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Abstract

Making an informed decision—for exam-
ple, when choosing a career or housing—
requires knowledge about the available op-
tions. Such knowledge is generally acquired
through costly trial and error, but this learn-
ing process can be disrupted by competition.
In this work, we study how competition af-
fects the long-term outcomes of individuals as
they learn. We build on a line of work that
models this setting as a two-sided matching
market with bandit learners. A recent re-
sult in this area states that it is impossi-
ble to simultaneously guarantee two natural
desiderata: stability and low optimal regret
for all agents. Resource-allocating platforms
can point to this result as a justification for
assigning good long-term outcomes to some
agents and poor ones to others. We show
that this impossibility need not hold true. In
particular, by modeling two additional com-
ponents of competition—namely, costs and
transfers—we prove that it is possible to si-
multaneously guarantee four desiderata: sta-
bility, low optimal regret, fairness in the dis-
tribution of regret, and high social welfare.

1 INTRODUCTION

When individuals compete for resources, it is often as-
sumed that every individual has access to knowledge
that allows them to determine which resources they
prefer. For example, consider choosing a primary care
physician or selecting a career path. Some individu-
als may have insider knowledge about physicians or
careers, e.g., due to previous experiences or advice re-
layed by friends. Others are left in the dark. Those
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in the dark can only obtain knowledge through costly
trial and error, which can be further frustrated by the
presence of competition. For example, if members of a
group are repeatedly denied opportunities in academia
due to competition, they may never obtain the requi-
site knowledge to make an informed decision about
pursuing a career in academia.

In this work, we are interested in the interplay be-
tween learning and competition. Specifically, we are
motivated by the question: How does competition af-
fect an individual’s ability to make informed decisions
and ultimately the individual’s long-term outcomes?

To address this question, we study the two-sided, com-
petitive matching market. In this setting, there are two
types of agents. For linguistic convenience, we call
agents on one side of the market users and those on
the other providers. Each user has a set of preferences
over providers, and vice versa. In a matching market,
users and providers are paired one-to-one in an assign-
ment is known as the matching. Since a user can be
paired to at most one provider at a given time, and
vice versa, there is competition between agents whose
preferences overlap. Such markets are ubiquitous and
include sellers competing to show advertisements to so-
cial media users, students competing for internships,
residents competing for housing, and more.

In order to study how knowledge affects the outcomes
of individuals in competition, we extend this problem
to include a learning component, as described next.

Knowledge in matching. In the standard central-
ized matching problem, as posed by Gale and Shapley
(1962), every user knows their true preferences over
providers a priori, and vice versa. Agents then report
their preferences to a central platform, which assigns a
matching. A matching M is stable if there is no user-
provider pair such that they prefer to be matched to
one another rather than to their matches under M .
Intuitively, when matchings are stable, agents trust
the platform in the sense that there is no incentive for
them to defect. While stability is desireable for the
platform, it does not necessarily reflect overall perfor-
mance. Indeed, as studied by Axtell and Kimbrough
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Figure 1: We study learning under competition using the two-sided matching market with bandit learners. As
our main result, we show that, with costs and transfers, it is possible to simultaneously guarantee four desiderata.

(2008), stability can come at the expense of other ob-
jectives, such as high social welfare or fairness.

Recent works study an extension of the matching prob-
lem in which agents are not assumed to be knowledge-
able. They build on the insight that, contrary to the
core assumption of the standard matching problem,
users and providers rarely know their true preferences
a priori. Rather, the agents learn their preferences
through experiences—specifically, by being matched.
For example, consider the internship market in which
workers present employers with qualifications, and em-
ployers present workers with career options. In this
setting, matching workers to internships allows work-
ers to learn their preferences over careers and employ-
ers to learn their preferences over worker qualifications.

Blending matching and bandit learning. While
the standard matching problem captures agents com-
peting for resources, a more sophisticated model is
needed to model how agents learn through trial and
error. Conveniently, the task of learning one’s pref-
erences from experiences is at the core of the multi-
armed bandit (MAB) problem (Cesa-Bianchi and Lu-
gosi, 2006; Bubeck and Cesa-Bianchi, 2012).

In this way, one can study matching under learning
by blending the matching and MAB problems. This is
precisely what Liu et al. (2020a) do in a recent work on
the centralized two-sided matching problem with ban-
dit learners. Remarkably, Liu et al. (2020a) find that,
although agents may not know their true preferences a
priori, it is possible to assign matchings that are stable
at every time step and permit agents to learn enough
so that the system converges to matchings that are
stable under the agents’ true (unknown) preferences.

Our focus. Liu et al. (2020a) also surface an im-
possibility result: a matching platform cannot guar-
antee low optimal regret—a measure of long-term
happiness—for all agents without sacrificing stability.

This impossibility result is the focus of our work. Con-
sider online platforms (e.g., Facebook), which are gen-

erally concerned with the retention of agents, such as
their users, content sources, and advertisers. Recall
that a lack of stability implies that agents are better
off when they leave the platform. Therefore, online
platforms are typically permitted to prioritize stabil-
ity because it is tied to their financial survival. The
impossibility result above gives platforms a justifica-
tion for favoring some agents over others. In other
words, when a platform chooses matches that assign
good long-term outcomes to some while assigning poor
ones to others, the platform can argue that it could not
have done any better by pointing to the impossibility
result. But does this impossibility result hold in general
or are there ways to overcome it?

In this work, we show that the impossibility result is
an artifact of the model posed by Liu et al. (2020a),
i.e., that stability and low regret need not be in ten-
sion. By adding a layer of complexity, we find that
it is possible to simultaneously guarantee stability, low
regret, fairness, and high social welfare.

Matching with costs and transfers. Our adjust-
ment is the modeling of costs and transfers. Although
this adjustment is minor, it can overturn the impossi-
bility result and align the platform’s and agents’ in-
terests. We provide several examples showing how
costs and transfers might arise in real-world settings.
Intuitively, competition can give rise to payments—
which are equivalent to transfers between agents—or
demand additional effort and fees from agents—which
are equivalent to costs.

Our contributions are visualized in Fig. 1 and sum-
marized as follows. We formulate the centralized, two-
sided matching problem with bandit learners under
costs and transfers in Section 3. In Section 4, we
show that, without costs or transfers, it is impossible
to guarantee stability alongside low regret, fairness,
or high social welfare (Proposition 1). We then show
that, with costs and transfers, it is possible to simulta-
neously guarantee all four desiderata (Theorem 2). In
Section 5, we provide intuition via several examples.
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2 RELATED WORK

Two-sided matching. In the two-sided matching
problem, there are two distinct populations that wish
to be matched one-to-one. Examples of two-sided
matchings range from how individuals find partners or
how workers fill job openings to how platforms match
content to users or how doctors are assigned to pa-
tients. One of the challenges is finding a stable match-
ing: a matching under which no pair of agents is in-
centivized to defect and pair off together.

In a foundational work, Gale and Shapley (1962) show
that there exists at least one stable matching and pro-
vide an algorithm—known as the Gale-Shapley (GS)
or deferred acceptance algorithm—that finds such a
matching (Knuth and De Bruijn, 1997; Roth, 2008). In
the footsteps of Gale and Shapley (1962), one line of re-
search studies centralized matchings, in which agents’
preferences are reported to a central platform that as-
signs the matches. Another line of work studies decen-
tralized (or distributed) matching with no coordina-
tion between agents (Roth and Vate, 1990; Echenique
and Yariv, 2012).

There are many closely related problems, such as
the the generalized assignment (Kuhn, 1955; Ross
and Soland, 1975; Pentico, 2007); housing alloca-
tion (Shapley and Scarf, 1974); college admissions
or hospital-residents (Gale and Shapley, 1962; Roth,
1984); stable roommates (Irving, 1985); and general-
ized stable allocation (Dean and Swar, 2009) problems.

Multi-armed bandit (MAB) problem. In the
MAB problem (Bubeck and Cesa-Bianchi, 2012; Lat-
timore and Szepesvári, 2020), an agent (the bandit)
sequentially chooses between K options (or arms). At
each time step, the agent selects an arm and receives
a noisy reward in return. The agent’s goal is to maxi-
mize its cumulative reward over T time steps or, equiv-
alently, to minimize regret. However, the agent does
not know the expected rewards of each arm a pri-
ori. To minimize regret, the bandit learner must bal-
ance its short-term desire to select arms with high,
known rewards against its need to learn the expected
reward of other arms. This balance—also known as the
exploitation-exploration trade-off (Wilson et al., 2014;
Schnabel et al., 2018; Wilson et al., 2021)—is a fo-
cal point of reinforcement learning (Sutton and Barto,
2018; Wiering and Van Otterlo, 2012).

The goal of the MAB problem is to design a selec-
tion policy such that the agent incurs low regret. Lai
and Robbins (1985) showed that regret must grow
Ω(log(T )), which led to research on policies that guar-
antee O(log(T )) regret (Thompson, 1933; Bubeck and
Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020).

One of the most popular policies is known as the upper
confidence bound (UCB) strategy (Auer et al., 2002),
which is a deterministic decision-making strategy that
achieves low, i.e., O(log(T )), regret.

Matching markets with bandit learners. Sequen-
tial decision-making under uncertainty and competi-
tion is a problem of long-standing interest. Recently,
such settings have been modeled as a combined match-
ing and MAB problem (Das and Kamenica, 2005; Liu
et al., 2020a). While Das and Kamenica (2005) intro-
duce the combined problem, they study it under the
strict assumption that agents on one side of the mar-
ket have identical preferences. In this work, we study
the setting presented by Liu et al. (2020a).

In the centralized matching market with bandit learn-
ers (Liu et al., 2020a), users and providers are on oppo-
site sides of the market. As in the matching problem,
users compete for matches with providers, and vice
versa. As in the MAB problem, agents do not know
their true preferences a priori. Instead, agents learn
their preferences from previous matches. At each time
step, each user computes its UCBs for all providers,
and vice versa, then reports them to the central plat-
form, which runs the GS algorithm to assign a stable
matching at each time step.

There are related works on how competition affects
learning (Mansour et al., 2018; Aridor et al., 2020),
bandits with collisions (Liu and Zhao, 2010; Kalathil
et al., 2014; Bubeck et al., 2020), and coordinated re-
source allocation (Avner and Mannor, 2019). Though
related, these settings are one-sided (i.e., only one side
of the market has preferences), and they do not con-
sider costs or transfers. There are also recent works
that study other aspects of the matching problem with
bandit learners, such as decentralization, matching ro-
bustness, and information exchange (Chawla et al.,
2020; Boursier and Perchet, 2020; Sankararaman et al.,
2020; Vial et al., 2020; Liu et al., 2020b). A recent
work by Jagadeesan et al. (2021) study a closely re-
lated problem of learning matchings under transferable
utilities. These authors consider a different (slightly
stronger) notion of stability and they allow transfer
rules that vary each time step.

Costs and transfers. Recall that, in the MAB prob-
lem, an agent’s regret is low if it is O(log(T )). Liu
et al. (2020a) show that, in the centralized two-sided
matching problem with bandit learners, it is possible
to guarantee stability and O(log(T )) pessimal regret
for all agents. However, there is no guarantee that
an agent’s optimal regret is O(log(T )). We propose
this impossibility result can be resolved by adding a
layer of complexity not present in the previous work
by Liu et al. (2020a): costs and transfers. Intuitively,
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due to competition in matching markets, it is natural
for transfers (e.g., payments) to arise or for agents to
internalize costs (e.g., fatigue).

Incorporating transfers in matching is not new. Sev-
eral works on the standard two-sided matching prob-
lem allow transfers between agents (Shapley and Shu-
bik, 1971; Becker, 1973). They show that transfers are
important to balancing supply and demand, allowing
markets to clear (Shapley and Shubik, 1971; Kelso Jr.
and Crawford, 1982). It has also been suggested that
transfers (e.g., prices) and costs (e.g., search frictions)
can explain discrepancies between predicted and ob-
served matching behaviors (Hitsch et al., 2010).

Stability, fairness, and social welfare. Early
works on matchings study stability (Gale and Shap-
ley, 1962) while later works consider other objectives,
such as high social welfare (Axtell and Kimbrough,
2008), fairness (Masarani and Gokturk, 1989; Klaus
and Klijn, 2006; Sühr et al., 2019), envy-freeness (Wu
and Roth, 2018), and strategy-proofness (Roth, 1982;
Ashlagi and Gonczarowski, 2018). While important,
stability is a local objective and does not necessarily
reflect global performance. For example, stability can
come at the expense of social welfare (the sum of all
agents’ payoffs) and fairness (the balanced distribution
of regret across agents) (Axtell and Kimbrough, 2008).
In this work, we consider stability, fairness, and social
welfare. We do not study envy-freeness and strategy-
proofness. As our main contribution, we show that it
is possible to simultaneously guarantee stability, fair-
ness, and high social welfare as well as low regret.

3 PROBLEM STATEMENT

In this section, we formalize the centralized matching
problem with bandit learners. The setup is similar to
that given by Liu et al. (2020a). Our main modifica-
tion is the incorporation of costs and transfers, and
our definitions are adjusted accordingly.

3.1 Setup

Suppose that there are two types of agents who sit
on opposite sides of the market. For linguistic con-
venience, we call the agents on one side users and
those on the other providers. We denote the sets
of users and providers by U = {u1, u2, . . . , uN} and
P = {p1, p2, . . . , pL}, respectively, where U ∩ P = ∅.
Let A = U ∪ P denote the set of all agents and
A+ = A ∪ {∅}, where ∅ denotes no agent. Without
loss of generality, let N ≥ L.

Each user has a set of preferences over providers, and
vice versa. These true preferences are unknown a pri-
ori and must be learned with time. For example, the

true preference of an applicant for a job could capture
how enjoyable the applicant would find the job if given
the job, and the true preference of an advertiser for a
Facebook user would be how profitable that user is to
the advertiser if matched to it. Here, the “agents” are
the applicants and jobs in the first example, and the
advertisers and Facebook users in the second example.

Let µ(a1, a2) denote agent a1’s true (unknown) pref-
erence for agent a2, where µ : A × A+ → R≥0, and
a1 and a2 cannot both belong to U or to P. We
assume that there are no ties, i.e., a′ 6= a′′ =⇒
µ(a, a′) 6= µ(a, a′′) for all a ∈ A. We also assume
that µ(a, a′) + µ(a′, a) 6= µ(a′′′, a′′) + µ(a′′, a′′′) unless
(a, a′) = (a′′, a′′′) or (a, a′) = (a′′, a′′′). This assump-
tion can be relaxed, as we discuss in the Appendix.

Matching. Let T ∈ N>0 be the time horizon. At
every time step t ∈ [T ], a platform matches users and
providers based on the agents’ preferencesHt at time t.
Let M(a;Ht) denote the agent to which a is matched
at time t, where M : A → A+ denotes the matching,
and M(a;Ht) = ∅ implies that agent a is unmatched
at time t. Without loss of generality, we assume that
agents always prefer to be matched than to be un-
matched. A feasible matching is one in which each user
is matched to at most one provider, and all providers
are matched to exactly one user. Let W be the set of
all feasible matchings between users and providers.

An agent a learns how compatible they are with agent
a′ through trial and error. Formally, if a is matched

to a′ at time t, then a receives a reward Xt(a, a
′)

i.i.d.∼
D(a, a′), where D(a, a′) is a sub-Gaussian distribution
with parameter σ2 centered at µ(a, a′). We adopt the
convention that µ(a, ∅) = Xt(a, ∅) = 0. Each agent
may also incur a cost and/or partake in a transfer.
Let C(a, a′;Ht) denote the cost that a would incur if
matched to a′ at time t, where C : A×A+ → R. Let
T (a, a′;Ht) denote the transfer that a would receive
from a′ if matched to a′ at time t, where T : A ×
A+ → R and T (a, a′;Ht) = −T (a′, a;Ht). We use the
convention that C(a, ∅) = T (a, ∅) = 0 for all a ∈ A.

Therefore, if agent a is matched to a′ based on prefer-
ences Ht, then a’s observed payoff is

Ut(a, a
′;Ht) = Xt(a, a

′)− C(a, a′;Ht) + T (a, a′;Ht).

Each agent observes its own match, reward, cost, and
transfer but not the private information of any other
agent. Other than the matchings, costs, and transfers
that it assigns, the platform only observes the prefer-
ences Ht at time t. The platform cannot observe the
agents’ other private information.

Bandit learners. We refer to the agents as ban-
dit learners because their task—to learn one’s pref-
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erences by sequentially sampling the options—mirrors
the MAB problem. Let each agent a ∈ A begin with
T0(a, a′) samples {X1(a, a′) , . . . , XT0(a,a′)(a, a′)},
where Xτ (a, a′)

i.i.d.∼ D(a, a′) for all τ ∈ [T0(a, a′)]
and T0(a, a′) = T0(a′, a). Let T0(u, p) , T0(p, u) > 0
for all u ∈ U and p ∈ P. In words, agents have at
least one noisy sample before matching begins.1 Let
Tt(a, a

′) = T0(a, a′) +
∑
τ∈[t] 1(M(a;Hτ ) = a′) be

the number of samples a has for a′ up to time t and
µ̂t(a, a

′) = (Tt−1(a, a′))−1
(∑

τ∈[t−1] 1(M(a;Hτ ) =

a′)Xτ (a, a′) +
∑
τ∈[T0(a,a′)]X

τ (a, a′)
)

denote the em-
pirical mean of the samples.

Under the σ2-sub-Gaussian assumption above, the α-
upper confidence bound (UCB) of a for a′ is:

νt(a, a
′) = µ̂t(a, a

′) +
√

(2σ2α log(t))/Tt−1(a, a′),

where α ∈ R∩ (2,∞) and νt(a, ∅) = 0 for all a, a′ ∈ A.
We call νt(a, ·) the transient preferences of agent a
at time t. To see why, note that in the absence of
competition and if C = T = 0, our setup is identical
to the classical MAB problem, and νt(a, a

′) captures
a’s preference for being matched to (i.e., sampling) a′

at time t under the UCB algorithm.

In this work, we let Ht = νt, i.e., agents report their
transient preferences νt to the platform at time t.2

Summary of matching process. In summary, the
matching process with costs and transfers proceeds as
follows. At t = 0, the platform decides on (M, C, T ),
which is made known to all agents. Then, at every
time step t ∈ [T ], there are four stages:

1. Update: Every agent a updates estimates µ̂t(a, ·).
2. Report : Using µ̂t(a, ·), every agent a reports its

transient preferences νt(a, ·) to the platform.
3. Match and Observe: Based on νt, the plat-

form matches users and providers according to
M(· ; νt). Each agent a observes its own match
M(a; νt) and stochastic reward Xt(a,M(a; νt)).

4. Pay and transfer : Each agent a may incur the
cost C(a,M(a; νt); νt) and/or receive the transfer
T (a,M(a; νt); νt) from its match M(a; νt).

As mentioned above, the platform can only observe the
agents’ transient preferences as well as the matches,

1This construction is equivalent (with small modifica-
tions) to cyclically matching users and providers in the
first N time steps, as often done in the MAB setting.

2Letting Ht = νt is natural because an agent’s pref-
erences at a given time t must balance exploration and
exploitation, as captured by UCB preferences. Note that
we could equivalently let Ht = µ̂t, i.e., agents report their
empirical estimates of µ. Our results would still hold. The
only modification would be that the platform computes νt
from µ̂t based on the matching history.

costs, and transfers that it assigns to the agents. An
agent can only observe its own information, including
its preferences, match, reward, cost, and transfer.

3.2 Desiderata

The platform’s role is to design the matching mecha-
nismM, cost rule C, and transfer rule T . In this work,
there are four desiderata of interest: stability, regret,
fairness, and social welfare.

We first introduce some notation. We say that V (a, a′)
is the payoff that agent a receives if matched to agent
a′ under some payoff function V : A×A+ → R. When
we are concerned with a specific set of preferences ψ :
A×A+ → R, we use the following notation:

V (a, a′;ψ) = ψ(a, a′)− C(a, a′;ψ) + T (a, a′;ψ),

for all a ∈ A and a′ ∈ A+.

(a) Stability. A matching M ∈ W is not stable un-
der V if there exist a, a′ ∈ A such that V (a,M(a)) <
V (a, a′) and V (a′,M(a′)) < V (a′, a).3 In words,
a matching is not stable when there exists a user-
provider pair that, under payoffs V , would rather de-
fect than participate in the matching. Let S(V ) ⊂ W
be the set of stable matchings under payoffs V .

Definition 1. (M, C, T ) is stable if and only if
M(· ; νt) ∈ S(V (·, · ; νt)) for all t ∈ [T ].

(b) Low regret. Regret measures the loss incurred
by an agent as it learns. Let the optimal and pessimal
matchings for agent a at time t be defined as:

Ma
t ∈ arg max

M∈S(V (·,· ;µ))
EXt∼D [Ut(a,M(a); νt)] ,

Ma
t ∈ arg min

M∈S(V (·,· ;µ))
EXt∼D [Ut(a,M(a); νt)] ,

respectively. For intuition, recall that a stable match-
ing is not necessarily unique, i.e., |S(V (·, · ;µ))| ≥ 1.
Ma

t and Ma
t are both stable matchings under V (·, · ;µ)

that, respectively, yield the highest and lowest ex-
pected payoffs for agent a at time t. Let the optimal
regret R̄(a;M) of agent a under (M, C, T ) be:

T∑
t=1

E[Ut(a,M
a
t (a); νt)− Ut(a,M(a; νt); νt)].

Let pessimal regret be defined analogously, exchanging
Ma

t for Ma
t .4 Note that R̄(a;M) ≥ R(a;M). If there

is a unique stable matching, i.e., |S(V (·, · ;µ))| = 1,
then Ma

t = Ma
t and R̄(a;M) = R(a;M) for all a ∈ A

and t ∈ [T ]. We define low regret as follows.

3In some works, this definition of stability is known as
“weak stability” (Irving, 1994; Manlove, 2002). In this
work, when we use “stability”, we mean “weak stability”.

4Note that we often suppress C and T in our notation,
such as in R̄, V , and Wt.
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Algorithm 1: Gale-Shapley algorithm (with
providers as proposers)

Input: Set of agents A = U ∪ P, where
U = {u1, u2, . . . , uN},
P = {p1, p2, . . . , pL}, U ∩ P = ∅, and
N ≥ L. Payoff function V : A×A+ → R.

Output: Matching M ∈ S(V ) ⊂ W.

1 Initialize M : A → A+ s.t. M(a)← ∅ ∀a ∈ A;
2 while ∃ unmatched provider p ∈ P : M(p) = ∅ do
3 Let u denote p’s most preferred user to which

p has not yet proposed;
4 If u is unmatched, i.e., M(u) = ∅, then match

u and p such that: M(u)← p and M(p)← u;
5 Otherwise, if u prefers p to current match, i.e.,

V (u, p) > V (u,M(u)), match u and p s.t.
M ′(M(u))← ∅ , M(u)← p, and M(p)← u;

6 end

The GS algorithm is given in detail in the Appendix.

Definition 2. An agent incurs low regret when
R(a;M) ≤ R̄(a;M) = O(log(T )).

(c) Fairness. We say that (M, C, T ) is unfair if some
agents incur low regret while others incur high regret.

Definition 3. (M, C, T ) is unfair if there exists a pair
of agents (a, a′) such that R̄(a;M) = O(log(T )) and
R̄(a′;M) = ω(log(T )). Otherwise, it is fair.

(d) High social welfare. Social welfare is a utili-
tarian metric defined as the sum of all agents’ payoffs.
Formally, the social welfare of (M, C, T ) at time step
t is Wt(M) =

∑
a∈A V (a,M(a; νt); νt).

Definition 4. (M, C, T ) guarantees κ-high social wel-
fare at time t if Wt(M) ≥ κmaxM′Wt(M′) and
Wt(M) > 0. If there does not exist such a κ > 0
or Wt(M) = 0, then the social welfare at t is low.

4 MAIN RESULTS

In this section, we give two results. Using our setup,
we first re-state the impossibility result of Liu et al.
(2020a). We then give our main result, which says
that, with costs and transfers, one can simultaneously
guarantee stability, low regret, fairness, and high social
welfare. All proofs can be found in the Appendix.

Before proceeding, one tool we require is a classical
algorithm known as the Gale-Shapley (GS) algorithm,
which we restate in Algorithm 1. Several well-known
results about the GS algorithm are given in Appendix
B. The most relevant result for the understanding of
this work is that the GS algorithm always returns a
stable matching relative to the given payoff function.

Impossibility result. We begin with an impossibil-
ity result that is analogous to that given by Liu et al.
(2020a) with minor modifications. It states that, in
the absence of costs and transfers, all agents are guar-
anteed to have low pessimal regret, but there is no
guarantee that they have low optimal regret, which
can grow Ω(T ). Let:

∆max(a) = max
a1,a2∈A+

(µ(a, a1)− µ(a, a2)),

∆min = min
a1∈A,a2∈A+,a3∈A+\a2

|µ(a1, a2)− µ(a1, a3)|.

Proposition 1. Suppose that there are no costs
or transfers such that: C(a1, a2;ψ) = 0 and
T (a1, a2;ψ) = 0 for all a1 ∈ A, a2 ∈ A+, and ψ : A×
A+ → R. If the GS algorithm is applied over V (·, · ; νt)
at every t ∈ [T ], then the system is stable. Moreover,

R(a;M) ≤ 2N2L∆max(a)
(

8σ2α log(T )
∆2

min
+ α

α−2

)
for all

a ∈ A. However, under stability, it is not possible to
guarantee fairness or high social welfare, and there ex-
ist settings (A, µ) for which R̄(a;M) = Ω(T ) for at
least one agent a ∈ A.

Proposition 1 states that applying the GS algorithm at
each time step ensures that every matching is stable
and that every agent has low pessimal regret. How-
ever, the second half of Proposition 1 reveals an im-
possibility result: without costs or transfers, it is not
possible to guarantee low optimal regret alongside sta-
bility. In fact, there are settings in which the optimal
regret of at least one agent grows Ω(T ). Guaranteeing
low pessimal regret reassures pessimistic agents that
they will at least reach their worst-case performance
under a true stable matching in O(log(T )) time steps.
However, because low optimal regret is not guaran-
teed, any optimistic agent will be disappointed: it can
take Ω(T ) time steps to surpass their worst-case per-
formance under a true stable matching.

Incorporating costs and transfers. Therefore,
without costs or transfers, the platform cannot simul-
taneously guarantee stability and fairness or high so-
cial welfare. This negative result begs the question:
Is it possible to do better and guarantee low optimal
regret, fairness, or high social welfare alongside stabil-
ity? It turns out that the answer is yes.

Theorem 2. There exist cost and transfer rules
C(·, · ; νt) and T (·, · ; νt) such that, if the GS algorithm
is applied over V (·, · ; νt) at every t ∈ [T ], then stabil-
ity, low regret, fairness, and 1

2 -high social welfare are
guaranteed for all (A, µ).

Theorem 2 states that, with costs and/or transfers, it
is possible to simultaneously guarantee all four desider-
ata. It implies that the impossibility result of Propo-
sition 1 only holds when costs and transfers are not
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allowed. We give intuition for the proof in Section 6.
Several questions arise, such as, what types of costs
and transfers provide guarantees on stability and re-
gret? Moreover, do such costs and transfers arise in
practice? In the following section, we provide insights
into these questions by studying a few examples.

5 EXAMPLE SETTINGS

In the previous section, we found that, without costs
and transfers, it is impossible to simultaneously guar-
antee stability and low optimal regret. On the other
hand, with costs and transfers, it becomes possible to
achieve all four desiderata described in Section 3.2. In
this section, we unpack several examples in order to
understand when this outcome is possible as well as
give intuition for when costs and transfers arise. As
before, all proofs can be found in the Appendix.

We emphasize that our objective is not to issue recom-
mendations on how to implement costs and transfers.
Rather, our goal is to highlight the role of costs and
transfers in competitive settings. Intuitively, trans-
fers can be viewed as payments between agents (e.g.,
prices or distance traveled), and costs can be viewed as
frictions (e.g., time expended or entry fees). Neither
are necessarily monetary, and both naturally surface
in competitive settings. In the following examples, we
study three of many possible cost and transfer rules.

5.1 Proportional cost with no transfer

In this section, we study cost and transfer rules and
show that, while appealing to the platform, they fail
to guarantee that low regret holds alongside stability.
In the proportional-cost, no-transfer setting,

C(a1, a2;ψ) = γψ(a1, a2) T (a1, a2;ψ) = 0, (1)

for all a1, a2 ∈ A and ψ : A×A+ → R, where γ ∈ [0, 1].
Intuitively, the amount that an agent a1 expends is
proportional to its desire to be matched to a2. For
example, the amount that a retailer pays a platform to
have its advertisement shown to a user or the amount
of effort a worker puts into an internship depends on
the respective agent’s level of interest. The following
result shows that proportional costs do not improve
upon the no-cost, no-transfer setting.

Proposition 3. Suppose that C and T are set
according to (1). If the GS algorithm is ap-
plied over V (·, · ; νt) at every t ∈ [T ], then the
system is stable. If γ ∈ [0, 1), R(a;M) ≤
2N2L(1− γ)∆max(a)

(
8σ2α log(T )
(1−γ)2∆2

min
+ α

α−2

)
and, if γ =

1, R(a;M) ≤ 0. However, under stability, it is not
possible to guarantee fairness or high social welfare,

and there exist settings (A, µ) for which R̄(a;M) =
Ω(T ) for at least one agent a ∈ A.

Proposition 3 shows that this intuitively pleasing set-
ting unfortunately yields the same negative result as
the no-cost, no-transfer setting. Interestingly, this set-
ting is appealing to platforms, as shown next.

Corollary 4. Suppose that C and T are set accord-
ing to (1) and that the platform wishes to maxi-
mize Ft : W → R at every t ∈ [T ]. Then, when
γ = 1, there is no performance cost to stability: i.e.,
arg maxM∈W Ft(M) ∈ S(V (·, · ; νt)) for all t ∈ [T ].

In other words, when γ = 1, the platform can maxi-
mize any objective function it desires while remaining
confident that the users and providers will continue to
use the platform’s services. However, by the impossi-
bility result given in Proposition 3, the fact that users
and providers continue to use the platform for match-
ing does not mean that they do so happily. Some
agents may be unhappy because the platform’s match-
ings cause them to incur high optimal regret. Further-
more, they may incur high regret while other agents
are allowed to incur low regret. This finding suggests
that such a platform may be barely holding onto its
agents and may lose them if an alternate platform that
offers slightly better outcomes arises.

This setting also illustrates why it is prudent to con-
sider the agents’ optimal regret in addition to their
pessimal regret. By Proposition 3, an agent’s pessi-
mal regret can be non-positive while its optimal regret
grows linearly in T . This finding reinforces the notion
that it is not enough to upper bound the pessimal re-
gret because there may be a very large gap between
optimal and pessimal regrets.

5.2 Balanced transfer

We now introduce a transfer rule under which the plat-
form can simultaneously guarantee all four desiderata.
In the no-cost and balanced-transfer setting,

C(a1, a2;ψ) = 0, (2)

T (a1, a2;ψ) = (ψ(a2, a1)− ψ(a1, a2))/2, (3)

for all a1, a2 ∈ A and ψ : A×A+ → R. To gain an in-
tuition for this setting, suppose ψ(a1, a2) > ψ(a2, a1)
such that agent a1 benefits more from the match
(a1, a2) than a2 does. Under (2), a1 compensates for
this imbalance by investing resources to make the ex-
perience more amenable for a2. For example, suppose
that an athlete a1 is more interested in lessons with
coach a2 than a2 is interested in coaching a1. Then,
a1 can offset this difference by offering to pay more for
lessons with a2. In the literature, the balanced transfer
is viewed as compensation or a bargaining solution.
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The next result shows that the platform can simulta-
neously guarantee all four desiderata. Let

ρ(a, a′) =
1

2
(µ(a, a′) + µ(a′, a)),

∆ρ
min = min

a1∈A,a2∈A+,a3∈A+\a2
|ρ(a1, a2)− ρ(a1, a3)|.

Theorem 5. Suppose that C and T are set ac-
cording to (2)-(3). Then, |S(ρ)| = 1. Let
M∗,ρ be the only element in S(ρ) and ∆∗,ρmax(a) =
maxa′∈A+(ρ(a,M∗,ρ(a)) − ρ(a, a′)). If the GS algo-
rithm is applied over V (·, · ; νt) at every t ∈ [T ], then
the system is stable, the social welfare is 1

2 -high at
all t ∈ [T ], M is fair, and R(a;M) = R̄(a;M) ≤
∆∗,ρmax(a)N2L

(
8σ2α log(T )

(∆ρ
min)2

+ α
α−2

)
for all a ∈ A.

Therefore, under balanced transfers, applying the GS
algorithm at every time step simultaneously guaran-
tees stability, low regret, fairness, and high social wel-
fare. Put differently, under balanced transfers between
matched agents, if one guarantees that the matchings
are stable, one gets low optimal regret, fairness, and
high social welfare for free. One would not necessarily
expect such a result to hold true when agents compete
while learning (or, equivalently, learn while compet-
ing). For example, a college student hoping to learn
their ideal career path through internships may be hurt
by the presence of competition. It is not clear that
an assignment could be stable and allow all agents to
learn their preferences efficiently, let alone guarantee
fairness and high social welfare.

5.3 Pricing

In the previous section, we study a transfer rule in
which the payment between agents depends on the
preferences of both agents. While such transfers are
often feasible, there are settings in which the amount
transferred cannot be tailored to the parties involved
in the match. For example, suppose each provider is
selling a product for which the price does not depend
on which user purchases it. To capture such contexts,
we turn our attention to the pricing setting, in which:

C(p, u;ψ) = c1 T (p, u;ψ) = g(p;ψ) (4)

C(u, p;ψ) = c2 T (u, p;ψ) = −g(p;ψ) (5)

for all u ∈ U , p ∈ P, and ψ : A × A+ → R, where
c1, c2 ∈ R and g : P → R.5 The transfer g(p;ψ) can
be viewed as the “price” of being matched with p that

5Note that the presence of costs c1 and c2 is a technical
detail. For those interested, recall that, without loss of
generality, we assume all agents prefer to be matched than
unmatched, and C(a, ∅) = T (a, ∅) = 0 for all a ∈ A. c1 and
c2 are normalizing constants to ensure that this assumption

is constant across all agents wishing to “purchase” a
match with p. This setting differs from previous ones
in that C and T do not depend on the preferences of
both matched agents. Rather, based on νt, g(p; νt) is
assigned to providers in a way that is reminiscent of
assigning prices to goods.

For example, suppose U is a set of patients, each hop-
ing to book an appointment with a doctor in P. Sup-
pose the price of an appointment with p is fixed such
that g(p; νt) does not depend on the specific patient u.
Since there are a limited number of available appoint-
ments, g(p; νt) may depend on the current demand νt,
which can reflect, for instance, different patient needs
and different doctor specialties. If an appointment is
booked (i.e., a match is made), then the patient pays
the doctor (i.e., makes a transfer). With time, pa-
tients learn their preferences over doctors, and doctors
learn which patients require their services. In such set-
tings, fairness matters greatly, and preferences must be
learned from a small number of sparse interactions.

We now show that, under mild conditions, there al-
ways exists at least one pricing rule that simultane-
ously guarantees stability, low regret, and fairness.

Theorem 6. Suppose that C and T are set accord-
ing to (4)-(5). If the GS algorithm is applied over
V (·, · ; νt) at every t ∈ [T ], then the system is sta-
ble. Moreover, if there exists a B ∈ R>0 such that
|µ(u, ·)| ≤ B for all u ∈ U , then |S(V (·, · ;µ))| =
1 and there exist constants c1 and c2 as well as a
pricing rule g such that M is fair and R(a;M) =

R̄(a;M) ≤ 2∆∗,Bmax(a)N2L
(

8σ2α log(T )
(∆min)2 + α

α−2

)
for

all a ∈ A, where M∗,B is the only element in
S(V (·, · ;µ)) and ∆∗,Bmax(a) = 2B(L − 1)1(a ∈ U) +
maxa′∈A+(µ(a,M∗,B(a))− µ(a, a′)).

This result shows that, under mild conditions, there
is always at least one way to price matches such that
the platform simultaneously guarantees stability, low
optimal regret, and fairness. Put differently, one can
always find a pricing rule such that, if the matching is
stable, low optimal regret and fairness come for free.
Under the pricing rule with which we show existence
in the proof, high social welfare is not guaranteed, but
it may be possible under other pricing rules.

Finally, note that the results in this section hold with
small modifications, such as if users and providers are
switched; if C(u, p;ψ) = g(p;ψ) − c1, C(p, u;ψ) = 0,
and T = 0; or if C(u, p;ψ) = c2 + (1 − γ′)g(p;ψ),
T (u, p;ψ) = −γ′g(p;ψ), C(p, u;ψ) = c1 − (1 −
γ′)g(p;ψ), and cT (p, u;ψ) = γ′g(p;ψ).

is consistent with our analysis. For instance, in one setting
that we examine in the Appendix, c1 = 0 and c2 < 0. −c2
can be viewed as a baseline utility that all agents gain if
they are matched versus when they are unmatched.
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6 DISCUSSION

Summary. In this work, we model matching under
learning by blending the matching and MAB problems.
As in the two-sided matching problem, users compete
for matches with providers, and vice versa. As in the
MAB problem, agents do not know their preferences a
priori and must learn them from experience.

We focus our attention on the centralized matching
market with bandit learners, extending the results of
Liu et al. (2020a). In particular, the framework offered
by Liu et al. (2020a) suggests that it is not possible for
competitive matching markets to simultaneously guar-
antee stability and low optimal regret (a measure of
long-term happiness). This impossibility result could
have harmful consequences, such as providing a justi-
fication for platforms to treat some of its agents well
while treating others poorly.

In this work, we show that this impossibility does not
always hold. We show that, if we account for two natu-
ral components of competition—costs and transfers—
it is possible to simultaneously guarantee four desider-
ata: (1) stability such that no pair of agents is incen-
tivized to defect from the matching; (2) low regret such
that all agents incur O(log(T )) optimal and pessimal
regret; (3) the fair distribution of regret across agents;
and (4) high social welfare.

Proof intuition. Ensuring (M, C, T ) satisfies the
first three desiderata consists of three main ingredi-
ents. First, the GS algorithm is applied over V (·, · ; νt)
at every time step t ∈ [T ] to guarantee stability. Sec-
ond, C and T are chosen such that, under the appro-
priate conditions, |S(V (·, · ;ψ))| = 1 for any ψ. In
other words, C and T yield a unique stable matching
given preferences ψ. Recalling the definition of regret
in Section 3.2, uniqueness ensures that it is not pos-
sible for the following to occur: the system converges
to a stable matching M ∈ S(V (·, · ;µ)) for which one
agent incurs O(log(T )) regret at the expense of an-
other agent a incurring Ω(T ) regret because a’s opti-
mal stable matching is M ′ ∈ S(V (·, · ;µ))\M . Finally,
one must be careful that the rules C and T that induce
a unique stable matching do not interfere with agents’
abilities to learn their preferences µ, as discussed next.

Uniqueness is not enough. Selecting (M, C, T )
such that there is a unique stable matching implies
that the user- and provider-optimal stable matchings
are identical. It therefore implies that the optimal and
pessimal regret are the same. What it does not imply,
is that the optimal and pessimal regret are O(log(T )).
One may be tempted to draw the following conclu-
sion: Since Liu et al. (2020) show that pessimal re-
gret is O(log(T )), the optimal regret should also be
O(log(T )) when there is a unique stable matching.

However, drawing this conclusion would be a mistake.
Why? Because the very tool used to induce a unique
stable matching—specifically, C and T—can interfere
efficient learning and prevent the system from converg-
ing to a matching that is stable under µ. In other
words, when there are costs and transfers, even the
pessimal regret is not guaranteed to be O(log(T )).
The key observation here is that the O(log(T )) bound
on pessimal regret given by Liu et al. (2020)—and
re-stated in Proposition 1—is proven for a setting in
which C and T do not exist. When C and T are used
to induce a unique stable matching, it takes extra care
to ensure that C and T do not interfere with learning
in the process. Furthermore, recall that µ is unknown
and only νt is available. Although the goal is to ar-
rive at a matching that is stable under µ in O(log(T ))
time steps, one must do so without knowledge of µ.
Instead, C and T must be enforced with respect to the
time-varying preferences νt.

Takeaways for matching platforms. This work
shows that, under costs and transfers, one can simul-
taneously guarantee four desiderata of interest. We
provide one such rule—the balanced transfer—in Sec-
tion 5.2. We provide another example in Section 5.3
in which the costs and transfers are reminiscent of the
pricing of goods. However, there are many more cost
and transfer rules that may be of interest.

One of the takeaways of this work is that it is possible
to guarantee stability without ensuring low regret, as
shown in Proposition 1 and Section 5.1. This fact indi-
cates that the continued participation of agents (e.g.,
social media users) is not a sign that agents are sat-
isfied with the platform’s matchings. Indeed, as dis-
cussed in Section 5.1, agents can incur high regret even
if they do not leave the platform because, by definition,
stability implies that agents are not incentivized to de-
fect. It may be to the long-term benefit of a platform
to remedy this issue since it leaves room for other plat-
forms that guarantee low regret alongside stability to
attract agents away from the platform.

Future work. There are many possible paths for fu-
ture work, such as considering strategy-proofness or
allowing information sharing. One could also study
related problems with bandit learners under costs and
transfers, including decentralized matchings, match-
ings with ties, the hospital-residents problem (in which
multiple users can be matched to the same provider),
and more. In addition to the costs and transfers exam-
ined in Sections 5, one could characterize the full set of
cost and transfer rules under which each desideratum
is achievable. Another research direction would be to
apply and test the theoretical findings of this work on
real-world systems, such as online labor markets or
recommender systems.
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Supplementary Material:
Regret, stability & fairness in matching markets with bandit learners

All results that appear in the manuscript are numbered in the same manner below. Results that appear in the
Appendix but not in the manuscript are preceded by the letter of the corresponding section.

A TECHNICAL DETAILS

We re-state the GS algorithm given in Algorithm 1 in detail below. In this algorithm, the providers are the
proposers. The version of the algorithm in which users are the proposers is given in Appendix F.

Algorithm 2: Gale-Shapley algorithm (with providers as proposers)

Input: Set of agents A = U ∪ P, where the set of users is U = {u1, u2, . . . , uN}, the set of providers is
P = {p1, p2, . . . , pL}, U ∩ P = ∅, and N ≥ L. A payoff function V : A×A+ → R.

Output: Matching M ∈ S(V ) ⊂ W.

1 Initialize matching M : A → A+ such that M(a)← ∅ for all a ∈ A;
2 Initialize empty (FIFO) queues Q(p)← [ ] for all p ∈ P;

// Fill each provider’s queue with users in order of decreasing preference.

3 for p ∈ P do
4 for i = 1, 2, . . . , N do
5 Append r−1(i;V (p, ·)) to Q(p); // Add p’s i-th ranked user.

6 end

7 end

// As long as there exists a provider who is unmatched...

8 while ∃p ∈ P : M(p) = ∅ do
9 u← pop(Q(p)); // Provider p’s favorite user of those remaining in p’s queue.

// If user u is unmatched, match u and p.
10 if M(u) = ∅ then
11 M(u)← p;
12 M(p)← u;

// If user u prefers p to its current match M(u), match u and p.
13 else if V (u, p) > V (u,M(u)) then
14 M ′(M(u))← ∅;
15 M(u)← p;
16 M(p)← u;

17 end
18 Return M ;

In the GS algorithm presented here, the providers are the proposers. The version of the algorithm in which users
are the proposers is given in Appendix F.

Shorthands. In this Appendix, we make use of the following notational shorthands. Let ψ : A × A+ → R
denote an arbitrary function (e.g., preferences). We say that a1 �ψ(a3,·) a2 if ψ(a3, a1) > ψ(a3, a2). We
denote the rank—or ordinal preference—of agent a′ under ψ(a, ·) by r(a′;ψ(a, ·)), where r : A+ → N>0

and r(a′;ψ(a, ·)) < r(a′′;ψ(a, ·)) ⇐⇒ ψ(a, a′) > ψ(a, a′′). For example, if p = arg maxp∈P ψ(u, p), then
r(p;ψ(u, ·)) = 1. Accordingly, r−1(n;ψ(a, ·)) is the n-th highest ranked user under ψ(a, ·).
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Assumptions. At various points in our analysis, we make uniqueness assumptions. These assumptions are
fairly mild, as they require that the corresponding real-valued preferences (or payoffs) differ by some amount,
however small. Intuitively, an assumption of uniqueness is equivalent to an assumption that an agent has a strict
ordering of preferences (or payoffs). This assumption is therefore not valid when there are ties (i.e., indifference)
in an agent’s preferences (or payoffs). We can also relax one of our assumptions that µ(a, a′) + µ(a′, a) 6=
µ(a′′′, a′′)+µ(a′′, a′′′) unless (a, a′) = (a′′, a′′′) or (a, a′) = (a′′, a′′′). This assumption is only relevant to Theorem
2 and Theorem 5. Even so, it is not strictly necessary. The assumption could be removed by introducing
a consistent tie-breaking rule that the platform uses to choose between matchings, as discussed in Section F.
Because this setup requires additional notation, we opt for the more straightforward construction above.

B PROOFS FOR STABILITY RESULTS

Lemma B.1. Let ψ : A × A+ → R denote an arbitrary preference function. Let M(· ;ψ) denote a matching
returned by the GS algorithm, as given in Algorithm 2, when applied over payoffs V (·, · ;ψ). Then, M(· ;ψ) is a
stable matching under payoffs V (·, · ;ψ): i.e., M(· ;ψ) ∈ S(V (·, · ;ψ)).

Proof. This is a well-known result, cf. Gale and Shapley (1962) or Roth (2008). To prove it, consider Algorithm
2. Suppose that the result is not true, in which case there exists a p1 ∈ P, p2 ∈ P ∪ ∅, and u1, u2 ∈ U such that
M(u1;ψ) = p1 and M(u2;ψ) = p2, but u2 �V (p1,· ;ψ) u1 and p1 �V (u2,· ;ψ) p2 by the definition of stability (see
Section 3.2).

u2 �V (p1,· ;ψ) u1 implies that p1 proposes to u2 before proposing to u1. However, since p1 �V (u2,· ;ψ) p2, it is not
possible that (a) u2 rejects p1 in favor of p2 or (b) u2 rejects p1 in favor of p3 ∈ P \ {p1, p2} but that u2 does
not reject p2 in favor of p3. Therefore, by contradiction, the GS algorithm returns a stable matching.

Lemma B.2. Consider the setup in Section 3.1. Suppose that, at every time step t ∈ [T ],M(· ; νt) is a matching
returned by the GS algorithm using the payoffs V (·, · ; νt). Then, (M, C, T ) is stable.

Proof. This result follows from Lemma B.1 and Definition 1.

In the remaining analysis, we will also make use of the following definition and lemma.

Definition B.1. A stable matching M ∈ S(V ) is G-optimal under payoffs V : A × A+ → R if V (a,M(a)) ≥
V (a,M ′(a)) for all M ′ ∈ S(V ) and a ∈ G. A stable matching M ∈ S(V ) is G-pessimal under payoffs V :
A×A+ → R if V (a,M(a)) ≤ V (a,M ′(a)) for all M ′ ∈ S(V ) and a ∈ G.

Lemma B.3. Suppose that the GS algorithm is performed over payoffs V : A×A+ → R and with G as proposers.
Suppose further that a′ 6= a′′ =⇒ V (a, a′) 6= V (a, a′′) for all a ∈ A. Then, if the matching M is returned by the
GS algorithm, M ∈ S(V ) is G-optimal and (A \ G)-pessimal.

Proof. This result is well-known, cf. Theorem 3 given by Roth (2008).

C PRELIMINARY RESULTS

Let T (E) =
∑T
t=1 1(E occurs at time step t) denote the number of times event E occurs over all T time steps.

Lemma C.4. Consider an agent faced with K arms, as in the standard multi-armed bandit (MAB) problem.
Let T ∈ N>0 be the time horizon. Suppose that, at each time step t ∈ [T ], the agent is either: (1) matched with
arm It, in which case it receives reward YIt,t; or (2) unmatched, in which case it receives no reward. Suppose
Yi,t is drawn i.i.d. from a sub-Gaussian distribution with parameter σ2 for all i ∈ [K]. Let m(i) = E[Yi,0],

m∗ = maxi∈[K]m(i), and Tt(i) =
∑t
τ=1 1(Iτ = i). Let

vt(i) =
1

Tt−1(i)

T∑
t=1

Yi,t1(It = i) +

√
2σ2α log(t)

Tt−1(i)
,
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be the agent’s upper confidence bound (UCB) for all arms i ∈ [K], where α > 2. Then,

E[T (It = i ∩ vt(i) ≥ vt(j) ∩m(i) < m(j))] = E

[
T∑
t=1

1(It = i ∩ vt(i) ≥ vt(j) ∩m(i) < m(j))

]

≤ 8σ2α log(T )

(m(j)−m(i))2
+

α

α− 2
,

for all i, j ∈ [K] and i 6= j, where the expectation is taken with respect to the randomness of rewards YIt,t.

Proof. This proof is adapted from the proof that upper bounds regret in the MAB problem under the UCB
strategy, cf. Theorem 2.1 presented by Bubeck and Cesa-Bianchi (2012).

Let m̂t(i) = 1
Tt−1(i)

∑t
τ=1 Yi,τ1(Iτ = i), ∆(i, j) = |m(i) −m(j)|, and Ψ∗(ε) := ε2

2σ2 . If It = i, vt(i) ≥ vt(j), and

m(i) < m(j), then at least one of the following must be true:

m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j), (6)

m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

)
, (7)

Tt−1(i) <
α log(t)

Ψ∗(∆(i, j)/2)
. (8)

To confirm that one of the prior statements must be true, suppose that all three statement are false. Then,

vt(j) = m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
(9)

> m(j) (10)

= m(i) + ∆(i, j) (11)

≥ m(i) + 2(Ψ∗)−1

(
α log(t)

Tt−1(i)

)
(12)

≥ m̂t(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

)
(13)

= vt(i), (14)

where (9) and (14) follow from the definition of vt; (10) follows from the assumption that (6) is false; (11) follows
from the definition of ∆(i, j) and that m(j) > m(i); (12) follows from the assumption that (8) is false; and (13)
follows from the assumption that (7) is false. However, (14) implies that vt(j) > vt(i), which cannot be true by
assumption.

Therefore, we have a contradiction, which implies that, if It = i, vt(i) ≥ vt(j), and m(i) < m(j), then at least
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one of the statements (6)-(8) must be true. Let T̄ij = d α log(T )
Ψ∗(∆(i,j)/2)e. Then,

E[T (It = i ∩ vt(i) ≥ vt(j) ∩m(i) < m(j))]

= E

[
T∑
t=1

1(It = i ∩ vt(i) ≥ vt(j) ∩m(i) < m(j))

]

≤ E

[
T∑
t=1

1

(
It = i ∩ Tt−1(i) <

α log(t)

Ψ∗(∆(i, j)/2)

)]

+ E

[
T∑

t=T̄ij+1

1

(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)

≤ m(j) ∪ m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

))]

≤ E

[
T∑
t=1

1

(
It = i ∩ Tt−1(i) <

α log(T )

Ψ∗(∆(i, j)/2)

)]

+ E

[
T∑

t=T̄ij+1

1

(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j)

∪ m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

))]

≤ T̄ij + E

[
T∑

t=T̄ij+1

1

(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j)

∪ m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

))]

≤ T̄ij +

T∑
t=T̄ij+1

[
P

(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j)

)

+ P

(
m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

))]
. (15)

It remains to bound the probabilities on the right-hand side in (15). Beginning with the left term under the sum
in (15):

P
(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j)

)
≤ P

(
∃τ ∈ {1, . . . , t} : Tt−1(j) = τ ∩ m̂t(j) + (Ψ∗)−1

(
α log(t)

τ

)
≤ m(j)

)
≤

t∑
τ=1

P
(
Tt−1(j) = τ ∩ m̂t(j) + (Ψ∗)−1

(
α log(t)

τ

)
≤ m(j)

)

≤
t∑

τ=1

1

tα

=
1

tα−1
,

where the second-to-last line follows from the concentration properties of sub-Gaussian random variables (Ver-
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shynin, 2018). Incorporating the sum in (15),

T∑
t=T̄ij+1

P
(
m̂t(j) + (Ψ∗)−1

(
α log(t)

Tt−1(j)

)
≤ m(j)

)
≤

T∑
t=T̄ij+1

1

tα−1

≤
∞∑

t=T̄ij+1

1

tα−1

≤
∞∑
t=2

1

tα−1

≤
∫ ∞

1

1

tα−1
dt

=
1

α− 2
. (16)

Using a symmetric analysis, the right term under the sum in (15) can be upper bounded by the same quantity,
such that

T∑
t=T̄ij+1

P
(
m̂t(i) > m(i) + (Ψ∗)−1

(
α log(t)

Tt−1(i)

))
≤ 1

α− 2
. (17)

Combining with (16) and (17) with (15):

E[T (It = i ∩ vt(i) ≥ vt(j) ∩m(i) < m(j))] ≤ T̄ij +
2

α− 2

≤ α log(T )

Ψ∗(∆(i, j)/2)
+ 1 +

2

α− 2

≤ α log(T )

Ψ∗(∆(i, j)/2)
+

α

α− 2
,

which, after substituting in for the definition of Ψ∗, gives the result as stated in the lemma.

To connect this proof to Theorem 2.1 in Bubeck and Cesa-Bianchi (2012), note that Ψ∗ is the Legendre transform
(convex-conjugate) of Y − E[Y ], where Y is a sub-Gaussian random variable with parameter σ2 and that

(Ψ∗)−1

(
α log(t)

Tt−1(i)

)
=

√
2σ2α log(t)

Tt−1(i)
,

is the additive term in the UCB formula.

Lemma C.5. Consider the setup described in Section 3.1. Let ψ,ψ′ : A×A+ → R. If M(· ;ψ′) ∈ S(V (·, · ;ψ′))
and M(· ;ψ′) /∈ S(V (·, · ;ψ)), then there exists a1, a2, a3, a4 ∈ A such that M(a1;ψ′) = a2 and M(a3;ψ′) =
a4, but V (a1, a4;ψ) > V (a1, a2;ψ) and V (a4, a1;ψ) > V (a4, a3;ψ) and either V (a1, a4;ψ′) ≤ V (a1, a2;ψ′) or
V (a4, a1;ψ′) ≤ V (a4, a3;ψ′).

Proof. If M(· ;ψ′) /∈ S(V (·, · ;ψ)), then there exists a1, a2 ∈ A such that M(a1;ψ′) = a2 but (a1, a2) is not
stable under payoffs V (·, · ;ψ). The latter implies that there exists a3, a4 ∈ A such that M(a3;ψ′) = a4 and
V (a1, a4;ψ) > V (a1, a2;ψ) and V (a4, a1;ψ) > V (a4, a3;ψ). However, because the matches (a1, a2) and (a3, a4)
are stable under V (·, · ;ψ′), either V (a1, a4;ψ′) ≤ V (a1, a2;ψ′) or V (a4, a1;ψ′) ≤ V (a4, a3;ψ′).

Lemma C.6. Consider the setup described in Section 3.1. Let ∆min = mina1∈A,a2∈A+,a3∈A+\a2 |µ(a1, a2) −
µ(a1, a3)|. Suppose there is no cost and no transfer such that C = T = 0. Then,

ET (M(· ; νt) /∈ S(V (·, ·, ;µ))) = ET (M(· ; νt) /∈ S(µ)) ≤ 2N2L

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
.
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Proof. Under no cost and no transfer, V (·, · ;µ) = µ(·, ·) and V (·, · ; νt) = νt(·, ·). Recall that, by construction,
M(· ; νt) ∈ S(V (·, · ; νt)) = S(νt). If, additionally, M(· ; νt) /∈ S(V (·, · ;µ)) = S(µ), then, by Lemma C.5, there
exists a1, a2, a3, a4 ∈ A such thatM(a1; νt) = a2,M(a3; νt) = a4, µ(a1, a4) > µ(a1, a2), and µ(a4, a1) > µ(a4, a3)
and either νt(a1, a4) ≤ νt(a1, a2) or νt(a4, a1) ≤ νt(a4, a3). As such,

ET (M(· ; νt) /∈ S(µ))

≤ ET (∃a1, a2, a3, a4 ∈ A :M(a1; νt) = a2 ∩M(a3; νt) = a4

∩ µ(a1, a4) > µ(a1, a2)

∩ µ(a4, a1) > µ(a4, a3)

∩ (νt(a1, a4) ≤ νt(a1, a2) ∪ νt(a4, a1) ≤ νt(a4, a3))

≤ ET (∃a1, a2, a3, a4 ∈ A :M(a1; νt) = a2 ∩M(a3; νt) = a4

∩ µ(a1, a4) > µ(a1, a2)

∩ µ(a4, a1) > µ(a4, a3)

∩ νt(a1, a4) ≤ νt(a1, a2))

+ ET (∃a1, a2, a3, a4 ∈ A :M(a1; νt) = a2 ∩M(a3; νt) = a4

∩ µ(a1, a4) > µ(a1, a2)

∩ µ(a4, a1) > µ(a4, a3)

∩ νt(a4, a1) ≤ νt(a4, a3))

≤ ET (∃a1, a2, a4 :M(a1; νt) = a2 ∩ µ(a1, a4) > µ(a1, a2) ∩ νt(a1, a4) ≤ νt(a1, a2))

+ ET (∃a1, a3, a4 :M(a3; νt) = a4 ∩ µ(a4, a1) > µ(a4, a3) ∩ νt(a4, a1) ≤ νt(a4, a3))

= 2ET (∃a1, a2, a3 :M(a1; νt) = a2 ∩ µ(a1, a3) > µ(a1, a2) ∩ νt(a1, a3) ≤ νt(a1, a2)).

Then,

ET (M(· ; νt) /∈ S(µ))

≤ 2ET (∃a1, a2, a3 :M(a1; νt) = a2 ∩ µ(a1, a3) > µ(a1, a2) ∩ νt(a1, a3) ≤ νt(a1, a2))

≤ 2
∑

a1,a2,a3∈A
ET (M(a1; νt) = a2 ∩ µ(a1, a3) > µ(a1, a2) ∩ νt(a1, a3) ≤ νt(a1, a2))

≤ 2N2L

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
,

where the last line follows from Lemma C.4 since, from the perspective of agent a1, being matched with a2 is
identical to a1 sampling arm a2 in the MAB problem.

D PROOFS OF MAIN RESULTS (SECTION 4)

Recall that

∆max(a) = max
a1,a2∈A+

(µ(a, a1),−µ(a, a2))

∆min = min
a1∈A,a2∈A+,a3∈A+\a2

|µ(a1, a2)− µ(a1, a3)|.

Proposition 1. Suppose that there are no costs or transfers such that: C(a1, a2;ψ) = 0 and T (a1, a2;ψ) = 0 for
all a1 ∈ A, a2 ∈ A+, and ψ : A×A+ → R. If the GS algorithm is applied over V (·, · ; νt) at every t ∈ [T ], then

the system is stable. Moreover, R(a;M) ≤ 2N2L∆max(a)
(

8σ2α log(T )
∆2

min
+ α

α−2

)
for all a ∈ A. However, under

stability, it is not possible to guarantee fairness or high social welfare, and there exist settings (A, µ) for which
R̄(a;M) = Ω(T ) for at least one agent a ∈ A.

Proof. By Lemma B.2, the system is stable since the GS algorithm is applied at each time step. Next, we perform
the regret analysis.
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Logarithmic pessimal regret. Recall that Ma
t ∈ arg minM∈S(V (·,· ;µ)) E [Ut(a,M(a); νt)]. Under no cost or

transfer, E[Ut(a, a
′; νt)] = µ(a, a′) and V (· ; · ;µ) = µ(·, ·). As such, Ma

t ∈ arg minM∈S(µ) µ(a,M(a)), and the
pessimal regret is

R(a;M) = E

[
T∑
t=1

(Xt(a,M
a
t (a))−Xt(a,M(a; νt)))

]

=

T∑
t=1

µ(a,Ma
t (a))− µ(a,M(a; νt))

=

T∑
t=1

1(M(· ; νt) ∈ S(µ)) (µ(a,Ma
t (a))− µ(a,M(a; νt)))

+

T∑
t=1

1(M(· ; νt) /∈ S(µ)) (µ(a,Ma
t (a))− µ(a,M(a; νt)))

≤
T∑
t=1

1(M(· ; νt) /∈ S(µ)) (µ(a,Ma
t (a))− µ(a,M(a; νt))) ,

where the last line follows from the definition of Ma
t . Converting the sum over time steps to a sum over possible

matches:

R(a;M) ≤
T∑
t=1

1(M(· ; νt) /∈ S(µ)) (µ(a,Ma
t (a))− µ(a,M(a; νt)))

=
∑

M ′ /∈S(µ)

T (M(· ; νt) = M) (µ(a,Ma
t (a))− µ(a,M(a; νt))) .

Note that, in this setting, Ma
t (a) does not depend on t because Ma

t ∈ arg minM∈S(µ) µ(a,M(a)). Let ∆(a, a′) =
µ(a,Ma

t (a))− µ(a, a′). Then,

R(a;M) ≤
∑

M ′ /∈S(µ)

T (M(· ; νt) = M)∆(a,M(a))

≤ max
a′∈A+

∆(a, a′)T (M(· ; νt) /∈ S(µ)).

Then, applying Lemma C.6:

R(a;M) ≤ max
a′∈A

∆(a, a′)T (M(· ; νt) /∈ S(µ))

≤ 2N2L∆max(a)

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
.

Linear optimal regret. Recall that Ma
t ∈ arg maxM∈S(V (·,· ;µ)) E [Ut(a,M(a); νt)]. In the no-cost, no-transfer

setting, Ma
t ∈ arg maxM∈S(µ) µ(a,M(a))) such that

R̄(a;M) = E

[
T∑
t=1

(
Xt(a,M

a
t (a))−Xt(a,M(a; νt))

)]

=

T∑
t=1

µ(a,Ma
t (a))− µ(a,M(a; νt))

≤ T∆max(a). (18)

Since a′ 6= a′′ =⇒ µ(a, a′) 6= µ(a, a′′) for all a ∈ A, ∆max(a) > 0, which implies that R̄(a;M) = O(T ) for all
agents a ∈ A. In other words, the optimal regret of any agent can be upper bounded by a function that grows
linearly in T . To show that this upper bound is tight, we now construct an example in which at least one agent
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a ∈ A experiences regret that grows Ω(T ), i.e., the optimal regret of at least one agent a can be lower bounded
by a function that grows linearly in T such that R̄(a;M) = Ω(T ).

Suppose U = {u1, u2, u3}, P = {p1, p2, p3}, and

u1 �µ(p1,·) u2 �µ(p1,·) u3, p3 �µ(u1,·) p2 �µ(u1,·) p1,

u1 �µ(p2,·) u2 �µ(p2,·) u3, p3 �µ(u2,·) p1 �µ(u2,·) p2,

u3 �µ(p3,·) u2 �µ(p3,·) u1, p1 �µ(u3,·) p2 �µ(u3,·) p3.

Then, the only two stable matchings under V (·, · ;µ) are

M1(a) =



p2, a = u1,

p1, a = u2,

p3, a = u3,

u2, a = p1,

u1, a = p2,

u3, a = p3.

M2(a) =



p2, a = u1,

p3, a = u2,

p1, a = u3,

u3, a = p1,

u1, a = p2,

u2, a = p3.

As such, Mu1
t ∈ {M1,M2}, Mu2

t = M2, Mu3
t = M2, Mp1

t = M1, Mp2
t ∈ {M1,M2}, and Mp3

t = M1. The optimal
regret of p1 and u2 can be lower bounded as follows.

R̄(a;M) = E

[
T∑
t=1

(
Xt(a,M

a
t (a))−Xt(a,M(a; νt))

)]

=

T∑
t=1

µ(a,Ma
t (a))− µ(a,M(a; νt))

≥ T (M(a; νt) = M1)(µ(a,Ma
t (a))− µ(a,M1(a)))

+ T (M(a; νt) = M2)(µ(a,Ma
t (a))− µ(a,M2(a))), (19)

which implies that

R̄(p1;M) ≥ T (M(· ; νt) = M1)(µ(p1,M
p1
t (p1))− µ(p1,M1(p1)))

+ T (M(· ; νt) = M2)(µ(p1,M
p1
t (p1))− µ(p1,M2(p1)))

= T (M(· ; νt) = M1)(µ(p1,M1(p1))− µ(p1,M1(p1)))

+ T (M(· ; νt) = M2)(µ(p1,M1(p1))− µ(p1,M2(p1)))

= T (M(· ; νt) = M2)(µ(p1,M1(p1))− µ(p1,M2(p1)))

= T (M(· ; νt) = M2)(µ(p1, u2)− µ(p1, u3)). (20)

Recall that µ(p1, u2)−µ(p1, u3) > 0. Therefore, the optimal regret for p1 grows linearly in T if T (M(· ; νt) = M2)
grows linearly in T . Similarly, applying (19) to agent u2 gives

R̄(u2;M) ≥ T (M(· ; νt) = M1)(µ(u2,M
u2
t (u2))− µ(u2,M1(u2)))

+ T (M(· ; νt) = M2)(µ(u2,M
u2
t (u2))− µ(u2,M2(u2)))

= T (M(· ; νt) = M1)(µ(u2,M2(u2))− µ(u2,M1(u2)))

+ T (M(· ; νt) = M2)(µ(u2,M2(u2))− µ(u2,M2(u2)))

= T (M(· ; νt) = M1)(µ(u2,M2(u2))− µ(u2,M1(u2)))

= T (M(· ; νt) = M1)(µ(u2, p3)− µ(u2, p1))). (21)

Recall that µ(u2, p3)−µ(u2, p1) > 0. Therefore, the optimal regret for u2 grows linearly in T if T (M(· ; νt) = M1)
grows linearly in T .
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We now show that either T (M(· ; νt) = M1) or T (M(· ; νt) = M2) grows linearly in T , or both do.

T =
∑
M∈W

T (M(· ; νt) = M)

=
∑

M∈S(µ)

T (M(· ; νt) = M) +
∑

M/∈S(µ)

T (M(· ; νt) = M),

=⇒
∑

M∈S(µ)

T (M(· ; νt) = M) = T −
∑

M/∈S(µ)

T (M(· ; νt) = M)

= T − T (M(· ; νt) /∈ S(µ))

≥ T − 2N2L

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
which implies that T (M(· ; νt) = M1) + T (M(· ; νt) = M2) = Ω(T ). Since T (E) ≥ 0 and T > 0, it is not possible
that T (M(· ; νt) = M1) and T (M(· ; νt) = M2) both grow sub-linearly in T . Therefore, T (M(· ; νt) = M1) =
Ω(T ), T (M(· ; νt) = M2) = Ω(T ), or both. By (20) and (21), the optimal regret of at least one agent grows
Ω(T ).

Intuitively, since it is impossible for the matching at a given time step to simultaneously be both M1 and M2,
at least one agent must incur a non-zero optimal regret for Ω(T ) time steps.

Fairness not guaranteed. To show that fairness is not guaranteed, it suffices to show the existence of an
example in which the matchings are unfair. That fairness is not guaranteed follows directly from the example
under “Linear optimal regret” above. In particular, we use the same example and show that it is possible for at
least one agent’s optimal regret to grow O(log(T )) while another agent’s regret grows Ω(T ).

Suppose T (M(· ; νt) = M2) = O(log(T )) such that T (M(· ; νt) = M1) = Ω(T ). (This is possible under Algorithm
2, which returns matchings M(· ; νt) that are P-optimal at every time step by Lemma B.3.) As such, for all
p ∈ P,

R̄(p;M) =

T∑
t=1

µ(p,Mp
t (p))− µ(p,M(p; νt))

= (µ(p,Mp
t (p))− µ(p,M1(p)))T (M(· ; νt) = M1)

+ (µ(p,Mp
t (p))− µ(p,M2(p)))T (M(· ; νt) = M2)

+
∑

M∈W\{M1,M2}

(µ(p,Mp
t (p))− µ(p,M(p)))T (M(· ; νt) = M)

= (µ(p,Mp
t (p))− µ(p,M2(p)))T (M(· ; νt) = M2)

+
∑

M∈W\{M1,M2}

(µ(p,Mp
t (p))− µ(p,M(p)))T (M(· ; νt) = M)

≤ ∆max(a)

T (M(· ; νt) = M2) +
∑

M∈W\{M1,M2}

T (M(· ; νt) = M)


= O(log(T )),

where the second to last line follows from the fact that Mp
t = M1 for all p ∈ P, and the last line follows

from Lemma C.6 and that M can be chosen such that T (M(· ; νt) = M2) = O(log(T )). However, as shown
in the example under “Linear optimal regret”, when T (M(· ; νt) = M2) = O(log(T )), it must hold true that
T (M(· ; νt) = M1) = Ω(T ), which implies that the regret of a user must grow Ω(T ). By the definition of fairness
(Definition 3), since there exists at least one agent (i.e., a provider) whose optimal regret grows O(log(T )) and
at least one agent (i.e., a user) whose optimal regret grows Ω(T ), fairness is not guaranteed.

High social welfare not guaranteed. To show that high social welfare is not guaranteed, it suffices to show
the existence of an example in which the social welfare is low. Let us again use the example under “Linear
optimal regret”. Fix κ > 1. Suppose M(· ; νt) = M1 and νt(u2, p3) > 1

κWt(M) = 1
κ

∑
a∈A νt(a,M1(a)). This

outcome is possible because (1) u2 and p3 are not matched under M1, which means that the values over which
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Wt(M) is summed does not include νt(u2, p3); (2) the magnitude of u2’s transient preferences does not affect
the GS algorithm; and (3) it is possible for νt(u2, p3) > νt(u2, p1) even when M(u2; νt) = p1 (simply apply the
same logic as that given in the example under “Linear optimal regret”). As such, maxM∈W

∑
a∈A νt(a,M(a)) ≥

νt(u2, p3) > 1
κWt(M). Since this reasoning holds true for any choice of κ > 1, by Definition 4, the social welfare

is low. Therefore, high social welfare is not guaranteed under no costs and no transfers.

Theorem 2. There exist cost and transfer rules C(·, · ; νt) and T (·, · ; νt) such that, if the GS algorithm is applied
over V (·, · ; νt) at every t ∈ [T ], then stability, low regret, fairness, and 1

2 -high social welfare are guaranteed for
all (A, µ).

Proof. This is an existence statement. We prove existence in the proof of Theorem 5.

E PROOFS FOR PROPORTIONAL-COST, NO-TRANSFER SETTING
(SECTION 5.1)

Lemma E.7. Suppose that C and T are set according to (1). If γ = 1, then all matchings are stable, i.e., for
any ψ : A×A+ → R and M ∈ W, M ∈ S(V (·, · ;ψ)).

Proof. When γ = 1, Vt(·, · ;ψ) = 0 for all ψ : A × A+ → R. Under any matching M ∈ W, there cannot exist
another matching M ′ ∈ W such that V (a,M ′(a);ψ) > V (a,M(a);ψ) for some a since 0 > 0 is always false,
which implies that M is stable. This result holds for any M ∈ W.

Proposition 3. Suppose that C and T are set according to (1). If the GS algorithm is applied over V (·, · ; νt) at

every t ∈ [T ], then the system is stable. If γ ∈ [0, 1), R(a;M) ≤ 2N2L(1− γ)∆max(a)
(

8σ2α log(T )
(1−γ)2∆2

min
+ α

α−2

)
and,

if γ = 1, R(a;M) ≤ 0. However, under stability, it is not possible to guarantee fairness or high social welfare,
and there exist settings (A, µ) for which R̄(a;M) = Ω(T ) for at least one agent a ∈ A.

Proof. For γ ∈ [0, 1), the setting described in this claim is equivalent to that in Proposition 1, except that the
payoffs are scaled by (1 − γ). To see this, observe that V (a, a′;ψ) = ψ(a, a′) − γψ(a, a′) = (1 − γ)ψ(a, a′).
Therefore, the same results as in Proposition 1 can be applied here with the appropriate scaling.

We consider γ = 1 next. By Lemma B.2, the system is stable since the GS algorithm is applied at each time
step. Next, we perform the regret analysis.

Non-positive pessimal regret. By (1), T = 0 and C(a, a′; νt) = νt(a, a
′) for all a ∈ A, a′ ∈ A+, and

t ∈ [T ] when γ = 1. As such, the observed payoff at each time step t is Ut(a, a
′; νt) = Xt(a, a

′) − νt(a, a′), and
E[Ut(a, a

′; νt)] = µ(a, a′)− E[νt(a, a
′)]. Recall that

Ma
t ∈ arg min

M∈S(V (·,· ;µ))

E[Ut(a,M(a); νt)]

= arg min
M∈S(V (·,· ;µ))

E[Xt(a,M(a))− νt(a,M(a))].

Under the cost rule, V (·, · ;ψ) = 0 for all choices of ψ. By Lemma E.7,

Ma
t ∈ arg min

M∈W
E[Xt(a,M(a))− νt(a,M(a))]

= arg min
M∈W

(µ(a,M(a))− E[νt(a,M(a))]) .
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The pessimal regret for a is

R(a;M) =

T∑
t=1

E [Ut(a,M(a)at ; νt)− Ut(a,M(a; νt); νt)]

=

T∑
t=1

E [Xt(a,M
a
t (a))− νt(a,Ma

t (a); νt)−Xt(a,M(a; νt)) + νt(a;M(a; νt); νt)]

=

T∑
t=1

E [Xt(a,M
a
t (a))− νt(a,Ma

t (a); νt)−Xt(a,M(a; νt)) + νt(a;M(a; νt); νt)] .

Recall that both domains S(V (·, · ;µ)) and S(V (·, · ; νt)) over which Ma
t andM(· ; νt) are chosen are unrestricted

(i.e., S(V (·, · ;µ)) = S(V (·, · ; νt)) =W). Then, by definition of Ma
t ,

E [Xt(a,M
a
t (a))− νt(a,Ma

t (a))−Xt(a,M(a; νt)) + νt(a;M(a; νt))] ≤ 0,

which implies R(a;M) ≤ 0, as stated in the result.

Linear optimal regret. By definition, the optimal regret of any agent grows O(T ) (see (18) for reference),
i.e., the optimal regret of any agent can be upper bounded by a function that grows linearly in T such that
R̄(a;M) = O(T ) for all a ∈ A. To show that this upper bound is tight, we now construct an example in which
at least one agent a ∈ A experiences regret that grows Ω(T ), i.e., the optimal regret of at least one agent a can
be lower bounded by a function that grows linearly in T such that R̄(a;M) = Ω(T ).

R̄(a;M) =

T∑
t=1

E
[
Ut(a,M

a
t (a); νt)− Ut(a,M(a; νt); νt)

]
=

T∑
t=1

E
[
Xt(a,M

a
t (a))− νt(a,Ma

t (a); νt)−Xt(a,M(a; νt)) + νt(a;M(a; νt); νt)
]

=

T∑
t=1

−E

[√
2σ2α log(t)

Tt−1(a,Ma
t (a))

]
+ E

[√
2σ2α log(t)

Tt−1(a,M(a; νt))

]

=

T∑
t=1

√
2σα log(t)E

[√
1

Tt−1(a,M(a; νt))
−
√

1

Tt−1(a,Ma
t (a))

]
. (22)

Recall that

Ma
t ∈ arg max

M∈S(V (·,· ;µ))

E[Ut(a,M(a); νt)]

= arg max
M∈S(V (·,· ;µ))

E[Xt(a,M(a))− νt(a,M(a))]

= arg max
M∈S(V (·,· ;µ))

−E

[√
1

Tt−1(a,M(a))

]
= arg max
M∈S(V (·,· ;µ))

E [Tt−1(a,M(a))] .

Under the cost rule, V (·, · ;ψ) = 0 for all choices of ψ, which implies that

Ma
t ∈ arg max

M∈W
E [Tt−1(a,M(a))] . (23)

Using this observation, we now construct an example to show that the optimal regret of an agent can grow
linearly. To do so, we make repeated use of Lemma E.7, which implies that both of the domains S(V (·, · ;µ)) and
S(V (·, · ; νt)) over which Ma

t and M(· ; νt) are chosen are unrestricted (i.e., S(V (·, · ;µ)) = S(V (·, · ; νt)) =W).

Suppose p1, p2 ∈ P, where N ≥ L > 2. Suppose that, at every time step, M matches p1 to u1, p2 uniformly
at random to a user u ∈ U \ u1, and all remaining providers arbitrarily to complete the matching. Let η∗t (a) =
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arg maxa′∈A E [Tt−1(a, a′))]. Then, by Lemma E.7, such matchings are stable and can therefore be the matching
chosen by the platform at any time step t to satisfy stability. Under this matching strategy, p1 is guaranteed to be
matched to its optimal match Mp1

t (p1) at any time step t > maxu∈U T0(p1, u), which implies R̄(p1;M) = O(1).
To see this, observe that, after matching p1 with u1 for maxu∈U T0(p1, u) times, η∗t (p1) = u1. In other words,
the agent with which p1 has been most matched is u1, which means that it is u1 is p1’s optimal match by (23).

On the other hand, whenever |η∗t (p2)| 6= N , p2 is not matched to a user u ∈ η∗t (p2) and incurs non-zero regret
with probability at least 1/N . The event |η∗t (p2)| = N can occur at most dT/Ne times because |η∗t (p2)| = N
implies that p2 has sampled all users the same number of times at time step t. As a result, R̄(p2;M) = Ω(T ).
We have therefore shown that it is not possible to guarantee low optimal regret (i.e., not possible to ensure that
R̄(a;M) = O(log(T )) for all a ∈ A) under γ = 1.

Intuitively, because all matchings are stable by Lemma E.7, the platform is afforded so much flexibility that
it can choose matchings with detrimental regret outcomes. We now show that this flexibility also allows the
platform to choose matchings that are unfair.

Fairness not guaranteed. That matchings are not guaranteed to be fair under proportional costs and γ = 1
follows directly from the example provided under “Linear optimal regret” above. We showed that, in this
example, there exists at least one agent a for which R̄(a;M) = O(1) = O(log(T )) while there exists at least one
other agent a′ for which R̄(a′;M) = ω(log(T )) = Ω(T ). By Definition 3, this outcome is unfair, showing that
fairness is not guaranteed under γ = 1.

High social welfare not guaranteed. Under the cost rule, V (·, · ; νt) = 0 at all time steps t ∈ [T ]. Therefore,
by Definition 4, the social welfare at every time step is low.

Corollary 4. Suppose that C and T are set according to (1) and that the platform wishes to maximize Ft :W → R
at every t ∈ [T ]. Then, when γ = 1, there is no performance cost to stability: i.e., arg maxM∈W Ft(M) ∈
S(V (·, · ; νt)) for all t ∈ [T ].

Proof. This result follows from Lemma E.7. Since all matchings are stable at every time step, all matchings are
stable, including arg maxM∈W Ft(M).

F PROOFS FOR BALANCED TRANSFER (SECTION 5.2)

Recall that the GS algorithm in Algorithm 2 is performed with providers as the proposers (i.e., in the notation
of Lemma B.3, G = P). A second version of the GS algorithm in which users are the proposers (i.e., G = U) is
given Algorithm 3.

In our analysis, we use the following well-known result.

Lemma F.8. Suppose V : A×A+ → R denotes a payoff function and a′ 6= a′′ =⇒ V (a, a′) 6= V (a, a′′) for all
a ∈ A. Then, a matching M ∈ W is the unique stable matching under payoffs V (i.e., M = S(V )) if and only if
the GS algorithm performed with providers as proposers and the GS algorithm performed with users as proposers
return the same matching M .

Proof. Denote the matching returned when the GS algorithm is performed with providers as proposers by M1

and the matching returned when the GS algorithm is performed with users as proposers by M2.

To prove the if-and-only-if statement, let’s begin with the forward direction: that M being the unique stable
matching implies M1 = M2. This result is trivial because M1 and M2 must be stable by Lemma B.1. Therefore,
since there is only one stable matching under V , M1 = M2 = M .
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Algorithm 3: Gale-Shapley algorithm (with users as proposers)

Input: Set of agents A = U ∪ P, where the set of users is U = {u1, u2, . . . , uN}, the set of providers is
P = {p1, p2, . . . , pL}, U ∩ P = ∅, and N ≥ L. A payoff function V : A×A+ → R.

Output: Matching M ∈ S(V ) ⊂ W.

1 Initialize matching M : A → A+ such that M(a) = ∅ for all a ∈ A;
2 Initialize empty (FIFO) queues Q(u) = [] for all u ∈ U ;

// Fill each user’s queue with providers in order of decreasing preference.

3 for u ∈ U do
4 for i = 1, 2, . . . , L do
5 Append r−1(i;V (u, ·)) to Q(u); // Add u’s i-th ranked user.

6 end

7 end

// As long as there exists a user who is unmatched and has a non-empty queue...

8 while ∃u ∈ U : M(u) = ∅ ∩ |Q(u)| > 0 do
9 p← pop(Q(u)); // User u’s favorite provider of those remaining in u’s queue.

// If provider p is unmatched, match u and p′.
10 if M(p) = ∅ then
11 M(p)← u;
12 M(u)← p;

// If provider p prefers u to its current match M(p), match u and p.
13 else if V (p, u) > V (p,M(p)) then
14 M ′(M(p)) = ∅;
15 M(p)← u;
16 M(u)← p;

17 end
18 Return M ;

In the GS algorithm presented here, the users are the proposers. The version of the algorithm in which providers
are the proposers is given in Section 4.

To show the backward direction, we must show that M1 = M2 = M implies that M is the unique stable
matching under V . By Lemma B.3, M1 is P-optimal and U-pessimal, while M2 is U-optimal and P-pessimal.
Since M1 = M2 = M , applying Definition B.1 gives that:

V (p,M(p)) ≥ V (p,M ′(p)),

V (p,M(p)) ≤ V (p,M ′(p)),

V (u,M(u)) ≤ V (u,M ′(u)),

V (u,M(u)) ≥ V (u,M ′(u)),

for all p ∈ P, u ∈ U , and M ′ ∈ S(V ). However, the first two statements imply that V (p,M(p)) ≥ V (p,M ′(p)) ≥
V (p,M(p) for all p ∈ P and all stable matchings M ′ ∈ S(V ). Similarly, the latter two statements imply
that V (u,M(u)) ≤ V (u,M ′(u)) ≤ V (u,M(u)) for all u ∈ U and all stable matchings M ′ ∈ S(V ). These
outcomes are only possible if M ′ = M for all M ′ ∈ S(V ), which implies that there is a unique stable matching
M = M1 = M2.

Definition 5. A function h : A×A+ → R is pairwise-unique if h(a1, a2) 6= h(a3, a4) unless (a1, a2) = (a3, a4)
or (a2, a1) = (a3, a4).

Recall that we assume pairwise-uniqueness in Section 3.1. In the Appendix, in the remainder of this section,
if pairwise-uniqueness is needed, it is mentioned explicitly. Outside of this section, it is not needed, except
for Theorem 2. However, as noted in the main text, pairwise-uniqueness is not strictly necessary for any of
the results. Instead, the platform could have a consistent tie-breaking rule. Specifically, the platform would
first place matches (i.e., user-provider pairs) in some order. This order could be principled or arbitrary. Then,
whenever there is a tie, the algorithm breaks ties based on this order. The same stability, regret, fairness, and
social welfare results would hold with small modifications. In particular, the set of stable matchings in this
scenario should be restricted to stable matchings that can be obtained using this tie-breaking rule.
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Algorithm 4: Greedy algorithm to determine a stable matching under the balanced transfer rule.

Input: Set of agents A = U ∪ P, where the set of users is U = {u1, u2, . . . , uN}, the set of providers is
P = {p1, p2, . . . , pL}, U ∩ P = ∅, and N ≥ L. Preferences ψ : A×A+ → R.

Output: Matching M ∈ S(V ) ⊂ W, where V (a, a′) = 1
2 (ψ(a, a′) + ψ(a′, a)).

1 Initialize matching M : A → A+ such that M(a) = ∅ for all a ∈ A;
2 w(e)← ψ(u, p) + ψ(p, u) for all e = (u, p), where u ∈ U and p ∈ P;
3 Fill a (FIFO) queue Q̄ with edges e in decreasing order of weight w(e);

// As long as there exists a provider who is unmatched...

4 while ∃p′ ∈ P : M(p′) = ∅ do
5 e = (u, p)← pop(Q̄); // Edge with highest weight that remains in the queue.

// If edge e does not conflict with an existing match, then add it to M
6 if M(u) = ∅ and M(p) = ∅ then
7 M(u)← p;
8 M(p)← u;

9 end

10 end
11 Return M ;

Lemma F.9. Suppose that C and T are set according to (2)-(3). If payoffs V (·, · ;ψ) are pairwise-unique, then
there is a unique stable matching under these payoffs: i.e., |S(V (·, · ;ψ))| = 1.

Proof. Under (2), V (a, a′;ψ) = 1
2 (ψ(a, a′) + ψ(a′, a)) = V (a′, a;ψ). In other words, V (·, · ;ψ) is symmetric.

Graphically, this means that the edges between users and providers are undirected. If V (·, · ;ψ) is pairwise-
unique, then all edge weights in this undirected graph are unique. The unique stable matching can be found
using a greedy algorithm, as given in Algorithm 4. In this algorithm, all edges are first sorted from highest to
lowest weight. Then, beginning with the edges with the highest weights, the match (u, p) associated with the
given edge is added to the matching M unless it conflicts with an existing match in M . Repeat this process until
all providers are matched such that M(p) 6= ∅ for all p ∈ P.

To see why the resulting matching M is stable, observe that it is identical to the GS algorithm in Algorithm 2
as long as the unmatched provider p who proposes in Line 8 of Algorithm 2 is always the unmatched provider
with the greatest unproposed edge weight such that maxu∈Q(p) V (p, u;ψ) ≥ maxu∈Q(p′) V (p′, u;ψ) for all p′ ∈ P
for which M(p′) = ∅. This is equivalent to the greedy algorithm described above because it is not possible for
any proposed match to override a previous one. As such, all proposals that conflict with an existing match are
discarded. As the GS algorithm is agnostic to the order of proposers, such an ordering is allowed, which implies
that M is stable by Lemma B.1.

To see why the resulting stable matching is unique, we make use of Lemma F.8. In particular, we have already
shown that M is the result of running the GS algorithm with providers as proposers. If we additionally show
that M can be obtained by running the GS algorithm with users as proposers, then M is the unique stable
matching under V (·, · ;ψ). We use the same observation as above. M can be obtained by running Algorithm 3,
in which the user u chosen to propose in Line 8 is the user with the greatest unproposed edge weight such that
maxp∈Q(u) V (u, p;ψ) ≥ maxp∈Q(u′) V (u′, p;ψ) for all u′ ∈ U for which M(u′) = ∅ and |Q(u′)| > 0. However, this
is precisely the same algorithm as that described in the paragraph directly above because V (a, a′;ψ) = V (a′, a;ψ)
is symmetric. Therefore, Algorithms 2 and 3 both return M , which implies that M is the unique stable matching
by Lemma F.8.

Let ρ(a, a′) = 1
2 (µ(a, a′) + µ(a′, a)) and ∆ρ

min = mina1∈A,a2∈A+,a3∈A+\a2 |ρ(a1, a2) − ρ(a1, a3)|. Note that, if
ρ is pairwise-unique, S(ρ) contains only one element, which we denote by M∗,ρ = S(ρ). Accordingly, let
∆∗,ρmax(a) = maxa′∈A+(ρ(a,M∗,ρ(a))− ρ(a, a′)).

Theorem 5. Suppose that C and T are set according to (2)-(3). Then, |S(ρ)| = 1. Let M∗,ρ be the only element
in S(ρ) and ∆∗,ρmax(a) = maxa′∈A+(ρ(a,M∗,ρ(a)) − ρ(a, a′)). If the GS algorithm is applied over V (·, · ; νt) at
every t ∈ [T ], then the system is stable, the social welfare is 1

2 -high at all t ∈ [T ], M is fair, and R(a;M) =

R̄(a;M) ≤ ∆∗,ρmax(a)N2L
(

8σ2α log(T )
(∆ρ

min)2
+ α

α−2

)
for all a ∈ A.
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Proof. By Lemma B.2, the system is stable since the GS algorithm is applied at each time step. Next, we perform
the regret analysis.

Logarithmic optimal regret. By (2), C = 0 and T (a, a′; νt) = 1
2 (νt(a

′, a) − νt(a, a′)) for all a, a′ ∈ A and
t ∈ [T ]. As such, the observed payoff at each time step t is Ut(a, a

′; νt) = Xt(a, a
′) + 1

2 (νt(a
′, a)− νt(a, a′)), and

E[Ut(a, a
′; νt)] = µ(a, a′) +

1

2
E[νt(a

′, a)− νt(a, a′)]

=
1

2
(µ(a, a′) + µ(a′, a)) + E

[√
2σ2α log(T )

Tt−1(a′, a)
−

√
2σ2α log(T )

Tt−1(a, a′)

]

=
1

2
(µ(a, a′) + µ(a′, a)), (24)

where the last line follows from the fact that the number of times agent a samples a′ is the same as the number of
times agent a′ samples a since samples are obtained from being matched, which means that Tt−1(·, ·) is therefore
symmetric.

Recall that R(a;M) ≤ R̄(a;M). We therefore focus on upper bounding the latter. Under the given setting,
V (·, · ;ψ) = ψ(a, a′) + 1

2 (ψ(a′, a)− ψ(a, a′)) = 1
2 (ψ(a′, a) + ψ(a′, a)) for all choices of ψ. As such,

Ma
t ∈ arg max

M∈S(V (·,· ;µ))

E[Ut(a,M(a); νt)]

= arg max
M∈S(V (·,· ;µ))

1

2
(µ(a,M(a)) + µ(M(a), a))

= arg max
M∈S(ρ)

1

2
ρ(a,M(a)), (25)

where ρ(a, a′) = 1
2 (µ(a, a′) + µ(a′, a)), and the second equality follows from (24). By assumption (see Section

3.1), ρ is pairwise-unique. Applying Lemma F.9, |S(ρ)| = 1. In other words, there is a unique stable matching
under ρ. Let M∗,ρ denote this stable matching. Since both optimal and pessimal regret are from the same set
S(ρ) and |S(ρ)| = 1, Ma

t = Ma
t = M∗,ρ, and R(a;M) = R̄(a,M) for all a ∈ A and all t ∈ [T ].

By (24),

R̄(a;M) =

T∑
t=1

E
[
Ut(a,M

a
t (a); νt)− Ut(a,M(a; νt); νt)

]
=

T∑
t=1

1

2
E[µ(a,Ma

t (a)) + µ(Ma
t (a), a)− µ(a,M(a; νt))− µ(M(a; νt), a)]

=

T∑
t=1

1

2
(µ(a,M∗,ρ(a)) + µ(M∗,ρ(a), a)− E[µ(a,M(a; νt)) + µ(M(a; νt), a)])

=

T∑
t=1

1

2
(ρ(a,M∗,ρ(a))− E[ρ(a,M(a; νt))])

=
1

2

∑
M∈W

E[T (M(· ; νt) = M(·))] (ρ(a,M∗,ρ(a))− ρ(a,M(a)))

≤ 1

2

∑
M∈W\M∗,ρ

E[T (M(· ; νt) = M(·))]∆∗(a,M(a))

≤ 1

2
max
a′∈A+

∆∗(a, a′)E[T (M(· ; νt) 6= M∗,ρ(·))], (26)

where ∆∗(a, a′) = ρ(a,M∗,ρ(a)) − ρ(a, a′). Similarly to the proof in the no-cost, no-transfer setting, we would
like to apply Lemma C.6, but we first need to transform the current setting into an equivalent setting that meets
the conditions of Lemma C.6.
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To do so, consider a new setting (A, µ′), in which there is no cost or transfer. In this new setting, let the
true and transient preferences at time t be denoted by µ′, where µ′(a, a′) = 1

2 (µ(a, a′) + µ(a′, a)). All other
quantities are defined analogously with respect to µ′ (e.g., ν′t is defined as in Section 3.1 with respect to µ′,
X ′t(a, a

′) are drawn i.i.d. from a σ2-sub-Gaussian distribution centered at µ′(a, a′)). Furthermore, let ∆ρ
min =

mina1,a2,a3∈A |µ′(a1, a2)− µ′(a1, a3)|. This is indeed an equivalent setting to that stated in Lemma C.6, except
that U ′t 6= X ′t. However, as evident in the proof of Lemma C.6, U ′t is not relevant to the proof. Moreover,
recall that agents observe their reward Xt at each time step and know how much is transferred. Agents can
therefore distinguish between their reward and transfer. Combining these two facts, Lemma C.6 can be applied
because all relevant quantities meet the lemma’s conditions. In particular, the only two quantities of interest
are V (a, a′;µ) = 1

2 (µ(a, a′) + µ(a′, a)) = V ′(a, a′;µ′) and V (a, a′; νt) = 1
2 (νt(a, a

′) + νt(a
′, a)) = V ′(a, a′; ν′t), as

required.

Then, applying Lemma C.6 to the equivalent alternate setting (A,µ′):

ET ′(M(· ; ν′t) /∈ S(µ′)) = E[T (M(· ; νt) 6= M∗,ρ(·))] ≤ 2N2L

(
8σ2α log(T )

(∆ρ
min)2

+
α

α− 2

)
. (27)

By definition of µ′, ∆ρ
min = 1

2 mina1∈A,a2∈A+,a3∈A+\a2 |µ(a1, a2) + µ(a2, a1)− µ(a1, a3)− µ(a3, a1)|. Combining
(27) with (26) yields the result on optimal regret.

Fairness is guaranteed. That M as described in the result also ensures fairness (i.e., stability guaran-
tees fairness) follows directly from the analysis under “Logarithmic optimal regret” above. Specifically, since
R̄(a;M) = O(log(T )) for all a ∈ A, fairness is achieved for all agents by Definition 3.

High social welfare is guaranteed. ThatM also results in high social welfare (i.e., stability guarantees high
social welfare) follows directly from the fact that the greedy algorithm in Algorithm 4 returns a matching whose
summed edge weights is within factor-2 of the maximal bipartite weighted matching.

Recall that the social welfare of (M, C, T ) at time t is defined as Wt(M) =
∑
a∈A V (a,M(a; νt); νt). Under

(2), V (a, a′; νt) = 1
2 (νt(a, a

′) + νt(a
′, a)). Recall from above that applying Algorithm 4 to preferences νt returns

a stable matching under payoffs V (·, · ; νt). It remains to show that the social welfare obtained by applying
Algorithm 4 to preferences νt is within factor-2 of maximum social welfare possible under any feasible (not
necessarily stable) matching in W for all t ∈ [T ].

Consider Algorithm 4. In the remainder of the proof, e = (u, p), e′ = (u′, p′), and e′′ = (u′′, p′′). If an edge
e = (u, p) is added by the algorithm, then it does not conflict with any of the edges added before it. In other
words, there are no edges e′ = (u′, p′) for which w(e′) > w(e) such that u′ = u or p′ = p. Applying this
observation, we find that, for any M ∈ W,

∑
a∈A

V (a,M(a); νt) =
∑
a∈A

1

2
(νt(a,M(a)) + νt(M(a), a))

=
∑

e:M(u)=p

(νt(u, p) + νt(p, u))

=
∑

e:M(u)=p

w(e)

≤
∑

e:M(u)=p

max
e′ 6=e′′:u′=u∩p′′=p

(w(e′) + w(e′′))

≤
∑

e:M(u)=p

(
max
e′:u′=u

w(e′) + max
e′′:p′′=p

w(e′′)

)
≤

∑
e:M(u)=p

(w((u,M(u; νt))) + w((M(p; νt), p)))

≤
∑
u∈U

w((u,M(u; νt))) +
∑
p∈P

w((M(p; νt), p))
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=
∑
a∈A

νt(a,M(a; νt)) + νt(M(a; νt), a)

= 2
∑
a∈A

V (a,M(a; νt); νt)

= 2Wt(M).

Since
∑
a∈A V (a,M(a); νt) ≤ 2Wt(M) for all M ∈ W, maxM∈W

∑
a∈A V (a,M(a); νt) ≤ 2Wt(M) for all t ∈ [T ],

which concludes the proof.

G PROOFS FOR PRICING SETTING (SECTION 5.3)

Lemma G.10. Suppose that C and T are set according to (4)-(5). Suppose there exists a B ∈ R>0 such that
|µ(u, ·)| ≤ B for all u ∈ U . For any arbitrary ordering of providers (p1, p2, . . . , pL), let c1 = 0, c2 = 2B(1− L),
and g(pk;ψ) = 2B(L− k) for all pk ∈ P and ψ : A×A+ → R. Then, |S(V (·, · ;µ))| = 1, i.e., there is a unique
stable matching under preferences µ.

Proof. By Lemma F.8, there is a unique stable matching under payoffs V : A×A+ → R≥0 where a′ 6= a′′ =⇒
V (a, a′) 6= V (a, a′′)∀a ∈ A if performing the GS algorithm with providers as proposers and with users as proposers
return the same matching M∗,B. We now show that this is indeed the case for c1 = 0, c2 = 2B(1 − L), and
g(pk;ψ) = 2B(L− k).

Recall that the GS algorithm with providers and users as proposers can be found in Algorithms 2 and 3,
respectively. Suppose that M∗,B is returned by Algorithm 2. Recall that M∗,B is agnostic to which proposer is
chosen in Line 8 as long as the proposer is unmatched. Similarly, Algorithm 3 is agnostic to which user is chosen
in Line 8 as long as the user is unmatched and as a non-empty queue. To show that Algorithm 3 returns M∗,B,
we show that there is a way to pick the user that is proposing in Line 8 such that the resulting matching is M∗,B.

First, note that for any user u ∈ U , we have that: V (u, pk;µ) = µ(u, pk)−g(pk;µ) = µ(u, pk)−2B(L−k), which
implies that V (u, pk;µ)−V (u, pk−1;µ) = µ(u, pk)−µ(u, pk−1)−2B(L−k)+2B(L−k+1) ≥ −B+2B = B > 0.
By induction, V (u, pk;µ) > V (u, pj ;µ) for all k > j and all u ∈ U . That is, all users have the same ordinal
preferences over providers: pL �V (u,· ;µ) pL−1 �V (u,· ;µ) · · · �V (u,· ;µ) p1 for all u ∈ U .

We begin with Algorithm 3. Let user M∗,B(pL) be the first to propose. M∗,B(pL) proposes to pL since pL is
the top preference of all users. pL accepts since it is unmatched. Then, let M∗,B(pL−1) propose twice. It first
proposes to pL and is rejected (if not, then pL prefers M∗,B(pL−1) over M∗,B(pL), and we already know that all
users prefer pL the most, which means that M∗,B is not stable, which is a contradiction). It then proposes to
pL−1 who accepts since it is unmatched. If we proceed in such a manner, we eventually get to a point in the
while loop of Algorithm 3 at which all users and providers are matched according to M∗,B. However, the while
loop has not terminated. Even so, the matching will not change because, if a user u proposes after this point
in the while loop, the p to which u proposes must be matched. u therefore prefers to be matched to p than
to be unmatched, but p cannot prefer to be matched to u than to M∗,B(p) because such a result would imply
that M∗,B is not stable, which is a contradiction. Therefore, the while loop continues until termination, and
Algorithm 3 returns M∗,B. Since both Algorithm 2 and 3 return the same matching M∗,B, M∗,B is the unique
stable matching by Lemma F.8.

Lemma G.11. Suppose that C and T are set according to (4)-(5). Suppose there exists a B ∈ R>0 such that
|µ(u, ·)| ≤ B for all u ∈ U . Then, there always exist constants c1, c2 and pricing g such that |S(V (·, · ;µ))| = 1,
i.e., there is a unique stable matching under payoffs V (·, · ;µ).

Proof. This result follows directly from Lemma G.10, which gives one set of costs c1, c2 and pricing rule g under
which |S(V (·, · ;µ))| = 1.

Theorem 6. Suppose that C and T are set according to (4)-(5). If the GS algorithm is applied over V (·, · ; νt)
at every t ∈ [T ], then the system is stable. Moreover, if there exists a B ∈ R>0 such that |µ(u, ·)| ≤ B for all
u ∈ U , then |S(V (·, · ;µ))| = 1 and there exist constants c1 and c2 as well as a pricing rule g such that M is fair

and R(a;M) = R̄(a;M) ≤ 2∆∗,Bmax(a)N2L
(

8σ2α log(T )
(∆min)2 + α

α−2

)
for all a ∈ A, where M∗,B is the only element in

S(V (·, · ;µ)) and ∆∗,Bmax(a) = 2B(L− 1)1(a ∈ U) + maxa′∈A+(µ(a,M∗,B(a))− µ(a, a′)).
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Proof. By Lemma B.2, the system is stable since the GS algorithm is applied at each time step. Next, we perform
the regret analysis.

Logarithmic optimal regret. By (4)-(5), C(p, u; νt) = c1, C(u, p; νt) = c2, T (p, u; νt) = g(p; νt), and
T (u, p; νt) = −g(p; νt) for all u ∈ U , p ∈ P, and t ∈ [T ]. As such, the observed payoffs at each time
step t are Ut(p, u; νt) = Xt(p, u) − c1 + g(p; νt) and Ut(u, p; νt) = Xt(u, p) − c2 − g(p; νt) for all u ∈ U and
p ∈ P. In addition, E[Ut(p, u; νt)] = µ(p, u) − c1 + E[g(p; νt)], E[Ut(u, p; νt)] = µ(u, p) − c2 − E[g(p; νt)],
V (p, u;ψ) = ψ(p, u)− c1 + g(p;ψ), and V (u, p;ψ) = ψ(u, p)− c2 − g(p;ψ).

Recall that our goal is to show that there exists a pricing rule g such that both pessimal and optimal regret are
upper bounded by O(log(T )). To show existence, let c1 = 0, c2 = 2B(1−L), g(pk;ψ) = 2B(L−k) for all k ∈ [L]
and preferences ψ. By Lemma G.10, |S(V (·, · ;µ))| = 1, which implies that Ma

t = Ma
t . We denote this unique

stable matching under payoffs V (·, · ;µ) by M∗,B. Since |S(V (·, · ;µ))| = 1, R(a;M) = R̄(a;M). We focus on
upper bounding the latter. For any provider pk ∈ P,

R̄(p;M) =

T∑
t=1

(µ(p,M∗,B(p))− c1 + E[g(M∗,B(p); νt)]− µ(p,M(p; νt)) + c1 − E[g(M(p; νt); νt)])

=

T∑
t=1

(µ(p,M∗,B(p))− µ(p,M(p; νt)) + 2B(L− k)− 2B(L− k))

=
∑
M∈W

ET (M(· ; νt) = M(·))(µ(p,M∗,B(p))− µ(p,M(p)))

≤ ∆∗,Bmax(p)
∑

M 6=M∗,B
ET (M(· ; νt) = M(·))

≤ ∆∗,Bmax(p)ET (M(· ; νt) 6= M∗,B(·)), (28)

where ∆∗,Bmax(p) = maxu∈U (µ(p,M∗,B(p))− µ(p, u)). For all users u ∈ U ,

R̄(u;M) =

T∑
t=1

(µ(u,M∗,B(u))− c2 − E[g(M∗,B(u); νt)]− µ(u,M(u; νt)) + c2 + E[g(M(u; νt); νt)])

=

T∑
t=1

(µ(u,M∗,B(u))− E[g(M∗,B(u); νt)]− µ(u,M(u; νt)) + E[g(M(u; νt); νt)])

≤ ∆∗,Bmax(u)
∑

M 6=M∗,B
ET (M(· ; νt) = M(·))

= ∆∗,Bmax(u)ET (M(· ; νt) 6= M∗,B(·)), (29)

where ∆∗,Bmax(u) = 2B(L− 1) + maxp∈P(µ(u,M∗,B(u))− µ(u, p)).

We therefore would like to upper bound ET (M(· ; νt) 6= M∗,B(·)). Recall that M(· ; νt) = S(V (·, · ; νt)) and
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M∗,B ∈ S(V (·, · ;µ)). Then, following approximately the same steps as in the proof in Lemma C.6:

ET (M(· ; νt) 6= M∗,B(·)) ≤ ET (∃u′, u′′ ∈ U , p′, p′′ ∈ P :M(u′; νt) = p′ ∩M(u′′; νt) = p′′

∩ V (u′, p′′;µ) > V (u′, p′;µ)

∩ V (p′′, u′;µ) > V (p′′, u′′;µ)

∩ (V (u′, p′′; νt) ≤ V (u′, p′; νt) ∪ V (p′′, u′; νt) ≤ V (p′′, u′′; νt)))

≤ ET (∃u′, u′′ ∈ U , p′, p′′ ∈ P :M(u′; νt) = p′ ∩M(u′′; νt) = p′′

∩ V (u′, p′′;µ) > V (u′, p′;µ)

∩ V (p′′, u′;µ) > V (p′′, u′′;µ)

∩ V (u′, p′′; νt) ≤ V (u′, p′; νt))

+ ET (∃u′, u′′ ∈ U , p′, p′′ ∈ P :M(u′; νt) = p′ ∩M(u′′; νt) = p′′

∩ V (u′, p′′;µ) > V (u′, p′;µ)

∩ V (p′′, u′;µ) > V (p′′, u′′;µ)

∩ V (p′′, u′; νt) ≤ V (p′′, u′′; νt))

≤ ET (∃u ∈ U , p′, p′′ ∈ P :M(u; νt) = p′

∩ V (u, p′′;µ) > V (u, p′;µ)

∩ V (u, p′′; νt) ≤ V (u, p′; νt))

+ ET (∃u′, u′′ ∈ U , p ∈ P : ∩M(u′′; νt) = p

∩ V (p, u′;µ) > V (p, u′′;µ)

∩ V (p, u′; νt) ≤ V (p, u′′; νt)). (30)

Let’s split (30) into two terms. Examining the second term,

ET (∃u′, u′′ ∈ U , p ∈ P :M(u′′; νt) = p ∩ V (p, u′;µ) > V (p, u′′;µ) ∩ V (p, u′; νt) ≤ V (p, u′′; νt))

= ET (∃u′, u′′ ∈ U , p ∈ P :M(u′′; νt) = p

∩ µ(p, u′)− c1 + g(p;µ) > µ(p, u′′)− c1 + g(p;µ)

∩ νt(p, u′)− c1 + g(p; νt) ≤ νt(p, u′′)− c1 + g(p; νt))

= ET (∃u′, u′′ ∈ U , p ∈ P :M(u′′; νt) = p ∩ µ(p, u′) > µ(p, u′′) ∩ νt(p, u′) ≤ νt(p, u′′))

≤ N2L

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
, (31)

where ∆min = mina,a′,a′′∈A |µ(a, a′) − µ(a, a′′)| and the last inequality follows from Lemma C.4 (for further
explanation, see the proof of Lemma C.6).

Turning to the first term of (30),

ET (∃u ∈ U , p′, p′′ ∈ P :M(u; νt) = p′ ∩ V (u, p′′;µ) > V (u, p′;µ) ∩ V (u, p′′; νt) ≤ V (u, p′; νt))

= ET (∃u ∈ U , p′, p′′ ∈ P :M(u; νt) = p′ ∩ µ(u, p′′;µ)− c2 − g(p′′;µ) > µ(u, p′;µ)− c2 − g(p′;µ)

∩ νt(u, p′′)− c2 − g(p′′; νt) ≤ νt(u, p′)− c2 − g(p′; νt))

= ET (∃u ∈ U , p′, p′′ ∈ P :M(u; νt) = p′ ∩ µ(u, p′′;µ)− g(p′′;µ) > µ(u, p′;µ)− g(p′;µ)

∩ νt(u, p′′)− g(p′′;µ) ≤ νt(u, p′)− g(p′;µ))

≤ N2L

(
8σ2α log(T )

∆2
min

+
α

α− 2

)
, (32)

where the last equality follows from the fact that g(· ;µ) = g(· ; νt), and the last line follows from Lemma C.4
(for further explanation, see the proof of Lemma C.6).

Combining (28)-(32) yields the regret upper bound as stated in the result.

Fairness is guaranteed. That M as described in the result also results in fairness (i.e., stability guaran-
tees fairness) follows directly from the analysis under “Logarithmic optimal regret” above. Specifically, since
R̄(a;M) = O(log(T )) for all a ∈ A, fairness is achieved for all agents by Definition 3.


