
Sample Complexity of Policy-Based Methods under Off-Policy
Sampling and Linear Function Approximation

Zaiwei Chen Siva Theja Maguluri
Georgia Institute of Technology Georgia Institute of Technology

Abstract

In this work, we study policy-based meth-
ods for solving the reinforcement learning
problem, where off-policy sampling and lin-
ear function approximation are employed for
policy evaluation, and various policy up-
date rules (including natural policy gradi-
ent) are considered for policy improvement.
To solve the policy evaluation sub-problem
in the presence of the deadly triad, we pro-
pose a generic algorithm framework of multi-
step TD-learning with generalized impor-
tance sampling ratios, which includes two
specific algorithms: the λ-averaged Q-trace
and the two-sided Q-trace. The generic algo-
rithm is single time-scale, has provable finite-
sample guarantees, and overcomes the high
variance issue in off-policy learning. As for
the policy improvement, we provide a univer-
sal analysis that establishes geometric con-
vergence of various policy update rules, which
leads to an overall Õ(ϵ−2) sample complexity.

1 INTRODUCTION

Policy-based methods including approximate policy it-
eration and various policy gradient methods are pop-
ular approaches to solve the reinforcement learning
(RL) problem (Sutton and Barto, 2018). Two key
ideas that are behind these successes are function ap-
proximation and off-policy sampling. Since we usually
have to deal with extremely large or even continuous
state and action spaces, function approximation en-
ables the agent to overcome the curse of dimensional-
ity so that RL is computationally tractable. On the
other hand, sampling can be of high risk and/or ex-
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pensive in many realistic RL problems such as clinical
trials (Zhao et al., 2009) and power systems (Glavic
et al., 2017). Off-policy sampling overcomes this chal-
lenge because the agent can learn in an off-line manner
using historical data.

On the theoretical side, there is an increasing interest
in understanding the finite-sample convergence behav-
ior of policy-based methods. However, policy-based
methods under off-policy sampling and function ap-
proximation are in general not well understood. This
leads to our main contributions in the following.

Off-Policy TD-Learning under Linear Function
Approximation. To solve the policy evaluation sub-
problem in general policy-based approaches, we pro-
pose a generic single time-scale algorithm design of
multi-step TD-learning with generalized importance
sampling ratios, including two specific algorithms: the
λ-averaged Q-trace algorithm and the two-sided Q-
trace algorithm. We establish their finite-sample con-
vergence guarantees, characterize the limit points as
solutions to generalized multi-step projected Bellman
equations (PBEs), and provide performance bounds
on the limit points in terms of the error compared to
the true value function.

The Õ(ϵ−2) Sample Complexity of Policy-Based
Methods with Various Policy Update Rules.
Consider the general policy-based framework where
the policy evaluation is solved with our proposed off-
policy TD-learning algorithm, and the policy improve-
ment uses various policy update rules, including 1/β1-
greedy update, β2-softmax update, and β3-natural pol-
icy gradient update (see Section 3). We provide a uni-
fied approach to show that the overall sample com-
plexity for all these algorithms is Õ(ϵ−2). In the case
of off-policy natural actor-critic, this improves the pre-
vious state-of-the-art result in Chen et al. (2021a) by
a factor of ϵ−1.

1.1 Related Literature

At a high level, RL algorithms can be divided into
two categories: value-based methods and policy-based
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methods. Policy-based methods include actor-critic
(Konda and Tsitsiklis, 2000), its variant natural actor-
critic (Kakade, 2001), and approximate policy itera-
tion (Bertsekas, 2011), and is usually consisted of pol-
icy evaluation and policy improvement.

TD-Learning. The TD-learning method is used
to solve the policy evaluation sub-problem, and is
usually used in policy-based methods to ultimately
find an optimal policy. The asymptotic convergence
of TD-learning was established in Tsitsiklis (1994);
Dayan and Sejnowski (1994); Bertsekas and Yu (2009).
Finite-sample analysis of variants of TD-learning al-
gorithms using on-policy sampling was performed in
Chen et al. (2021b), and using off-policy sampling was
performed in Khodadadian et al. (2021b); Chen et al.
(2021c). In the function approximation setting, TD-
learning with linear function approximation was stud-
ied in Tsitsiklis and Van Roy (1997); Lazaric et al.
(2012); Srikant and Ying (2019); Bhandari et al. (2018)
when using on-policy sampling. In the off-policy linear
function approximation setting, due to the presence of
the deadly triad, TD-learning algorithms can diverge
(Sutton and Barto, 2018). Variants of TD-learning
algorithms such as TDC (Sutton et al., 2009), GTD
(Sutton et al., 2008), emphathic TD (Sutton et al.,
2016), and n-step TD (with a large enough n) (Chen
et al., 2021a) were used to resolve the divergence issue,
and the finite-sample bounds were studied in Ma et al.
(2020); Wang et al. (2021); Chen et al. (2021a). Note
that TDC, GTD, and emphathic TD are two time-
scale algorithms, while n-step TD is single time-scale,
it suffers from a high variance due to the cumulative
product of the importance sampling ratios. See Ap-
pendix D of this work for a detailed discussion.

(Natural) Actor-Critic. The asymptotic con-
vergence of on-policy actor-critic was established in
Williams and Baird (1990); Borkar (2009); Borkar and
Konda (1997) when using a tabular representation,
and in Konda and Tsitsiklis (2000); Bhatnagar et al.
(2009) when using function approximation. In re-
cent years, there has been an increasing interest in
understanding the finite-sample behavior of (natural)
actor-critic algorithms. Here is a non-exhaustive list:
Lan (2021); Khodadadian et al. (2021b); Zhang et al.
(2019); Qiu et al. (2019); Kumar et al. (2019); Liu
et al. (2019); Wang et al. (2019); Liu et al. (2020);
Wu et al. (2020); Cayci et al. (2021). The state-of-
the-art sample complexity of on-policy natural actor-
critic is Õ(ϵ−2) (Lan, 2021). However, only tabular
RL was considered in Lan (2021). In the off-policy
setting, finite-sample analysis of natural actor-critic
was studied in Khodadadian et al. (2021a) in the tab-
ular setting, and in Chen et al. (2021a) in the linear
function approximation, and the sample complexity in

both cases is Õ(ϵ−3).

1.2 Background on Reinforcement Learning

Consider modeling the RL problem as a finite Markov
decision process (MDP) M = (S,A,P,R, γ), where
S is the state-space, A is the action-space, P =
{Pa ∈ R|S|×|S| | a ∈ A} is the set of unknown
action-dependent transition probability matrices, R :
S × A 7→ R is the unknown reward function, and
γ ∈ (0, 1) is the discount factor. We assume with-
out loss of generality that maxs,a |R(s, a)| ≤ 1. The
goal is to find an optimal policy π∗ of selecting ac-
tions so that the long term reward is maximized. For-
mally, define the state-action value function associ-
ated with a policy π at state-action pair (s, a) by
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(Sk, Ak) | S0 = s,A0 = a],
where we use the notation Eπ[ · ] to indicate that the
actions are chosen according to the policy π. Then
the goal is to find an optimal policy π∗ such that
Q∗ := Qπ∗

is maximized uniformly for all (s, a). A
popular approach to solve the RL problem is to use
the policy-based methods. In every iteration of gen-
eral policy-based algorithms, the agent first performs
a policy evaluation step to estimate the value function
of the current policy iterate, which is then followed by
a policy improvement step to update the policy.

2 OFF-POLICY TD-LEARNING
WITH LINEAR FUNCTION
APPROXIMATION

This section is dedicated to solving the policy evalu-
ation sub-problem within general policy-based meth-
ods. Policy evaluation refers to estimating the Q-
function Qπ of a given target policy π, and is usually
solved with the TD-learning algorithm. Depending on
whether the policy πb used to collect samples (called
the behavior policy) is equal to the target policy π or
not, there are on-policy TD-learning (i.e., πb = π) and
off-policy TD-learning (i.e., πb ̸= π).

TD-learning becomes computationally intractable
when the size of the state-action space is large. This
motivates the use of function approximation. In lin-
ear function approximation, we choose a set of basis
vectors ϕi ∈ R|S||A|, 1 ≤ i ≤ d. Let Φ ∈ R|S||A|×d

be a matrix defined by Φ = [ϕ1, · · · , ϕd]. Then, the
goal is to find from the linear sub-space Q = {Q̃w =
Φw | w ∈ Rd} the “best” approximation of the Q-
function Qπ, where w ∈ Rd is the weight vector. Let
ϕ(s, a) = [ϕ1(s, a), ϕ2(s, a), · · · , ϕd(s, a)]

⊤ ∈ Rd be the
feature vector associated with the pair (s, a).

When TD-learning is used along with off-policy sam-
pling and linear function approximation, the deadly
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Algorithm 1 A Generic Multi-Step Off-Policy TD-Learning with Linear Function Approximation

1: Input: Integer K, bootstrapping parameter n, stepsize sequence {αk}, initialization w0, target policy π,
behavior policy πb, generalized importance sampling ratios c, ρ : S × A 7→ R+, and a single trajectory of
samples {(Sk, Ak)}0≤k≤K+n−1 generated by the behavior policy πb.

2: for k = 0, 1, · · · ,K − 1 do
3: ∆i(wk) = R(Si, Ai) + γρ(Si+1, Ai+1)ϕ(Si+1, Ai+1)

⊤wk − ϕ(Si, Ai)
⊤wk, i ∈ {k, k + 1, · · · , k + n− 1}

4: wk+1 = wk + αkϕ(Sk, Ak)
∑k+n−1

i=k γi−k
∏i

j=k+1 c(Sj , Aj)∆i(wk)
5: end for
6: Output: wK

triad is formed and the algorithm can be unstable.
We next propose a generic framework of TD-learning
algorithms (including two specific algorithms: the λ-
averaged Q-trace and the two-sided Q-trace), which
provably converge in the presence of the deadly triad,
and do not suffer from the high variance issue in off-
policy learning. Throughout this paper, we impose
the following assumption on the basis vectors. Such
assumption is indeed without loss of generality.

Assumption 2.1. The matrix Φ has full column-
rank, and satisfies ∥Φ∥∞ ≤ 1.

2.1 Algorithm Design

We present in Algorithm 1 a generic TD-learning algo-
rithm using off-policy sampling and linear function ap-
proximation. In Algorithm 1, the choice of the gener-
alized importance sampling ratios c(·, ·) and ρ(·, ·) is of
vital importance. We next present two specific choices,
resulting in two novel algorithms called λ-averaged Q-
trace and two-sided Q-trace.

The λ-Averaged Q-Trace Algorithm. Let λ ∈
R|S| be a vector-valued tunable parameter satisfying
λ ∈ [0,1]. Then the generalized importance sampling

ratios are chosen as c(s, a) = ρ(s, a) = λ(s) π(a|s)
πb(a|s)+1−

λ(s) for all (s, a). Observe that when λ = 1, we have

c(s, a) = ρ(s, a) = π(a|s)
πb(a|s) , and Algorithm 1 reduces to

the convergent multi-step off-policy TD-learning algo-
rithm presented in Chen et al. (2021a), which however
suffers from an exponential large variance due to the
cumulative product of the importance sampling ratios.
See Appendix D for more details. On the other hand,
when λ = 0, we have c(s, a) = ρ(s, a) = 1, and hence
the product of the generalized importance sampling
ratios is deterministically equal to one, resulting in no
variance at all. However, in this case, we are essentially
performing policy evaluation of the behavior policy πb

instead of the target policy π, hence there will be a
bias in the limit of Algorithm 1. More generally, when
λ ∈ (0,1), there is a trade-off between the variance
and the bias in the limit point. Such trade-off will be
studied quantitatively in Section 2.3.

The Two-Sided Q-Trace Algorithm. To intro-

duce the algorithm, we first define the two-sided trun-
cation function. Given upper and lower truncation
levels a, b ∈ R, define ga,b : R 7→ R by ga,b(x) = a
when x < a, ga,b(x) = x when a ≤ x ≤ b, and
ga,b(x) = b when x > b. Let ℓ, u ∈ R|S| be two
vector-valued tunable parameters satisfying 0 ≤ ℓ ≤
1 ≤ u. Then, for the two-sided Q-trace algorithm,
the generalized importance sampling ratios are chosen
as c(s, a) = ρ(s, a) = gℓ(s),u(s) (π(a|s)/πb(a|s)) for all
(s, a). The idea of truncating the importance sampling
ratios from above was already employed in existing al-
gorithms such as Retrace(λ) (Munos et al., 2016), V -
trace (Espeholt et al., 2018), and Q-trace (Khodada-
dian et al., 2021b), and is used to control the high
variance in off-policy learning. However, none of them
were shown to converge in the function approximation
setting. Introducing the lower truncation level is cru-
cial to ensure the convergence of the two-sided Q-trace
algorithm in the presence of the deadly triad. This will
be illustrated in detail in Section 2.3.

2.2 The Generalized PBE

We next theoretically analyze Algorithm 1. Specifi-
cally, in this section, we formulate Algorithm 1 as a
stochastic approximation algorithm for solving a gen-
eralized PBE and study its properties. We begin by
stating our assumption.

Assumption 2.2. The behavior policy πb satisfies
πb(a|s) > 0 for all (s, a), and induces an irreducible
and aperiodic Markov chain {Sk}.

Assumption 2.2 implies that the Markov chain {Sk}
induced by πb has a unique stationary distribution µ ∈
∆|S|. Moreover, there exist C ≥ 1 and σ ∈ (0, 1) such
that maxs∈S ∥P k

πb
(s, ·)− µ(·)∥TV ≤ Cσk for all k ≥ 0,

where Pπb
is the transition probability matrix of the

Markov chain {Sk} under πb (Levin and Peres, 2017).

For simplicity, denote ci,j =
∏j

k=i c(Sk, Ak). The tar-
get equation Algorithm 1 aims at solving is:

ES0∼µ

[
ϕ(S0, A0)

n−1∑
i=0

γic1,i∆i(w)

]
= 0, (1)
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where Ai ∼ πb(·|Si) and Si+1 ∼ PAi(Si, ·).
The following lemma formulates Eq. (1) in the
form of a generalized PBE. To present the lemma,
we first introduce some notation. Let KSA ∈
R|S||A|×|S||A| be a diagonal matrix with diagonal en-
tries {µ(s)πb(a|s)}(s,a)∈S×A, and let KSA,min be the
minimal diagonal entry. Let ∥ · ∥KSA

be the weighted
ℓ2-norm with weights {µ(s)πb(a|s)}(s,a)∈S×A, and de-
note ProjQ as the projection operator onto the lin-
ear sub-space Q with respect to ∥ · ∥KSA

. Let
Tc,Hρ : R|S||A| 7→ R|S||A| be two operators de-

fined by [Tc(Q)](s, a) =
∑n−1

i=0 Eπb
[γic1,iQ(Si, Ai) |

S0 = s,A0 = a] and [Hρ(Q)](s, a) = R(s, a) +
γEπb

[ρ(Sk+1, Ak+1)Q(Sk+1, Ak+1) | Sk = s,Ak = a]
for any Q ∈ R|S||A| and state-action pair (s, a).

Lemma 2.1. Eq. (1) is equivalent to:

Φw = ProjQBc,ρ(Φw), (2)

where Bc,ρ(·) is the generalized Bellman operator de-
fined by Bc,ρ(Q) = Tc(Hρ(Q)−Q) +Q.

The generalized Bellman operator Bc,ρ(·) was previ-
ously introduced in Chen et al. (2021c) to study off-
policy TD-learning algorithms in the tabular setting
(i.e., Φ = ISA), where the contraction property of
Bc,ρ(·) was shown. However, Bc,ρ(·) alone being a con-
traction is not enough to guarantee the convergence of
Algorithm 1 because of function approximation, which
introduces an additional projection operator ProjQ.
What we truly need is that (1) the composed opera-
tor ProjQBc,ρ(·) is a contraction mapping, and (2) the
solution wπ

c,ρ of Eq. (2) is such that Φwπ
c,ρ is an ap-

proximation of the Q-function Qπ. We next provide
sufficient conditions on the choices of the generalized
importance sampling ratios c(·, ·) and ρ(·, ·), and the
bootstrapping parameter n so that the above two re-
quirements are satisfied.

Let Dc, Dρ ∈ R|S||A|×|S||A| be two diagonal matri-
ces such that Dc((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)c(s, a′)
and Dρ((s, a), (s, a)) =

∑
a′∈A πb(a

′|s)ρ(s, a′) for all
(s, a). Let Dc,max and Dρ,max (Dc,min and Dρ,min) be
the maximam (minimum) diagonal entries of the ma-
trices Dc and Dρ respectively.

Condition 2.1. The generalized importance sampling
ratios c(·, ·), ρ(·, ·) satisfy (1) c(s, a) ≤ ρ(s, a), ∀ (s, a),

(2) Dρ,max < 1/γ, and (3)
γ(Dρ,max−Dc,min)

(1−γDc,min)
√

KSA,min

< 1.

Condition 2.1 (1) and (2) were previously introduced
in Chen et al. (2021c), and were used to show the
contraction property of the operator Bc,ρ(·). In par-
ticular, it was shown that the generalized Bellman
operator Bc,ρ(·) is a contraction mapping with re-
spect to ∥ · ∥∞, with contraction factor γ̃(n) = 1 −
fn(γDc,min)(1 − γDρ,max), where fn : R 7→ R is de-

fined by fn(x) =
∑n−1

i=0 xi for any x. It is clear that

γ̃(n) ∈ (0, 1), and is a decreasing function of n.

As illustrated earlier, Bc,ρ(·) being a contraction map-
ping is not sufficient to guarantee the stability of
Algorithm 1. We require the composed operator
ProjQBc,ρ(·) to be contraction mapping with appro-
priate choice of n. This is guaranteed by Condition
2.1 (3). To see this, first note that we have the fol-
lowing lemma, which is obtained by using the contrac-
tion property of Bc,ρ(·) and the “equivalence” between
norms in finite-dimensional spaces.

Lemma 2.2. Under Condition 2.1, it holds for
any Q1, Q2 ∈ R|S||A| that ∥ProjQBc,ρ(Q1) −
ProjQBc,ρ(Q2)∥KSA

≤ γ̃(n)√
KSA,min

∥Q1 −Q2∥KSA
.

In view of Lemma 2.2, the composed operator
ProjQBc,ρ(·) is a contraction mapping as long as
limn→∞ γ̃(n)/

√
KSA,min < 1, which after straightfor-

ward algebra is equivalent to Condition 2.1 (3).

To satisfy Condition 2.1 (3), intuitively we should
makeDρ,max andDc,min arbitrarily close to each other.
It is not clear if this is possible for existing off-policy
TD-learning algorithms such as Retrace(λ) (Munos
et al., 2016), Qπ(λ) (Harutyunyan et al., 2016), V -
trace (Espeholt et al., 2018), and Q-trace (Khodada-
dian et al., 2021a). That is the reason why none of
them were shown to converge in the function approx-
imation setting. In contrast, consider the λ-averaged
Q-trace algorithm. Both Dc and Dρ are identity ma-
trices (which implies Dρ,max = Dc,min = 1), hence
Condition 2.1 (3) is always satisfied. Similarly, in
the two-sided Q-trace algorithm, for any choice of
the upper truncation level u ≥ 1, we can always
choose the lower truncation level 0 ≤ ℓ ≤ 1 appro-
priately to satisfy Condition 2.1 (3). Specifically, for
any s ∈ S and u(s) ≥ 1, choosing ℓ(s) ≤ 1 such
that

∑
a∈A πb(a|s)gℓ(s),u(s)(π(a|s)/πb(a|s)) = 1 sat-

isfies Condition 2.1 (3). Therefore, compared to V -
trace, Retrace(λ), and Q-trace, where the importance
sampling ratios were only truncated above, the pri-
mary reason for introducing the lower truncation level
is to satisfy Condition 2.1 (3), thereby ensuring con-
vergence of the resulting two-sided Q-trace algorithm.

In the next lemma, we show that under Condition
2.1, with properly chosen n, the composed operator
ProjQBc,ρ(·) is a contraction mapping, which ensures
that Eq. (2) has a unique solution, denoted by wπ

c,ρ.
Moreover, we provide performance guarantees on the
solution wπ

c,ρ in terms of an upper bound on the differ-
ence between Qπ and Φwπ

c,ρ. Let Q
π
c,ρ be the solution

of generalized Bellman equation Q = Bc,ρ(Q), which
is guaranteed to exist and is unique since Bc,ρ(·) itself
is a contraction mapping under Condition 2.1 (1) and
(2) (Chen et al., 2021c).
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Lemma 2.3. Under Condition 2.1, suppose that
the parameter n is chosen such that γc :=
γ̃(n)/

√
KSA,min < 1. Then the composed operator

ProjQBc,ρ(·) is a γc-contraction mapping with respect
to ∥ · ∥KSA

. In this case, the unique solution wπ
c,ρ of

the generalized PBE (cf. Eq. (2)) satisfies

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2

c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

+
γmaxs∈S

∑
a∈A |π(a|s)− πb(a|s)ρ(s, a)|

(1− γ)(1− γDρ,max)
. (3)

The first term on the RHS of Eq. (3) captures the error
due to function approximation, which is in the same
spirit to Theorem 1 (4) of the seminal paper Tsitsiklis
and Van Roy (1997), and vanishes in the tabular set-
ting. The second term on the RHS of Eq. (3) arises
because of the use of generalized importance sampling
ratios, which is introduced to overcome the high vari-
ance in off-policy learning. Note that the second term
vanishes when ρ(s, a) = π(a|s)/πb(a|s) for all (s, a),
which corresponds to choosing λ = 1 in λ-averaged
Q-trace and choosing ℓ(s) ≤ mins,a π(a|s)/πb(a|s) and
u(s) ≥ maxs,a π(a|s)/πb(a|s) for all s in two-sided Q-
trace. However, in these cases, the cumulative product
of importance sampling ratios leads to a high variance
in Algorithm 1. The trade-off between the variance
and the bias in wπ

c,ρ (i.e., second term on the RHS
of Eq. (3)) will be elaborated in detail in the next
subsection.

2.3 Finite-Sample Analysis

With the contraction property of the generalized PBE
established, the almost sure convergence of Algorithm
1 under mild conditions directly follows from stan-
dard stochastic approximation results in the litera-
ture (Bertsekas and Tsitsiklis, 1996; Borkar, 2009). In
this section, we take a step further and perform finite-
sample analysis of Algorithm 1. For ease of exposition,
we here only present the finite-sample bounds of λ-
averaged Q-trace and two-sided Q-trace, where c(·, ·)
and ρ(·, ·) are explicitly specified.

For any δ > 0, let tδ = min{k ≥ 0 : maxs∈S ∥P k(s, ·)−
µ(·)∥TV ≤ δ} be the mixing time of the Markov
chain {Sk} under πb with precision δ. Note that
Assumption 2.2 implies that tδ = O(log(1/δ)). Let
λmin be the mininum eigenvalue of the positive defi-
nite matrix Φ⊤KSAΦ. Let L = 1 + (γρmax)

n, where
ρmax = maxs,a ρ(s, a).

We next present finite-sample guarantees of the λ-
averaged Q-trace algorithm when using constant step-
size (i.e., αk ≡ α). The results for using diminishing
stepsizes are trivial extensions (Chen et al., 2019).

Theorem 2.1. Consider {wk} of the λ-averaged Q-

trace Algorithm. Suppose that (1) Assumptions 2.1
and 2.2 are satisfied, (2) λ ∈ [0,1], (3) the parameter
n is chosen such that γc := γn/

√
KSA,min < 1, and

(4) the stepsize α is chosen such that α(tα + n+ 1) ≤
(1−γc)λmin

130L2 . Then, we have for all k ≥ tα + n+ 1 that

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1)

+ c2
αL2(tα + n+ 1)

(1− γc)λmin
, (4)

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 =

130(∥wπ
c,ρ∥2 + 1)2. Moreover, we have

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2

c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

+
γmaxs∈S(1− λ(s))∥π(·|s)− πb(·|s)∥1

(1− γ)2
. (5)

Using the common terminology in stochastic approx-
imation literature, we call the first term on the RHS
of Eq. (4) convergence bias, and the second term vari-
ance. When constant stepsize is used, the convergence
bias goes to zero at a geometric rate while the vari-
ance is a constant roughly proportional to αtα. Since
limα→0 αtα = 0 under Assumption 2.2, the variance
can be made arbitrarily small by using small α.

The parameter L = 1 + (γρmax)
n plays an important

role in the finite-sample bound. In fact, L appears
quadratically in the variance term of Eq. (4), and cap-
tures the impact of the cumulative product of the im-
portance sampling ratios. To overcome the high vari-
ance in off-policy learning (i.e., to make sure that the
parameter L = 1 + (γρmax)

n does not grow exponen-
tially fast with respect to n), we choose λ ∈ R|S| such
that ρmax = maxs λ(s)(maxa π(a|s)/πb(a|s)− 1)+1 ≤
1/γ. However, as long as λ ̸= 1, the limit point of the
λ-averaged Q-trace algorithm involves an additional
bias term (i.e., the second term on the RHS of Eq.
(5)) that does not vanish even in the tabular setting.

In light of the discussion above, it is clear that there
is a trade-off between the variance (cf. second term on
the RHS of Eq. (4)) and the bias in the limit point (cf.
the second term on the RHS of Eq. (3)) in choosing
the parameter λ. Specifically, large λ leads to large
ρmax and hence large L and large variance, but in this
case the second term on the RHS of Eq. (3) is smaller,
implying that we have a smaller bias in the limit point.

Next, we present the finite-sample bounds of the two-
sided Q-trace algorithm.

Theorem 2.2. Consider {wk} of the two-sided Q-
trace Algorithm. Suppose that (1) Assumptions
2.1 and 2.2 are satisfied, (2) the upper and lower
truncation levels ℓ, u ∈ R|S| are chosen such that∑

a∈A πb(a|s)gℓ(s),u(s)(π(a|s)/πb(a|s)) = 1 for all s,
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(3) the parameter n is chosen such that γc :=
γn/

√
KSA,min < 1, and (4) the stepsize α is chosen

such that α(tα + n + 1) ≤ (1−γc)λmin

130L2 . Then, we have
for all k ≥ tα + n+ 1 that

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1)

+ c2
αL2(tα + n+ 1)

(1− γc)λmin
, (6)

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 =

130(∥wπ
c,ρ∥2 + 1)2. Moreover, we have

∥Qπ − Φwπ
c,ρ∥KSA

≤ 1√
1− γ2

c

∥Qπ
c,ρ − Φwπ

c,ρ∥KSA

+
γmaxs∈S

∑
a∈A(uπ,πb

(s, a)− ℓπ,πb
(s, a))

(1− γ)2
, (7)

where uπ,πb
(s, a) = max(π(a|s) − πb(a|s)u(s), 0) and

ℓπ,πb
(s, a) = min(π(a|s)− πb(a|s)ℓ(s), 0) for all (s, a).

The finite-sample bound of the two-sided Q-trace algo-
rithm is qualitatively similar to that of the λ-averaged
Q-trace algorithm. To overcome the high variance is-
sue in off-policy learning, we choose the upper trun-
cation level such that γu(s) ≤ 1 for all s, which
ensures that the parameter L = 1 + (γρmax)

n ≤
1 + (γmaxs u(s))

n does not grow exponentially with
respect to n. Then we choose the lower trunca-
tion level accordingly to satisfy requirement (2) stated
in Theorem 2.2. However, as long as there exists
s ∈ S such that u(s) < maxs,a π(a|s)/πb(a|s) or
ℓ(s) > mins,a π(a|s)/πb(a|s), the second term on the
RHS of Eq. (7) is in general non-zero, hence adding
an additional bias term to the limit point even in the
tabular setting. As a result, the trade-off between the
variance and the bias in the limit point is also present
in the two-sided Q-trace algorithm.

In view of Theorems 2.1 and 2.2, one limitation of this
work is that the choice of n to make γc < 1 depends
on the unknown parameter KSA,min of the problem.
In practice, one can start with a specific choice of n
and then gradually tune n to achieve the convergence
of the λ-averaged Q-trace algorithm or the two-sided
Q-trace algorithm.

3 POLICY-BASED METHODS

In this section we study various policy-based algo-
rithms and establish their finite-sample convergence
guarantees. The policy evaluation sub-problem is
solved with Algorithm 1.

3.1 Policy Update Rules

We begin by presenting a generic policy-based al-
gorithm in the following. For simplicity of no-

tation, for a given target policy π, behavior pol-
icy πb, constant stepsize α, initialization w0, and
samples {(Sk, Ak)}0≤k≤K+n−1, we denote the out-
put of Algorithm 1 after K iterations by w =
ALG(w0, π, πb, α,K, {(Sk, Ak)}0≤k≤K+n−1).

Algorithm 2 A Generic Policy-Based Algorithm

1: Input: Integers T , K, initial policy π0, sam-
ple trajectory {(St, At)}0≤t≤T (K+n) collected un-
der the behavior policy πb.

2: for t = 0, 1, . . . , T − 1 do
3: dataset = {(Sk, Ak)}t(K+n)≤k≤(t+1)(K+n)−1

4: wt = ALG(0, πt, πb, α,K,dataset)
5: πt+1 = G(Φwt, πt)
6: end for
7: Output: πT

Although Algorithm 2 is presented with a fixed behav-
ior policy πb, our results can be easily generalized to
the case where the behavior policy is updated across
t. The only requirement on the behavior policy is that
it should enable the agent to sufficiently explore the
state-action space. In Algorithm 2 line 5, the function
G(·, ·) represents the policy update rule, which takes
the current policy iterate πt and the Q-function esti-
mate Φwt as inputs. Many existing policy update rules
fit into this framework, as elaborated below.

1/β1-Greedy Update. Let β1 ∈ [1,∞] be a tun-
able parameter. For any t ≥ 0 and state-action pair
(s, a), we update the policy by πt+1(a|s) = 1

β1|A|
when a ̸= argmaxa′∈A ϕ(s, a′)⊤wt, and πt+1(a|s) =

1
β1|A| + 1 − 1

β1
when a = argmaxa′∈A ϕ(s, a′)⊤wt. In

this work, whenever the argmax is not unique, we
break tie arbitrarily. More generally, we allow the
tunable parameter β1 to be time-dependent (i.e., β1

is a function of the iteration index t) and/or state-
dependent (i.e., β1 is a function of the state s).

β2-Softmax Update. Let β2 > 0 be a tunable pa-
rameter, which is allowed to be time varying and state-
dependent. Then the policy is updated by

πt+1(a|s) =
exp(β2ϕ(s, a)

⊤wt)∑
a′∈A exp(β2ϕ(s, a′)⊤wt)

, ∀ (s, a).

In 1/β1-greedy update or β2-softmax update, there
is no need to parametrize the policy because it is
uniquely determined by the estimate of theQ-function,
which already uses linear function approximation.

At a first glance of Algorithm 2 line 5, it seems that
we need to work with |S||A|-dimensional objects to
update the policy at each state-action pair, which con-
tradicts to the motivation of using function approxi-
mation. However, there is an equivalent way of im-
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plementing Algorithm 2 without explicitly executing
line 5. To see this, first note that the target policy
πt in each iteration is only used in the policy evalua-
tion step (Algorithm 2 line 4). To view of our policy
evaluation algorithm (cf. Algorithm 1), we only need
to compute the policy value of πt at state-action pairs
that are visited by the sample trajectory {(Sk, Ak)}.

When using 1/β1-greedy update or β2-softmax up-
date, Algorithm 2 subsumes the popular value-based
method SARSA (Bertsekas and Tsitsiklis, 1996) as its
special case. To see this, suppose that we are in the
on-policy setting (i.e., π = πb), and the inner-loop it-
eration number K is set to 1. Then Algorithm 2 corre-
sponds to SARSA with 1/β1-greedy exploration policy
or Boltzmann exploration policy. However, we need to
point out that our result does NOT imply finite-sample
bounds for SARSA since we need a relatively large K
to provide a sufficiently accurate estimate of the value
function before using it in policy improvement.

β3-NPG Update. Unlike 1/β1-greedy update or β2-
softmax update, where we need only the estimate of
the Q-function to perform to update, in NPG, to up-
date the policy, we need both the current policy and
the estimate of itsQ-function. Therefore, to keep track
of the policy, in this case we also need to parametrize
the policy using softmax parametrization and compat-
ible linear function approximation. Specifically, with
parameter θ ∈ Rd, the policy π associated with pa-

rameter θ is given by πθ(a|s) = exp(ϕ(s,a)⊤θ)∑
a′∈A exp(ϕ(s,a′)⊤θ)

.

Let β3 > 0 be a tunable parameter, which is allowed
to be time varying. Then NPG updates the parameter
θt of the policy according to the formula

θt+1 = θt + β3wt. (8)

See Agarwal et al. (2021) for more details about this
update rule. Denote πt as πθt for simplicity of nota-
tion. Then the update equation can be equivalently
written in terms of the policy update (and also in the
form of Algorithm 2 line 5) as

πt+1(a|s)=
πt(a|s) exp(β3ϕ(s, a)

⊤wt)∑
a′∈A πt(a′|s) exp(β3ϕ(s, a′)⊤wt)

, ∀(s, a).

This enables us to use the previous equation for our
analysis of NPG while using Eq. (8) for the implemen-
tation of Algorithm 2.

3.2 Finite-Sample Analysis

In this section, we present the finite-sample guarantees
of Algorithm 2. For ease of exposition, we implement
line 4 of Algorithm 2 with the λ-averaged Q-trace algo-
rithm. The results for using either two-sided Q-trace
algorithm or Algorithm 1 with more general choices of
c(·, ·) and ρ(·, ·) (as long as Condition 2.1 is satisfied)

are straightforward extensions. As for the policy im-
provement (cf. line 5 of Algorithm 2), we use either
1/β1-greedy policy update, or β2-softmax policy up-
date, or β3-NPG policy update, with the correspond-
ing parameters satisfying the following condition. De-
note at,s = argmaxa′∈A ϕ(s, a′)⊤wt.

Condition 3.1. Let β > 0 be a tunable param-
eter. (1) The parameter β1 is time-varying and
state-dependent, and is chosen such that β1(t, s) ≥
2γ
β maxa∈A |ϕ(s, a)⊤wt| for all s and t. (2) The pa-

rameter β2 is chosen such that β2 ≥ γ
β log(|A|). (3)

The parameter β3 is time-varying, and is chosen such
that β3(t) ≥ γ

β log(1/mins∈S πt(at,s|s)) for all t.

Theorem 3.1. Consider πt of Algorithm 2. Suppose
that the assumptions for applying Theorem 2.1 are sat-
isfied, and the choices of β1, β2, and β3 satisfy Con-
dition 3.1. Then we have for any T ≥ 0:

E[∥Q∗ −QπT ∥∞]

≤ 2γEapprox
(1− γ)2︸ ︷︷ ︸

N1

+
2γ2Ebias
(1− γ)4︸ ︷︷ ︸

N2

+ γT ∥Q∗ −Qπ0∥∞︸ ︷︷ ︸
N3: Convergence bias in the actor

+ 6c̃(1− (1− γc)λminα)
1
2 [K−(tα+n+1)]︸ ︷︷ ︸

N4: Convergence bias in the critic

+ 70Lc̃
[α(tα + n+ 1)]1/2
√
1− γc

√
λmin︸ ︷︷ ︸

N5: Critic variance

+
2γβ

(1− γ)2︸ ︷︷ ︸
N6

, (9)

where c̃ = γ√
λmin

√
1−γc(1−γ)3

, Eapprox = supπ ∥Qπ
c,ρ −

Φwπ
c,ρ∥∞ and Ebias = max0≤t≤T maxs∈S(1 −

λ(s))∥πt(·|s)− πb(·|s)∥1.

Notably on the LHS, our finite-sample guarantees are
stated for the last policy iterate πT , while in many ex-
isting literature it was stated for the best policy among
{πt}0≤t≤T (Agarwal et al., 2021).

The Terms N1 and N2. The term N1 represents the
function approximation bias, and is present in all exist-
ing literature that study policy-based methods under
function approximation (Agarwal et al., 2021). Note
that N1 = 0 when we use a complete basis. The
term N2 represents the bias introduced to the algo-
rithm by using generalized importance sampling ra-
tios c(·, ·) and ρ(·, ·). Note that we have N2 = 0
when c(s, a) = ρ(s, a) = π(a|s)/πb(a|s), which cor-
responds to using λ = 1 in the λ-averaged Q-trace al-
gorithm, and using u(s) ≥ maxs,a π(a|s)/πb(a|s) and
ℓ(s) ≤ mins,a π(a|s)/πb(a|s) for all s in the two-sided
Q-trace algorithm. However, this choice of λ (or u
and ℓ) might lead to a high variance. In particular,
the parameter L within the term N5 could be large.

The terms N3 and N4. The term N3 represents the
convergence bias in the actor, and goes to zero geomet-
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rically fast as the outer loop iteration number T goes
to infinity. Such geometric convergence is the main
reason why we obtain improved sample complexity of
β3-NPG compared to Chen et al. (2021a), where the
convergence rate of the actor is O(1/T ). The term N4

represents the convergence bias in the critic, and goes
to zero geometrically fast as the inner loop iteration
number K goes to infinity.

The terms N5 and N6. The term N5 represents the
variance in the critic, and is proportional to

√
αtα =

O(
√

α log(1/α)). Therefore, N5 can be made arbitrar-
ily small by using small enough stepsize α. The term
N6 captures the error introduced to the algorithm by
the policy update rule G(·, ·). To elaborate, consider
the following example. Suppose that the underlying
MDP model has a unique optimal policy, and suppose
we use 1/β1-greedy update (with a fixed β1) in Algo-
rithm 2 line 5. Then as long as β1 is finite, we can
never truly find the optimal policy π∗ because of the
deterministic nature of π∗. As a result, the difference
between Q∗ and Qπt will always be above some thresh-
old, which depends on the choice of β1, and is captured
by N6. Observe that N6 can be made arbitrarily small
by using small enough β.

Based on Theorem 3.1, we next derive the sample com-
plexity of Algorithm 2. To enable fair comparison with
existing literature, we choose λ = 1 to eliminate the
error due to using generalized importance sampling
ratios. Note that λ = 1 implies Ebias = 0 (and hence
N2 = 0) in Theorem 3.1.

Corollary 3.1.1. For a given accuracy level ϵ > 0,
to achieve E[∥Q∗ − QπT ∥∞] ≤ ϵ + N1, the number of
samples (e.g. the integer TK) required is of the size

O
(

log3(1/ϵ)
ϵ2

)
Õ
(

L2n
(1−γ)7(1−γc)3λ3

min

)
.

Notably, we obtain Õ(ϵ−2) sample complexity for
policy-based methods, which matches with the sam-
ple complexity of value-based algorithms such as Q-
learning (Li et al., 2020). In the case of β3-NPG up-
date, to our knowledge, Cayci et al. (2021); Lan (2021)
establishes the Õ(ϵ−2) sample complexity of on-policy
NAC under regularization, and Chen et al. (2021a) es-
tablishes the Õ(ϵ−3) sample complexity of a variant
of off-policy NAC (where the infamous deadly triad is
present). We improve the sample complexity in Chen
et al. (2021a) by a factor of ϵ−1, and we do not use
regularization.

In addition to the dependence on ϵ, the dependence on
1/(1−γ) (which is usually called the effective horizon)
is also improved by a factor of 1/(1 − γ) compared
to existing work (Agarwal et al., 2021; Chen et al.,
2021a). The bootstrapping parameter n appears lin-
early in our sample complexity bound. This matches

with the results for n-step TD-learning in the on-policy
tabular setting (Chen et al., 2021b).

4 OUTLINE OF THE PROOF

In this section, we provide the proof sketch of Theo-
rems 2.1 and 2.2, and Theorem 3.1.

4.1 Policy Evaluation

Instead of proving Theorems 2.1 and 2.2, we will state
and prove finite-sample bounds for Algorithm 1 with
c(·, ·) and ρ(·, ·) satisfying Condition 2.1, which sub-
sumes Theorems 2.1 and 2.2 as its special cases. In
this more general setup where we do not have c(·, ·) =
ρ(·, ·), we define the constant parameter L as

L =

{
(1 + (γρmax)

n), c(·, ·) = ρ(·, ·),
(1 + γρmax)fn(γcmax), c(·, ·) ̸= ρ(·, ·),

(10)

where cmax = maxs,a c(s, a) and ρmax = maxs,a ρ(s, a).

Theorem 4.1. Consider {wk} of Algorithm 1. Sup-
pose that (1) Assumptions 2.1 and 2.2 are satisfied,
(2) the generalized importance sampling ratios satisfy
Condition 2.1, (3) the parameter n is chosen such that
γc := γ̃(n)/

√
KSA,min < 1, and (4) the constant step-

size α is chosen such that α(tα + n+ 1) ≤ (1−γc)λmin

130L2 .
Then, we have for all k ≥ tα + n+ 1:

E[∥wk − wπ
c,ρ∥22] ≤ c1(1− (1− γc)λminα)

k−(tα+n+1)

+ c2L
2α(tα + n+ 1)

(1− γc)λmin
, (11)

where c1 = (∥w0∥2 + ∥w0 − wπ
c,ρ∥2 + 1)2 and c2 =

130(∥wπ
c,ρ∥2 + 1)2.

To prove Theorem 4.1, we first rewrite Algorithm 1
as a stochastic approximation algorithm. Let {Xk}
be a finite-state Markov chain defined by Xk =
(Sk, Ak, ..., Sk+n, Ak+n) for any k ≥ 0. Denote the
state-space of {Xk} by X . It is clear that under As-
sumption 2.2, the Markov chain {Xk} also admits a
unique stationary distribution, which we denote by
ν ∈ ∆|X |. Let F : Rd × X 7→ Rd be an operator
defined by F (w, x) = ϕ(s0, a0)

∑n−1
i=0 γic1,i∆i(w) for

any w ∈ Rd and x = (s0, a0, ..., sn, an) ∈ X . Let
F̄ : Rd 7→ Rd be the “expected” operator of F (·, ·) de-
fined by F̄ (w) = EX∼ν [F (w,X)]. Using the notation
above, the update equation (line 4) of Algorithm 1 can
be compactly written as

wk+1 = wk + αkF (wk, Xk), (12)

which is a stochastic approximation algorithm for solv-
ing the equation F̄ (w) = 0 with Markovian noise. Note
that F̄ (w) = 0 is equivalent to the generalized PBE (2)
(cf. Lemma 2.1). We next establish the properties of
the operators F (·, ·), F̄ (·), and the Markov chain {Xk}
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in the following proposition, which enables us to use
standard stochastic approximation results in the liter-
ature to derive finite-sample bounds of Algorithm 1.

Proposition 4.1. The following statements hold:
(1) ∥F (w1, x) − F (w2, x)∥2 ≤ L∥w1 − w2∥2
for any w1, w2 ∈ Rd and x ∈ X , and
∥F (0, x)∥2 ≤ fn(γcmax) for any x ∈ X , (2)
maxx∈X

∥∥P k+n+1
X (x, ·)− ν(·)

∥∥
TV

≤ Cσk for all k ≥ 0,
where PX is the transition probability matrix of the
Markov chain {Xk}, and (3) (w − wπ

c,ρ)
⊤F̄ (w) ≤

−(1− γc)λmin∥w − wπ
c,ρ∥22 for any w ∈ Rd.

Proposition 4.1 (1) establishes the Lipschitz continuity
of the operator F (·, ·), Proposition 4.1 (2) establishes
the geometric mixing of the auxiliary Markov chain
{Xk}, and Proposition 4.1 (3) essentially guarantees
that the ODE ẋ(t) = F̄ (x(t)) associated with stochas-
tic approximation algorithm (12) is globally geometri-
cally stable. The rest of the proof follows by applying
Theorem 2.1 of Chen et al. (2019) to Algorithm 1, and
is presented in detail in the Appendix.

4.2 Policy Improvement

We first introduce some notation. Let H : R|S||A| 7→
R|S||A| be the Bellman optimality operator defined
by [H(Q)](s, a) = R(s, a) + γE[maxa′∈A Q(Sk+1, a

′) |
Sk = s,Ak = a] for all (s, a), and let Hπ :
R|S||A| 7→ R|S||A| be the Bellman operator associated
with policy π defined by [Hπ(Q)](s, a) = R(s, a) +
γEπ[Q(Sk+1, Ak+1) | Sk = s,Ak = a] for all (s, a).

The key to prove Theorem 3.1 is the following propo-
sition.

Proposition 4.2. Consider {πT } of Algorithm 2. The
following inequality holds for any T ≥ 0:

E[∥Q∗ −QπT ∥∞] ≤ γT ∥Q∗ −Qπ0∥∞ A1

+
2γ

1−γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞] A2

+
2γ

1−γ

T−1∑
i=0

γT−1−iE[∥Hπi+1
(Φwi)−H(Φwi)∥∞]. A3

In light of Proposition 4.2, to proceed and establish
finite-sample bound of Algorithm 2, it remains to con-
trol the terms A2 and A3 when the policy evaluation
algorithm and the policy update rule are specified.
Specifically, we control A2 by using Theorem 2.1, and
control A3 by using Condition 3.1 on the parameters
β1, β2, and β3 for various policy update rules. See
Appendix B.1 for more details.

Before we present the key steps to prove Proposition
4.2, consider a special case of tabular RL, and choosing

c(s, a) = ρ(s, a) = π(a|s)
πb(a|s) in Algorithm 1. Note that

the term A2 vanishes. Since the term A3 can be made
arbitrarily small by using large enough β, Proposition
4.2 implies geometric convergence for NPG. The geo-
metric convergence of NPG was previously established
in Cayci et al. (2021); Lan (2021) under regularization,
and in Khodadadian et al. (2021c) in the asymptotic
region. We do not require regularization to establish
the result, and our result holds for all T ≥ 0.

Next we present the proof sketch of Proposition 4.2.
In most of the existing literature, for policy-based type
of algorithms, the analysis is usually based on the
mirror descent analysis in optimization (Lan, 2020),
where the KL-divergence was chosen as a poten-
tial/Lyapunov function, and the performance differ-
ence lemma was extensively used (Agarwal et al., 2021;
Cayci et al., 2021). To establish Proposition 4.2, we
use a completely different approach, where we only ex-
ploit the contraction and the monotonicity of the Bell-
man operators Hπ(·) and H(·). Such proof technique
was inspired by Bertsekas and Tsitsiklis (1996) Sec-
tion 6.2. However, only asymptotic error bound of ap-
proximate policy iteration was established in Bertsekas
and Tsitsiklis (1996), while we establish finite-sample
bounds for various policy update rules. Proposition
4.2 builds on the following two lemmas.

Lemma 4.1. It holds for all t ≥ 0 that

max
s,a

(Qπt(s, a)−Qπt+1(s, a))

≤
2γ∥Qπt − Φwt∥∞ + ∥Hπt+1

(Φwt)−H(Φwt)∥∞
1− γ

.

Lemma 4.2. It holds for all t ≥ 0 that

∥Q∗ −Qπt+1∥∞ ≤ γ∥Q∗ −Qπt∥∞

+
2γ∥Qπt − Φwt∥∞ + ∥Hπt+1

(Φwt)−H(Φwt)∥∞
1− γ

.

Proposition 4.2 then follows by repeatedly using
Lemma 4.2 and then taking expectation on both sides
of the resulting inequality.

5 CONCLUSION

In this work, we study finite-sample guarantees of gen-
eral policy-based algorithms under off-policy sampling
and linear function approximation. To overcome the
deadly triad and the high variance in policy evalua-
tion, we design a convergent framework of TD-learning
algorithms, including two specific algorithms called λ-
averaged Q-trace and two-sided Q-trace. The result-
ing overall sample complexity bound is Õ(ϵ−2), which
matches with typical value-based algorithms such as
Q-learning. In the case of natural actor-critic with
function approximation, this advances the existing
state-of-the-art result by a factor of ϵ−1.
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Supplementary Material:
Sample Complexity of Policy-Based Methods under Off-Policy

Sampling and Linear Function Approximation

A Proof of All Technical Results in Section 2

A.1 Proof of Lemma 2.1

We begin by introducing some notation. Let πc and πρ be two policies defined by

πc(a|s) =
πb(a|s)c(s, a)∑

a′∈A πb(a′|s)c(s, a′)
, and πρ(a|s) =

πb(a|s)ρ(s, a)∑
a′∈A πb(a′|s)ρ(s, a′)

, ∀ (s, a).

Let Pπc and Pπρ be the transition probability matrices of the Markov chain {Sk} induced by the policies πc and
πρ, respectively. Then, Eq. (1) can be compactly written in vector form as

Φ⊤KSA

n−1∑
i=0

(γPπcDc)
i(R+ γPπρDρΦw − Φw) = 0,

where R ∈ R|S||A| is defined by R(s, a) = R(s, a) for all (s, a). Observe that the above equation is further
equivalent to

Φ(Φ⊤KSAΦ)
−1Φ⊤KSA

n−1∑
i=0

(γPπcDc)
i(R+ γPπρDρΦw − Φw) = 0. (13)

To see this, since the matrix Φ has full column-rank, and the matrix Φ⊤KSAΦ is positive definite and hence
invertible, we have x = 0 if and only if Φ(Φ⊤KSAΦ)

−1x = 0.

To rewrite Eq. (13) in the desired form of the generalized PBE (2), we use the following three observations.

(1) The projection operator ProjQ(·) is explicitly given by ProjQ(·) = Φ(Φ⊤KSAΦ)
−1Φ⊤KSA(·),

(2) The operator Tc(·) is explicitly given by Tc(·) =
∑n−1

i=0 (γPπc
Dc)

i(·),

(3) The operator Hρ(·) is explicitly given by Hρ(·) = R+ γPπρDρ(·).

Therefore, Eq. (13) is equivalent to

ProjQ[Tc(Hρ(Φw)− Φw)] = 0. (14)

Finally, adding and subtracting Φw on both sides of the previous inequality and we obtain the desired generalized
PBE:

Φw = ProjQ[Tc(Hρ(Φw)− Φw)] + Φw

= ProjQ[Tc(Hρ(Φw)− Φw) + Φw]

= ProjQBc,ρ(Φw),

where the second equality follows from (1) Φw ∈ Q and (2) ProjQ(·) is a linear operator.

A.2 Proof of Lemma 2.2

For any Q1, Q2 ∈ R|S||A|, we have

∥ProjQBc,ρ(Q1)− ProjQBc,ρ(Q2)∥KSA
≤ ∥Bc,ρ(Q1)− Bc,ρ(Q2)∥KSA

≤ ∥Bc,ρ(Q1)− Bc,ρ(Q2)∥∞ (∥ · ∥KSA
≤ ∥ · ∥∞)
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≤ γ̃(n)∥Q1 −Q2∥∞

≤ γ̃(n)√
KSA,min

∥Q1 −Q2∥KSA
, (∥ · ∥∞ ≤ 1√

KSA,min

∥ · ∥KSA
)

where the first inequality follows from ProjQ being non-expansive with respect to ∥·∥KSA
, and the third inequality

follows from Bc,ρ(·) being a γ̃(n)-contraction operator with respect to ∥ · ∥∞ (Chen et al., 2021c) 1.

A.3 Proof of Lemma 2.3

We first show that under Condition 2.1 (3), we have limn→∞ γ̃(n)/
√
KSA,min < 1. Using the explicit expression

of γ̃(n), we have

lim
n→∞

γ̃(n)√
KSA,min

= lim
n→∞

1− fn(γDc,min)(1− γDρ,max)√
KSA,min

= lim
n→∞

1− 1−(γDc,min)
n

1−γDc,min
(1− γDρ,max)√

KSA,min

(fn(x) =
∑n−1

i=0 xi and γDc,min < 1)

=
γ(Dρ,max −Dc,min)

(1− γDc,min)
√
KSA,min

< 1. (Condition 2.1 (3))

Therefore, when n is chosen such that γc =
γ̃(n)√
KSA,min

< 1, we have by Lemma 2.2 that

∥ProjQBc,ρ(Q1)− ProjQ ≤ γc∥Q1 −Q2∥KSA
, ∀ Q1, Q2 ∈ R|S||A|.

It follows that the composed operator ProjQBc,ρ(·) is a contraction mapping with respect to ∥ · ∥KSA
, with

contraction factor γc.

Next consider the difference between Qπ and Φwπ
c,ρ. First of all, we have by triangle inequality that

∥Qπ − Φwπ
c,ρ∥KSA

= ∥Qπ −Qπ
c,ρ +Qπ

c,ρ − Φwπ
c,ρ∥KSA

≤ ∥Qπ −Qπ
c,ρ∥KSA

+ ∥Qπ
c,ρ − Φwπ

c,ρ∥KSA
. (15)

We next bound each term on the RHS of the previous inequality. For the first term, it was already established
in Proposition 2.1 of Chen et al. (2021c) that

∥Qπ −Qπ
c,ρ∥KSA

≤ ∥Qπ −Qπ
c,ρ∥∞ ≤

γmaxs∈S
∑

a∈A |π(a|s)− πb(a|s)ρ(s, a)|
(1− γ)(1− γDρ,max)

. (16)

Now consider the second term on the RHS of Eq. (15). First note that

∥Qπ
c,ρ − Φwπ

c,ρ∥2KSA
= ∥Qπ

c,ρ − ProjQQ
π
c,ρ + ProjQQ

π
c,ρ − Φwπ

c,ρ∥2KSA

= ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ ∥ProjQQπ
c,ρ − Φwπ

c,ρ∥2KSA
(∗)

= ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ ∥ProjQBc,ρ(Q
π
c,ρ)− ProjQBc,ρ(Φw

π
c,ρ)∥2KSA

≤ ∥Qπ
c,ρ − ProjQQ

π
c,ρ∥2KSA

+ γ2
c∥Qπ

c,ρ − Φwπ
c,ρ∥2KSA

,

where Eq. (∗) follows from the Babylonian–Pythagorean theorem (i.e., Qπ
c,ρ − ProjQQ

π
c,ρ ⊥ Q and ProjQQ

π
c,ρ −

Φwπ
c,ρ ∈ Q). Rearrange the previous inequality and we have

∥Qπ
c,ρ − Φwπ

c,ρ∥KSA
≤ 1√

1− γ2
c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

. (17)

Substituting Eqs. (16) and (17) into the RHS of Eq. (15) and we finally obtain

∥Qπ − Φwπ
c,ρ∥KSA

≤
γmaxs∈S

∑
a∈A |π(a|s)− πb(a|s)ρ(s, a)|

(1− γ)(1− γDρ,max)
+

1√
1− γ2

c

∥Qπ
c,ρ − ProjQQ

π
c,ρ∥KSA

.

1Chen et al. (2021c) works with an asynchronous variant of the generalized Bellman operator, which is shown to be a
contraction mapping with respect to ∥ ·∥∞ with contraction factor 1−KSA,minfn(γDc,min)(1−γDρ,max). In this paper we
work with the synchronous generalized Bellman operator Bc,ρ(·). In this case, one can easily verify that the corresponding
contraction factor can be obtained by simply dropping the factor KSA,min.
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A.4 Proof of Theorem 2.1

The finite-sample bound (i.e., Eq. (4)) follows directly from Theorem 4.1. To show the performance bound (5)
on the limit point wπ

c,ρ, we apply Lemma 2.3 to the λ-averaged Q-trace algorithm. Note that when c(s, a) =

ρ(s, a) = λ(s) π(a|s)
πb(a|s) + 1− λ(s) for all (s, a), we have for any s ∈ S that∑

a∈A
|π(a|s)− πb(a|s)ρ(s, a)| = (1− λ(s))

∑
a∈A

|π(a|s)− πb(a|s)| = (1− λ(s))∥π(·|s)− πb(·|s)∥1.

This proves the result.

A.5 Proof of Theorem 2.2

The finite-sample bound (i.e., Eq. (6)) follows directly from Theorem 4.1. To show the performance bound (7)
on the limit point wπ

c,ρ, we apply Lemma 2.3 to the two-sided Q-trace algorithm. Note that when c(s, a) =
ρ(s, a) = gℓ(s),u(s)(π(a|s)/πb(a|s)) for all (s, a), we have∑

a∈A
|π(a|s)− πb(a|s)ρ(s, a)|

=
∑
a∈A

|(π(a|s)− πb(a|s)ℓ(s))I{π(a|s) < ℓ(s)πb(a|s)}+ (π(a|s)− πb(a|s)u(s))I{π(a|s) > u(s)πb(a|s)}|

≤
∑
a∈A

|(π(a|s)− πb(a|s)ℓ(s))I{π(a|s) < ℓ(s)πb(a|s)}|+
∑
a∈A

|(π(a|s)− πb(a|s)u(s))I{π(a|s) > u(s)πb(a|s)}|

=
∑
a∈A

max(π(a|s)− πb(a|s)u(s), 0)−min(π(a|s)− πb(a|s)ℓ(s), 0)

=
∑
a∈A

(uπ,πb
(s, a)− ℓπ,πb

(s, a)).

This proves the result.

B Proof of All Technical Results in Section 3

B.1 Proof of Theorem 3.1

We begin with the result of Proposition 4.2:

E[∥Q∗ −QπT ∥∞] ≤ γT ∥Q∗ −Qπ0∥∞ +
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞]︸ ︷︷ ︸
A2

+
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Hπi+1(Φwi)−H(Φwi)∥∞]︸ ︷︷ ︸
A3

. (18)

B.1.1 The Term A2

To control the term A2, using triangle inequality and we have for any 0 ≤ i ≤ T − 1:

E[∥Qπi − Φwi∥∞] ≤ E[∥Qπi − Φwπi
c,ρ +Φwπi

c,ρ − Φwi∥∞]

≤ E[∥Qπi − Φwπi
c,ρ∥∞] + E[∥Φ(wπi

c,ρ − wi)∥∞]

≤ E[∥Qπi − Φwπi
c,ρ∥∞] + ∥Φ∥∞E[∥wπi

c,ρ − wi∥∞]

≤ E[∥Qπi − Φwπi
c,ρ∥∞] + E[∥wπi

c,ρ − wi∥∞]

≤ E[∥Qπi
c,ρ − Φwπi

c,ρ∥∞] + E[∥Qπi
c,ρ −Qπi∥∞] + E[∥wπi

c,ρ − wi∥∞] (∥Φ∥∞ ≤ 1)

≤ Eapprox +
γ

(1− γ)2
max
s∈S

(1− λ(s))∥πi(·|s)− πb(·|s)∥1 + E[∥wπi
c,ρ − wi∥∞] (Apply Eq. (16))
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≤ Eapprox +
γ

(1− γ)2
Ebias + E[∥wπi

c,ρ − wi∥∞]. (19)

It remains to control E[∥wπi
c,ρ − wi∥∞]. For any 0 ≤ i ≤ T − 1, we have by Theorem 2.1 that

E[∥wπi
c,ρ − wi∥∞] ≤ E[∥wπi

c,ρ − wi∥2]

≤ (E[∥wπi
c,ρ − wi∥22])1/2 (Jensen’s Inequality)

≤ c1,i(1− (1− γc)λminα)
1
2 [K−(tα+n+1)] + c2,i

[α(tα + n+ 1)]1/2
√
1− γc

√
λmin

,

where the last line follows from
√
a+ b ≤

√
a +

√
b for any a, b ≥ 0, and c1,i = ∥wπi

c,ρ∥2 + 1 and c2,i =
11.5L(∥wπi

c,ρ∥2 + 1). To further control the constants c1,i and c2,i, note that we have for any policy π that

∥wπ
c,ρ∥2 ≤ 1√

λmin

∥Φwπ
c,ρ∥KSA

≤ 1√
λmin

(
∥Qπ

c,ρ∥KSA
+

1√
1− γ2

c (1− γ)

)
(Eq. (17))

≤ 1√
λmin

(
1

1− γ
+

1√
1− γ2

c (1− γ)

)

≤ 2√
λmin(1− γ)

√
1− γc

.

Therefore we have c1,i ≤ 3√
λmin(1−γ)

√
1−γc

and c2,i ≤ 35L√
λmin(1−γ)

√
1−γc

for any 0 ≤ i ≤ T − 1. Substituting the

upper bound we obtained for E[∥wπi
c,ρ − wi∥∞] into Eq. (19) and we have for any 0 ≤ i ≤ T − 1:

E[∥Qπi − Φwi∥∞] ≤ Eapprox +
γ

(1− γ)2
Ebias +

3√
λmin(1− γ)

√
1− γc

(1− (1− γc)λminα)
1
2 [K−(tα+n+1)]

+
35L[α(tα + n+ 1)]1/2

(1− γ)(1− γc)λmin
.

Finally, using the previous inequality and we obtain the following bound on the term A2:

A2 =
2γ

1− γ

T−1∑
i=0

γT−1−iE[∥Qπi − Φwi∥∞]

≤ 2γEapprox
(1− γ)2

+
2γ2Ebias
(1− γ)4

+ 6c̃(1− (1− γc)λminα)
1
2 [K−(tα+n+1)] +

70c̃L[α(tα + n+ 1)]1/2√
λmin

√
1− γc

,

where c̃ = γ√
λmin

√
1−γc(1−γ)3

.

B.1.2 The Term A3

Now consider the term A3, whose upper bound depends on which policy update rule we use.

1/β1-Greedy Update For simplicity of notation, denote Qt = Φwt. Then we have for any 0 ≤ t ≤ T − 1 and
state-action pair (s, a) that

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

=

[
R(s, a) + γ

∑
s′∈S

Pa(s, s
′)Qt(s

′, at,s′)

]
(Recall that at,s′ = argmaxa′∈A Qt(s

′, a′))

−

R(s, a) + γ
∑
s′∈S

Pa(s, s
′)

(1− 1

β1(t, s′)
+

1

|A|β1(t, s′)

)
Qt(s

′, at,s′) +
∑

a′ ̸=at,s′

1

|A|β1(t, s′)
Qt(s

′, a′)


= γ

∑
s′

Pa(s, s
′)

( 1

β1(t, s′)
− 1

|A|β1(t, s′)

)
Qt(s

′, at,s′)−
∑

a′ ̸=at,s′

1

|A|β1(t, s′)
Qt(s

′, a′)


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≤ γ
∑
s′

Pa(s, s
′)

2

β1(t, s′)
max
a′∈A

|Qt(s
′, a′)|

≤ β,

where the last line follows from β1(t, s) ≥ 2γ
β maxa∈A |Qt(s, a)| for all s ∈ S (cf. Condition 3.1). Therefore, we

have

A3 ≤ 2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.

β2-Softmax Update The following lemma is needed for us to control the term A3.

Lemma B.1. For any x ∈ Rd and y ∈ ∆d satisfying yi > 0 for all i, denote imax = argmax1≤i≤d xi, then the
following inequality holds for any β > 0:

max
1≤i≤d

xi −
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≤ 1

β
log

(
1

yimax

)
.

Proof of Lemma B.1. For any β > 0, consider the function hβ : Rd 7→ R defined by

hβ(x) =
1

β
log

(
d∑

i=1

yie
βxi

)
.

Assume without loss of generality that imax = 1. Then it is clear that hβ(x) ≤ x1. On the other hand, we have

x1 ≤ 1

β
log

(
d∑

i=1

yi
y1

eβxi

)
= hβ(x) +

1

β
log

(
1

y1

)
. (20)

Since it is well-known that hβ(x) is a convex differentiable function, we have for any x ∈ Rd that hβ(0)−hβ(x) ≥
⟨∇hβ(x),−x⟩, which implies

⟨∇hβ(x), x⟩ =
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≥ hβ(x)− hβ(0) = hβ(x). (21)

Using Eqs. (20) and (21) and we finally obtain

max
1≤i≤d

xi −
∑d

i=1 xiyie
βxi∑d

j=1 yje
βxj

≤ x1 − hβ(x) ≤
1

β
log

(
1

y1

)
.

We now proceed to control the term A3 when using the β2-softmax update. For any 0 ≤ t ≤ T−1 and state-action
pair (s, a), we have

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

exp(β2Qt(s
′, a′))∑

a′′∈A exp(β2Qt(s′, a′′)
Qt(s

′, a′)

)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

exp(β2Qt(s
′, a′))/|A|∑

a′′∈A exp(β2Qt(s′, a′′)/|A|
Qt(s

′, a′)

)
≤ γ

β2
log(|A|) (Lemma B.1)

≤ β,

where the last line follows from β2 ≥ γ
β log(|A|). Therefore, we have

A3 ≤ 2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.
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β3-NPG Update Recall that β3-NPG updates the policy according to

πt+1(a|s) =
πt(a|s) exp(β3(t)Qt(s, a))∑

a′∈A πt(a′|s) exp(β3(t)Qt(s, a′))
, ∀ (s, a).

Therefore, for any 0 ≤ t ≤ T − 1 and state-action pair (s, a), we have

0 ≤ [H(Qt)](s, a)− [Hπt+1(Qt)](s, a)

= γ
∑
s′

Pa(s, s
′)

(
max
a′∈A

Qt(s
′, a′)−

∑
a′∈A

πt(a
′|s′) exp(β3(t)Qt(s

′, a′))∑
a′′∈A πt(a′′|s′) exp(β3(t)Qt(s′, a′′)

Qt(s
′, a′)

)

≤ γ

β3(t)
log

(
1

πt(at,s′ |s′)

)
≤ β,

where the last line follows from β3(t) ≥ γ
β log(1/mins∈S πt(at,s|s)). Therefore, we have

A3 ≤ 2γ

1− γ

T−1∑
i=0

γT−1−iβ ≤ 2γβ

(1− γ)2
.

B.2 Putting Together

Using the upper bounds we obtained for the terms A2 and A3 in Eq. (18) and we have for any K ≥ tα + n+ 1
and T ≥ 0 that

E[∥Q∗ −QπT ∥∞] ≤ γT ∥Q∗ −Qπ0∥∞ +
2γEapprox
(1− γ)2

+
2γ2Ebias
(1− γ)4

+ 6c̃(1− (1− γc)λminα)
1
2 [K−(tα+n+1)]

+
70c̃L[α(tα + n+ 1)]1/2√

λmin

√
1− γc

+
2γβ

(1− γ)2
,

where c̃ = γ√
λmin

√
1−γc(1−γ)3

.

C Proof of All Technical Results in Section 4

C.1 Proof of Proposition 4.1

(1) (a) We first rewrite the operator F (·, ·) in the following equivalent way. For any w ∈ Rd and x =
(s0, a0, ..., sn, an) ∈ X , we have

F (w, x) = ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)(R(si, ai) + γρ(si+1, ai+1)ϕ(si+1, ai+1)
⊤w − ϕ(si, ai)

⊤w)

= ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai)− ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)ϕ(si, ai)
⊤w

+ ϕ(s0, a0)

n−1∑
i=0

γi+1
i∏

j=1

c(sj , aj)ρ(si+1, ai+1)ϕ(si+1, ai+1)
⊤w

= ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai)− ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)ϕ(si, ai)
⊤w

+ ϕ(s0, a0)

n∑
i=1

γi
i−1∏
j=1

c(sj , aj)ρ(si, ai)ϕ(si, ai)
⊤w

= ϕ(s0, a0)

n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai)− ϕ(s0, a0)ϕ(s0, a0)
⊤w
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+ ϕ(s0, a0)

n−1∑
i=1

γi
i−1∏
j=1

c(sj , aj)(ρ(si, ai)− c(si, ai))ϕ(si, ai)
⊤w

+ ϕ(s0, a0)γ
n

n−1∏
j=1

c(sj , aj)ρ(sn, an)ϕ(sn, an)
⊤w.

We now proceed and show the Lipschitz property. For any w1, w2 ∈ Rd and x = (s0, a0, ..., sn, an) ∈ X ,
using the fact that ∥ϕ(s, a)∥2 ≤ ∥ϕ(s, a)∥1 ≤ ∥Φ∥∞ ≤ 1, we have

∥F (w1, x)− F (w2, x)∥2
≤ ∥ϕ(s0, a0)ϕ(s0, a0)⊤(w1 − w2)∥2

+

∥∥∥∥∥∥ϕ(s0, a0)
n−1∑
i=1

γi
i−1∏
j=1

c(sj , aj)(ρ(si, ai)− c(si, ai))ϕ(si, ai)
⊤(w1 − w2)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ϕ(s0, a0)γn
n−1∏
j=1

c(sj , aj)ρ(sn, an)ϕ(sn, an)
⊤(w1 − w2)

∥∥∥∥∥∥
2

≤ ∥w1 − w2∥2 +
n−1∑
i=1

γici−1
max max

s,a
|ρ(s, a)− c(s, a)|∥w1 − w2∥2 + γncn−1

maxρmax∥w1 − w2∥2

=

(
1 + γmax

s,a
|ρ(s, a)− c(s, a)|1− (γcmax)

n−1

1− γcmax
+ γncn−1

maxρmax

)
∥w1 − w2∥2

≤

{
(1 + (γρmax)

n)∥w1 − w2∥2, c(·, ·) = ρ(·, ·)
(1 + γρmax)fn(γcmax)∥w1 − w2∥2, c(·, ·) ̸= ρ(·, ·).

(b) For any x = (s0, a0, ..., sn, an) ∈ X , we have

∥F (w,0)∥2 =

∥∥∥∥∥∥ϕ(s0, a0)
n−1∑
i=0

γi
i∏

j=1

c(sj , aj)R(si, ai)

∥∥∥∥∥∥
2

≤
n−1∑
i=0

γicimax ≤ fn(γcmax).

(2) It is clear that the stationary distribution ν of the Markov chain {Xk} is given by

ν(s0, a0, ..., sn, an) = µ(s0)

(
n−1∏
i=0

πb(ai|si)Pai
(si, si+1)

)
πb(an|sn), ∀ (s0, a0, ..., sn, an) ∈ X .

Moreover, for any x = (s0, a0, ..., sn, an) ∈ X , we have for any k ≥ 0 that∥∥P k+n+1
πb

(x, ·)− ν(·)
∥∥
TV

=
1

2

∑
s′0,a

′
0,··· ,s′n,a′

n

∣∣∣∣∣∑
s

Pan
(sn, s)P

k
πb
(s, s′0)−µ(s′0)

∣∣∣∣∣
[
n−1∏
i=0

πb(a
′
i | s′i)Pa′

i
(s′i, s

′
i+1)

]
πb(a

′
n | s′n)

=
1

2

∑
s′0

∣∣∣∣∣∑
s

Pan(sn, s)P
k
πb
(s, s′0)− µ(s′0)

∣∣∣∣∣
≤ 1

2

∑
s

Pan(sn, s)
∑
s′0

∣∣P k
πb
(s, s′0)− µ(s′0)

∣∣
≤ max

s∈S
∥P k

πb
(s, ·)− µ(·)∥TV

≤ Cσk.

Therefore, we have maxx∈X
∥∥P k+n+1

πb
(x, ·)− ν(·)

∥∥
TV

≤ Cσk for all k ≥ 0.

(3) Using the fact that Bc,ρ(·) is a linear operator (Chen et al., 2021c), we have for any w ∈ Rd that

(w − wπ
c,ρ)

⊤F̄ (w)
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= (w − wπ
c,ρ)

⊤Φ⊤KSA (Bc,ρ(Φw)− Φw)

= (w − wπ
c,ρ)

⊤Φ⊤KSA

(
Bc,ρ(Φw)− Bc,ρ(Φw

π
c,ρ)
)
− (w − wπ

c,ρ)
⊤Φ⊤KSAΦ(w − wπ

c,ρ)

= (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(Φ
⊤KSAΦ)

−1Φ⊤KSABc,ρ(Φ(w − wπ
c,ρ))− (w − wπ

c,ρ)
⊤Φ⊤KSAΦ(w − wπ

c,ρ)

= (w − wπ
c,ρ)

⊤Φ⊤KSAΦ(Φ
⊤KSAΦ)

−1Φ⊤KSABc,ρ(Φ(w − wπ
c,ρ))− (w − wπ

c,ρ)
⊤Φ⊤KSAΦ(w − wπ

c,ρ)

≤ ∥Φ(w − wπ
c,ρ)∥KSA

∥Φ(Φ⊤KSAΦ)
−1Φ⊤KSABc,ρ(Φ(w − wπ

c,ρ))∥KSA
− ∥Φ(w − wπ

c,ρ)∥2KSA

= ∥Φ(w − wπ
c,ρ)∥KSA

∥ProjQBc,ρ(Φ(w − wπ
c,ρ))∥KSA

− ∥Φ(w − wπ
c,ρ)∥2KSA

≤ γc∥Φ(w − wπ
c,ρ)∥KSA

∥Φ(w − wπ
c,ρ)∥KSA

− ∥Φ(w − wπ
c,ρ)∥2KSA

= − (1− γc)∥Φ(w − wπ
c,ρ)∥2KSA

≤ − (1− γc)λmin∥w − wπ
c,ρ∥22

C.2 Proof of Lemma 4.1

For simplicity of notation, denote δt = maxs,a(Q
πt(s, a) − Qπt+1(s, a)). Then we have by definition of δt that

Qπt+1 ≥ Qπt − δt1. Using the monotonicity of the Bellman operator (Bertsekas and Tsitsiklis, 1996, Lemma 2.1
and Lemma 2.2) and we have

Qπt+1 = Hπt+1
(Qπt+1) ≥ Hπt+1

(Qπt − δt1) = Hπt+1
(Qπt)− γδt1.

It follows that

Qπt −Qπt+1

≤ Qπt −Hπt+1
(Qπt) + γδt1

= Qπt −Hπt+1
(Qπt) +Hπt+1

(Qt)−Hπt+1
(Qt) +H(Qt)−H(Qt) + γδt1

≤ Hπt
(Qπt)−Hπt

(Qt)−Hπt+1
(Qπt) +Hπt+1

(Qt)−Hπt+1
(Qt) +H(Qt) + γδt1

≤ 2γ∥Qπt −Qt∥∞1+ ∥Hπt+1
(Qt)−H(Qt)∥∞1+ γδt1.

Therefore, we have

δt ≤ 2γ∥Qπt −Qt∥∞ + ∥Hπt+1
(Qt)−H(Qt)∥∞ + γδt,

which implies

δt ≤
2γ∥Qπt −Qt∥∞ + ∥Hπt+1

(Qt)−H(Qt)∥∞
1− γ

.

C.3 Proof of Lemma 4.2

For simplicity of notation, denote ζt = maxs,a(Q
∗(s, a)−Qπt(s, a)) = ∥Q∗−Qπt∥∞. Then we have by definition

of ζt that Q
πt ≥ Q∗ − ζt1. Using the monotonicity of the Bellman operator and we have

Qπt+1 = Hπt+1(Q
πt+1)

≥ Hπt+1(Q
πt −max

s,a
(Qπt(s, a)−Qπt+1(s, a))1)

= Hπt+1
(Qπt)− γmax

s,a
(Qπt(s, a)−Qπt+1(s, a))1

≥ Hπt+1
(Qπt)−

2γ2∥Qπt −Qt∥∞ + γ∥Hπt+1(Qt)−H(Qt)∥∞
1− γ

1, (22)

where the last line follows from Lemma 4.1. We next control Hπt+1(Q
πt) from below in the following. Again by

monotonicity of the Bellman operator we have

Hπt+1
(Qπt) ≥ Hπt+1

(Qt − ∥Qt −Qπt∥∞1)

= Hπt+1
(Qt)− γ∥Qt −Qπt∥∞1

= Hπt+1
(Qt)−H(Qt) +H(Qt)− γ∥Qt −Qπt∥∞1

≥ Hπt+1
(Qt)−H(Qt) +H(Qπt − ∥Qt −Qπt∥∞1)− γ∥Qt −Qπt∥∞1

= Hπt+1
(Qt)−H(Qt) +H(Qπt)− 2γ∥Qt −Qπt∥∞1
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≥ Hπt+1(Qt)−H(Qt) +H(Q∗ − ζt1)− 2γ∥Qt −Qπt∥∞1

= Hπt+1(Qt)−H(Qt) +H(Q∗)− γζt1− 2γ∥Qt −Qπt∥∞1

≥ −∥Hπt+1(Qt)−H(Qt)∥∞1+Q∗ − γζt1− 2γ∥Qt −Qπt∥∞1.

Using the previous inequality in Eq. (22) and we have

Qπt+1 −Q∗ ≥ −γζt1−
2γ∥Qπt −Qt∥∞ + ∥Hπt+1

(Qt)−H(Qt)∥∞
1− γ

1,

which implies

ζt+1 ≤ γζt +
2γ∥Qπt −Qt∥∞ + ∥Hπt+1

(Qt)−H(Qt)∥∞
1− γ

.

D The High Variance in Chen et al. (2021a)

Consider Theorem 2.1 of Chen et al. (2021a). The constant c2 on the second term is proportional to∑n−1
i=0 (γmaxs,a

π(a|s)
πb(a|s) )

i (which appears as f(γζπ) using the notation of Chen et al. (2021a)). When π(a|s)
πb(a|s) > 1/γ

(which can usually happen in practice where γ is chosen to be close to 1), the parameter c2 grows exponentially
fast with respect to the bootstrapping parameter n. Moreover, since n needs to be chosen large enough for the
results in Chen et al. (2021a) to hold, the variance term on the finite-sample bound of the n-step off-policy
TD-learning algorithm with linear function approximation is exponentially large.
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