
Rejection sampling from shape-constrained distributions
in sublinear time

Sinho Chewi Patrik Gerber Chen Lu
MIT MIT MIT

Thibaut Le Gouic Philippe Rigollet
I2M1 MIT

Abstract

We consider the task of generating exact sam-
ples from a target distribution, known up to
normalization, over a finite alphabet. The
classical algorithm for this task is rejection
sampling, and although it has been used in
practice for decades, there is surprisingly little
study of its fundamental limitations. In this
work, we study the query complexity of re-
jection sampling in a minimax framework for
various classes of discrete distributions. Our
results provide new algorithms for sampling
whose complexity scales sublinearly with the
alphabet size. When applied to adversarial
bandits, we show that a slight modification of
the Exp3 algorithm reduces the per-iteration
complexity from O(K) toO(log(K) log(K/δ))
with probability 1−δ, where K is the number
of arms.

1 INTRODUCTION

Efficiently generating exact samples from a given tar-
get distribution, known up to normalization, has been
a fundamental problem since the early days of algo-
rithm design (Bratley, Fox, and Schrage 2011; Knuth
2014; Kronmal and Peterson Jr 1979; Marsaglia 1963;
Walker 1974). It is a basic building block of random-
ized algorithms and simulation, and understanding its
theoretical limits is of intellectual and practical merit.

1Aix Marseille Univ, Centrale Marseille, CNRS, I2M,
Marseille, France

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Formally, let p be a probability distribution on the
set of integers [N] := {1, . . . , N}, and assume we are
given query access to p̃ := Zp, with an unknown con-
stant Z. The Alias algorithm (Walker 1974) takes
O(N) preprocessing time, after which one can repeat-
edly sample from p in constant expected time. More
recently, sophisticated algorithms have been devised to
allow time-varying p̃ (Hagerup, Mehlhorn, and Munro
1993; Matias, Vitter, and Ni 2003), which also require
O(N) preprocessing time. Unsurprisingly, for arbitrary
p̃, the O(N) time is the best one can hope for, as shown
in Bringmann and Panagiotou 2017 via a reduction to
searching arrays.

A common element of the aforementioned algorithms
is the powerful idea of rejection. Rejection sampling,
along with Monte Carlo simulation and importance
sampling, can be traced back to the work of Stan Ulam
and John von Neumann (Eckhardt 1987; Neumann
1951). As the name suggests, rejection sampling is an
algorithm which proposes candidate samples, which
are then accepted with a probability carefully chosen
to ensure that accepted samples have distribution p.
Despite the fundamental importance of rejection sam-
pling in the applied sciences, there is surprisingly little
work exploring its theoretical limits. In this work, we
adapt the minimax perspective, which has become a
staple of the modern optimization (Nesterov 2018) and
statistics (Tsybakov 2009) literature, and we seek to
characterize the number of queries needed to obtain
rejection sampling algorithms with constant acceptance
probability (e.g. at least 1/2), uniformly over natural
classes of target distributions.

We consider various classes of shape-constrained dis-
crete distributions that exploit the ordering of the set
[N] (monotone, strictly unimodal, discrete log-concave).
We also consider a class of distributions on the complete
binary tree of size N , where only a partial ordering of
the alphabet is required. For each of these classes, we

Running heading title breaks the line

show that the rejection sampling complexity scales sub-
linearly in the alphabet size N , which can be compared
with the literature on sublinear algorithms (Goldreich
2010, 2017). This body of work is largely focused on
statistical questions such as estimation or testing and
the present paper extends it in another statistical di-
rection, namely sampling from a distribution known
only up to normalizing constant, which is a standard
step of Bayesian inference.

To illustrate the practicality of our methods, we present
an application to adversarial bandits (Bubeck and
Cesa-Bianchi 2012) and describe a variant of the classi-
cal Exp3 algorithm whose per-iteration complexity is
bounded by O(log(K) log(K/δ)) with probability 1−δ,
where K is the number of arms.

2 BACKGROUND ON REJECTION
SAMPLING COMPLEXITY

2.1 Classical setting with exact density
queries

To illustrate the idea of rejection sampling, we first con-
sider the classical setting where we can make queries
to the exact target distribution p. Given a proposal
distribution q and an upper bound M on the ratio
maxx∈[N] p(x)/q(x), rejection sampling proceeds by
drawing a sampleX ∼ q and a uniform random variable
U ∼ unif(0, 1). If U ≤ p(X)/(Mq(X)), the sample X
is returned; otherwise, the whole process is repeated.
Note that the rejection step is equivalent to flipping
a biased coin: conditionally on X, the sample X is
accepted with probability p(X)/(Mq(X)) and rejected
otherwise. We refer to this procedure as rejection sam-
pling with acceptance probability p/(Mq).

It is easy to check that the output of this algorithm
is indeed distributed according to p. Since Mq forms
an upper bound on p, the region Gq = {(x, y) : x ∈
[N], y ∈ [0,Mq(x)]} is a superset of Gp = {(x, y) : x ∈
[N], y ∈ [0, p(x)]}. Then, a uniformly random point
from Gq conditioned on lying in Gp is in turn uniform
on Gp, and so its x-coordinate has distribution p. A
good rejection sampling scheme hinges on the design
of a good proposal q that leads to few rejections.

If q = p, then the first sample X is accepted. More
generally, the number of iterations required before a
variable is accepted follows a geometric distribution
with parameter 1/M (and thus has expectation M).
In other words, the bound M characterizes the quality
of the rejection sampling proposal q, and the task of
designing an efficient rejection sampling algorithm is
equivalent to determining a strategy for building the
proposal q which guarantees a small value of the ratio
M using few queries.

2.2 Density queries up to normalization

In this paper, we instead work in the setting where
we can only query the target distribution up to nor-
malization, which is natural for Bayesian statistics,
randomized algorithms, and online learning. Formally,
let P be a class of probability distributions over a fi-
nite alphabet X , and consider a target distribution
p ∈ P. In this paper we study algorithms that are
given access to an oracle which, given x ∈X , outputs
the value Zp(x), where Z is an unknown constant. The
value of Z does not change between queries. Equiv-
alently, we can think of the oracle as returning the
value p(x)/p(x0), where x0 ∈X is a fixed point with
p(x0) > 0.

To implement rejection sampling in this query model,
an algorithm must construct an upper envelope for
p̃, i.e., a function q̃ satisfying q̃ ≥ p̃. We can then
normalize q̃ to obtain a probability distribution q. To
draw new samples from p, we first draw samples X ∼ q,
which are then accepted with probability p̃(X)/q̃(X).
The following theorem records well-known properties
of the rejection sampling method (see e.g. Robert and
Casella 2004, Section 2.3), whose proof we include in
Appendix 6 for convenience.

Theorem 1. Suppose we have query access to the
unnormalized target p̃ = pZp supported on X , and that
we have an upper envelope q̃ ≥ p̃. Let q denote the
corresponding normalized probability distribution, and
let Zq denote the normalizing constant, i.e., q̃ = qZq.
Then, rejection sampling with acceptance probability
p̃/q̃ outputs a point distributed according to p, and
the number of samples drawn from q until a sample
is accepted follows a geometric distribution with mean
Zq/Zp.

Given an algorithm A, we denote by q̃ := A(n, p̃) the
candidate upper envelope constructed by it, using up
to n queries to p̃ under the oracle model described
previously. In light of the above theorem it is natural
to define the ratio

r(A, n, p̃) :=

{
∞, if q̃ 6≥ p̃,
Zq/Zp, otherwise,

where Zp =
∑
x∈X p̃(x) and Zq =

∑
x∈X q̃(x). Note

that when the output q̃ is a valid upper bound on p̃, the
ratio achieved by A determines the expected number of
queries to p̃ needed to generate each additional sample
from p.

As discussed in the introduction, our goal when design-
ing a rejection sampling algorithm is to minimize this
ratio uniformly over the choice of target p ∈ P. We
therefore define the rejection sampling complexity of
the class P as follows.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

Definition 1. For a class of distributions P , the rejec-
tion sampling complexity of P is the minimum number
n ∈ N of queries needed, such that there exists an
algorithm A that satisfies

sup
p̃∈P̃

r(A, n, p̃) ≤ 2 ,

where P̃ := {p̃ = Zp : Z > 0} is the set of all positive
rescalings of distributions in P.

The constant 2 in Definition 1 is arbitrary and could be
replaced by any number strictly greater than 1, but we
fix this choice at 2 for simplicity. With this choice of
constant, and once the upper envelope is constructed,
new samples from the target can be generated with a
constant (≤ 2) expected number of queries per sample.

Note that when the alphabet X is finite and of size
N , then N is a trivial upper bound for the complexity
of P, simply by querying all of the values of p̃ and
then returning the exact upper envelope A(N, p̃) = p̃.
Therefore, for the discrete setting, our interest lies
in exhibiting natural classes of distributions whose
complexity scales sublinearly in N .

In this work, we specifically focus on deterministic
algorithms A. In fact, we believe that adding inter-
nal randomness to the algorithm does not significantly
reduce the query complexity. Using Yao’s minimax
principle (Yao 1977), it seems likely that our lower
bounds can be extended to hold for randomized algo-
rithms. We leave this extension for future work.

3 RESULTS FOR
SHAPE-CONSTRAINED
DISCRETE DISTRIBUTIONS

In order to improve on the trivial rate of O(N) on an
alphabet of size N , we need to assume some structure
of the target distributions. A well-known set of struc-
tural assumptions are shape constraints (Groeneboom
and Jongbloed 2014; Silvapulle and Sen 2011), which
have been extensively studied in the setting of estima-
tion and inference. When the alphabet is [N], shape
constraints are built on top of the linear ordering of the
support. We show that such assumptions indeed signif-
icantly reduce the complexity of the restricted classes
of distributions to sublinear rates. We also consider
the setting where the linear ordering of the support is
relaxed to a partial ordering, and show it also results
in sublinear complexity

Our complexity results for various classes of discrete
distributions are summarized in Table 1. We define the
various classes below, and give the sublinear complex-
ity algorithms that construct the upper envelopes in
Figure 1.

Algorithm 1 Envelope construction for monotone dis-
tributions on [N]

1: Query the values p̃(2i), 0 ≤ i ≤ dlog2Ne − 1.
2: Construct the upper envelope q̃ as follows: set
q̃(1) := p̃(1), and

q̃(x) := p̃(2i) , for x ∈ (2i, 2i+1] .

Algorithm 2 Envelope construction for strictly uni-
modal distributions on [N]

1: Use binary search to find the mode of p̃.
2: Use Algorithm 1 to construct an upper envelope

on each side of the mode.

Algorithm 3 Envelope construction for discrete log-
concave distributions on [N]

1: Use binary search to find the first index 1 ≤ i ≤
dlog2Ne such that p̃(2i) ≤ p̃(1)/2, or else deter-
mine that i does not exist.

2: If i does not exist, output the constant upper enve-
lope q̃ ≡ p̃(1).

3: Otherwise, output

q̃(x) :=
p̃(1) , x < 2i ,

p̃(2i) exp
[
− log(p̃(1)/p̃(2i))

2i − 1
(x− 2i)

]
, x ≥ 2i .

Algorithm 4 Envelope construction for monotone dis-
tributions on binary trees of size N
1: Query p̃(x) for all vertices x which are at depth at

most `0 := `−blog2 `c+1, where ` is the maximum
depth of the tree.

2: Output

q̃(x) :=



p̃(x) , if depth(x) ≤ `0 ,

p̃(y) , if depth(x) > `0 ,

depth(y) = `0 ,

and x is a descendant of y .

Figure 1: Algorithms for constructing rejection sam-
pling upper envelopes which attain the minimax rates
described in Table 1.

Running heading title breaks the line

Class Complexity

Monotone (Def. 2) Θ(logN)
Strictly unimodal (Def. 3) Θ(logN)

Cliff-like (Def. 4) Θ(log logN)
Discrete log-concave (Def. 5) Θ(log logN)

Monotone on a binary tree (Def. 6) Θ(N/ logN)

Table 1: Rejection sampling complexities for classes
of discrete distributions. Here, N always denotes the
alphabet size, X = {1, . . . , N}.

3.1 Structured distributions on a linearly
ordered set

A natural class of discrete distributions which exploits
the linear ordering of the set [N] is the class of mono-
tone distributions, defined below.
Definition 2. The class of monotone distributions on
[N] is the class of probability distributions p on [N]
with p(1) ≥ p(2) ≥ p(3) ≥ · · · ≥ p(N).

We show in Theorem 2 that the rejection sampling
complexity of the class of monotone distributions is
Θ(logN), achieved via Algorithm 1. It is also straight-
forward to extend Algorithm 1 to handle the class of
strictly unimodal distributions defined next (see Theo-
rem 3 and Algorithm 2).
Definition 3. The class of strictly unimodal distribu-
tions on [N] is the set of probability distributions p on
[N] such that there exists a point x ∈ [N] with p(1) <
p(2) < · · · < p(x) and p(x) > p(x+ 1) > · · · > p(N).

It is natural to ask whether further structural properties
can yield even faster algorithms for sampling. This is
indeed the case, and we start by illustrating this on a
simple toy class of distributions.
Definition 4. The class of cliff-like distributions on
[N] is the class of probability distributions unif([N0])
for N0 ∈ [N].

Since the class of cliff-like distributions is contained
in the class of monotone distributions, Algorithm 1
yields a simple upper bound of O(logN) for this class.
However, we can do better by observing that in order
to construct a good rejection sampling upper envelope
for this class, we do not need to locate the index N0

of the cliff exactly; it suffices to find it approximately,
which in this context means finding an index N ′0 such
that N ′0 ≤ N0 ≤ 2N ′0. Since we only need to search
over O(logN) possible values for N ′0, binary search can
accomplish this using only O(log logN) queries. We
prove in Theorem 4 that this rate is tight.
Remark 1. The class of cliff-like distributions provides
a simple example of a class for which obtaining queries

to the exact distribution is not equivalent to obtaining
queries for the distribution up to a normalizing constant.
Indeed, in the former model, the value of p(1) = 1/N0

reveals the distribution in one query, implying a com-
plexity of Θ(1), whereas we prove in Theorem 4 that
the complexity under the second model is Θ(log logN).

Instead of formally describing the algorithm for sam-
pling from cliff-like distributions, we generalize the
algorithm to cover a larger class of structured distri-
butions: the class of discrete log-concave distributions
(see Saumard and Wellner 2014, §4).

Definition 5. The class of discrete log-concave dis-
tributions on [N] is the class of probability distribu-
tions p on [N] such that for all x ∈ {2, . . . , N − 1},
we have p(x)

2 ≥ p(x − 1)p(x + 1). Equivalently, it
is the class of distributions p on [N] for which there
exists a convex function V : R → R ∪ {∞} such that
p(x) = exp(−V (x)) for all x ∈ [N]. In addition, we
assume that the mode of all distributions is at 1.2

We prove in Theorem 5 that the rejection sampling
complexity of discrete log-concave distributions is
Θ(log logN), achieved by Algorithm 3 (note that this
algorithm also applies for cliff-like distributions, since
cliff-like distributions are discrete log-concave).
Remark 2. The class of discrete log-concave distribu-
tions is another case for which rejection sampling with
exact density queries is much easier than with queries
up to a normalizing constant. In the former model,
Devroye 1987 requires only a single query to construct
a rejection sampling upper envelope with ratio ≤ 5. In
contrast, we show in Theorem 5 that the complexity
under the second model is Θ(log logN).

3.2 Monotone on a binary tree

The previous examples of structured classes all rely on
the linear ordering of [N]. We now show that it is pos-
sible to develop sublinear algorithms when the linear
ordering is relaxed to a partial ordering. Specifically,
we consider a structured class of distributions on bal-
anced binary trees (note that the previously considered
distributions can be viewed as distributions on a path
graph).

Definition 6. The class of monotone distributions on
a binary tree with N vertices is the class of probability
distributions p on a binary tree with N vertices, with
maximum depth dlog2(N + 1)e, such that for every
non-leaf vertex x with children x1 and x2, one has
p(x) ≥ p(x1) + p(x2).

2Without this condition, the class of discrete log-concave
distributions includes the family of all Dirac measures on
[N], and the rejection sampling complexity is then trivially
Θ(N).

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

We prove in Theorem 6 that the rejection sampling com-
plexity of this class is Θ(N/ logN); the corresponding
algorithm is given as Algorithm 4.

In a sense, Definition 6 reduces to the class of monotone
distributions when the underlying graph is a path, since
each vertex in the (rooted) path graph has one “child”.
The reader may wonder whether replacing the condition
p(x) ≥ p(x1) + p(x2) with p(x) ≥ p(x1)∨ p(x2) is more
natural. In Theorem 7, we show that rejection sampling
cannot achieve sublinear complexity under the latter
definition.

4 APPLICATION TO BANDITS

Rejection sampling does not just provide us with a
method for sampling from a target distribution; it
provides us with the stronger guarantee of an upper
envelope q̃ ≥ p̃, with a bound on the ratio of the
normalizing constants of q̃ and p̃ (see Section 2.2). In
this section, we show how this stronger property can be
used to provide a faster, approximate implementation of
the anytime variant of the Exp3 algorithm. We expect
that rejection sampling can yield similar computational
speedups while retaining performance guarantees for
other randomized algorithms.

Recall the adversarial bandit problem (Bubeck and
Cesa-Bianchi 2012, Ch. 3): given K arms, at each
step t ∈ [T] the player chooses an arm It ∈ [K] to
play. Simultaneously, an adversary chooses a loss vector
`t ∈ [0, 1]K . The chosen arm is then played, and the
player incurs a loss of `t(It). The aim of the player
is to find a strategy that minimizes the pseudo-regret,
defined by

Rn = E
T∑
t=1

`t(It)− min
k∈[K]

E
T∑
t=1

`t(k) .

See Algorithm 5 for the strategy known as Exp3,
which achieves a pseudo-regret of at most 2

√
TK logK

(Bubeck and Cesa-Bianchi 2012, Theorem 3.1), which
is minimax optimal up to the factor of

√
logK (Bubeck

and Cesa-Bianchi 2012, Theorem 3.4). In what follows
x(i) denotes the i’th coordinate of a vector x, and ej
denotes the j’th standard basis vector in RK .

Algorithm 5 Exp3.

1: procedure Exp3(T , (ηt)
T
t=1)

2: set L0 := 0 and p0 := unif{1, . . . ,K}
3: for t = 1, . . . , T do
4: draw and play It ∼ pt−1

5: observe loss `t(It)
6: set Lt := Lt−1 + eIt`t(It)/pt−1(It)
7: set pt ∝ exp(−ηtLt)
8: end for
9: end procedure

The computationally intensive steps of the iteration
in Algorithm 5 are drawing the sample on line 4 and
updating the distribution on line 7. For each t, let us
write p̃t = exp(−ηtLt) for the unnormalized version of
pt. Note that p̃t is fully determined by Lt and ηt. Thus,
if we can sample from p̃t−1 on line 4 in o(K) time, then
we can improve the naïve per-iteration complexity of
Θ(K) since we can just skip line 7. We achieve this
by utilizing an augmented binary search tree D that
maintains the empirical loss vector L in sorted order,
thereby allowing fast sampling via Algorithm 1. We
record the requirements on D in the lemma below.

Lemma 1 (Cormen et al. 2009, Section 14.1). There
exists a data structure D that stores a length-K array
L and supports the following operations in O(logK)
worst-case time:

1. Given (L[i], i) and a number `, set L[i] = `.

2. Given k ∈ [K], output the k-th largest element of
the array (L[i], i)i∈[K] (in the dictionary order).

Let us now describe a minor modification of the Exp3
algorithm which has (virtually) identical performance
guarantees with improved per-iteration complexity.
First, instead of sampling from pt−1 directly, we use
the rejection sampling proposal qt−1 constructed from
p̃t−1 via our algorithm for monotone distributions (Al-
gorithm 1); this is possible because Lemma 1 gives
us query access to the sorted version of Lt. Second,
we modify the unbiased estimator of the loss in line 6
accordingly.

The new unbiased estimator of the loss is defined as
follows. Draw another independent arm J ∼ qt−1 and
replace line 6 with

Lt := Lt−1 +
eIt`t(It)

p̃t−1(It)

p̃t−1(J)

qt−1(J)
.

Observe that if Ft denotes the σ-algebra generated by
all rounds up to time t− 1 as well as the randomness
of the adversary in step t, then

E
[eIt`t(It)
p̃t−1(It)

p̃t−1(J)

qt−1(J)

∣∣∣ Ft]
= E

[eIt`t(It)
pt−1(It)

∣∣∣ Ft]E[pt−1(J)

qt−1(J)

∣∣∣ Ft]
= E

[eIt`t(It)
pt−1(It)

∣∣∣ Ft] = `t .

The modified algorithm is given as Algorithm 6.

Proposition 1. The complexity of one iteration of
Algorithm 6 is O(log(K) log(K/δ)) with probability 1−
δ.

Running heading title breaks the line

Algorithm 6 Modified version of Exp3.

1: procedure Fast-Exp3(T , (ηt)
T−1
t=0)

2: set L0 := 0 and p0 := unif{1, . . . ,K}
3: for t = 1, . . . , T do
4: build rejection sampling proposal qt−1 of

p̃t−1 := exp(−ηt−1Lt−1)
5: draw and play It ∼ pt−1 via rejection

sampling using qt−1

6: draw J ∼ qt−1 independently
7: observe loss `t(It)
8: set

Lt := Lt−1 +
eIt`t(It)p̃t−1(J)

p̃t−1(It)qt−1(J)

9: end for
10: end procedure

Proof. Let D be an instance of the data structure de-
scribed in Lemma 1 that holds the current estimated
loss vector Lt−1. Building the rejection envelope qt−1

on line 4 requires O(logK) calls to operation 2, for
a total complexity of O(log2K). On line 5 sampling
from qt−1 and performing the rejection step requires
O(logK) time, which has to be performed G times,
where G is a geometric random variable with mean
2. As G has exponentially decaying tails, this gives a
total of O(log(K) log(1/δ)) with probability 1− δ for
line 5. Drawing J on line 6 requires O(logK) time and
one call to operation 2, and finally, line 8 requires one
call to operation 1. Combining all estimates yields the
desired result.

The following result (proven in Appendix 7.1) provides
a pseudo-regret guarantee.
Proposition 2. Algorithm 6 with step size ηt :=
1
2

√
(logK)/(K(t+ 1)) satisfies

Rn ≤ 4
√
TK logK .

We regard the above result as a proof of concept for
the use of rejection sampling to more efficiently im-
plement subroutines in randomized algorithms. Our
proof of Proposition 2 follows well-known arguments
from the bandit literature, and the key new ingredient
is our strong control of the ratio between the target
and proposal distribution, which allows us to bound
the variance of our unbiased estimator of the loss.
Remark 3. In Algorithm 6 one may instead replace
p̃t−1(J)/qt−1(J) by (1/m)

∑m
i=1 p̃t−1(Ji)/qt−1(Ji) for

i.i.d. Ji ∼ qt−1 in order to further reduce the variance
of the estimator.

We conduct a small simulation study to confirm that
Algorithm 6 is competitive with Exp3. In Figure 2

we plot the regret of the two algorithms over T = 20k
steps using the step size ηt =

√
logK/(K (t+ 1)) and

m = 5 (see Remark 3). We run the algorithms on a
toy problem with K = 256 arms, where 10% of the
arms always return a loss of 0, and the remaining
arms always return the maximal loss of 1. In Figure 3
we compare the time it takes for the two algorithms
to complete an iteration on the same problem, while
varying the number of arms K. In the case of Exp3,
when log2K > 20 the values are not computed, and for
log2K ≤ 20 they are extrapolated from 100 iterations,
as the running time becomes prohibitive otherwise. For
additional experiments and details on reproducibility
see Appendix 7.2.

Figure 2: Error bars denote 4 standard deviations
over 20 runs.

Figure 3: Comparison of iteration speed.

Remark 4. Empirically we observed that (i) both al-
gorithms perform better when using a larger step size
than suggested by their performance guarantees (i.e.
parameter tuning is necessary for optimal performance)
and (ii), that the two algorithms performed compara-
bly when using the same step size. Based on this, we

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

chose to use identical step size for both algorithms in
our figures.
Remark 5. We note that for constant step size ηt ≡ η
(e.g. when the time horizon T is known in advance),
theoretically it is possible to implement Exp3 with
constant iteration cost by applying the results of Ma-
tias, Vitter, and Ni 2003. Further, using the ‘doubling
trick’ such an algorithm can be turned into an anytime
algorithm by restarting it ≈ log T times at a computa-
tional cost of O(K) each time. However, our Algorithm
6 is the first to implement the more elegant solution of
decaying step size in sublinear time per iteration.

5 CONCLUSION AND OUTLOOK

We studied the query complexity of rejection sampling
within a minimax framework, and showed that for var-
ious natural classes of discrete distributions, rejection
sampling can obtain exact samples with an expected
number of queries which is sublinear in the size of the
support of the distribution. Our algorithms can also be
run in sublinear time, which make them substantially
faster than the baseline of multinomial sampling, as
shown in our application to the Exp3 algorithm.

A natural direction for future work is to investigate the
complexity of rejection sampling on other structured
classes of distributions, such as distributions on graphs,
or continuous spaces. In many of these other settings,
the complexity of algorithms based on Markov chains
has been studied extensively, but the complexity of
rejection sampling remains to be understood.

References

Bratley, P., B. L. Fox, and L. E. Schrage (2011). A guide
to simulation. Springer Science & Business Media.

Bringmann, K. and K. Panagiotou (2017). “Efficient
sampling methods for discrete distributions”. In: Al-
gorithmica 79.2, pp. 484–508.

Bubeck, S. and N. Cesa-Bianchi (2012). “Regret analy-
sis of stochastic and nonstochastic multi-armed ban-
dit problems”. In: Foundations and Trends® in Ma-
chine Learning 5.1, pp. 1–122.

Cormen, T. H. et al. (2009). Introduction to algorithms.
MIT Press.

Devroye, L. (1987). “A simple generator for discrete log-
concave distributions”. In: Computing 39.1, pp. 87–
91.

Eckhardt, R. (1987). “Stan Ulam, John von Neumann,
and the Monte Carlo method”. In: Los Alamos Sci-
ence 15, pp. 131–136.

Goldreich, O. (2010). Property testing—current re-
search and surveys. Vol. 6390. Lecture Notes in Com-
puter Science. Springer.

– (2017). Introduction to property testing. Cambridge
University Press.

Groeneboom, P. and G. Jongbloed (2014). Nonpara-
metric estimation under shape constraints. Vol. 38.
Cambridge University Press.

Hagerup, T., K. Mehlhorn, and J. I. Munro (1993).
“Optimal algorithms for generating discrete random
variables with changing distributions”. In: Lecture
Notes in Computer Science 700, pp. 253–264.

Jenks, G. (2021). Python sortedcontainers module.
Knuth, D. E. (2014). Art of computer programming,
volume 2: Seminumerical algorithms. Addison-Wesley
Professional.

Kronmal, R. A. and A. V. Peterson Jr (1979). “On the
alias method for generating random variables from a
discrete distribution”. In: The American Statistician
33.4, pp. 214–218.

Marsaglia, G. (1963). “Generating discrete random vari-
ables in a computer”. In: Communications of the
ACM 6.1, pp. 37–38.

Matias, Y., J. S. Vitter, and W.-C. Ni (2003). “Dynamic
generation of discrete random variates”. In: Theory
of Computing Systems 36.4, pp. 329–358.

Nesterov, Y. (2018). Lectures on convex optimization.
Vol. 137. Springer.

Neumann, J. von (1951). “Various techniques used in
connection with random digits”. In: Monte Carlo
Method. Ed. by A. S. Householder, G. E. Forsythe,
and H. H. Germond. Vol. 12. National Bureau of
Standards Applied Mathematics Series. Washing-
ton, DC: US Government Printing Office. Chap. 13,
pp. 36–38.

Robert, C. P. and G. Casella (2004). Monte Carlo
statistical methods. Vol. 2. Springer.

Saumard, A. and J. A. Wellner (2014). “Log-concavity
and strong log-concavity: a review”. In: Stat. Surv.
8, pp. 45–114.

Silvapulle, M. J. and P. K. Sen (2011). Constrained
statistical inference: Order, inequality, and shape con-
straints. Vol. 912. John Wiley & Sons.

Tsybakov, A. B. (2009). Introduction to nonparametric
estimation. Springer Series in Statistics. Revised and
extended from the 2004 French original, Translated
by Vladimir Zaiats. Springer, New York, pp. xii+214.

Walker, A. J. (1974). “New fast method for generating
discrete random numbers with arbitrary frequency
distributions”. In: Electronics Letters 10.8, pp. 127–
128.

Yao, A. C. C. (1977). “Probabilistic computations: to-
ward a unified measure of complexity (extended ab-
stract)”. In: 18th Annual Symposium on Founda-
tions of Computer Science (Providence, R.I., 1977),
pp. 222–227.

Running heading title breaks the line

Supplementary Material:
Rejection sampling from shape-constrained distributions

in sublinear time

6 PROOF OF THEOREM 1

Proof. Since q̃ is an upper envelope for p̃, then p̃(X)/q̃(X) ≤ 1 is a valid acceptance probability. Clearly, the
number of rejections follows a geometric distribution. The probability of accepting a sample is given by

P(accept) =

∫
X

p̃(x)

q̃(x)
q(dx) =

Zp
Zq

∫
X

p(dx) =
Zp
Zq

.

Let X1, X2, X3 . . . be a sequence of i.i.d. samples from q and let U1, U2, U3 . . . be i.i.d. unif[0, 1]. Let A ⊆X be
a measurable set, and let X be the output of the rejection sampling algorithm. Partitioning by the number of
rejections, we may write

P(X ∈ A) =

∞∑
n=0

P
(
Xn+1 ∈ A, Ui >

p̃(Xi)

q̃(Xi)
∀ i ∈ [n], Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
=

∞∑
n=0

P
(
Xn+1 ∈ A, Un+1 ≤

p̃(Xn+1)

q̃(Xn+1)

)
P
(
U1 >

p̃(X1)

q̃(X1)

)n
=

∞∑
n=0

(∫
A

p̃(x)

q̃(x)
q(dx)

)(∫
X

(
1− p̃(x)

q̃(x)

)
q(dx)

)n
= p(A)

Zp
Zq

∞∑
n=0

(
1− Zp

Zq

)n
= p(A) .

7 DETAILS FOR THE BANDIT APPLICATION

7.1 Pseudo-regret guarantee

The proof below follows standard arguments in the bandit literature, e.g. Bubeck and Cesa-Bianchi 2012, Theorem
3.1.

Proof of Proposition 2. For η > 0, define the potential

Φt(η) =
1

η
log

1

K

K∑
i=1

exp
(
−ηLt(i)

)
.

It is not difficult to verify that Φ′t(η) ≥ 0 (see e.g. Bubeck and Cesa-Bianchi 2012, Proof of Theorem 3.1). Note
additionally that Φ0 ≡ 0 and

ΦT (η) ≥ − min
i?∈[K]

LT (i?)− logK

η
.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

For convenience, let η−1 = η0. We get the chain of inequalities

min
i?∈[K]

LT (i?) +
logK

ηT−1
≥ Φ0(η−1)− ΦT (ηT−1)

=

T−1∑
t=0

{Φt(ηt−1)− Φt+1(ηt)}

≥
T−1∑
t=0

{Φt(ηt)− Φt+1(ηt)} , (1)

where the last inequality uses that ηt ≤ ηt−1. The change in the potential from step t to t+ 1 is

Φt(ηt)− Φt+1(ηt) = − 1

ηt
log

∑K
i=1 exp(−ηtLt+1(i))∑K
i=1 exp(−ηtLt(i))

= − 1

ηt
log

∑K
i=1 exp(−ηtLt(i)− ηt1{It+1 = i} `t+1(i)

p̃t(i)
p̃t(J)
qt(J))∑K

i=1 exp(−ηtLt(i))

= − 1

ηt
logEi∼pt exp

(
−ηt1{It+1 = i} `t+1(i)

p̃t(i)

p̃t(J)

qt(J)

)
.

Using now that e−x ≤ 1− x+ x2/2 for all x ≥ 0 we write

Φt(ηt)− Φt+1(ηt)

≥ − 1

ηt
logEi∼pt

[
1− ηt1{It+1=i}

`t+1(i)

p̃t(i)

p̃t(J)

qt(J)
+
η2
t

2
1{It+1=i}

(`t+1(i)

p̃t(i)

p̃t(J)

qt(J)

)2]
.

Since log(1− x) ≤ −x, we further have

≥
K∑
i=1

pt(i)1{It+1=i}
`t+1(i)

p̃t(i)

p̃t(J)

qt(J)
− ηt

2

K∑
i=1

pt(i)1{It+1=i}

(`t+1(i)

p̃t(i)

p̃t(J)

qt(J)

)2

.

Now, we take the expectation on both sides to obtain

E[Φt(ηt)− Φt+1(ηt)] ≥ E〈pt, `t+1〉 −
ηt
2

K∑
i=1

E
[
pt(i)

2
(`t(i)
pt(i)

pt(J)

qt(J)

)2]
,

where we used that p̃t(J)/p̃t(i) = pt(J)/pt(i). The rejection sampling guarantee ensures that ‖pt/qt‖∞ ≤ 2
(see (2)). This implies

E[Φt(ηt)− Φt+1(ηt)] ≥ E〈pt, `t+1〉 − 2ηt

K∑
i=1

E[`t(i)
2] ≥ E〈pt, `t+1〉 − 2ηtK .

Plugging this bound into (1) we obtain

min
i?∈[K]

Lt(i
?) +

logK

ηT−1
≥ E

T−1∑
t=0

〈pt, `t+1〉 − 2K

T−1∑
t=0

ηt .

Rearranging yields the pseudo-regret guarantee

max
i?∈[K]

E
[T∑
t=1

`t(It)−
T∑
t=1

`t(i
?)
]
≤ logK

ηT−1
+ 2K

T−1∑
t=0

ηt .

Setting ηt = 1
2

√
logK
K(t+1) yields the bound 4

√
TK logK.

Running heading title breaks the line

7.2 Experiments

In addition to the experiments in the main text, we compare the performance of Exp3 and Algorithm 6 on
2 additional problems. Once again we run for T = 20k steps on toy problems with K = 256 arms, using the
stepsize ηt =

√
logK/(K(t+ 1)) and m = 5. The first problem is illustrated in Figure 4, where a fixed fraction

20% of the arms always returns 0 and the rest return a loss of 1. Moreover, the arms that return favorable loss
changes throughout the running time, as the reader may observe from the 5 ‘bumps’ in the cumulative loss. In
Figure 5 we simulate a ‘stochastic’ setting, where to each arm a distribution is associated, and every pull of that
arm returns an i.i.d. copy from that distribution. In our experiment arm k ∈ {0, 1, . . . ,K − 1} has distribution
∼ (k/K − 0.3U) ∨ 0 where U ∼ unif(0, 1). In particular, arm 0 always returns 0.

In all our experiments, we implemented the data structure described in Lemma 1 using the SortedList class
of the sortedcontainers Python library Jenks 2021. All code used to create the figures is available at https:
//github.com/PatrikGerber/Rejection-sampling.

Figure 4: Error bars denote 4 standard deviations
over 20 runs.

Figure 5: Error bars denote 4 standard deviations
over 20 runs.

8 PROOFS OF THE COMPLEXITY BOUNDS

We begin with a few general comments on the lower bounds. Recall that the rejection sampling task, given query
access to the unnormalized distribution p̃, is to construct an upper envelope q̃ ≥ p̃ satisfying Zq ≤ 2Zp. We in
fact prove lower bounds for an easier task, namely, the task of constructing a proposal distribution q such that
‖p/q‖∞ ≤ 2. Note that if we have an upper envelope q̃ ≥ p̃ with Zq ≤ 2Zp, then the corresponding normalized
distribution q satisfies

∥∥p
q

∥∥
∞ := sup

x∈X

p(x)

q(x)
= sup
x∈X

p̃(x)

q̃(x)︸ ︷︷ ︸
≤1

Zq
Zp︸︷︷︸
≤2

≤ 2 , (2)

so the latter task is indeed easier.

The proofs of the lower bounds are to an extent situational, but we outline here a fairly generic strategy that
seems useful for many (but not all) classes of distributions. First, we fix a reference distribution p? ∈ P and
assume that the algorithm has access to queries to an oracle for p? (up to normalization). Also, suppose that the
algorithm makes queries at the points x1, . . . , xn. Since we assume that the algorithm is deterministic, if p ∈ P is
another distribution which agrees with p? at the queries x1, . . . , xn (up to normalization), then the algorithm
produces the same output regardless of whether it is run on p or p?. In particular, the output q of the algorithm
must satisfy both ‖p/q‖∞ ≤ 2 and ‖p?/q‖∞ ≤ 2.

More generally, for each y ∈ [N] we can construct an adversarial perturbation py ∈ P of p? which maximizes the
probability of y, subject to being consistent with the queried values. Then the rejection sampling guarantee of

https://github.com/PatrikGerber/Rejection-sampling
https://github.com/PatrikGerber/Rejection-sampling

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

the algorithm ensures that

2 ≥
∥∥py
q

∥∥
∞ ≥

py(y)

q(y)
=

1

q(y)
sup
{
p(y) : p ∈ P, p(xi)

p(xj)
=
p?(xi)

p?(xj)
for all i, j ∈ [n]

}
.

Since q is a probability distribution, this yields the inequality

1 =
∑
y∈[N]

q(y) ≥ 1

2

∑
y∈[N]

sup
{
p(y) : p ∈ P, p(xi)

p(xj)
=
p?(xi)

p?(xj)
for all i, j ∈ [n]

}
. (3)

By analyzing this inequality for the various classes of interest, it is seen to furnish a lower bound on the number of
queries n. Thus, the lower bound strategy consists of choosing a judicious reference distribution p?, constructing
the adversarial perturbations py, and using the inequality (3) to produce a lower bound on n.

8.1 Monotone distributions

Theorem 2. Let P be the class of monotone distributions supported on [N], as given in Definition 2. Then the
rejection sampling complexity of P is Θ(logN).

8.1.1 Upper bound

In the proof, let p denote the target distribution and assume that we can query the values of p̃ = pZp. Also, by
rounding N up to the nearest power of 2, and considering p to be supported on this larger alphabet, we can
assume that N is a power of 2; this will not affect the complexity bound.

Proof. We construct the upper envelope q̃ as follows: first query the values of p̃(2i), 0 ≤ i ≤ log2N − 1, which
requires O(logN) queries; then q̃ is given as follows: set q̃(1) := p̃(1) and

q̃(x) := p̃(2i) , for x ∈ (2i, 2i+1] .

Note that q̃ is an upper envelope of p̃ because p is assumed to be monotone.

To complete the proof of the upper bound in Theorem 2, we just have to check that Zq/Zp ≤ 2. We use the
definitions of the normalizing constants:

Zp = p̃(1) +

log2N−1∑
i=0

2i+1∑
x=2i+1

p̃(x) ≥ p̃(1) +

log2N−1∑
i=0

2ip̃(2i+1)

≥ p̃(1) +
1

2

log2N−2∑
i=0

2i+2∑
x=2i+1+1

q̃(x) = p̃(1)︸︷︷︸
=(q̃(1)+q̃(2))/2

+
1

2

N∑
x=3

q̃(x) =
1

2

N∑
x=1

q̃(x) =
1

2
Zq .

The bound above shows that Zq/Zp ≤ 2, which concludes the proof.

8.1.2 Lower bound

In this proof, we follow the lower bound strategy encapsulated in (3).

Proof. Let x1 < . . . < xn denote the queries; to simplify the proof, we will also assume that 1 and N are part of
the queries. This can be interpreted as giving the algorithm two free queries, and the rest of the proof can be
understood as a lower bound on the number of queries that the algorithm made, minus two.

We choose our reference distribution to be p?(x) ∝ 1/x, i.e., we take

p?(x) =
cN

x logN
, for x ∈ [N] ,

Running heading title breaks the line

where cN is used to normalize the distribution, and it satisfies cN � 1. To construct the adversarial perturbation
py, suppose that y lies strictly between the queries xi and xi+1. Let α := (y − xi)−1∑

xi<x≤y p
?(x) denote the

average of p? on (xi, y]. Then, we define

py(x) :=

{
α , xi < x ≤ y ,
p?(x) , otherwise .

Since we replace the part of p? on (xi, y] with its average value on this interval, then py is also a probability
distribution: ∑

x∈[N]

py(x) =
∑
x∈[N]

p?(x) +
∑

xi<x≤y

{α− p?(x)} = 1 .

Since p? is decreasing, it is clear that py is too. Also, we can lower bound α via

α =
1

y − xi

∑
xi<x≤y

cN
x logN

≥ cN
logN

log y+1
xi+1

y − xi
.

Since py agrees with the queries, we can substitute this into (3) to obtain

2 logN

cN
≥
n−1∑
i=1

∑
xi<y<xi+1

log y+1
xi+1

y − xi
.

In what follows, let ∆i := xi+1/xi. We will only focus on the terms with ∆i ≥ 8, so assume now that ∆i ≥ 8. Let
us evaluate the inner term via dyadic summation:

∑
xi<y<xi+1

log y+1
xi+1

y − xi
=

∑
0<y<xi+1−xi

log(1 + y
xi+1)

y

≥
∑

0≤j≤log2

xi+1−xi−1

xi+1 −1

∑
2j(xi+1)≤y<2j+1(xi+1)

log(1 + y
xi+1)

y

&
∑

0≤j≤log2

xi+1−xi−1

xi+1 −1

∑
2j(xi+1)≤y<2j+1(xi+1)

j

2j+1 (xi + 1)

&
∑

0≤j≤log2(∆i/4)

j & (log ∆i)
2
.

Let A := {i ∈ [n− 1] : ∆i ≥ 8}. Our calculations above yield

logN &
∑
i∈A

(log ∆i)
2
.

Observe now that
∏n−1
i=1 ∆i = N and

∏
i∈Ac ∆i ≤ 8|A

c| ≤ 8n, so that
∏
i∈A ∆i ≥ N/8n. Hence, applying the

Cauchy-Schwarz inequality,

logN &
1

|A|

∣∣∣∑
i∈A

log ∆i

∣∣∣2 ≥ [(logN − n log 8)+]
2

|A|
.

We can now conclude as follows: either n ≥ (logN)/(2 log 8), in which case we are done, or else n ≤
(logN)/(2 log 8). In the latter case, the above inequality can be rearranged to yield n − 1 ≥ |A| & logN ,
which proves the desired statement in this case as well.

8.2 Strictly unimodal distributions

Theorem 3. Let P be the class of strictly unimodal distributions supported on [N], as given in Definition 3.
Then the rejection sampling complexity of P is Θ(logN).

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

8.2.1 Upper bound

Proof. Since the strategy is very similar to the upper bound for the class of monotone distributions (Theorem 2),
we briefly outline the procedure here. Using binary search, we can locate the mode of the distribution using
O(logN) queries. Once the mode is located, the strategy for constructing an upper envelope for monotone
distributions can be employed on each side of the mode.

8.2.2 Lower bound

Proof. We again refer to the class of monotone distributions (Theorem 2), for which the lower bound is given
in 8.1.2. Essentially the same proof goes through for this setting as well, and we make two brief remarks on
the modifications. First, the reference distribution p? in that proof is also strictly unimodal. Second, although
the adversarial perturbations py constructed in that proof are not strictly unimodal, they can be made strictly
unimodal via infinitesimal perturbations, so it is clear that the proof continues to hold.

8.3 Cliff-like distributions

Theorem 4. Let P be the class of cliff-like distributions supported on [N], as given in Definition 4. Then the
rejection sampling complexity of P is Θ(log logN).

8.3.1 Upper bound

Proof. Since the class of cliff-like distributions is contained in the class of discrete log-concave distributions, the
upper bound for the former class is subsumed by Theorem 5 on the latter class.

8.3.2 Lower bound

In this proof, we reduce the task of building a rejection sampling proposal q for the class of cliff-like distributions
to the computational task of finding the cliff in an array. Formally, the latter task is defined as follows.
Task 1 (finding the cliff in an array). There is an unknown array of the form a = [1, . . . , 1, 0, . . . , 0], of size N .
Let k be the largest index such that a[i] = 1. Given query access to the array, what is the minimum number of
queries needed to determine the value of k?

The number of queries needed to solve Task 1 is Θ(logN) (achieved via binary search). We now give the reduction.

Proof. Suppose that the algorithm makes queries to p̃. Let x− be the largest query point with p̃(x−) > 0, and
let x+ be the smallest query point with p̃(x+) = 0. Given x− ≤ y < x+, the adversarial perturbation py is the
uniform distribution on [y]. Substituting this into (3), and replacing ratios between p? with ratios between p̃, we
obtain

2 ≥
∑

x−≤y<x+

py(y) =
∑

x−≤y<x+

1

y
≥ log

x+

x−
.

Hence, an algorithm which can achieve the desired rejection sampling guarantee can guarantee that x+ ≤ cx−,
where c = e2 is a constant.

This reduces the lower bound for the rejection sampling complexity to the following question: what is the minimum
number of queries to ensure that x+ ≤ cx−?

At this point we can reduce to Task 1. Suppose after n queries we can indeed ensure that x+ ≤ cx−. Consider an
array a of size logcN , which has a cliff at index k. (We may round c up to the nearest integer, and N up to
the nearest multiple of c in order to avoid ceilings and floors.) From this array we construct the unnormalized
distribution p̃ on [N] via

p̃(x) := 1{x ≤ ck} , x ∈ [N] .

The rejection sampling algorithm provides us with x+ ≤ cx− such that p̃(x−) = 1 and p̃(x+) = 0, i.e.,
x− ≤ ck < x+ ≤ cx−. Taking logarithms, we see that

logc x− ≤ k < logc x− + 1 .

Running heading title breaks the line

Hence, taking logc x− and rounding to the nearest integer (possibly doing a constant number of extra queries to
the array afterwards for verification) locates the cliff k in n queries. Using the lower bound for Task 1, we see
that n = Ω(log logN) as claimed.

8.4 Discrete log-concave distributions

Theorem 5. Let P be the class of discrete log-concave distributions on [N], as in Definition 5, and recall that
the modes of the distributions are assumed to be 1. Then the rejection sampling complexity of P is Θ(log logN).

8.4.1 Upper bound

We make a few simplifying assumptions just as in the upper bound proof for Theorem 2. Let p denote the target
distribution, assume that the queries are made to p̃ = pZp, and let V : R→ R ∪ {∞} be a convex function such
that p̃(x) = exp(−V (x)) for x ∈ [N]. Also, we round N up to the nearest power of 2, which does not change the
complexity bound.

Proof. First we make one query to obtain the value of p̃(1). Then we find the integer 0 ≤ i0 ≤ log2N − 1 (if it
exists) such that

2p̃(2i0) ≥ p̃(1) , 2p̃(2i0+1) ≤ p̃(1) .

To do this, observe that the values p̃(2i), 0 ≤ i ≤ log2N are decreasing, and by performing binary search over
these O(logN) values we can find the integer i0 or else conclude that it does not exist using O(log logN) queries.

If i0 does not exist, then the target satisfies 2p̃(x) ≥ p̃(1) for all x ∈ [N], so the constant upper envelope q̃ = p̃(1)
suffices.

If i0 exists, denote x0 = 2i0+1, and construct the upper envelope q̃ as follows: query p̃(x0), and let

q̃(x) =

{
p̃(1) , x < x0 ,

p̃(x0) e−λ (x−x0) , x ≥ x0 ,

λ =
log p̃(1)

p̃(x0)

x0 − 1
=
V (x0)− V (1)

x0 − 1
.

We check that q̃ is a valid upper envelope of p̃. If we take logarithms and denote Vq(x) = − log q̃(x), then we see
that

Vq(x) =

{
V (1) , x < x0 ,

V (x0) + λ (x− x0) , x ≥ x0 .

Because V is convex, we see that Vq is a lower bound of V , so q̃ is an upper bound of p̃.

To finish the proof, we just have to bound Zq/Zp. Let Zq,1 =
∑
x<x0

q̃(x), and Zq,2 =
∑
x≥x0

q̃(x), so Zq =
Zq,1 + Zq,2. We will bound these two terms separately. For the first term, by the definition of x0 we can bound

Zq,1 =
∑
x<x0

p̃(1) ≤ 2
∑

x<x0/2

p̃(1) ≤ 4
∑

x<x0/2

p̃(x) .

For the second term,

Zq,2 ≤ p̃(x0)

∞∑
z=0

e−λz = p̃(x0) (1− e−λ)
−1

= p̃(x0)
(

1−
(p̃(x0)

p̃(1)

)x0−1
)−1

≤ 2p̃(x0) .

Putting this together,

Zq = Zq,1 + Zq,2 ≤ 4Zp .

For clarity, we have presented the proof with the bound Zq/Zp ≤ 4. At the cost of more cumbersome proof, the
above strategy can be modified to yield the guarantee Zq/Zp ≤ 2.

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

8.4.2 Lower bound

Proof. Since the class of cliff-like distributions is contained in the class of discrete log-concave distributions, the
lower bound for the latter class is subsumed by Theorem 4 on the former class.

8.5 Monotone on a binary tree

Theorem 6. Let P be the class of monotone distributions on a binary tree with N vertices, as in Definition 6.
Then the rejection sampling complexity of P is Θ(N/(logN)).

Let T denote the binary tree. For the upper bound, we may embed T into a slightly larger tree, and for the
lower bound we can perform the construction on a slightly smaller tree. In this way, we may assume that T is a
complete binary tree of depth `, and hence N =

∑`
j=0 2j = 2`+1 − 1; this does not affect the complexity results.

Throughout the proofs, we write |x| for the depth of the vertex x in the tree, where the root is considered to be
at depth 0.

8.5.1 Upper bound

Proof. Let c be a constant to be chosen later. The algorithm is to query the value of p̃ at all vertices at depth at
most `0 := `− log2 `+ c. Then the upper envelope is constructed as follows,

q̃(x) :=

{
p̃(x) , if |x| ≤ `0 ,
p̃(y) , if |x| > `0 , |y| = `0 , and x is a descendant of y .

Clearly q̃ ≥ p̃. Also, the number of queries we made is

`0∑
j=0

2j = 2`0+1 − 1 .
2`

`
.

N

logN
.

Finally, we bound the ratio Zq/Zp. By definition,

Zq =
∑
x∈T

q̃(x) =
∑

x∈T, |x|≤`0

p̃(x) +
∑

x∈T, |x|>`0

q̃(x) .

For the second sum, we can write∑
x∈T, |x|>`0

q̃(x) =
∑

y∈T, |y|=`0

p̃(y) (2`−`0+1 − 1) =
∑

y∈T, |y|=`0

p̃(y) (2log2 `−c+1 − 1)

≤ ` 2−c+1
∑

y∈T, |y|=`0

p̃(y) .

On the other hand, if x denotes any vertex, let x1, x2 denote its two children; then, for any level j,∑
x∈T, |x|=j+1

p̃(x) =
∑

x∈T, |x|=j

{p̃(x1) + p̃(x2)} ≤
∑

x∈T, |x|=j

p̃(x) .

Hence, ∑
x∈T, |x|≤`0

p̃(x) ≥ (`0 + 1)
∑

x∈T, |x|=`0

p̃(x)

which yields

Zq ≤
(
1 +

` 2−c+1

`0 + 1

) ∑
x∈T, |x|≤`0

p̃(x) ≤ 2Zp ,

if ` and c are sufficiently large.

Running heading title breaks the line

8.5.2 Lower bound

The proof of the lower bound follows the strategy encapsulated in (3).

Proof. Suppose that an algorithm achieves rejection sampling ratio 2 with n queries. Again let `0 := `− log2 `+ c,
where the constant c will possibly be different from the one in the upper bound. The reference distribution will be

p̃(x) :=

{
2−|x| , |x| ≤ `0 ,
0 , |x| > `0 .

Note that p ∈ P . The normalizing constant is Zp = `0 + 1, since there are 2j vertices at level j. For each |y| > `0,
we will create a perturbation distribution py in the following way:

p̃y(x) :=


2−|x| , |x| ≤ `0 ,
2−`0 , |x| > `0 and y is a descendant of x (or equal to x) ,

0, otherwise .

Thus, p̃y places extra mass on the path leading to y; note also that py ∈ P. The normalizing constant for py is

Zpy = Zp +

|y|∑
j=`0+1

2−`0 ≤ `0 + 1 + (`− `0) 2−`0 = `0 {1 + o(1)} ,

where o(1) tends to 0 as `→∞.

Next, let Q denote the set of vertices x at level `0 for which at least one of the descendants of x (not including x
itself) is queried by the algorithm, and let Qc denote the vertices at level `0 which do not belong to Q. Note
if x ∈ Qc and y is a descendant of x, then py is consistent with the queries made by the algorithm. Let D(x)
denote the descendants of x. Now, applying (3) with p? = p,

2 ≥
∑

x∈T, |x|≤`0

p(x) +
∑
x∈Qc

∑
y∈D(x)

py(y) = 1 +
∑
x∈Qc

∑
y∈D(x)

py(y)

which yields

1 ≥
∑
x∈Qc

∑
y∈D(x)

py(y) ≥
∑
x∈Qc

2−`0

`0 (1 + o(1))
(2`−`0+1 − 2) &

2`−2`0+1

`0 (1 + o(1))
{2`0 − |Q|} .

It then yields

n ≥ |Q| & 2`0 − `0 (1 + o(1))

2`−2`0+1
= 2`0

(
1− `0 (1 + o(1))

2`−`0+1

)
= 2`0

(
1− `0 (1 + o(1))

2log2 `−c+1

)
= 2`0

(
1− `0 (1 + o(1))

` 2−c+1

)
.

If we now choose c� 0 to be a negative constant, we can verify

n & 2`0 = 2`−log2 `+c &
N

logN
,

completing the proof.

8.5.3 An alternate definition of monotone

In this section, we show that if we adopt an alternative definition of monotone on a binary tree, then the rejection
sampling complexity is trivial.
Theorem 7. Let P be the class of probability distributions p on a binary tree with N vertices, with maximum depth
dlog2(N+1)e, such that if for every non-leaf vertex x, if the children of x are x1 and x2, then p(x) ≥ p(x1)∨p(x2).
Then, the rejection sampling complexity of P is Θ(N).

Sinho Chewi, Patrik Gerber, Chen Lu, Thibaut Le Gouic, Philippe Rigollet

Proof. It suffices to show the lower bound, and the proof will be similar to the one in Appendix 8.5.2. We may
assume that the binary tree is a complete binary tree with depth `. Suppose that an algorithm achieves a rejection
sampling ratio 2 after n queries. We define the reference distribution p? via

p̃?(x) :=

{
1 , |x| ≤ `− 2 ,

0 , |x| > `− 2 .

The normalizing constant is Zp? = 2`−1 − 1. For each leaf vertex y, we define the perturbation distribution py via

p̃y(x) :=

{
1 , |x| ≤ `− 2 or x is an ancestor of y (including if x = y) ,

0 , |x| > `− 2 .

The normalizing constant of py is Zpy = 2`−1 + 1.

Let Q denote the set of leaf vertices which are queried by the algorithm, and let Qc denote the set of leaf vertices
not in Q. Then, from (3),

2 ≥
∑

x∈T, |x|≤`−2

p?(x) +
∑
y∈Qc

py(y) = 1 +
∑
y∈Qc

py(y)

and rearranging this yields

1 ≥
∑
y∈Qc

1

2`−1 + 1
=

1

2`−1 + 1
{2` − |Q|} .

This is further rearranged to yield

n ≥ |Q| ≥ 2`−1
(
2− 1− 1

2`−1

)
& 2` = N ,

where the last inequality holds if ` > 1.

	INTRODUCTION
	BACKGROUND ON REJECTION SAMPLING COMPLEXITY
	Classical setting with exact density queries
	Density queries up to normalization

	RESULTS FOR SHAPE-CONSTRAINED DISCRETE DISTRIBUTIONS
	Structured distributions on a linearly ordered set
	Monotone on a binary tree

	APPLICATION TO BANDITS
	CONCLUSION AND OUTLOOK
	PROOF OF THEOREM 1
	DETAILS FOR THE BANDIT APPLICATION
	Pseudo-regret guarantee
	Experiments

	PROOFS OF THE COMPLEXITY BOUNDS
	Monotone distributions
	Upper bound
	Lower bound

	Strictly unimodal distributions
	Upper bound
	Lower bound

	Cliff-like distributions
	Upper bound
	Lower bound

	Discrete log-concave distributions
	Upper bound
	Lower bound

	Monotone on a binary tree
	Upper bound
	Lower bound
	An alternate definition of monotone

