(X )

E
(Θ0,...,Θn−1)

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ ≤ E
(Θ0,...,Θn−1)

sup
A∈B(X )

∣∣∣Kn
(Θ0,...,Θn−1)(x0, A)−Π(A)

∣∣∣ (57)

The second inequality follows from corollary B.6 as follows:

‖Kn
(Θ0,...,Θn−1)(x0, ·)−Π(·)‖TV ≤ 2

n−1∏
i=0

(1− Li) (58)

=⇒ E
(Θ0,...,Θn−1)

‖Kn
(Θ0,...,Θn−1)(x0, ·)−Π(·)‖TV ≤ 2 E

(Θ0,...,Θn−1)

[
n−1∏
i=0

(1− Li)
]
. (59)
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D Proofs Concerning Continuity of Independent Metropolis-Hastings Transition
Kernels

Theorem D.1. Let f be a continuous function from the metric space (X , dX ) to the metric space (Y, dY). If
(X0, X1, . . .) is a sequence of X -valued random variables converging in probability to the random variable X then
(f(X0), f(X1), . . .) is a sequence of Y-valued converging in probability to f(X).

Proof of Lemma 4.2. Given that θ 7→ Kθ is continuous, if (Θ0,Θ1, . . .) converges in probability to Θ, we have
immediately from theorem D.1 that (KΘ0 ,KΘ1 , . . .) converges in probability to KΘ. This means that for all
ε > 0 and δ > 0, there exists N(ε, δ) ∈ N such that Pr [d(KΘn ,KΘ) < ε] ≥ 1− δ for every n ≥ N . For fixed ε > 0
and δ > 0, set n ≥ N(ε/2, δ) so that Pr [d(KΘn ,KΘ) < ε/2] ≥ 1− δ. Thus,

Pr
[
d(KΘn ,KΘn+1

) < ε
]
≥ Pr

[
d(KΘn ,KΘ) + d(KΘn+1

,KΘ) < ε
]

(60)

≥ Pr
[
d(KΘn ,KΘ) < ε/2 and d(KΘn+1

,KΘ) < ε/2
]

(61)

≥ Pr [d(KΘn ,KΘ) < ε/2] + Pr
[
d(KΘn+1

,KΘ) < ε/2
]
− 1 (62)

≥ 1− δ + 1− δ − 1 (63)

= 1− 2δ. (64)

This establishes diminishing adaptation in the sense of definition 2.9.

Proof of Proposition 2.4. To prove symmetry we write,

d(K,K ′) = sup
x∈X
‖K(x, ·)−K ′(x, ·)‖TV (65)

= sup
x∈X
‖K ′(x, ·)−K(x, ·)‖TV (66)

= d(K ′,K). (67)

Identifiability follows from the definition of equality of Markov chain kernels given in definition 2.3. The triangle
inequality is then proven as follows. Let K ′′ be another transition kernel on X ×B(X ).

d(K,K ′) = sup
x∈X
‖K(x, ·)−K ′(x, ·)‖TV (68)

≤ sup
x∈X

(‖K(x, ·)−K ′′(x, ·)‖TV + ‖K ′′(x, ·)−K ′(x, ·)‖TV) (69)

≤ sup
x∈X
‖K(x, ·)−K ′′(x, ·)‖TV + sup

x∈X
‖K ′′(x, ·)−K ′(x, ·)‖TV (70)

= d(K,K ′′) + d(K ′′,K ′). (71)

In the sequel, we will limit our discussion to the transition kernel of the independent Metropolis-Hastings sampler.
Recall that this transition kernel has the following form,

Kθ(x,A) =

∫
A

αθ(x, y)π̃θ(y) µ(dy) +

(
1−

∫
X
αθ(x,w)π̃θ(w) µ(dw)

)
1 {x ∈ A} , (72)

where

αθ(x, y) = min

{
1,
π(y)π̃θ(x)

π(x)π̃θ(y)

}
. (73)

Lemma D.2. Let (θ1, θ2, . . .) be a Y-valued sequence converging to θ. If for all x ∈ X and A ∈ B(X ) we have

lim
n→∞

∫
A

αθn(x, y)π̃θn(y) µ(dy) =

∫
A

lim
n→∞

[αθn(x, y)π̃θn(y)] µ(dy) (74)

=

∫
A

αθ(x, y)π̃θ(y) µ(dy). (75)

then limn→∞Kθn = Kθ.
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Proof. By continuity of the distance function,

lim
n→∞

d(Kθn ,Kθ) = d( lim
n→∞

Kθn ,Kθ) (76)

= sup
x∈X

sup
A∈B(X )

∣∣∣ lim
n→∞

Kθn(x,A)−Kθ(x,A)
∣∣∣ . (77)

Therefore,

lim
n→∞

Kθn(x,A) = lim
n→∞

(∫
A

αθn(x, y)π̃θn(y) µ(dy) +

(
1−

∫
X
αθn(x,w)π̃θn(w) µ(dw)

)
1 {x ∈ A}

)
(78)

= lim
n→∞

∫
A

αθn(x, y)π̃θn(y) µ(dy) + lim
n→∞

(
1−

∫
X
αθn(x,w)π̃θn(w) µ(dw)

)
1 {x ∈ A} (79)

=

∫
A

lim
n→∞

[αθn(x, y)π̃θn(y)] µ(dy) +

(
1−

∫
X

lim
n→∞

[αθn(x,w)π̃θn(w)] µ(dw)

)
1 {x ∈ A} (80)

=

∫
A

αθ(x, y)π̃θ(y) µ(dy) +

(
1−

∫
X
αθ(x,w)π̃θ(w) µ(dw)

)
1 {x ∈ A} (81)

= Kθ(x,A). (82)

Finally,

lim
n→∞

d(Kθn ,Kθ) = sup
x∈X

sup
A∈B(X )

∣∣∣ lim
n→∞

Kθn(x,A)−Kθ(x,A)
∣∣∣ (83)

= sup
x∈X

sup
A∈B(X )

|Kθ(x,A)−Kθ(x,A)| (84)

= 0. (85)

The following result is called Scheffé’s lemma; see Lebanon (2017); Pollard (2001).

Lemma D.3. Let πn be a sequence of probability densities that converge pointwise to another density π. Then,
let Π(A) =

∫
A
π(x) µ(dx) and Πn(A) =

∫
A
πn(x) µ(dx) be the measures whose densities are π and πn with

respect to dominating measure µ, respectively. Then limn→∞ ‖Π(·)−Πn(·)‖TV = 0.

We will also require the following theorem from Royden (1968, Page 270).

Theorem D.4. Let (X ,B(X )) be a measurable space and let (Πn)n∈N be a sequence of probability measures
converging to the probability measure Π. Let αn : X → R and βn : X → R be two sequences of functions
converging pointwise to the functions α and β, respectively. Suppose further that |αn(x)| ≤ βn(x) for every
x ∈ X and that,

lim
n→∞

∫
X
βn(x) Πn(dx) =

∫
X
β(x) Π(dx) <∞. (86)

Then,

lim
n→∞

∫
A

αn(x) Πn(dx) =

∫
A

α(x) Π(dx), (87)

for A ∈ B(X ).

Lemma D.5. Suppose that for fixed x ∈ X the mapping θ 7→ π̃θ(x) is continuous, that y ∈ X , and
that Supp(π̃θ) = X for every θ ∈ Y. Let (θ1, θ2, . . .) be a Y-valued sequence converging to θ. Then
limn→∞ αθn(x, y)π̃θn(y) = αθ(x, y)π̃θ(y) pointwise.
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Proof.

lim
n→∞

αθn(x, y) = lim
n→∞

min

{
1,
π(y)π̃θn(x)

π(x)π̃θn(y)

}
(88)

=

(
min

{
1, lim
n→∞

π(y)π̃θn(x)

π(x)π̃θn(y)

})
(89)

=

(
min

{
1,
π(y)

π(x)
lim
n→∞

π̃θn(x)

π̃θn(y)

})
(90)

=

(
min

{
1,
π(y)

π(x)

(
lim
n→∞

π̃θn(x)
)(

lim
n→∞

1

π̃θn(y)

)})
(91)

=

(
min

{
1,
π(y)

π(x)
(π̃θ(x))

(
1

limn→∞ π̃θn(y)

)})
(92)

=

(
min

{
1,
π(y)

π(x)
(π̃θ(x))

(
1

π̃θ(y)

)})
(93)

= αθ(x, y). (94)

The assumption that Supp(π̃θ) = X is used in eq. (92).

Corollary D.6. Let (θ1, θ2, . . .) be a Y-valued sequence converging to θ. Let π be a probability density function
on a compact space X and let π̃θ be a family of density functions on X indexed by θ such that the map θ 7→ π̃θ
is continuous (i.e. πθn → πθ). Assume further that Supp(π̃θ) = X for every θ ∈ Y. Let x ∈ X be fixed and let
y ∈ X . Define

αθ(x, y) = min

{
1,
π(y)π̃θ(x)

π(x)π̃θ(y)

}
. (95)

Then,

lim
n→∞

∫
A

αθn(x, y)π̃θn(y) µ(dy) =

∫
A

αθ(x, y)π̃θ(y) µ(dy) (96)

Proof. This follows immediate from theorem D.4 with βn(y) ≡ 1, αn(y) = αθn(x, y) (which converges pointwise
by lemma D.5) and the measures Πn(A) =

∫
A
π̃θn(x) µ(dx) and Π(A) =

∫
A
π̃θ(x) µ(dx), which converge by

lemma D.3.

Proof of theorem 4.3. Fix x ∈ X and A ∈ B(X ). Thus,

lim
n→∞

Kθn(x,A) = lim
n→∞

(∫
A

αθn(x, y)π̃θn(y) µ(dy) +

(
1−

∫
X
αθn(x,w)π̃θn(w) µ(dw)

)
1 {x ∈ A}

)
(97)

= lim
n→∞

∫
A

αθn(x, y)π̃θn(y) µ(dy) + lim
n→∞

(
1−

∫
X
αθn(x,w)π̃θn(w) µ(dw)

)
1 {x ∈ A} (98)

=

∫
A

αθ(x, y)π̃θ(y) µ(dy) +

(
1−

∫
X
αθ(x,w)π̃θ(w) µ(dw)

)
1 {x ∈ A} (99)

= Kθ(x,A). (100)

where we have used corollary D.6 in eq. (99). The conclusion then follows from lemma D.2.
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E Proofs Concerning Simultaneous Uniform Ergodicity on Compact Spaces

Proof of Corollary 2.7. Because X is compact and π and π̃ are continuous, we know that π and π̃ attain maximum
and minimum values on X . Therefore, the ratio π(x)/π̃(x) (i) does not diverge on Supp(π) because Supp(π) ⊆
Supp(π̃) and (ii) is bounded by

maxx∈X π(x)

minx∈X π̃(x)
, (101)

and M is at most this value, with equality if the maximum of π and the minimum of π̃ occur at the same point
in X .

Proof of Proposition N.2. Define

Mθ = max
x∈Supp(π)

π(x)

π̃θ(x)
(102)

and recall from corollary 2.7 that

‖Kn
θ (x, ·)− π‖TV ≤

(
1− 1

Mθ

)n
. (103)

From eq. (101) and eq. (199), Mθ is bounded as

Mθ ≤
maxx∈Supp(π) π(x)

minx∈Supp(π) π̃θ(x)
≤ maxx∈Supp(π) π(x)

δ
= Mδ (104)

The quantity Mδ does not depend on θ ∈ Y and therefore we have, for all θ ∈ Y,

‖Kn
θ (x, ·)− π‖TV ≤

(
1− 1

Mδ

)n
. (105)

Using this worst-case bound, we may find an n satisfying definition N.1 for all θ ∈ Y.

Proof of Lemma N.3. Fix θ ∈ Y. Then

min
x∈Supp(π)

π̃∗θ(x) = min
x∈Supp(π)

(βπ∗Π∗(x) + (1− α)π̃θ(x)) (106)

≥ min
x∈Supp(π)

βπ∗Π∗(x) (107)

= δ. (108)

The quantity δ is greater than zero since β > 0 and Supp(π) ⊆ Supp(π∗Π∗). Since θ was arbitrary, the conclusion
follows.
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F Proofs Concerning Containment

Proof of Proposition 4.4.

Pr [log π(x)− log π̃Θn(x) < logM ∀ x ∈ X ] ≥ 1− δ ∀ n ∈ N (109)

=⇒ Pr

[
π(x)

π̃Θn(x)
< M ∀ x ∈ X

]
≥ 1− δ ∀ n ∈ N (110)

Then for all ε > 0 there exists N ≡ N(ε, δ) ∈ N such that for all x ∈ X ,

Pr
[
‖KN

Θn(x, ·)−Π(·)‖TV < ε
]
≥ 1− δ ∀ n ∈ N (111)

=⇒ Pr [Wε(x,KΘn) ≤ N ] ≥ 1− δ ∀ n ∈ N. (112)
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G Adaptation via the Flow of the KL Divergence

Consider an adaptive sequence of parameters (θ0, θ1, . . .) which parameterize proposal densities (π̃θ0 , π̃θ1 , . . .).
Given a target distribution Π with density π, the efficacy of the adaptive independent Metropolis-Hastings
sampler is dictated by the ratio of the target density to the proposal density,

U(θ)
def.
= sup

x∈Supp(π)

π(x)

π̃θ(x)
. (113)

The smaller this upper bound, the better the mixing properties of the independent Metropolis-Hastings algorithm
with proposal distribution Π̃θn . A central question is whether or not the sequence (θ0, θ1, . . .) actually produces
improvements in these upper bounds; i.e. is U(θn+1) ≤ U(θn)?

It is important that the bound in eq. (113) is actually the least upper bound. This is because an arbitrary upper
bound may decrease while the least upper bound decreases.

In estimating the parameters of normalizing flows, it is typical that parameters follow, at least approximately, the
gradient flow of a prescribed loss function, such as a KL divergence. Since gradient flows are initial value problems
with deterministic solutions, by examining the case wherein adaptations are obtained exactly by gradient flow
allows us to bypass the added difficulty of contending with stochastic adaptations.

Proposition G.1. Let X be a state space and let θ ∈ Rm parameterize a probability measure Π̃θ on B(X ) with
density π̃θ. Given a target density π, consider the function U : Rm → R defined by eq. (113) and assume further
that U is smooth with respect to its argument. Let L : Rm → R be a loss function and consider the gradient flow
θt = −∇L(θt) given an initial condition θ0. A sufficient condition that U(θt+s) ≤ U(θt) is that

∇U(θt′) · ∇L(θt′) ≥ 0, (114)

where t′ ∈ (t, t+ s); i.e. ∇L(θt′) is an ascent direction of U at θt′ .

Proof. By applying the chain rule,

d

dt
U(θt) = ∇U(θt) · θ̇t (115)

= ∇U(θt) · −∇L(θt). (116)

By the fundamental theorem of calculus,

U(θt+s)− U(θt) =

∫ t+s

t

(
d

dt′
U(θt′)

) ∣∣∣∣
t′=t′′

dt′′ (117)

= −
∫ t+s

t

∇U(θt′′) · ∇L(θt′′) dt′′ (118)

≤ 0 (119)

Therefore, U(θt+s) ≤ U(θt).

While verifying the conditions of proposition G.1 in general appears a daunting task, we can do some analysis
in simple cases.

Example 5. Consider the problem of sampling Normal(0, 1) by adapting a proposal of the form Normal(µ, σ2).
Assume further that σ2 > 1. We can deduce an upper bound on the ratio of the target density to the proposal
density as follows:

max
x∈R

exp(−x2/2)/
√

2π

exp(−(x− µ)2/2σ2)/
√

2πσ2
= σmax

x∈R
exp

(
−x

2

2
+

(x− µ)2

2σ2

)
(120)

≤ σ exp

(
µ2

2(σ2 − 1)

)
, (121)
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which can be deduced by maximizing −x2

2 + (x−µ)2

2σ2 using calculus. The reverse KL divergence between the
proposal distribution and the target distribution is seen to be,

KL(Normal(µ, σ2)‖Normal(0, 1)) = − log σ +
σ2 + µ2

2
− 1

2
. (122)

Consider the gradient flow of the reverse KL divergence:

µ̇t = − ∂

∂µ
KL(Normal(µ, σ2)‖Normal(0, 1)) (123)

= −µ (124)

σ̇t = − ∂

∂σ
KL(Normal(µ, σ2)‖Normal(0, 1)) (125)

=
1

σt
− σt. (126)

When we specify initial conditions µ0 ∈ R and σ0 > 1, this produces an initial value problem. To verify that
adapting by following the gradient flow of KL divergence produces a provable improvement to the upper bound
deduced in eq. (121), it suffices to check that the time derivative of the upper bound in decreasing under the
postulated gradient flow dynamics. That is,

d

dt
σt exp

(
µ2
t

2(σ2
t − 1)

)
=
µtσt exp(µ2

t/(2(σ2
t − 1)))

σ2
t − 1

· −µt

+
exp(µ2

t/(2(σ2
t − 1)))(−(µ2

t + 2)σ2
t + σ4

t + 1)

(σ2
t − 1)2

·
(

1

σt
− σt

) (127)

= − (σt − 1)(σt + 1) exp(µ2
t/(2(σ2

t − 1)))

σt
. (128)

It follows that this is a negative quantity if we can establish that σt > 1. From the initial condition σ0 > 1,
it follows that the positive solution of the differential equation σ̇t = 1

σt
− σt is σt =

√
e−2t(σ2

0 − 1) + 1, so we
see, indeed, that σt > 1. Therefore, the upper bound is a decreasing function of t given the prescribed gradient
flow dynamics. The differential equation µ̇t = −µt also has an explicit solution given the initial condition µ0,
which is µt = µ0e

−t. These explicit solutions to the gradient flow of the KL divergence allow us to express the
evolution of the upper bound concretely as,√

e−2t(σ2
0 − 1) + 1 exp

(
µ2

0e
−2t

2e−2t(σ2
0 − 1)

)
=
√
e−2t(σ2

0 − 1) + 1 exp

(
µ2

0

2(σ2
0 − 1)

)
(129)

This is an intriguing formula since it suggests that although the sequence Mt is decreasing, it decreases only to
a non-unit limit exp(µ2

0/(2(σ2
0 − 1))); indeed, unless µ0 = 0, the limit of this upper bound does not approach

one. For the purposes of MCMC, this may be acceptable, since uniform ergodicity can be obtained so long as
the bound is finite; however, were the upper bound to equal one, this would be optimal. Connecting this back
to the question of adaptation, choosing an increasing sequence of times t0 < t1 < t2 < . . . and consider using
Normal(µtn , σ

2
tn) as the proposal distribution at step n. The Doeblin coefficient at step n is therefore,

Ln =
1√

e−2t(σ2
0 − 1) + 1 exp

(
µ2
0

2(σ2
0−1)

) . (130)

Finally, let us remark that the undesirable property that the upper bounds do not converge to unity can be easily
corrected. The principle issue is that the factors of e−2t cancel in the exponent. However, consider that instead
of using (µt, σt) to inform adaptations one instead uses (µ2t, σt) so that the mean value is further along in the
solution to its initial value problem than the scale. Plugging this into the formula for the upper bound yields,√

e−2t(σ2
0 − 1) + 1 exp

(
µ2

0e
−4t

2e−2t(σ2
0 − 1)

)
=
√
e−2t(σ2

0 − 1) + 1 exp

(
µ2

0e
−2t

2(σ2
0 − 1)

)
, (131)

which converges to unity as t→∞ as desired.
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Instead of the reverse KL divergence we may consider the forward KL divergence between the target distribution
and the proposal.

KL(Normal(0, 1)‖Normal(µ, σ2)) = log σ +
1 + µ2

2σ2
− 1

2
. (132)

The forward KL divergence produces the following equations of motion.

µ̇t = −µt
σ2
t

(133)

σ̇t =
µ2
t + 1

σ3
t

− 1

σt
(134)

Applying the chain rule to eq. (121) with these equations of motion yields the following time derivative of the
upper bound,

d

dt
σt exp

(
µ2
t

2(σ2
t − 1)

)
= exp

(
µ2
t

2(σ2
t − 1)

) −µ4
tσ

2 + µ2
tσ

4
t − 2µ2

tσ
2
t + µ2

t − σ6
t + 3σ4

t − 3σ2
t + 1

σ3
t (σ2

t − 1)2
. (135)

This derivative is less than or equal to zero iff

− µ4
tσ

2 + µ2
tσ

4
t − 2µ2

tσ
2
t + µ2

t − σ6
t + 3σ4

t − 3σ2
t + 1 ≤ 0 (136)

⇐⇒ µ2
t (σ

2
t − 1)2 ≤ µ4

tσ
2
t + (σ2

t − 1)3, (137)

which is true for σ2
t > 1.

‖
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H Adaptation of a Kernel Density Proposal Distribution

A principle difficulty in using normalizing flows as proposal distributions is that it is unclear whether or not a
given adaptation of the neural network parameters will provably decrease the upper bound on the ratio of the
target density and the normalizing flow density. Analyzing this property theoretically in the case of normalizing
flows does not appear to be forthcoming. Nevertheless, we have been able to analyze certain behaviors of
proposals based on kernel density estimators. A version of this procedure (to use kernel density estimators as a
proposal in independent Metropolis-Hastings) was previously pursued in Maire et al. (2019); however, they do
not appear to have looked at the question of when the addition of a new component into the mixture is beneficial,
which is the topic under consideration in the sequel.

Let x1, . . . , xn ∈ Rm. We consider the kernel density estimator computed by,

K̃n(x) =
1

n

n∑
i=1

1

Vol(B̄ε(xi))
1
{
x ∈ B̄ε(xi)

}
. (138)

where B̄ε(x) is the closed ball of radius ε centered at x. For notational convenience, we observe that V =
Vol(B̄ε(x)) = Vol(B̄ε(x

′)) for any x, x′ ∈ Rm and we write mn(x) = #
{
i ∈ (1, . . . , n) : x ∈ B̄ε(xi)

}
. Therefore,

we have the simple expression for the kernel density estimator as K̃n(x) = mn(x)/nV .

Suppose that Π is a probability measure on Rm with compactly supported density π : Rm → R+. Define,

Mn = nV sup
x∈Supp(π)

π(x)

mn(x)
(139)

Hence π(x)/K̃n(x) ≤ Mn. Given a new observation xn+1 ∈ Rm, we would like to understand conditions under
which one can show Mn+1 ≤ Mn. This means that the inclusion of a new observation in the kernel density
estimate reduces the upper bound on the ratio of the target density and the proposal density. To discuss this,
we begin with two definitions.

Definition H.1. The inner bound is defined by,

M ′n = sup
x∈B̄ε(xn+1)∩Supp(π)

π(x)

mn(x)
. (140)

Definition H.2. The outer bound is defined by,

M ′′n = sup
x∈Supp(π)\B̄ε(xn+1)

π(x)

mn(x)
. (141)

Lemma H.3. Let A and B be sets. Then max {supA, supB} = supA ∪B.

Proof. Since A ⊂ A∪B, it is immediate that supA ≤ supA∪B. Identical reasoning shows that supB ≤ supA∪B.
Therefore, max {supA, supB} ≤ supA∪B. Now suppose without loss of generality that supB ≥ supA. Then for
all a ∈ A we have a ≤ supB; moreover, for all b ∈ B, b ≤ supB. Therefore, for all x ∈ A ∪B, x ≤ supB. Thus,
supA∪B ≤ supB, since supA∪B is by definition the least upper bound. Applying identical reasoning to the case
supA ≥ supB reveals supA∪B ≤ max {supA, supB}. Thus, we must have supA∪B = max {supA, supB}.
Corollary H.4. Since Supp(π) \ B̄ε(xn+1) = Supp(π) ∩ B̄ε(xn+1)c, it follows from the distributive law of set
relationships that, {

Supp(π) ∩ B̄ε(xn+1)
}
∪
{

Supp(π) \ B̄ε(xn+1)
}

= Supp(π). (142)

Applying lemma H.3 shows that nV max {M ′n,M ′′n} = Mn.

Lemma H.5. The kernel density estimator K̃n+1(x) can be written as,

K̃n+1(x) =

{
mn(x)

(n+1)V if x 6∈ B̄ε(xn+1)
mn(x)+1
(n+1)V otherwise.

(143)
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Proof. This follows immediately from the equation,

K̃n+1(x) =
1

(n+ 1)V

n+1∑
i=1

1
{
x ∈ B̄ε(xi)

}
(144)

=
1

(n+ 1)V

(
mn(x) + 1

{
x ∈ B̄ε(xn+1)

})
. (145)

Lemma H.6. We have,

sup
x∈Supp(π)\B̄ε(xn+1)

π(x)

K̃n+1(x)
= (n+ 1)VM ′′n . (146)

Proof. For x ∈ Supp(π) \ B̄ε(xn+1),

π(x)

K̃n+1(x)
= (n+ 1)V

π(x)

mn(x)
. (147)

Therefore,

sup
x∈Supp(π)\B̄ε(xn+1)

π(x)

K̃n+1(x)
= (n+ 1)V sup

x∈Supp(π)\B̄ε(xn+1)

π(x)

mn(x)
(148)

= (n+ 1)VM ′′n . (149)

Lemma H.7. We have,

sup
x∈Supp(π)∩B̄ε(xn+1)

π(x)

K̃n+1(x)
≤ nV QnM ′n, (150)

where

Qn = sup
x∈Supp(π)∩B̄ε(xn+1)

mn(x)(n+ 1)

(mn(x) + 1)n
≤ 1. (151)

Proof. Within Supp(π) ∩ B̄ε(xn+1) we have the bound,

nV
π(x)

mn(x)
≤ nVM ′n (152)

=⇒ π(x)

mn(x)/nV
· mn(x)/n

(mn(x) + 1)/(n+ 1)
≤ mn(x)/n

(mn(x) + 1)/(n+ 1)
nVM ′n (153)

=⇒ π(x)

K̃n+1(x)
≤ nV mn(x)/n

(mn(x) + 1)/(n+ 1)
M ′n (154)

Taking the supremum on both sides yields,

sup
x∈Supp(π)∩B̄ε(xn+1)

π(x)

K̃n+1(x)
≤ nV QnM ′n. (155)

Since mn(x) ≤ n, it follows that Qn ≤ 1.

Proposition H.8. If M ′′n > M ′n, then Mn+1 > Mn. In this case, the inclusion of the new observation degrades
the quality of the proposal distribution.
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Proof. Since M ′′n > M ′n, it follows that

sup
x∈Supp(π)∩B̄ε(xn+1)

π(x)

K̃n+1(x)
≤ nV QnM ′n (156)

≤ nVM ′n (157)

< nVM ′′n (158)

≤ (n+ 1)VM ′′n (159)

= sup
x∈Supp(π)\B̄ε(xn+1)

π(x)

K̃n+1(x)
. (160)

Hence Mn+1 = (n+ 1)VM ′′n > nVM ′′n = Mn.

Proposition H.9. It is necessary and sufficient that (1 + 1/n)M ′′n ≤M ′n in order for Mn+1 ≤Mn.

Proof. To establish sufficiency, we have:

Mn+1 ≤ max {(n+ 1)VM ′′n , nV QnM
′
n} (161)

≤ max {nVM ′n, nV QnM ′n} (162)

= nVM ′n (163)

= Mn (164)

To show that this is actually necessary, consider M ′′n ≤M ′n < (1 + 1/n)M ′′n . Then, from lemma H.6 we know,

sup
x∈Supp(π)\B̄ε(xn+1)

π(x)

K̃n+1(x)
= (n+ 1)VM ′′n . (165)

But from lemma H.7 we have,

sup
x∈Supp(π)∩B̄ε(xn+1)

π(x)

K̃n+1(x)
≤ nV QnM ′n (166)

< (n+ 1)V QnM
′′
n (167)

≤ (n+ 1)VM ′′n (168)

Now Mn = nVM ′n < (n+ 1)VM ′′n = Mn+1.

Proposition H.8 informs us that if the worst case bound is outside of B̄ε(xn+1), then the adaptation has actually
made the bound worse. This is because the density outside of B̄ε(xn+1) behaves in a predictable manner: it is
decreased by a factor of n/(n+ 1). Therefore, if the worst case bound on the ratio occurs outside of B̄ε(xn+1),
the ratio can only get worse. At the same time, proposition H.9 informs us that the worst-case bound on the
ratio inside B̄ε(xn+1) must be greater than the worst-case bound outside of B̄ε(xn+1) by at least a factor of
(1 + 1/n) in order for the inclusion of the additional observation xn+1 to improve the worst-case bound of the
ratio of the target density to the kernel density estimator.
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I Diminishing Adaptation and Containment for Mixture Kernels

Proposition I.1. Let Π be a probability measure with density π with respect to measure µ. Let θ ∈ Y and suppose
that θ parameterizes a transition kernel Kθ. Let (Θ0,Θ1, . . .) be a sequence of Y-valued random variables. Suppose

that with probability 1−δ there exists M ≡M(δ) ∈ N such that KΘn(x, dx′) ≥ π(x′)
M µ(dx′) for every n = 1, 2, . . ..

Then (KΘ0 ,KΘ1 , . . .) exhibits containment.

Proof. By assumption, with probability 1− δ, there exists M ≡M(δ) ∈ N such that KΘn(x,dx′) ≥ π(x′)
M µ(dx′)

for every n = 1, 2, . . . and any x ∈ X . Therefore, with probability 1− δ, there exists M ≡M(δ) ∈ N such that,

‖Km
Θn(x, ·)−Π(·)‖TV ≤

(
1− 1

M

)m
(169)

for any m ∈ N, every n = 1, 2, . . ., and x ∈ X . Let ε > 0 be arbitrary. Then, with probability 1− δ, there exists
N = N(ε, δ) ∈ N such that

‖KN
Θn(x, ·)−Π(·)‖TV ≤ ε. (170)

for every n = 1, 2, . . . and any x ∈ X . Namely, the choice

N(ε, δ) =

⌈
log ε

log
(

1− 1
M(δ)

)⌉ (171)

suffices. Thus as a special case, with probability 1− δ, there exists N = N(ε, δ) ∈ N such that

‖KN
Θn(Xn, ·)−Π(·)‖TV ≤ ε. (172)

for every n = 1, 2, . . .. Define the function,

Wε(x, θ) = inf {n ∈ N : ‖Kn
θ (x, ·)−Π(·)‖TV ≤ ε} . (173)

Hence, with probability 1− δ, there exists N = N(ε, δ) ∈ N such that

Wε(Xn,Θn) ≤ N (174)

for every n = 1, 2, . . .. This is the containment condition.

Proposition I.2. Let Π be probability measure with density π with respect to measure µ. Let θ ∈ Y and suppose
that θ parameterizes a probability measure Π̃θ with density π̃θ. Let Kθ be the transition kernel of the independent
Metropolis-Hastings sampler of Π given Π̃θ:

Kθ(x, dx
′) = min

{
1,
π(x′)π̃θ(x)

π(x)π̃θ(x′)

}
π̃θ(x

′) µ(dx′) +

(
1−

∫
X

min

{
1,
π(w)π̃θ(x)

π(x)π̃θ(w)

}
π̃θ(w) µ(dw)

)
δx(dx′). (175)

Let K ′ be another transition and consider the transition kernel that is formed by the mixture of Kθ and K ′:
K̂θ(x,A) = αKθ(x,A) + (1− α)K ′(x,A) for x ∈ X and A ∈ B(X ). Let (Θ0,Θ1, . . .) be a sequence of Y-valued
random variables. If (KΘ0

,KΘ1
, . . .) exhibits diminishing adaptation then so does (K̂Θ0

, K̂Θ1
, . . .). Furthermore,

suppose that with probability at least 1− δ there exists M ≡M(δ) such that KΘn(x, dx′) ≥ π(x′)
M µ(dx′) for every

n = 1, 2, . . .. Then (K̂Θ0
, K̂Θ1

, . . .) exhibits containment.

Proof.

d(K̂Θn , K̂Θn+1
) = sup

x∈X
‖K̂Θn(x, ·)− K̂Θn+1

(x, ·)‖TV (176)

= sup
x∈X
‖αKΘn(x, ·)− αKΘn+1

(x, ·)‖TV (177)

= α sup
x∈X
‖KΘn(x, ·)−KΘn+1(x, ·)‖TV (178)

= αd(KΘn ,KΘn+1
). (179)
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Hence, if d(KΘn ,KΘn+1) converges in probability to zero then so does d(K̂Θn , K̂Θn+1).

To show containment, observe that with probability at least 1− δ there exists M ≡M(δ) such that,

K̂θ(x, dx
′) ≥ αKθ(x, dx

′) (180)

≥ απ(x′)

M
µ(dx′). (181)

Containment then follows from proposition I.1.
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(a) 100 Steps (b) 10,000 Steps (c) Forward KL divergence by Step

Figure 5: Examinations of the violations of stationarity that result by maximizing the pseudo-likelihood of the
accepted samples as an adaptation mechanism. After one-hundred steps of adaptation, one clearly perceives
that the distribution of states does not follow the target distribution. However, after ten-thousand steps, the
distribution of state is closer to the target distribution. We also show the KL divergence between the target
distribution at the proposal distribution according to the number of steps of the chain. Results are computed
over one-million random simulations.

J Violations of Stationarity

In general, adaptation of the parameters of the transition kernel will destroy stationarity. However, if the
adaptations and the state of the chain enjoy a prescribed independence condition, then stationarity of the target
distribution can be conserved.

Proposition J.1. Suppose that (Θ0,Θ1, . . .) is a stochastic Y-valued sequence. Let (KΘn)n∈N be an associated
sequence of Markov transition kernels which produces an X -valued chain as Xn+1 ∼ KΘn(Xn, ·). Suppose further
that Θn and Xn are independent given the history of the chain to step n − 1. If Π is stationary for each KΘn ,
then Π is also the stationary distribution of (Xn)n∈N.

We first give an illustration of why maximizing the pseudo-likelihood objective may not always be beneficial. In
particular, we look for evidence of violations of stationarity; violations of stationarity mean that if one begins
with a sample from the target distribution and transforms it according to several steps of the transition kernel
with adaptations, then the final state may not be distributed according to the target distribution. This can be
interpreted as an undesirable form of sample degradation wherein applications of an adaptive transition kernel
move exact samples further from the target distribution.

As a simple example, we consider sampling Normal(1, 1/2) using a proposal distribution Normal(µ, σ2); the
proposal distribution can be interpreted as a simple normalizing flow consisting of a shift and scale applied
to a standard normal base distribution. We consider adapting the parameters of the proposal distribution by
computing the maximum likelihood estimates of the mean and standard deviation using the accepted samples.
Specifically, let (X0, X1, . . . , Xn) denote the states of the chain to step n; then the parameters of the proposal

distribution at step n+ 1 are µn+1 = (n+ 1)−1
∑n
i=0Xi and σn+1 =

√
(n+ 1)−1

∑n
i=0X

2
i − µ2

n+1. Results for

this adaptation mechanism are shown in fig. 5; after one-hundred steps of adaptation, there is a clear violation of
stationarity, but which has nearly vanished by the ten-thousandth step. We observe that adaptations do tend to
reduce the forward KL divergence between the target and the proposal distribution, with the closeness improving
as the number of adaptation steps increases.
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K Independence and Product Transition Kernels

Let Π be a probability measure of Rm with density π. Let Π̂(A1, . . . , An) =
∏n
i=1 Π(Ai) be the product probability

measure on (Rm)n =
∏n
i=1 Rm (the product space of n copies of Rm). Let (x1, . . . , xn) ∈ (Rm)n and define the

ith transition kernel by,

Ki((x1, . . . , xn), (dy1, . . . ,dyn)) = [αi(xi, yi) dyi + βi(xi) δxi(dyi)] ·
n∏

j=1,j 6=i

δxj (dyj) (182)

αi(x, y) = min

{
1,
π(y)π̃i(x|y)

π(x)π̃i(y|x)

}
π̃i(y|x) (183)

βi(x) =

(
1−

∫
Rm

αi(x,w) dw

)
(184)

Thus we can understand Ki as a transition kernel that applies a Metropolis-Hastings accept-reject decision to the
ith dimension of the posterior using a proposal density π̃i(·|xi) on Rm and leaves all other dimensions unchanged.
Because of the product structure of the joint distribution, these Metropolis-Hastings updates preserve the joint
distribution even though the accept-reject decision is computed only on the ith marginal.

As an example, consider K1 and K2. What is the composition transition kernel generated by first applying K1

and subsequently applying K2? By the Chapman-Kolmogorov formula, it is,

(K2 ◦K1)((x1, . . . , xn), (A1, . . . , An)) (185)

=

∫
Rm
· · ·
∫
Rm

K2((y1, . . . , yn), (A1, . . . , An))K1((x1, . . . , xn), (dy1, . . . ,dyn)) (186)

=

∫
Rm
· · ·
∫
Rm

[∫
A2

α2(y2, w) dw + β2(y2) δy2(A2)

]
·

n∏
j=1,j 6=2

δyj (Aj)


×

[α1(x1, y1) dy1 + β1(x1) δx1
(dy1)] ·

n∏
j=1,j 6=1

δxj (dyj)

 (187)

=

[∫
A1

α1(x1, w) dw + β1(x1)δx1(A1)

]
·
[∫

A2

α2(x2, w) dw + β2(x2)δx2(A2)

]
·
n∏
j=3

δxj (Aj). (188)

Notice that the composition kernel assumes a factorized form. Suppose that (x′1, . . . , x
′
n) ∼ (K2 ◦

K1)((x1, . . . , xn), ·). Drawing a sample from this composition kernel can be achieved by setting x′j = xj for
j = 3, . . . , n and sampling x′1 and x′2 independently from the distributions

Pr [x′i ∈ A|xi] =

∫
A

αi(xi, w) dw + βi(xi)δxi(A), (189)

for i ∈ {1, 2}.
The fact that any composition kernel Kk ◦ · · · ◦ K1 has this product distribution form can be established via
induction. Assume

(Kk ◦ · · · ◦K1)((x1, . . . , xn), (dy1, . . . ,dyn)) =

k∏
i=1

[αi(xi, yi) dyi + βi(xi) δxi(dyi)]

n∏
j=k+1

δxj (dyj) (190)
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Then,

(Kk+1 ◦ · · · ◦K1)((x1, . . . , xn), (A1, . . . , An)) (191)

=

∫
(Rm)n

Kk+1((y1, . . . , yn), (A1, . . . , An))(Kk ◦ · · · ◦K1)((x1, . . . , xn), (dy1, . . . ,dyn)) (192)

=

∫
(Rm)n

(∫
Ak+1

αk+1(yk+1, w) dw + βk+1(yk+1)δyk+1
(Ak+1)

)
n∏

j=1,j 6=k+1

δyj (Aj)


 k∏
i=1

[αi(xi, yi) dyi + βi(xi) δxi(dyi)]

n∏
j=k+1

δxj (dyj)

 (193)

=

[
k+1∏
i=1

(∫
Ai

αi(yi, w) dw + βi(yi)δxi(Ai)

)] n∏
j=k+2

δxj (Aj)

 . (194)

This verifies that the composition kernel has the desired product structure. The special case of k = n implies,

(Kn ◦ · · · ◦K1)((x1, . . . , xn), (dy1, . . . ,dyn)) =

n∏
i=1

[αi(xi, yi) dyi + βi(xi) δxi(dyi)] . (195)

To sample (x′1, . . . , x
′
n) ∼ (Kn ◦ · · · ◦K1)((x1, . . . , xn), ·), one may simply sample independently from the distri-

butions,

Pr [x′i ∈ A|xi] =

∫
A

αi(xi, w) dw + βi(xi)δxi(A) (196)

for i = 1, . . . , n. Each of these samples may be drawn in parallel because the ith sample depends only on xi.
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L Reasons for Violations of Containment

Inexpressive Family

If the family of proposal densities is not sufficiently expressive, it may be that there does not exist any M ≥ 1
satisfying log π(x) − log π̃θ(x) < logM for any θ. For instance, on Rn, if the proposal densities have tails that
vanish exponentially quickly and the target density’s tails diminish only polynomially, then the family of proposal
densities is not sufficiently expressive for proposition 4.4 to hold; see Jaini et al. (2020) for details on the tail
behavior of normalizing flows. On the other hand, if the family of proposal distributions has a universality
property (see, inter alia Kobyzev et al. (2020)), then this concern can be alleviated.

Mode Collapse

Proposal densities obtained through the minimization of certain loss functions, including KL(π̃θ‖π), may result
in the modes of π not being properly represented in the proposal density π̃θ. In the case of KL(π̃θ‖π), the
mode-seeking behavior of the loss function can cause the mode-collapse phenomenon, which can invalidate the
assumption of proposition 4.4. One could alleviate this concern by targeting a tempered version of the target
density or if one has confidence that mode collapse will not occur (for instance if the target density is unimodal).

Unstable Loss

If the adaptations produced by attempting to minimize the loss function are ill-behaved (for instance if the step-
size is too large, leading to divergent adaptations), then the sequence (Θn)n∈N may parameterize poor proposal
densities which cause the failure of eq. (6). If the algorithm relies of the convergence of the sequence (Θn)n∈N,
then ill-behaved adaptations may lead to a violation of ergodicity due to a failure of both containment and
diminishing adaptation.

Inadequate Prior Knowledge

Sampling procedures can be developed so as to incorporate additional knowledge about the posterior, such as
symmetries. When such information is available, developing a Bayesian inference procedure that incorporates it
can lead to improvements. On the other hand, in complicated distributions, a lack of understanding about the
posterior can lead to missed modes, resulting in a failure of containment.
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Algorithm 1 Algorithm for sampling from a target distribution by adapting a normalizing flow proposal dis-
tribution in the independent Metropolis-Hastings algorithm using the pseudo-likelihood objective.

Input: A sequence of step-sizes (ε0, ε1, . . .); a sequence of adaptation probabilities (α0, α, . . .) an initial state
x0 and initial parameter θ0; a target distribution with density π : X → R.
for n = 0, 1, 2, . . . do

Sample a proposal state from the current proposal distribution x̃n+1 ∼ Π̃θn−1
.

Generate u ∼ Uniform(0, 1) and compute the Metropolis-Hastings accept-reject decision.

a← u < min

{
1,
π(x̃n+1)π̃θn(xn)

π(xn)π̃θn(x̃n+1)

}
(197)

if a then
Accept the proposal xn+1 ← x̃n+1.

else
Remain at current state xn+1 ← xn.

end if
Generate u′ ∼ Uniform(0, 1).
if u′ < αn then

Update the parameters

θn+1 ← θn + εn∇ log π̃θn(xk) (198)

where k ∼ Uniform({0, 1 . . . , n+ 1}).
else

Otherwise, keep the current parameters θn+1 ← θn.
end if

end for

M Pseudo-Likelihood Algorithm

The pseudo-likelihood training algorithm is given in algorithm 1.
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N Simultaneous Uniform Ergodicity on Compact Spaces

Definition N.1. A family of transition kernels {Kθ : θ ∈ Y} is said to exhibit simultaneous uniform ergodicity if,
for all ε > 0, there exists n ∈ N such that ‖Kn

θ (x, ·)−Π(·)‖TV ≤ ε for all θ ∈ Y and x ∈ X .

Simultaneous uniform ergodicity is a strong condition which states that, no matter which parameter θ ∈ Y
one selects, there is a finite number of steps one can take with that fixed transition kernel in order to become
arbitrarily close to the target distribution in total variation. We will see later that this condition can be made
to hold for compactly supported target distributions.

We now turn our attention to the question of simultaneous uniform ergodicity.

Proposition N.2. Let X and π satisfy the conditions of corollary 2.7. Suppose that every θ ∈ Y parameterizes
a probability measure Π̃θ on B(X ) whose density π̃θ is continuous and satisfies Supp(π) ⊆ Supp(π̃θ). Suppose
further that for all θ ∈ Y, there exists δ > 0 such that

δ ≤ min
x∈Supp(π)

π̃θ(x) (199)

Then the family of Markov chain transition operators of the independent Metropolis-Hastings sampler of Π given
Π̃θ satisfies the simultaneous uniform ergodicity property.

A proof is given in appendix E. Perhaps the most straight-forward mechanism to guarantee eq. (199) is to
consider mixture distributions with a fixed distribution that shares the same support as π.

Lemma N.3. Suppose that Π∗ is a distribution on X with continuous density π∗Π∗ such that Supp(π) ⊆
Supp(π∗Π∗). Suppose that every θ ∈ Y parameterizes a probability measure Π̃θ on B(X ) whose density π̃θ is
continuous. Consider probability measures Π̃∗θ whose densities are constructed from mixtures,

π̃∗θ(x) = βπ∗Π∗(x) + (1− β)π̃θ(x), (200)

where β ∈ (0, 1). Then π̃∗θ satisfies eq. (199) with

δ = β min
x∈Supp(π)

π∗Π∗(x). (201)

A proof is given in appendix E. A natural choice of Π∗ would be the uniform distribution on X . It is conceivable
that one could consider adapting β in the same way that one adapts θ. However, in order to guarantee that
eq. (201) is greater than zero, one will require the condition that β ∈ (β∗, 1) where β∗ > 0.

Example 6. Let Π be a probability measure with density π on a compact space X . Let Y = Rm and suppose that
every θ ∈ Y smoothly parameterizes a probability measure Π̃θ on B(X ) with density π̃θ for which Supp(π) =
Supp(π̃θ). Let Π̃∗θ be as in lemma N.3. Let (α0, α1, . . .) be a sequence, bounded between zero and one, converging
to zero. Consider the sequence of updates,

θn =

θn−1 − ε∇θ log
π̃θn−1

(X̃(θn−1))

π(X̃(θn−1))
w.p. 1− αn−1

θn−1 otherwise.
(202)

where X̃ ∼ Π̃∗θn−1
. Consider the family of Markov chain transition operators of the independent Metropolis-

Hastings sampler of Π given Π̃∗θn with transition kernels Kθn where the proposal at step n is X̃. Then by
theorem 2.12 the distribution of Xn+1 ∼ Kθn(Xn, ·) converges to Π. ‖

Examples of compact spaces on which normalizing flows have been applied include the torus, the sphere, the
special orthogonal group, and the Stiefel manifold (Rezende et al., 2020; Falorsi et al., 2019).

The reason we were required to invoke a mixture distribution in the adaptation was because it prevented any
sequence from becoming arbitrarily ill-suited to sampling the target distribution; the fact that there was a global
limit to how bad any proposal distribution could be allowed us to invoke simultaneous uniform ergodicity of the
family of distributions.
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O Experimental details on field experiment

We provide additional details on the experiment presented in section 5.3.

Field distribution. The φ4 field model is a popular model used to study phase transition in statistical me-
chanics (see for example (Berglund et al., 2017)). Here we focus on its 1d version, where its field is defined on the
segment [0, 1], and impose Dirichlet boundary conditions φ(0) = φ(1) = 0. The energy function is an intergral
over the segment of two terms:

U(φ) =

∫ 1

0

[
a

2
(∂sφ)2 +

1

4a

(
1− φ2(s)

)2]
ds. (203)

The coupling term a
2 (∂sφ)2 encourages the smoothness of the field, while the local potential term 1

4a

(
1− φ2(s)

)2
favors fields taking values close to 1 or −1 over the segment. For large values of the parameter a, fields with
significant statistical weights will take values close to 0 over the entire segment [0, 1]. As a decreases, the system
undergoes a phase transition and two distinct modes forms concentrating around either +1 or −1.

Note that here the energy function (203) is symmetric under the symmetry φ→ −φ. We exploit this symmetry
to provide high-quality reference samples in the experiments described next. Note however that as a biasing
term is added to the energy, the statistical weights of either of the modes become unknown.

The numerical experiments described next shows that the adaptive sampler with normalizing flow proposals
can recover the relative statistics thanks to efficient mixing, at least at the level of discretization described.
Conversely, the energy barrier between the two modes prevents a Langevin sampler from mixing in a reasonable
time.

Numerics. We sample the field at 100 equally spaced locations between 0 and 1. The RealNVP flow (Dinh
et al., 2017) we optimize has 5 pairs of affine coupling layers updating each half of the 100 field variables. The
scaling and translation transformations of each coupling layer is a 2-hidden-layer perceptron with relu activations
and 100 units per layer.

The algorithm minimizing the “pseudo-likelihood” objective, defined in example 3, follows largely the lines of
algorithm 1. Being more specific, we collect the states of 100 parallel walkers every 10 sampling iterations and
take a gradient step with the corresponding 1000-sample batch. The initial learning rate of 10−3 is halved every
5000 gradient steps.

We initialize 100 chains: 20 at the uniform value of 1 and 80 at the uniform value of −1. Thanks to the adaptation
of the normalizing flow, leading to good acceptance as reported in the main text, these chains can easily mix
between modes and recover the proper statistical weights of 50/50.
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Figure 6: Samples and proposals in the φ4 field experiment.
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