
Relational Neural Markov Random Fields

Yuqiao Chen Sriraam Natarajan Nicholas Ruozzi
University of Texas at Dallas University of Texas at Dallas University of Texas at Dallas

Abstract

Statistical Relational Learning (SRL) mod-
els have attracted significant attention due
to their ability to model complex data while
handling uncertainty. However, most of these
models have been restricted to discrete do-
mains owing to the complexity of inference
in continuous domains. In this work, we in-
troduce Relational Neural Markov Random
Fields (RN-MRFs) that allow handling of com-
plex relational hybrid domains, i.e., those that
include discrete and continuous quantities,
and we propose a maximum pseudolikelihood
estimation-based learning algorithm with im-
portance sampling for training the neural po-
tential parameters. The key advantage of our
approach is that it makes minimal data dis-
tributional assumptions and can seamlessly
embed human knowledge through potentials
or relational rules. Our empirical evaluations
across diverse domains, such as image pro-
cessing and relational object mapping, demon-
strate its practical utility.

1 Introduction

Statistical relational learning (SRL) models (Getoor
and Taskar, 2007; Raedt et al., 2016) have gained pop-
ularity for their ability to learn and reason in the pres-
ence of noisy, uncertain, rich, and structured relational
data. While expressive, these models face a signifi-
cant challenge when learning from real data. One such
challenge arises when learning from hybrid data: for
predicate/relational logic based methods, significant
feature engineering is necessary to make learning both
effective and efficient, and most learning methods dis-
cretize the data (Natarajan et al., 2012; Khot et al.,

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

2011) or make restrictive assumptions on the learned
structure (Ravkic et al., 2015).

In classical propositional (feature vector based) do-
mains, approaches that combine the benefit of neural
networks (NNs) and graphical models have recently
attracted attention. While specific network structure
or training procedures differ, these methods generally
employ conditional random fields (CRF) that are pa-
rameterized by NNs, e.g., in computer vision (Liu et al.,
2015; Knöbelreiter et al., 2017). Neuro-symbolic learn-
ing in which NNs are combined with a logic-based
formalism has also attracted attention (Garcez and
Lamb, 2020; Raedt et al., 2020; Qu and Tang, 2019).

Our approach embeds NNs into (relational) graphical
models. Specifically, we consider the parametric factor
graph formalism (Poole, 2003; Braz et al., 2005) and em-
ploy neural potential functions that are flexible enough
to handle hybrid (relational) data. In contrast to many
existing approaches, our resulting model, dubbed rela-
tional neural Markov random fields (RN-MRFs), does
not make any restrictive assumptions on the data distri-
bution, e.g., multivariate Gaussian assumptions, nor is
it dependent on a specific NN architecture. Instead, the
model’s expressivity can be appropriately controlled
by tuning the network structure/activation functions.

We make the following key contributions. (1) We intro-
duce a general combination of traditional SRL models
and NNs by introducing neural potential functions
inside parfactor graphs. Our relational neural (RN)-
MRF does not make any distributional assumptions
and can handle propositional, semi-relational, and rela-
tional domains. (2) We explain how to integrate human
knowledge in the form of informative potentials and/or
relational rules. (3) We present an efficient training
procedure for RN-MRFs using maximum pseudolikeli-
hood estimation. (4) We demonstrate the efficacy of
RN-MRFs against non-neural potential baselines on
several real domains.

2 Related Work

The combination of graphical models and NNs has been
extensively explored in image processing and related

Relational Neural Markov Random Fields

areas. The work of Do and Artieres (2010) and Xiong
and Ruozzi (2020) on combining NNs and Markov ran-
dom fields are the most relevant to the approach herein.
Do and Artieres (2010) propose neural potential func-
tions in the context of conditional random fields (CRF),
where the NN learns a feature representation given the
conditional values of a log-linear model. Model weights
are then chosen via maximum likelihood estimation.
This approach was specifically designed for discrete
random variables and additional care is needed in the
continuous case to ensure normalizability of the model
as well as to ensure that the resulting model fitting
procedure can be implemented efficiently. A similar
approach was also explored in the relational setting by
Marra and Kuzelka (2019) where they model the possi-
ble world distribution with relational neural network
potential, which share similarity with our method, but
cannot handle continuous features.

Xiong and Ruozzi (2020) consider learning MRF mod-
els with NN potentials of the form exp(nn(x)), which
allows both continuous and discrete domains. Their
approach uses the Bethe free energy to perform approx-
imate variational inference for use in the computation
of the MLE gradient. Their approach can be applied to
learn general MRFs, but as it is not designed to handle
relation models, it would be quite slow if applied di-
rectly to relational domains. Further as their proposed
approximate inference procedure can be unstable, the
method also requires an iterative averaging procedure
to ensure convergence.

Alternative approaches that combine CRFs and NNs
have used NNs to select the CRF parameters. These
approaches have been particularly popular in computer
vision applications in which large-scale models are com-
mon, e.g., (Liu et al., 2015; Zheng et al., 2015; Knöbelre-
iter et al., 2017). In these settings, the CRFs often have
a simple structure and restricted potential functions,
e.g., Gaussian, in order to make (approximate) infer-
ence practical. Other approaches have demonstrated
that there is a close connection between approximate
MAP inference and recurrent NNs (Wu et al., 2016).

There are also approaches like Deep ProbLog (Man-
haeve et al., 2018), which try to combine NNs with
probabilistic reasoning models. In Deep ProbLog, neu-
ral predicates are used to handle low level features, and
high level relationship between predicates are defined
by the logical models, while in our methods, NNs mod-
els the dependencies among predicates and functions.

In comparison with most existing related works, which
only focus on either discrete models, models that are
conditioned on continuous variables, or Gaussian mod-
els, the main novelty of the proposed method is that
it has the ability to learn and predict complicated dis-

tributions of continuous variables, and at the same
time provides a mechanism for incorporating human
knowledge for better performance. In additionally, our
models could be reduced to Neural MLN (Marra and
Kuzelka, 2019) or Neural CRF (Do and Artieres, 2010)
if only discrete latent variables are present.

3 Preliminaries

A Markov random field (MRF) consists of a hyper-
graph G = (V, C), with variable nodes V and a set of
hyperedges C. Each node i ∈ V is associated with a
variable xi with domain Xi. We consider hybrid MRFs
in which Xi could be either discrete or continuous. Each
hyperedge c ∈ C is associated with a non-negative po-
tential function ϕc : Xc → R≥0, where Xc = ∪i∈c{Xi}
is the union of variables in the hyperedge c. Often, the
nonnegative potential functions are represented in expo-
nential form as ϕc(xc) = exp fc(xc), with fc : Xc → R.
An MRF defines a joint probability distribution over
joint variables x ∈ ∪i∈V{Xi}

p(x) =
1

Z

∏
c∈C

ϕc(xc) =
1

Z
exp

(∑
c∈C

fc(xc)

)
,

where the normalization Z =
∑

x

∏
c∈C ϕc(xc) (sums

are replaced by integration for continuous variables).

Fitting MRFs to Data: Often, the potential func-
tions are restricted to specific functional forms deter-
mined by a fixed set of parameters, θ. Given M train-
ing data points, x(1), . . . , x(M), the MRF and the cor-
responding distribution p(x) can be fit to data via
maximum likelihood estimation (MLE) by applying
gradient ascent to maximize the log-likelihood (LL),

log l(x(1), . . . , x(M); θ) =

M∑
m=1

log p(x(m); θ).

The computation of the gradient in each step requires
exact or approximate inference over the whole model.
Exact inference is intractable in all but the simplest
of models, and in large graphical models, e.g., rela-
tional models with a large number of instances, even
approximate inference procedures can be computation-
ally expensive especially in the case of hybrid models.

As an alternative to MLE the pseudolikelihood (PL)
(Besag, 1974), tries to avoid the expensive inference
step of MLE. The PL method approximates p(x; θ) as
a product of univariate conditional distributions.

p(x; θ) ≈
∏
i∈V

p(xi | xV\i) =
∏
i∈V

p(xi | MBi),

where

p(xi | MBi) =
exp

∑
c⊃i fc(xi | xc\i)

Zi(MBi)
,

Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi

MBi = ∪c⊃i{xc \ xi} is the Markov blanket of node
i, and Zi is a normalization term, which ensures that
p(xi | MBi) is a valid conditional probability distri-
bution. Learning then attempts to find the model
parameters that maximize the log-PL.

log l(x(1:M); θ) ≈ 1

M

∑
m

∑
i∈V

log p(x
(m)
i | MB

(m)
i ; θ).

Computing the gradient with respect to the parameters
yields

∇ log l(x(1:M); θ) =
1

M

∑
m

∑
i∈V

∑
c⊃i

[
∇fc(x

(m)
c ; θc)

− E
p(xi|MB

(m)
i ;θ)

(
∇fc(xi, x

(m)
c\i ; θc)

)]
.

(1)

The first term in the gradient of the log-PL involves the
gradient of the log-potentials with respect to θc. The
second term, which comes from the gradient of logZi,
involves an expectation with respect to the conditional
distributions in the PL approximation. In the discrete
case, the expectation is usually computed by enumer-
ating all possible assignments. In the continuous case,
the integral may not be computable in closed form and
may need to be estimated numerically.

Relational MRFs: Our key goal is to model the rela-
tions between attributes of objects by MRFs, which we
represent as relational Markov random fields. We take
an approach similar to lifted first-order models (Poole,
2003; Choi et al., 2010). In our relational MRFs, we use
atoms to refer the attributes of objects compactly, e.g.,
an atom could be smoke(P) or friend(P, P ′), indicat-
ing that a person smokes or that a person has friendship
with another person, where P and P ′ are both logical
variables that could be instantiated as any possible per-
son. Given a set of logical variables, L, a substitution δ
is an assignment of instances to L, e.g., in a predicate
smoke(P) under the substitution δ = {P → John},
the instantiated atom is smoke(John).

Similar groups of attributes/objects are represented in
the form of parametric factors, parfactor(ϕ,A,L,C),
where ϕ is the potential function, A a set of atoms,
L a set of logical variables, and C is the constraint
deciding allowable substitutions. A relational MRF is
defined by F a set of parfactors, and is equivalent to
an MRF after grounding (instantiating atoms with all
possible substitutions). Similar to MRFs, a relational
MRF defines a joint distribution over RV (F) the set
of all variables in the grounded graph.

P (RV (F)) =
1

Z

∏
h∈F

∏
δ∈∆h

ϕh(Ahδ),

where ∆h is the set of possible substitutions to logical
variables L of parfactor h, and Ahδ is the set of
grounded variables obtained by grounding Ah with δ.

4 Relational Neural Markov Random
Fields

We now introduce relational neural Markov random
fields (RN-MRFs), a generic MRF model that combines
the expressiveness of NNs and the representational
power of relational MRFs. For RN-MRFs, we propose
to use NNs to model the log-potential functions. This
type of potential can be arbitrarily expressive, allowing
us to capture complex relationships among the model
variables. The expressiveness can be tuned by altering
the NN structure, the activation functions, and the
training technique, e.g., using dropout.

We introduce two types of neural potential functions.
First, for continuous domains with explicit boundaries,
say [−1, 1] and [0, 1.5], the potential function is defined
as ϕnn(xc) = expnn(xc), where nn(xc) is an artificial
NN, e.g., MLP, with input dimension equal to dimen-
sion of the hyperedge c that takes each variable xi, i ∈ c
as input to the NN. For typical choices of activation
functions, e.g., ReLU, the resulting potential will be
integrable over the domain of interest.

For unbounded domains, such as (−∞,+∞), the po-
tential function might not be normalizable, i.e., the
corresponding integral may not exist. As a simple
example, if nn(x) is a linear function of x, the po-
tential function is not integrable over (−∞,∞) as it
can attain arbitrarily large values depending on the
choice of x. Such a potential does not correspond to
a probability distribution, which creates representa-
tional issues as well as algorithmic issues. To ensure
normalizability, we propose to have potentials of the
form ϕ(xc) = ϕ0(xc) ·ϕnn(xc), where ϕ0(xc) is a helper
distribution chosen to ensure normalizability.

As an example, if the neural net consists only of ReLU
activations, then the resulting NN will be piecewise
linear. Thus, the product of a Gaussian helper potential
and the neural net potential will be piecewise-Gaussian
(the sum of a negative quadratic function with a linear
term is still a negative quadratic function). This is
the approach to normalizability that we will adopt. If,
in addition, the helper distribution is easy to sample
from, we will see that it can be used to estimate the
integrals that are required to compute the gradient of
the log-pseudolikelihood.

Similar to relational MRFs, RN-MRFs are defined by
a tuple parfactor(ϕ0, ϕf , A, L,C), where ϕf is not
limited to NN potentials and can include other types of
potentials such as Markov Logic Network (MLN) rules

Relational Neural Markov Random Fields

(Richardson and Domingos, 2006). Bounded domains
do not require helper functions, and they can be set
to uniform distributions over the appropriate domains.
The joint distribution corresponding to an RN-MRF
can be factorized as a product of a joint neural potential
and a helper distribution.

P (RV (F)) =
1

Z

∏
h∈F

∏
δ∈∆h

ϕnn(Ahδ) · ϕ0(Ahδ)

= Pnn(RV (F)) · P0(RV (F))

4.1 Encoding Human Knowledge

One of the key attractive features of RN-MRFs is the
ability to encode human knowledge in three different
ways: (1) altering the structure of the model, i.e.,
assuming dependencies among a set of object attributes
by creating a parfactor among a set of atoms, (2)
designing the potential functions, i.e., by specifying the
helper function, mapping features, or tuning the NN
structure, and (3) adding (weighted) logic rules that
define new relationships between features.

Consider a simple image denoising task in which the
goal is to predict the original image given the noisy
image. Below, we describe a possible RN-MRF to
model relationships among pixels in this scenario. We
use the notation helper :potential to describe the model.

LG(1, 0, 1) : ϕnn1(|val(P1)− val(P2)|) st. nb(P1, P2)

LG(1, 0, 1) : ϕnn2(|obs(P)− val(P)|), (2)

where the first (parfactor) rule states that there exists
a dependency between the values of adjacent pixels
({P1, P2}), the second rule states that there is a re-
lationship between observed and true values of every
pixel P , and the helper functions are specified as a
two dimensional linear Gaussians (LG) with slope = 1,
intercept = 0, and variance = 1.

For the helper distributions, we typically use either cat-
egorical distributions for discrete domains, multivariate
Gaussians (or mixtures of Gaussians) for continuous
domains, and categorical Gaussians for hybrid domains.
The parameters of the helper functions can be learned
if desired.

The above rules provide an example of the first mode
of human knowledge integration. These two rules also
include the second mode of knowledge integration where
the relationships are precisely defined. For instance,
the first rule specifies that the helper distribution is a
linear Gaussian. The second rule also defines a linear
Gaussian helper distribution on the absolute difference
between the observed and true values of every pixel.
Typically, when dealing with two pixels P1 and P2,
they will both be employed as two different inputs

for a neural net. However, the first parfactor allows
for a preprocessing step that computes the absolute
difference between the pixels and uses that as the input.
This is akin to feature mapping for standard supervised
learning.

The third method to encode the human knowledge is to
specify parfactors with (soft) logical rules that define
potential functions with a tunable weight parameter.
The higher the weight, the higher the probability of
the rule being true for a given data set (Richardson
and Domingos, 2006). For instance, consider a robot
mapping domain where the task is to predict the type
of an observed segment S given the length and depth
of all segments. Length and depth are continuous
features, while type is discrete ⟨’W’, ’D’, ’O’⟩, repre-
senting Wall, Door, and Other. We can express this in
the RN-MRF formalism by introducing the following
potentials/helpers.

U : ϕnn(length(S), depth(S), type(S))

U : ϕmln1(length(S)>0.5 ⇒ type(S)!=’W’)
U : ϕmln2(type(S1)=’D’ ⇒ type(S2)!=’D’)

st. nb(S1, S2),

where U is a uniform distribution, which is equivalent
to not having a helper function.

The first parfactor uses the NN potential to model
the conditional type distribution given the segment’s
length and depth. Since this dataset is small, using only
the data observations to train the neural nets could
result in overfitting. The second parfactor specifies
that if the length of segment is larger than 0.5, it should
be of type Wall. The logical formula can be computed
given the length and the type, resulting in a binary
value True/False (or 0/1), indicating whether or not
the logical formula is satisfied.

The potentials are of the form ϕmln(xc) = exp[w ·
logic(xc)], where w is a learnable parameter represent-
ing the strength of the rule. If the rule is satisfied, the
potential value will be expw, otherwise it is 1. The
potential could also be used in representing the inter-
relationship between objects. For example in the third
parfactor, the rule means that for a pair of adjacent
segments, if one is of type Door, the other one should
not be of the same type. This captures the knowledge
that it is less likely for two doors to be next to each
other. In addition, hybrid rules that use continuous
values of the objects could also be employed.

5 Learning RN-MRFs

The main challenge when learning RN-MRFs is the
presence of continuous variables. Most current learn-
ing algorithms do not support hybrid domains with

Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi

arbitrary potentials. One recent exception is the MLE
algorithm proposed by Xiong and Ruozzi (2020). While
MLE could potentially be used to learn the model pa-
rameters, computing the gradient of the log likelihood
requires inference, which is intractable for large MRFs
or models with complicated potential functions. In re-
lational settings, the size of the grounded RN-MRF is
typically too large to admit efficient inference, and we
are interested in models in which the potential functions
are arbitrary. Hence, we propose to learn our model
with maximum pseudolikelihood estimation instead.
The MPLE approach learns the model parameters by
maximizing the log-pseudolikelihood given the data,
usually with gradient ascent. In the computation of
the gradient of the log-pseudolikelihood, as in (1), two
terms are considered: the gradient of the log-potential
functions and the expectation of the log-potentials with
respect to the local conditional distributions. For train-
ing the parameters of the NNs, we can first calculate
the gradient of the pseudolikelihood with respect to the
output of the neural net and then apply back propaga-
tion to obtain the gradient of the network parameters.

While computing the first piece of the gradient is
straightforward, calculating the expectation term is
nontrivial. This is because there is not a closed form
equation for computing the expectation of an arbitrary
function with respect to an arbitrary continuous distri-
bution. We propose to use (self-normalized) importance
sampling for the calculation.

Ep(xi|MB
(m)
i)

∇nnc(xi, x
(m)
c\i)

=

∫ ∞

−∞
p(xi|MB

(m)
i) · ∇nnc(xi, x

(m)
c\i)dxi

=

∫ ∞

−∞

bi(xi)∫∞
−∞ bi(x̂i)dx̂i

· ∇nnc(xi, x
(m)
c\i)dxi

≈ 1∑
n∼Q

bi(x
(n)
i)

Q(x
(n)
i)

∑
n∼Q

bi(x
(n)
i)

Q(x
(n)
i)

· ∇nnc(x
(n)
i , x

(m)
c\i),

(3)

where bi(xi) =
∏

h⊃i ϕh(xi, x
(m)
h\i), and Q is a proposal

distribution from which we can draw samples for ap-
proximating the integral. In the case that the variable
i is bounded, the proposal distribution could be chosen
to be a uniform distribution over the objects in the
domain.

In case of unbounded domains and/or non-trivial helper
functions, the proposal could be the product of helper
functions that make up the conditional distribution,
i.e., Q(xi) =

∏
h⊃i ϕ0h(xi, x

(m)
h\i). As the potentials in

RN-MRFs are the product of helper functions and the
neural potentials, the computation of the ratio bi(xi)

Q(xi)

can be simplified.

bi(xi)

Q(xi)
=

∏
h⊃i ϕ0h(xi, x

(m)
h\i) · ϕnnh

(xi, x
(m)
h\i)∏

h⊃i ϕ0h(xi, x
(m)
h\i)

=
∏
h⊃i

ϕnnh
(xi, x

(m)
h\i)

The expectation can then be approximated as∑
n∼Q

∏
h⊃i ϕnnh

(xi, x
(m)
h\i) · ∇nnc(x

(n)
i , x

(m)
c\i)∑

n∼Q

∏
h⊃i ϕnnh

(xi, x
(m)
h\i)

. (4)

Given these gradients, we turn our attention to train-
ing. A naïve method to train the graphical model
would be to compute the gradient of the parameters
for each local variable distribution, sum them to build
the full gradient, and perform one step of gradient
ascent. However, this approach would require many
passes of neural net forward/backward operations. In
an RN-MRF, many of the factors share the same po-
tential function, making parallelization possible. To
increase efficiency, we consider creating an aggregated
input matrix {x(m)

c }data∪{x(n)
i ×x

(m)
c\i }samples for each

NN potential, which includes both the data points and
sampling points used in the approximation of the gra-
dient. Then, we could run one pass of feed forward
operation to obtain the value of ϕnnh

(xi, x
(m)
h\i) and use

it to compute the corresponding gradient for each data
point. For x ∈ {x(m)

c }data, the gradient is 1, and for
sampling data x ∈ {x(n)

i × x
(m)
c\i }samples, the gradient

is the negative of the expectation term, which can be
computed with equation (4). Finally, we back propa-
gate the gradient through the neural net and update
the network parameters with gradient ascent.

Additionally, given the expressive power of NNs, model-
ing distributions using NNs can be prone to overfitting,
especially on continuous domains where the learned
distribution could have high peaks at the data points
and be zero outside of them. To reduce the chance
of severe overfitting, popular methods such as weight
decay and drop out could be applied. However, we
propose to modify the NNs by clamping the output
layer, i.e., clamp(nn(x), a, b) bounds the output from
below by a and above by b, to prevent the learned
potentials from taking values that are too extreme. In
back propagation, positive gradients are not propa-
gated if nn(x) > b, and same for negative gradients
when nn(x) < a.

A complete description of the RN-MRF learning algo-
rithm can be found in Algorithm 1. During each itera-
tion, a set of grounded variables will be sampled. This
is performed at the first order level by sampling substi-
tutions of atoms, and Markov blanket of the resulting

Relational Neural Markov Random Fields

Algorithm 1 Learning RN-MRF
1: Input: A RN-MRF F , set of trainable potentials

Φ, and dataset M
2: Return: Set of learned potential functions
3: repeat
4: Uniformly draw a set of variables Vs from all

grounded atoms, and find their Markov Blanket.
5: Initialize the aggregated input matrix Dc for

ϕc ∈ Φ
6: for each data frame m ∈ Ms do
7: for each variable i ∈ Vs do
8: Let proposal Q(xi) =

∏
h⊃i ϕ0h(xi, x

(m)
h\i))

9: Sample N number of x(n)
i ∼ Q

10: for each ϕc where c ⊃ i do
11: Add sample x

(m)
c to Dc

12: Add samples x
(n)
i × x

(m)
c\i to Dc

13: end for
14: end for
15: end for
16: Run forward pass for each ϕc ∈ Φ with data Dc

17: Compute the gradient w.r.t the neural network
output

18: Run back propagation for each ϕc ∈ Φ
19: Update each θc with gradient ascent
20: until Convergence

grounded variables can be also grounded through unifi-
cation. After that, the aggregated data is computed,
followed by a forward pass of the neural nets. The
gradient of the log pseudo likelihood w.r.t. the output
of the neural net is computed and back propagated
through the whole network. Finally, parameters are
updated using standard gradient ascent.

6 Experiments

We now present empirical evidence of the flexibility of
RN-MRFs by considering different tasks/data domains.
We try to answer the following questions with empirical
validation.

Q1: Do RN-MRFs provide an effective data represen-
tation in continuous or hybrid domains?

Q2: How well do the neural potentials model compli-
cated (high dimensional and multi-modal) depen-
dencies?

Q3: Can human knowledge be easily incorporated to
improve performance?

We selected several different problem domains: image
denoising with multi-modal noise, digit deduction on
MNIST images with synthetic rules, and relational

Figure 1: Sample outputs of different models on a image
denoising task, where noise are following multi-modal dis-
tribution.

object mapping with human knowledge. For each ex-
periment, we use different baselines according to the
domain, including Gaussian and/or Categorical Gaus-
sian models, Neural CRF (Do and Artieres, 2010), and
expert/hand-created models, such as hybrid MLNs
(Wang and Domingos, 2008). Notice that we do not
compare against carefully engineered method that work
on specific tasks as the goal is to show the generalized
effectiveness of RN-MRF across variety of domains.

We report the ℓ1 and ℓ2 error of MAP predictions
for continuous domains and the MAP prediction ac-
curacy rate and F1 score for discrete domains. For
continuous and hybrid domain inference, we use ex-
pectation particle belief propagation (EPBP) (Lienart
et al., 2015), which use sample points for approxi-
mating the continuous BP messages with a dynamic
Gaussian proposal. All algorithms were run on a
single core of a machine with a 2.2 GHz Intel Core
i7-8750H CPU and 16 GB of memory, and were im-
plemented in Python3.6 and source code is available
via an anonymous repository https://github.com/
leodd/Relational-Neural-MRF.

6.1 Image Denoising

In this experiment, we showcase the application of our
RN-MRF model on image domains with a simple image
denoising task, e.g., an image has been corrupted with
Gaussian mixture noise, which requires the model to
learn the relationship between neighboring pixels and
observations. The reason that we choose this domain is
threefold: (1) while at the outset, this domain appears
propositional, the inherent grid structure allows a rela-
tional model to effectively model this task; (2) variables
are naturally continuous in this domain; and (3) the op-
timal potential functions cannot be easily represented
with a simple distribution, e.g., a Gaussian distribu-
tion. For this task, the dataset was created by adding
multi-modal noise, generated by a mixture of Gaussian
distribution 0.5 · N (0.1, 0.0025) + 0.5 · N (−0.1, 0.0025),
to 90, 300 x 400 images and 6, 50 x 50 synthetic images.

We consider a grid structured MRF/CRF, with one
layer of random variables for the input noisy image and
one layer of random variables modeling the original

https://github.com/leodd/Relational-Neural-MRF
https://github.com/leodd/Relational-Neural-MRF

Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi

Table 1: Comparison of different models on the image
denoising task.

Model ℓ1 Error ℓ2 Error
Gaussian-MRF 186.14± 7.26 18.97± 1.47

CNN 120.33± 13.70 12.86± 3.33
RN-MRF(no Helper & FM) 58.55± 5.89 3.07± 0.89
RN-MRF(with only FM) 94.28± 17.12 7.70± 1.98

RN-MRF(with Helper & FM) 99.97± 20.09 7.81± 2.47

image. We model two types of dependencies – (1) a de-
pendency that connects the noisy observation with the
corresponding random variable in the original image,
and (2) a pairwise dependency between two random
variables that correspond to neighboring pixels in the
original image. To represent these dependencies, we
define an RN-MRF as in (2). Both the potentials are
modeled with linear Gaussian helper function and with
the feature mapping (FM) |x1 − x2|. Both neural net
potentials ϕnn1 and ϕnn2 have two hidden layers, with
64 neurons for the first layer and 32 neurons for the
second layer.

To investigate the modeling power of RN-MRF, we
compare our model with Gaussian-MRFs, which have
potential functions of the form exp(.5(x−µ)Σ(x−µ)T)
where the mean vector µ and covariance matrix Σ are
learnable parameters, and with convolutional neural
networks with 3 convolution layers (conv1: 32 channels,
conv2: 16 channels, conv3: 1 channels, each has kernel
size 3). Additionally, we also evaluate the RN-MRF
model both with and without a linear Gaussian helper
function and without both the feature mapping and
the helper function.

All models were trained using PMLE with the Adam
optimizer for 1500 training iterations (until conver-
gence). For each iteration, the algorithm randomly
samples 100 variables for computing the aggregated
input matrix, and approximates the expectation term
with 20 sampling points. For inference, we used EPBP
with a Gaussian proposal distribution and approximate
the messages with 50 sampling points. We report the
average image ℓ1 and ℓ2 error.

Figure 1 visualizes the performance of the different
approaches on sample test data points. CNN produces
blurry result because it does not model the relationship
between neighboring pixels explicitly. Gaussian MRF
produces noisy results as the Gaussian function fails
to fully capture multi-modal dependency between the
ground truth pixel and the observation. With neural
potential functions, our RN-MRF model was able to
model the complicated relationship, leading to success-
ful recovery. Similar conclusions can be obtained by
inspecting the ℓ1 and ℓ2 errors on the test set, see Ta-
ble 1. This suggests that the RN-MRF framework is
effective at learning dependency between continuous

variables (Q1).

It can be observed that RN-MRF with Feature Map-
ping produces a less accurate result as compared to RN-
MRF without any assumption embedded. As shown in
the supplementary material, resulting images of RN-
MRF(with FM) are visually similar to the one without
assumption, but with a slightly different tune. This is
likely due to the assumption enforced by feature map-
ping, which suggests pixels with different gray scale
share the same distribution. However, due to how data
were generated, the pixel value is clipped to [0, 1] when
noise is added, so the darkest and brightest pixels will
have higher probability. This shows that even with-
out careful tuning, our learning algorithm and neural
potentials are able to perform well (Q2). Also, notice
that RN-MRF (with FM & Helper) has similar result
as RN-MRF (with FM), because the helper function
only helps sampling, which does not have much im-
pact in this task where continuous domain is bounded.
It is important to note that although having helper
functions might not result in better performance in
bounded domains, it is necessary for both the infer-
ence and learning algorithm to function properly in
unbounded domains.

6.2 Digit Deduction

To showcase the usability and the ability of our model
in combining neural networks with relational logic rules,
we perform a toy digit deduction task on a synthetic
time conversion dataset based on MNIST dataset. In
this task, we consider a digit prediction task given
four MNIST images associated with a set of relational
rules. The first image and second image constitute
UTC time T1 ∈ {0, ..., 23}, and third and fourth image
form the local time T2. Given the local time zone
Z ∈ {−11, ...,+0, ...,+12}, we enforced a relationship
among these images. To model this task, we create the
following RN-MRF.

U : ϕcnn(Img,D)

U : ϕmln1(T1 = 10 ∗D1 +D2) st. D1 and D2 form T1

U : ϕmln2((T1 + Z)%24 = T2).

The neural potential ϕcnn is a convolutional neural
network with 2 convolution layers and 2 linear layers
(conv1: 8 channels, conv2: 3 channels, both with kernel
size 3, fc1: 64 neurons, fc2: 10 neurons), which models
the distribution of the actual digit given the image.
Potentials ϕmln1 and ϕmln2 model the rules converting
digit to time and converting UTC time to local time
given the time zone. For the training data and testing,
we generate 1000 triples of T1, T2 and Z randomly.
Images were randomly picked from the MNIST dataset
to form T1 and T2. For prediction, both images and

Relational Neural Markov Random Fields

Table 2: Comparison of different models on the digit de-
duction task.

Model Digit Accuracy Time Accuracy
CNN 0.925± 0.007 N/A

RN-MRF(with MLN) 0.970± 0.006 0.945± 0.009
RN-MRF(ϕnn only) 0.925± 0.009 0.045± 0.006

the time zone are given. Digits and time will be pre-
dicted by MAP inference with EPBP. We compare the
prediction accuracy of RN-MRF model with a neural
net counterpart without rules embedded.

As Table 2 shows, RN-MRF with MLN rules produces
a more accurate result compared with the CNN, which
does not include the additional constraint – showing the
importance of adding human knowledge. We also tried
modeling the aforementioned constraints with neural
potentials. However, the result is similar to the plain
CNN. This is likely a result of the limited training data;
we only have 1000 data points for modeling the time
conversion relation, which has 243 possible states. The
addition of logical rules in RN-MRF helps to regularize
and compensate for the lack of data (Q3).

6.3 Robot Mapping

To investigate the power of RN-MRF in modeling
hybrid relational data and the usefulness of using a
weighted logic model to capture human knowledge, we
consider a real-world relational robotic map building
domain (Limketkai et al., 2005), where the goal is to
build a labeled object map of indoor spaces from a
set of laser range-scanned line segments defined by
their endpoint coordinates. In this experiment, the
laser scanned data are corridor maps from the Radish
robotics data set repository. Each line segment can
be mapped to one of three different types of objects
{’Wall’, ’Door’, ’Other’}. The ground truth labeling,
constructed by hand, is given in the dataset. Sim-
ilar to Wang and Domingos (2008), we pre-process
the endpoint data by computing the segments’ length,
depth, and angle, which are considered as evidence.
The pre-processing step will make it easier for us to
come up with meaning logical rules. We also include
the neighbor predicate used by Wang and Domingos
(2008): neighbor(s1, s2) is true if the minimum end-
point distance between segment s1 and s2 is under a
specified threshold.

We chose this domain for several reasons: (1) it is rela-
tional and has both continuous and discrete features,
(2) some relationships between features can be encoded
in the form of logical language while some relationships
are more complicated and can be represented with neu-
ral potentials and (3) the training data size is small
– adding human knowledge/domain expertise should

help to prevent overfitting. To predict the segment
type, we define the following RN-MRF.

U : ϕnn1(length(S), depth(S), angle(S), type(S))

U : ϕnn2(depth(S1)− depth(S2), type(S1), type(S2))

U : ϕmln1(angle(S)>30◦ ⇒ type(S)!=’W’)
U : ϕmln2(angle(S)>89◦ ⇒ type(S)=’O’)
U : ϕmln3(type(S1)=’D’ ⇒ type(S2)!=’D’)

st. nb(S1, S2)

Neural potential nn1 models the local relationship
among the length, depth, angle, and type, which in
principle would be sufficient on its own. The type of
a segment can also be predicted given the type of its
neighbor and their depth difference; this relationship is
modeled by nn2. For example, a door object is usually
“deeper” than wall objects. If a segment is a wall and
has a higher depth value than its neighbor, then its
neighbor has higher probability to be a door object. We
also include three MLN potentials. The first suggests
that if the angle of a segment is larger than 30◦, then it
is likely not a wall object. Similarly, the second formula
implies that a segment is of type ’Other’ if its angle is
larger than 89◦. Finally, mln3 encodes the knowledge
that neighboring segments are both not likely to be
door objects.

We compare RN-MRFs with Categorical Gaussian
MRFs, hybrid MLNs (Wang and Domingos, 2008), and
Neural CRFs (Do and Artieres, 2010). For hybrid
MLNs, we use the HMLN constructed by Wang and
Domingos (2008). For CG MRFs and Neural CRFs,
we use the grounded graph defined by the above RN-
MRF, which could be considered as a CRF model if
the length, depth, and angle of all segments are given.
To make the comparison between RN-MRFs and these
discriminative models fair, we also train our model
conditionally and report the result as RN-CRF. Addi-
tionally, in order to show the effect of MLN potentials,
we include the model both with and without MLN rules.
For all potentials that involve a neural network, the
neural model is set to a fully connected network with
2 hidden layers (64 and 32 neurons, ReLU activation).

The dataset consists of 5 distinct laser-scanned maps.
For each map, both the endpoint coordinates and rela-
tional predicates are provided. In our experiment, we
evaluate all models and algorithms using leave-one-out
cross validation. All models are trained with PMLE
(3000 iterations, 30 sampling points) and tested with
EPBP (20 sampling points). The results are shown in
Table 3.

RN-MRF and RN-CRF perform similarly to Neural
CRF, which is likely the result of their somewhat sim-
ilar reliance on neural networks in the construction

Yuqiao Chen, Sriraam Natarajan, Nicholas Ruozzi

Table 3: Comparison on the robot mapping task.
Model Accuracy F1(Wall) F1(Door) F1(Other)

RN-MRF 0.876 0.944 0.821 0.809
RN-MRF(no MLN) 0.852 0.912 0.807 0.781

RN-CRF 0.901 0.945 0.88 0.836
RN-CRF(no MLN) 0.88 0.935 0.842 0.812

Neural-CRF 0.884 0.961 0.842 0.782
CG-MRF 0.762 0.838 0.703 0.667

Expert HMLN 0.761 0.815 0.807 0.487

of the potential functions. All of the neural network
based methods significantly outperform Categorical
Gaussian MRFs and the expert-specified hybrid MLN.
One reason for the significant discrepancy is that the
local features (length, depth and angle of a segment)
are not well-modeled with a unimodal distribution, e.g.,
in the data set the length distribution of wall objects
is closer to bimodal. However, both CG-MRF and
HMLN use Gaussians for modeling local continuous
features. This suggests that the neural potentials accu-
rately encode this multimodality (Q2). Also note that
both RN-MRF and RN-CRF are slightly better than
their counterparts without MLN rules. With the neu-
ral potentials alone, the RN-MRF appears to capture
many of the most important dependencies accurately,
but there are also some edge cases, which rarely appear
in the dataset, that are difficult to learn. With the
addition of a few simple MLN rules, the model better
able to account for these dependencies (Q3).

7 Discussion

We presented a general relational MRF model that
seamlessly handles complex dependencies in relational
and hybrid domains and allows for human knowledge
to be specified as an inductive bias either in the form
of priors or weighted logic rules. When modeling these
complex dependencies, RN-MRFs only need to make
minimal assumptions on the underlying distribution by
utilizing the expressiveness of neural potential functions.
In addition, we presented a maximum pseudo-likelihood
learning algorithm for general relational MRF/CRF
models, that performs well in the context of relational
domains and can be trained efficiently. Our empiri-
cal evaluations show that the RN-MRF model can be
applied to various domains and performs better than
non-neural potential based modeling approaches un-
der the same learning conditions. There are two main
limitations for our proposed method: 1) The MPLE al-
gorithm cannot learn with missing data. If a grounded
atom does not have data associated with it, we can
drop it and its Markov blanket during learning. In
certain extreme cases, it is possible that none of the
grounded atoms can be used for learning. 2) Different
neural potentials might need different learning rates,
which is problematic if we need to learn a large number

of potentials at the same time. For future work, we
plan to explore scaling up this approach to graphs with
missing data or latent variables, allowing for richer hu-
man knowledge such as preferences and/or qualitative
constraints and exploring the trade-offs/benefits versus
neuro-symbolic learning methods.

Acknowledgements

This work was supported in part by the DARPA Ex-
plainable Artificial Intelligence (XAI) Program under
contract number N66001-17-2-4032, by the DARPA
Perceptually-enabled Task Guidance (PTG) Program
under contract number HR00112220005. Sriraam
Natarajan gratefully acknowledges the support of ARO
award W911NF2010224.

References

J. Besag. Spatial interaction and the statistical analysis
of lattice systems. Journal of the Royal Statistical
Society: Series B (Methodological), 36(2):192–225,
1974.

R. D. S. Braz, E. Amir, and D. Roth. Lifted first-order
probabilistic inference. In IJCAI, 2005.

J. Choi, E. Amir, and D. J. Hill. Lifted inference for
relational continuous models. In Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence (UAI), 2010.

T. Do and T. Artieres. Neural conditional random fields.
In Y. W. Teh and M. Titterington, editors, Proceed-
ings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pages 177–184.
JMLR Workshop and Conference Proceedings, 2010.

A. Garcez and L. C. Lamb. Neurosymbolic AI: the 3rd
wave. CoRR, abs/2012.05876, 2020.

L. Getoor and B. Taskar. Introduction to Statistical
Relational Learning. MIT Press, 2007.

T. Khot, S. Natarajan, K. Kersting, and J. Shavlik.
Learning Markov logic networks via functional gra-
dient boosting. In ICDM, pages 320–329, 2011.

P. Knöbelreiter, C. Reinbacher, A. Shekhovtsov, and
T. Pock. End-to-end training of hybrid cnn-crf mod-
els for stereo. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1456–1465, 2017.

T. Lienart, Y. W. Teh, and A. Doucet. Expectation
particle belief propagation. In Advances in Neural
Information Processing Systems (NIPS), pages 3609–
3617, 2015.

B. Limketkai, L. Liao, and D. Fox. Relational object
maps for mobile robots. In IJCAI, 2005.

F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth
from single monocular images using deep convolu-

Relational Neural Markov Random Fields

tional neural fields. IEEE Trans. Pattern Anal. Mach.
Intell., 38(10):2024–2039, 2015.

R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester,
and L. D. Raedt. Deepproblog: Neural probabilistic
logic programming. In NeurIPS, 2018.

G. Marra and O. Kuzelka. Neural markov logic net-
works. CoRR, abs/1905.13462, 2019.

S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and
J. Shavlik. Gradient-based boosting for statistical
relational learning: The Relational Dependency Net-
work case. MLJ, 2012.

D. Poole. First-order probabilistic inference. In IJCAI,
2003.

M. Qu and J. Tang. Probabilistic logic neural networks
for reasoning. In NIPS, 2019.

L. D. Raedt, K. Kersting, S. Natarajan, and D. Poole.
Statistical Relational Artificial Intelligence: Logic,
Probability, and Computation. Morgan & Claypool,
2016.

L. D. Raedt, S. Dumančić, R. Manhaeve, and G. Marra.
From statistical relational to neuro-symbolic artifi-
cial intelligence. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelli-
gence, IJCAI-20, 2020.

I. Ravkic, J. Ramon, and J. Davis. Learning relational
dependency networks in hybrid domains. Mach.
Learn., 100(2-3):217–254, 2015.

M. Richardson and P. Domingos. Markov logic net-
works. Machine Learning, 62, 2006.

J. Wang and P. Domingos. Hybrid markov logic net-
works. In Twenty-Second AAAI Conference on Arti-
ficial Intelligence (AAAI), 2008.

Z. Wu, D. Lin, and X. Tang. Deep markov random
field for image modeling. In B. Leibe, J. Matas,
N. Sebe, and M. Welling, editors, Computer Vision –
ECCV 2016, pages 295–312. Springer International
Publishing, 2016.

H. Xiong and N. Ruozzi. General purpose mrf learning
with neural network potentials. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20. International Joint
Conferences on Artificial Intelligence Organization,
2020.

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vi-
neet, Z. Su, D. Du, C. Huang, and P. H. Torr. Condi-
tional random fields as recurrent neural networks. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1529–1537, 2015.

	Introduction
	Related Work
	Preliminaries
	Relational Neural Markov Random Fields
	Encoding Human Knowledge

	Learning RN-MRFs
	Experiments
	Image Denoising
	Digit Deduction
	Robot Mapping

	Discussion

