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Abstract

In this paper we present coresets for Fair
Regression with Statistical Parity (SP) con-
straints and for Individually Fair Clustering.
Due to the fairness constraints, the classi-
cal coreset definition is not enough for these
problems. We first define coresets for both
the problems. We show that to obtain such
coresets, it is sufficient to sample points based
on the probabilities dependent on combina-
tion of sensitivity score and a carefully chosen
term according to the fairness constraints.
We give provable guarantees with relative er-
ror in preserving the cost and a small addi-
tive error in preserving fairness constraints
for both problems. Since our coresets are
much smaller in size as compared to n, the
number of points, they can give huge benefits
in computational costs (from polynomial to
polylogarithmic in n), especially when n ≫ d,
where d is the input dimension. We sup-
port our theoretical claims with experimental
evaluations.

1 INTRODUCTION

Automated data driven decisions play an increasingly
important role in a number of settings, and corre-
spondingly, the need for ensuring fairness of such au-
tomated procedures has become critical (Barocas and
Selbst, 2016; Caton and Haas, 2020; Corbett-Davies
and Goel, 2018). This has naturally led the machine
learning research community to propose various mea-
sures of fairness.

Fairness notions are introduced in the traditional ma-
chine learning problems either by imposing constraints
on the solutions space (to ensure, e.g., that no group
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suffers a much smaller response than the others), or
via changing the objective function itself (e.g. opti-
mizing for the worst group-wise distortion instead of
the aggregate). Incorporating fairness notions into the
optimization can often increase the complexity of the
resulting optimization that needs to be solved. For in-
stance, to solve a regression problem (for n points in d
dimensions) with the statistical parity fairness notion,
it takes roughly O(n2) time (Agarwal et al., 2019),
which is far worse than the O(nd2) time (Golub and
Van Loan, 1996) required to solve linear regression by
itself, especially when n ≫ d. For individually fair
clustering the dependence on n is n4 which can be
prohibitive even for medium sized datasets. This is
not always desirable from a practical standpoint, as it
could lead to the unintended consequence of fairness
definitions not being adopted widely.

Our work aims to mitigate this added computational
burden. We employ the use of coresets, a data summa-
rization technique, in order to create a small dataset
with the guarantee that solving the optimization prob-
lem on the smaller dataset will give a solution that
maintains both the fairness guarantees as well as gives
a close approximation to the objective function.

The main technical challenge is the following: incor-
porating the coreset technique into a fairness problem
cannot always be done blindly. In particular, for cer-
tain fairness definitions (e.g. the ones we consider),
the space of valid solutions (aka query space) depends
on the dataset on which we are evaluating the solution.
This implies that once we subsample the dataset, the
valid query space changes. Existing coresets for non-
fair versions of ML problems only preserve the cost.
Since the coreset creation procedure is not even aware
of any constraints, it is not clear what kind of theoret-
ical guarantees such traditional coresets can give for
fair versions of the ML problems. For example when
the fairness notion involves some protected attribute
like gender or race, it is possible that a traditional core-
set might not have representation from all groups and
hence it is not clear why it should work with guaran-
tees. Such situations involving constraints and chang-
ing of feasible solutions with changing subsamples have
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not been tackled in the coreset literature. From this
perspective, following are our main contributions:

1. We define coresets for fair regression with statisti-
cal parity (SP) that was defined by Agarwal et al.
(2019). Using a combination of leverage scores and
stratified uniform sampling, we create a coreset that
ensures that the solution obtained from the coreset
is a close approximation to the optimal and main-
tains the statistical parity based fairness. The size
of our coreset for fair regression is independent of
the number of input points, depending only on the
dimension and the number of distinct values the
protected attribute can take.

2. We define coresets for individually fair clustering
defined by Jung et al. (2019) and studied by Ma-
habadi and Vakilian (2020). For this we modify
the definition of fair radius and using this modi-
fied definition we define the fair coreset. We give
an algorithm to build such coresets of size loga-
rithmic in n, in time Õ(nkd). This gives us a
O(nkd+ k8d4 + (k log n)4) constant factor approx-
imation algorithm, a significant improvement from
the original O(n4) algorithm obtained by Ma-
habadi and Vakilian (2020).

3. We provide empirical results on real and semi syn-
thetic data to support our theoretical claims.

To the best of our knowledge, this is the first work giv-
ing coresets for these specific fair regression and clus-
tering problems. While our algorithms to construct
coresets are obtained using modifications to the unified
framework given by Feldman and Langberg (2011), the
novelty lies in framing the definitions of fair coresets in
the setting of optimization with data-dependent con-
straints and in showing that combining the stratified
uniform sampling with (known) sensitivity scores i.e.
little careful oversampling can indeed give fair coresets.

2 RELATED WORK AND
NOTATION

Coresets, small summaries of data that can be used
as proxy for original data for some optimization task,
have been used in making number of optimization
tasks efficient, see (Bachem et al., 2017; Feldman,
2020) and references therein. Coresets are extensively
studied for problems like regression (Dasgupta et al.,
2009; Chhaya et al., 2020c) and clustering (Har-Peled
and Mazumdar, 2004; Chhaya et al., 2020a). Our
work follows the unified coreset framework given by
Feldman and Langberg (2011). Coresets for cluster-
ing without fairness are given by Langberg and Schul-
man (2010); Feldman and Langberg (2011); Bachem

et al. (2018a) and many others. Similarly leverage
scores based coresets for regression without fairness
have been given by Drineas et al. (2006, 2011); Das-
gupta et al. (2009)

There has been a significant work in incorporating fair-
ness into various classification and clustering problems
(Chierichetti et al., 2017; Ghadiri et al., 2021; Hardt
et al., 2016; Kleinberg et al., 2017). In (Kamishima
et al., 2012; Berk et al., 2017), authors used regular-
ization to enforce fairness, Calders et al. (2013); Zink
and Rose (2020); Berk et al. (2018) studied regression
with fairness constraints by proposing linear models
with constraints on residuals of model and hence con-
trolled bias. For other such results see (Alabi et al.,
2018; Komiyama et al., 2018; Pérez-Suay et al., 2017),
(Mehrabi et al., 2021) being a nice survey.

Our work deals with the fair regression with statistical
parity (SP) defined by Agarwal et al. (2019). Agar-
wal et al. (2018) also propose algorithms for SP-fair
and bounded group loss (BGL) constraints based on
reduction to classification and linear regression prob-
lems. Though their definition applies to any form of
regression with the predictions constrained in [0, 1],
our coresets are for linear and ℓp regression problems
with SP constraints.

Individually fair clustering was first introduced by
Jung et al. (2019). Intuitively it requires every point
to have a corresponding center within its closest n/k
nearest neighbours. Jung et al. (2019) only gave an
algorithm that gives a feasible clustering solution and
does not consider optimizing the clustering cost. Ma-
habadi and Vakilian (2020) gave an algorithm that
gives 7α approximation in terms of fairness and O(1)
approximation for k-median and k-means as cluster-
ing costs and pO(p) approximation for optimal cost
with general ℓp norm. The algorithm’s running time
is O(n4) which makes it prohibitive. Vakilian and
Yalçıner (2021); Chakrabarty and Negahbani (2021)
further improve the algorithm either in terms of the
fairness guarantees or the cost but not the running
time. Our work tackles this open problem of reducing
the time complexity.

Coresets have been given for other definitions of fair
clustering problems. Schmidt et al. (2019) construct
coresets for a balance-based fairness definition given
by Chierichetti et al. (2017) for k-means. Huang et al.
(2019) improved on the size of the fair coreset for the k-
means problem and provide the first fair coreset for the
fair k-median problem. Bandyapadhyay et al. (2020)
further improve upon these coresets in terms of depen-
dence on ϵ.

General Notation and Background: Matrices and
sets will be denoted by bold face uppercase letters and
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vectors by boldface lower case. By default all vectors
are treated as column vectors. A denotes both a ma-
trix or the set of its rows (data points) interchange-
ably. For some p, q > 0, the notation p ∈ (1 ± ϵ)q
means (1 − ϵ)q ≤ p ≤ (1 + ϵ)q. The symbol ai repre-
sents the ith row of matrix A represented as a column
vector while bi represents the ith coordinate of a vec-
tor b. All statements where we say “high probability”,
hold with probability at least some large constant, e.g.
0.99, unless otherwise stated. The notation Õ(∗) hides
poly-logarithmic terms in complexity.

Coresets: Let A be a weighted dataset (weights wa),
x be a query from the query space X, and F be
a non-negative cost function of the form F (A,x) =∑

a∈A waF (a,x). A weighted set C is called an ϵ-
strong (fixed ϵ > 0) coreset for F , if |F (A,x) −
F (C,x)| ≤ ϵF (A,x) for all x in the query space. We
consider coresetsC which are subsamples (reweighted)
of original data. If xopt is the optimal solution on the
full data and x̃opt is the optimal obtained from the
coreset, it follows that F (A, x̃opt) ≤ (1+3ϵ)F (A,xopt)
(see e.g. Langberg and Schulman (2010)). One of the
most successful coreset techniques is the importance
sampling using sensitivity scores, defined by Langberg
and Schulman (2010). For a function F , query set X
and a point ai, the ith point’s sensitivity σi is defined
as

σi = sup
x∈X

F (ai,x)

F (A,x)

Sensitivity captures the relative importance of a point
w.r.t the cost function. It has been shown by Langberg
and Schulman (2010); Feldman and Langberg (2011)
that sampling points proportional to their sensitivi-
ties scores (or their upper bounds) give coresets for
F of size equal to the sum of these scores times the
pseudo-dimension of the query space. In this work
coreset refers to a strong coreset, unless otherwise
mentioned. All proofs and additional experiments are
in appendix.

3 FAIR REGRESSION WITH SP
CONSTRAINTS

We consider the fair regression problem as described
by Agarwal et al. (2019). The input is a tuple
(A,b,G, {ζi}). A ∈ Rn×d contains the data points
in the rows. The vector b ∈ [0, 1]n contains the tar-
gets. Each data point i has a protected attribute, de-
noted by gi, and G = {gi}. Each gi can be one out
of ℓ finite values, denoted by [ℓ]. There are also ℓ val-
ues ζi ∈ [0, 1], these are called slack variables. Let
A =

⋃
j≤ℓ Aj where Aj is the dataset formed by the

rows for which the protected attribute takes the value
j. Each query x is from a query space Q ⊆ Rd such

that, ∀i, aTi x ∈ [0, 1].

Consider a set of points S, where each si ∈ S has
an associated weight wi. Let w be the vector of wi

values. For a fixed query x and z ∈ [0, 1] we define

the following function Fx,z(S) as Fx,z(S) =

∑
i:si∈S

wi·1i∑
i:si∈S

wi

where, 1i = 1 when sTi x > z, else it is 0. Fx,z(·) thus
returns the fractional weight of points from S whose
predicted response, given the query x, exceeds z. Fair
regression with statistical parity (SP) constraints is
then defined as follows (Agarwal et al., 2019). Given
ζk ≥ 0,

min
x∈Rd:∀i,aT

i x∈[0,1]
1/n

∑
i

(aTi x− bi)
2 such that,

∀k ∈ [ℓ], ∀z ∈ [0, 1], |Fx,z (Ak)−Fx,z (A)| ≤ ζk

In this paper, for ease of presentation, we consider
weight of each input point in original dataset to be 1
but other weights can be used.

3.1 Coreset for Fair Regression with SP
Constraints

When we have a strong coreset, the solution obtained
from the coreset gives a good approximation of the to-
tal cost even when used with the full data. However,
notice that because of the fact that the constraints are
data-dependent (unlike, say, a norm-constraint on the
solution vector, which is data-independent), we have
to extend the standard coreset definition to guarantee
viability of the constraints under the coreset creation
procedure. To circumvent this problem, one of our
main technical contributions is to define a coreset for
the fair regression with SP constraints that puts ad-
ditional requirements on the feasibility of the solution
obtained. We next define the coreset formally for this
problem.

Definition 1. Consider a tuple (C, w̃,bc, {ζ ′i}) such
that C =

⋃
i≤ℓ Ci is a subset of rows of A, w̃ has the

weights associated with the rows of C, and bc denotes
the corresponding responses from b. {ζ ′i} be a set of
non-negative values. Recall that {ζi} denotes the slack
corresponding to the ith group. Let ϵ > 0. We call the
tuple (C, w̃,bc, {ζ ′i}) to be an ϵ-coreset for fair regres-
sion with statistical parity if the following conditions
are true.

1. All feasible solutions for (A,b, {ζi}) are also feasi-
ble solutions for (C, w̃,bc, {ζ ′i}).

2. For each group i, all feasible solutions for
(C, w̃,bc, {ζ ′i}) satisfy the ith group constraint for
original dataset for ζi + O(ϵ), i.e. any x that is
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feasible for the coreset satisfies, for all z ∈ [0, 1],

|Fx,z (Ai)−Fx,z (A)| ≤ ζi +O(ϵ).

3. ∀x,
∑

ci∈C w̃i(c
T
i x− bi)

2 ∈ (1± ϵ)∥Ax− b∥22.

Notice that the solution obtained using the coreset C
now satisfies that original constraints only with an ad-
ditional slack O(ϵ). The advantage of this definition
of coreset in practice is that it allows us to use the
solution obtained from the coreset and use it in the
original data and still get good approximation to the
objective function value as well as the fairness criteria.
Corollary 5 gives a formal version of this statement.

In order to replace the infinite constraints in the origi-
nal problem with a finite number of constraints Agar-
wal et al. (2019) used a discretization trick. We first
present a useful result that uses this trick in the coreset
setting.

Discretization: Since we need to preserve the Fx,z

for all z ∈ [0, 1], the number of constraints is infinite.
To handle this Agarwal et al. (2019) use a discretiza-
tion grid over z as well as the aTi x and bi’s for all i.
For a given η ∈ (0, 1), we consider a grid Z for [0, 1]
defined as Z = {η, 2η, . . . , 1} such that |Z| = 1

η . We

also define an η/2- cover for all bi’s.

For our problem and the least squared loss function
ℓ(bi,a

T
i x) = (bi − aTi x)

2 for each point, we repre-
sent the total average loss as 1

n

∑
i∈[n] ℓ(bi,a

T
i x). No-

tice that ℓ(bi,a
T
i x) is a loss term and different from

the ℓ used to denote number of distinct protected at-
tributes. The way they are used will make it clear
from the context to the reader. Now similar to
Agarwal et al. (2019), we also define ℓη(bi,a

T
i x) =

ℓ(bi, ⌊aTi x⌋η + η/2). Here ⌊a⌋η = ⌊a/η⌋ rounds a
down to the nearest integer multiple of η and bi is the
smallest b′ in the η/2 cover of bi’s s.t |bi − b′| ≤ η/2.
Since ℓ(bi,a

T
i x) is 1-Lipschitz, the absolute difference

between the loss values ℓ and ℓη is bounded by η.
Therefore when the discretized version of the prob-
lem is solved , an additive loss of η is incurred i.e.
|∥Ax∥22 − ℓη(Ax)| ≤ nη. Here for some x, with a
little abuse of notation, ℓη(Ax) =

∑
i∈[n] ℓη(bi,a

T
i x).

Similarly ℓ(Ax) =
∑

i∈[n] ℓ(bi,a
T
i x). Theorem 1 from

Agarwal et al. (2019) states that we can solve the prob-
lem after discretization essentially incurring only an
additive error of O(η) compared to the original prob-
lem. This allows us to just consider the z in the grid Z.
To use this technique in the coreset setting we present
the following lemma.

For ease of notation, we defineC to be the set of chosen
rows from A, i.e. the rows with non-zero w̃i values
associated with them.

In: Matrix A with group of each data point,
response vector b, error parameter ϵ

Out: Subsampled matrix C, corresponding
response vector, and weights

1 Let C = empty matrix; bc = empty vector

2 Set r1 = log d
ϵ2 , r2 = 1+ϵ

ϵ2 , as in lemma 3.
3 for i = 1, 2, . . . n do
4 Set qi = r1∥ui∥22 + r2ti, where, ti is as given in

Lemma 3
5 With probability pi = min(qi, 1), add ith row

of A to C and corresponding entry b to bc,
and set weight w̃i = 1/pi.

6 Return (C,bc) and corresponding weights.
Algorithm 1: Coreset for Fair Regression

Lemma 2. For a coreset C satisfying, ∀x,∑
ci∈C w̃i(c

T
i x − bi)

2 ∈ (1 ± ϵ)∥Ax − b∥22, we have
1
n |ℓη(Ax)− ℓη(Cx)| ≤ (2 + ϵ)η + (ϵ/n)ℓη(Ax).

3.2 Coreset Construction Algorithm

Let U be any orthogonal basis of the augmented ma-
trix [A,−b]. We denote the ith row of U as ui. The
procedure to construct coreset is described as pseu-
docode in Algorithm 1. Calculating exact leverage
scores takes time O(nd2), faster techniques are avail-
able to calculate upper bounds e.g. (Mahoney et al.,
2012). Next we describe the theoretical guarantees
given by the coreset obtained using Algorithm 1.

3.2.1 Analysis of Algorithm

In this section we describe the theoretical guarantees
obtained for the coreset using Algorithm 1. We give
the following Lemma to relate the F constraint for
each group in the coreset to that in the original data.

Lemma 3. If we fix r2 = 1+ϵ
ϵ2 and ti =

(d log(2/η) + log ℓ+ log 1/η + log 1/δ)/|Ak| when ai
belongs to the kth group, then with probability at least
1 − δ we have the following for each group k, ∀x and
∀z ∈ Z,

|F (Ak)−F (Ck)| ≤
2ϵ

1− ϵ
(1)

|F (A)−F (C)| ≤ 2ϵ

1− ϵ
(2)

The proof relies on first proving the statement for fixed
x and then using an ϵ-net argument to get the result
for all queries.

We next describe our main Theorem. It uses Lemma 3
to show the additional guarantees for the fair coreset.

Theorem 4. Using sampling probabilities as pi =
min (qi, 1) and reweighing the sampled points as 1

pi

and for r2 and ti values as given in Lemma 3 and
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r1 = log d
ϵ2 , we get a set (C,bc) with associated weight

w̃i for point i that satisfy the following three conditions
with probability 1− δ.

1. ∀x,
∑

ci∈C w̃i(c
T
i x− bi)

2 ∈ (1± ϵ)∥Ax− b∥22.

2. All feasible solutions xc for the dataset (C,bc, w̃)
and appropriate values ζ ′k satisfy, ∀k, ∀z ∈ Z,
|(F (Ak)−F (A))| ≤ ζk +O(ϵ).

3. All feasible solutions for (A,b, {ζk}) are also feasi-
ble solutions for (C, w̃,bc, {ζ ′k}).

The expected size of the coreset is O
(
d log d

ϵ2 +
1
ϵ2 ℓ(d log

2
η + log ℓ

ηδ )
)
. Here η is the step size in the

grid.

Time to build the coreset is O(nd log d) by using 2-
approximate leverage scores (Mahoney et al., 2012).
The total time taken to run the algorithm is thus
O(nd log d + C2) where C =

(
d log d

ϵ2 + 1
ϵ2 ℓ(d log

2
η +

log ℓ
ηδ )

)
. Here there will be some additional logarith-

mic dependence on C2 and ℓ.

Notice the dependence of the coreset size on ℓ and
d. This dependence cannot be avoided. We can show
that there exists a data set A ∈ Rn×(d+1) having ℓ
groups such that a coreset for fair regression with SP
constraints that preserves the SP constraint for each of
ℓ groups within an ϵ additive error, must be of size at
least (1−ϵ)ℓd. We formally show this in the appendix.

Now using the definition of our coreset and the guaran-
tees obtained in Theorem 4, in the following Corollary
we show how the solution obtained from the coreset
also approximates the cost on the full data.

Corollary 5. For input data (A,b,G, {ζk}) there
exists a coreset (C, w̃,bc, {ζ ′k}), where for k, ζ ′k =
ζk + 4ϵ

1−ϵ . Suppose the obtained optimal solution for
coreset is xcopt and the optimal solution for full data
is xopt, we have that, w.h.p. : 1) ∥Axcopt − b∥22 ≤
(1 + 3ϵ)∥Axopt − b∥22 and 2) ∀k and ∀z ∈ Z,
|Fxcopt,z(Ak)−Fxcopt,z(A)| ≤ ζk + 8ϵ

1−ϵ

It is not difficult to extend this technique to overlap-
ping groups by considering all possible overlaps. Using
Theorem 4 and Lemma 2, we can solve the fair regres-
sion problem using our coreset by using the discretiza-
tion trick and incur only an additional O(η) additive
error.

Furthermore, if the regression loss function is
ℓ(bi,a

T
i x) = |aTi x − bi|p, the problem becomes ℓp-

regression problem with statistical parity constraints.
Our coreset technique can also be applied to such ℓp-
regression problems with statistical parity constraints
with only slight change in sampling probability. We
show this small result more formally in the appendix.

4 INDIVIDUALLY FAIR
CLUSTERING

The individual fair clustering problem was first intro-
duced by Jung et al. (2019). Consider a dataset P
with n points in d dimensions, each having weight 1.
For each x ∈ P, and for some k, we define the n/k-
fair radius— rPn/k(x) — as the distance of x to its

(n/k)th nearest neighbour in P. Here we assume that
all the pairwise distances in the dataset are different.
A k-clustering using a set of centers S is called α-fair
if for any x ∈ P, d(x,S) ≤ αrPn/k(x) where d(x,S)
denotes the distance of x to its nearest neighbour in
S. Also note that the cost of a k-clustering is given as∑

x∈P d(x,S). Here we consider the α-fair k-median
problem for the Euclidean metric for analysis and then
extend the results to other ℓp cost functions where the
cost is given as

∑
x∈P d(x,S)p. Jung et al. (2019) gave

an algorithm that gives a feasible clustering solution
which does not necessarily optimize the clustering cost.
Mahabadi and Vakilian (2020) gave an algorithm for a
7α approximation in terms of fairness, an O(1) approx-
imation for k-median and k-means as clustering costs
and pO(p) approximation for optimal cost with general
ℓp norm. The algorithm’s running time is O(n4) which
makes it prohibitive. Vakilian and Yalçıner (2021);
Chakrabarty and Negahbani (2021) further improve
the algorithm either in terms of the fairness guaran-
tees or the cost but not the running time. To remedy
this, we first generalize the notion of fair radius to
weighted set and use it to define a coreset for individ-
ual fair clustering. then we build such a coreset using
a combination of importance and uniform sampling.

Let C be a weighted data set, where the weight of
the point x̃i is denoted as w̃i. We extend the def-
inition of fair radius in the following manner. Let
W̃ =

∑
i∈C w̃i. We denote rC

W̃/k
(x̃) as the maximum

radius of a ball around x̃ ∈ C which contains points
from C whose total weight is at most W̃/k. This
is the right generalization that preserves the intuition
behind the notion of “fair-radius”. From now on we
will use this definition of fair radius. Notice that for
a dataset having all points with weight 1, this defini-
tions of fair radius corresponds exactly to the previous
definition.

As mentioned before, we assume that all pairwise dis-
tances are distinct. This assumption is required for
the generalized definition of fair radius, as the follow-
ing example demonstrates. Suppose that x2, . . . ,xn

are all at distance exactly r from x1. This definition of
(weighted) fair-radius at x1 needs to take a supremum
instead of a maximum, and returns r, where B(x1, r)
contains > n/k points, violating the at most n/k con-
dition. Hence we needed the assumption for the con-
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sistency of this (weighted) fair-radius definition. Our
algorithm does not use this assumption. Also, given
any set of points P , the following simple preprocessing
(doable in O(n log n) time) guarantees that P satisfies
this assumption without disturbing the neighborhood
relations— let ϵ be any value smaller than the mini-
mum pairwise distance in P , and add a Gaussian noise
vector N(0, ϵ√

d
I) to each point.

We use BP(x, r) to denote ball of radius r centered
around x in a dataset P. With a little abuse of no-
tation we use

∣∣BP(x, r)
∣∣ to denote the total weight of

points inside the ball BP(x, r). Notice again that for
P having all points with weights 1 it is same as the
cardinality of points inside the ball.

Notice that since a coreset has points that are
weighted, we need this generalized definition of fair ra-
dius. Also similar to the case of fair regression with SP
constraints, we require solutions obtained from coreset
to be feasible when used with full data and vice versa.
Hence the coreset for individual fair clustering must
incorporate this additional requirements. As our next
important technical contribution, using this modified
definition of fair radius, we formally define a coreset
for individually fair k-median problem.

4.1 Coreset for Individually Fair clustering

For the individually fair clustering problem with k-
median cost, we define a coreset as follows:

Definition 6. For a set of points P with weights 1, a
tuple (C, w̃) is called an ϵ-coreset for individually fair
clustering if the following properties hold

1.
∑

x̃i∈C w̃id(x̃i,S) ∈ (1± ϵ)
∑

x∈P d(x,S),∀S.

2. Any feasible solution S′ on the coreset C with for
α fair k-clustering with fair radius rC

W̃/k
(x̃) is also

approximately feasible on the full data i.e ∀x ∈ P,
d(x,S′) ≤ O(α) rP(1+O(ϵ))n/k(x).

3. Any solution S feasible on the full data for α-fair
k-clustering with fair radius rPn/k(x) is also ap-
proximately feasible on the coreset i.e. ∀x̃ ∈ C,
d(x̃,S) ≤ O(α) rC

W̃ (1+O(ϵ))/k
(x̃).

This definition of the coreset allows us to obtain a
solution set of centers from the coreset and use them
with the full data while preserving the overall cost and
fairness approximately. Next we describe an algorithm
to construct such a coreset.

4.1.1 Coreset Algorithm and Analysis

The algorithm to construct for individual fair cluster-
ing is similar in spirit to the algorithm for fair regres-

In: A dataset P with n data points in d
dimension, error parameter ϵ

Out: Coreset C, associated weights w̃i
′s

1 Set C = ∅; r = (1/ϵ2) and t = ck logn
ϵ3n for an

appropriate c.
2 for i = 1, 2, . . . n do
3 Set qi = rsi + t, where, si is an upper bound

on the sensitivity of ith point.
4 With probability pi = min(qi, 1), add ith point

to C with weight w̃i = 1/pi
5 Return (C, w̃′

is).
Algorithm 2: Coreset for Individually Fair Clus-
tering

sion. The high level idea is to again use a combination
of sensitivity scores and carefully calibrated term to
decide the sampling probabilities. The process is de-
scribed as a pseudocode in Algorithm 2. Algorithm 2
takes as an input the dataset and error parameter and
returns a subset of points along with corresponding
weights. Theorem 7 gives main guarantees of the set
returned by Algorithm 2.

Theorem 7. For individually fair clustering with k-
median cost, Algorithm 2 returns a coreset as given
in definition 6 with probability at least (1 − 1/n).
The expected size of the coreset is O(k2ϵ−2d log k +
(k log n)/ϵ3). The time taken to build the coreset is
Õ(nkd).

The proof of the Theorem 7 relies on the following two
Lemmas:

Lemma 8. The set C returned by Algorithm 2 ensures
the following property: ∀x ∈ P, ∃x̃ ∈ C s.t. d(x, x̃) ≤
rPϵn/k(x) with probability at least 1− 1/n.

Lemma 9. With probability 1 − 1/n, the set C re-
turned by Algorithm 2 ensures that for all x ∈ P and
for all radii r ≥ rPϵn/k(x):

(1− ϵ)|BP(x, r)| ≤ |BC(x, r)| ≤ (1 + ϵ)|BP(x, r)|.

Lemma 8 intuitively says that for any point in original
dataset, there is a point not very far inside the coreset.
Lemma 9 intuitively captures that the generalized fair
radius is in some sense preserved by the coreset.

The proof of both the Lemmas and Theorem is in ap-
pendix. An obvious result obtained by combining the
time to build the coreset with the fact that the core-
set size is only logarithmic in n, solving the individ-
ual fair clustering approximately with the coreset is
much faster and takes time O(nkd+k8d4+(k log n)4).
This is much faster than the time taken to solve for
full data which is of the order of n4k4. Note that the
particular time and sample complexity are obtained
because of calculating the sensitivities using a partic-
ular method. However as the general idea is the one
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as given by Langberg and Schulman (2010); Feldman
and Langberg (2011), one can use any upper bounds
on sensitivity scores and get time and sampling com-
plexity accordingly. The next result describes how the
solution obtained from the coreset can also be used
with the full data.

Corollary 10. For coreset C if we solve the individ-
ually fair k-median with fair radius rC

(1+3ϵ)W̃/k
(x̃) and

obtain optimal solution S̃opt and suppose the optimal
solution for the full data with fair radius rP(1+ϵ)n

k
(x)

is Sopt then we have that 1.∀x ∈ P, d(x, S̃opt) ≤
O(α)rP(1+O(ϵ))n

k
(x) and 2.

∑
x∈P d(x, S̃opt) ≤ (1 +

3ϵ)
∑

x∈P d(x,Sopt).

Notice that both the fair-radius as well as the cluster-
ing cost suffers an approximation factor that depends
on the size of the coreset. Our results can also be ex-
tended to clusterings with other ℓp norm costs. This
is more formally as shown in the appendix.

5 EXPERIMENTS

Here we evaluate our coresets on both the problems

5.1 Experiments on Fair regression with
Statistical Parity

For evaluating coresets for fair regression with SP
we use following datasets used in Agarwal et al.
(2019): 1) Law School Admissions (Law-School):
∈ R20,469×11, protected attribute: Race. 2) Commu-
nities & Crime (Communities): ∈ R1994×22, pro-
tected attribute: Race.

For both datasets the prediction task is carried out via
squared loss minimization. We compare performances
of the models trained on the subsample of the dataset
provided by following methods: 1) FairRegCor: core-
set constructed using our method and 2) Uniform:
coreset constructed by sampling points uniformly at
random1. We note that uniform sampling is a known
to be a strong baseline in real datasets. The con-
structed coreset is passed as an input data to Algo-
rithm 1 in Agarwal et al. (2019)2, which returns a
model trained on the given input data by a reduction
using the least squares (LS) oracle. The performance
of the model trained on the complete training data is
called as FullModel. We evaluate the performances of
the models over range of slack values (ζ) and a fixed
discretization grid of size 40: Z = {1/40, 2/40, ..., 1}.
Here for each group k ∈ [ℓ], we set ζk = ζ. For each
value of ζ we run three different experiments and the

1Code for the coreset based algorithm can be found here
2Code for the original paper can be found here
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Figure 1: Rel. RMSE Err. & Disparity Diff. on
Train data for different coreset sizes (ζ = 0.1 for Com-
munities & Crime, and 0.05 for Law-School).

results are presented as an average over these three
runs.

Metrics: 1)Relative RMSE Error: It is defined as ab-
solute difference of the RMSE incurred on FullModel

with the RMSE incurred on the sampling based model
divided by the RMSE incurred on FullModel. Here,
RMSE is the root mean squared error incurred by the
model. 2)Disparity Difference: It is defined as the dif-
ference of the disparity incurred by the coreset based
model (when evaluated on the train/test data) and the
disparity incurred by the FullModel. Here, disparity
is the maximum slack incurred in the constraints over
all groups and all z.

Results: First we compare the performances of mod-
els on FairRegCor and Uniform coresets. From Fig-
ure 1 we observe that for both Law-School and Com-
munities datasets FairRegCor outperforms Uniform

in terms of both RMSE and Disparity Difference for
almost all the different sizes of the coreset. For the
cases where Uniform performs better than FairRegCor
in terms of RMSE error, the difference in the perfor-
mance is not significant, and FairRegCor significantly
outperforms Uniform with respect to disparity. Here
we have not compared with leverage score sampling as
our sampling probabilities already have leverage score
as component and hence on real data we expect similar
results.

Experiments on computation time, different parame-
ters, and on test data are in appendix.

5.2 Experiments on Individually Fair
Clustering

To evaluate coresets for Individual fair clustering, we
used two of the datasets viz. 1) Diabetes : 101, 765×2,
and 2) Census: 48842 × 5, with same set of features
as used by Mahabadi and Vakilian (2020) from the
UCI Machine Learning Repository (Dua et al., 2017).
It is important to note that that in (Mahabadi and

https://github.com/jayeshchoudhari/CoresetsForFairRegression
https://github.com/steven7woo/fair_regression_reduction
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Figure 2: Rel. Err. in Cost (wrt. to Mahabadi and
Vakilian (2020) algo.) on Real datasets
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Figure 3: Rel. Err. in Cost (wrt. to Mahabadi and
Vakilian (2020) algo.) on Semi-synthetic datasets

Vakilian, 2020), all the experiments are performed on
random samples of size 1000 only. For our coreset
experiments, we considered a random sample of 10000
points from the Diabetes and Census datasets. Hence-
forth, we will refer to these as full datasets for our
experiments 3.

Additionally, to emphasize the effect of non-uniform
sampling, we also create a semi-synthetic data using
the above real datasets. We first sample (2500) points
uniformly at random and then use a power law distri-
bution over this set and make copies of sampled points
to increase it to of size 10000.

Similar to Mahabadi and Vakilian (2020), after the
initial estimate, the local search algorithm is executed
with 1-swap. They used two metrics: 1) the k-median
cost on the full data and 2) Max. Fairness (maxF),
which is the maximum over the distance of each point

3Code base for Individual Fairness can be found here
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Figure 4: Difference in fairness by Mahabadi and
Vakilian (2020) algo. and IndFair Coreset algo. on
Real and Semi-synthetic datasets

Table 1: Computation Time Comparison (seconds)
between IndFair Coreset and Full data

Coreset
size in %

Full 2% 5%

Diabetes (k=10) 412.36 0.156 0.865
Diabetes (k=15) 930.57 0.321 2.127
Census (k=10) 506.81 0.31 1.859
Census (k=15) 1489.31 0.507 3.064

to its nearest center.

For our coresets experiments, we created coresets us-
ing three methods and appropriately reweighed the
points. The three methods are: 1) UNI: uniform ran-
dom sample 2) k-Median : k-median coreset using
Bachem et al. (2018b) technique and 3) IndFair: our
Individual fairness coreset algorithm. We modified the
code by Mahabadi and Vakilian (2020) to accommo-
date weighted datasets and experiment with different
coreset sizes and k values. For each method and each
coreset size we ran 5 experiments and our results are
the average of these five runs.

Cost Evaluation: We obtained a set of k-centers by
running the algorithm on the coresets and then cal-
culated the total cost on the full data using these ob-
tained centers. Lets call the original cost on full data
C1 and the cost obtained using centers from the core-
set be C2. We report the metric: Percentage Relative
Error: (|C1 − C2| ∗ 100)/C1. Figures 2 and 3 show
the percentage relative error for different coreset sizes
for all coreset methods and for all datasets for the val-
ues of k = 10, 15 for individually fair clustering with
k-median cost. As can be observed from the figure,
our method achieves better or at par errors compared
to other sampling strategies on both real and synthetic
data.

https://github.com/jayeshchoudhari/CoresetIndividualFairness
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Fairness Evaluation: To see the effect of coreset on
fairness we compare the difference of maxF value ob-
tained using centers from our coreset and the centers
from the full data. Figure 4 shows the evaluation of
fairness. The differences are very small and we observe
that our method achieves comparable fairness.

Computation Time: The comparison of the compu-
tation time on our coreset to the one on full real data
is shown in Table 1 in seconds. The column tagged
“Full” shows the computation time on the full data.
The time to create the coresets for most datasets and
different values of k was negligible as compared to the
total computation time and is thus ignored. Of course
uniform coresets were created fastest. Computation
time on all coreset methods are comparable and so we
have reported only the time for our coresets. We see
that our coresets have a huge advantage in terms of
computation time over the full data. This can espe-
cially be useful in practice.

6 CONCLUSION

In this paper we define and construct coresets for Fair
Regression with Statistical Parity and for Individu-
ally Fair Clustering problems. It is interesting to note
that though the nature of both the problems is dif-
ferent viz, a supervised and an unsupervised learning
problem and the nature of fairness constraints are also
different, at a high level the algorithms to solve them
have certain similarities. In both cases, algorithms use
combination of importance and uniform sampling to
satisfy the fairness constraints along with approximat-
ing the cost. This may give insights for designing core-
sets for ML problems with other fairness notions also.
Though our coreset construction algorithms are sim-
ple and rely on existing coreset construction strategies,
the technical novelty lies in formally defining coresets
for problems with additional fairness constraints and
then showing that such coresets with theoretical guar-
antees can actually be constructed using these simple
strategies. Empirically the coresets show good accu-
racy and also preserve fairness. Specifically for In-
dividually Fair Clustering they give very significant
time benefits. Defining and designing such coresets
for other fairness notions is an interesting question.
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Supplementary Material:
On Coresets for Fair Regression and Individually Fair Clustering

A APPENDIX

Here we present the proofs of all theoretical results in the paper as well some additional experiments and details.
We will need Bernstein’s inequality (Dubhashi and Panconesi, 2009)

Theorem 11. (Bernstein’s Inequality) Let the scalar random variables x1, x2,··· , xn be independent that satisfy
∀i ∈ [n], |xi − E[xi]| ≤ b. Let X =

∑n
i=1 xi and let σ2 =

∑n
i=1 σ

2
i be the variance of X. Then for any m > 0,

Pr
(
X > E[X] +m

)
≤ exp

(
−m2

2σ2+bm/3

)

B PROOFS FOR FAIR REGRESSION WITH STATISTICAL PARITY

B.1 Proof of Lemma 2

Proof.

|ℓη(Ax)− ℓη(Cx)| ≤ |ℓη(Ax)− ∥Ax∥22|+ |∥Ax∥22 − ∥Cx∥22|+ |∥Cx∥22 − ℓη(Cx)|
≤ nη + ϵ∥Ax∥22 + |C|η
≤ 2nη + ϵ((nη) + ℓη(Ax))

= (2 + ϵ)nη + ϵℓη(Ax)

Dividing both sides by n gives the result.

B.2 Proof of Lemma 3

Proof. We show that |F (Ak)−F (Ck)| is small. The proof for |F (A)−F (C)| being small is similar.

Note that, for all i, E[w̃i] = 1, and |w̃i| ≤ 1
pi

= 1
(r1∥ui∥2

2+r2ti)
≤ 1

r2ti
. For group k, Var(

∑
i∈[|Ak|](w̃i)) ≤

E[
∑

i∈[|Ak|](w̃
2
i )] =

∑
i∈[|Ak|](

1
(r1∥ui∥2

2+r2ti)
) ≤ |Ak|

r2ti
.

Applying Bernstein’s inequality to the sum of w̃i for a fixed group Ak we get

Pr(|
∑

i∈[|Ak|]

w̃i − |Ak|| ≥ ϵ|Ak|) ≤ exp

(
−ϵ2|Ak|r2ti

ϵ+ 1

)

We plug the given values of r2 and ti to get the above probability to be at most δη
ℓ exp(−d log(2/η)).

Next for the numerator we fix a group, an x and a z. Applying similar analysis on the random variable w̃i · 1i,
we get an additive error of ϵ|Ak| for a group k.

Now we show how to prove the statement for all groups, all z and all x. Since we have discretized grid Z and
finite number of groups ℓ, we can take a union bound over all z ∈ Z and ℓ. To show the statement for all x,
consider the set Y = {y ∈ Rn|y = 1(Ax) for some x ∈ Rd}. Here y = 1(Ax) is an indicator vector obtained
by thresholding each aTi x for some fixed z. Notice that for a fixed z, 1(Ax) is just a thresholding classifier with
dimension d and hence by a standard ϵ−net argument with net of size (2/ϵ)d suffices. Taking a union bound



Rachit Chhaya, Anirban Dasgupta, Jayesh Choudhari, Supratim Shit

over the ϵ-net along with all groups and z, we finally get for all x ∈ Rd, for all z ∈ Z, and for all groups, we
finally get an additive error of ϵ|Ak| in the numerator with probability atleast 1− δ

Now using these results we can show bound |(Fx,z(Ak) − Fx,z(Ck))| ≤ 2ϵ
1−ϵ , ∀k. This is shown below. Hence

∀k, ∀z ∈ Z and ∀x ∈ Rd , we get equation 1. With similar analysis over the entire dataset A, we get equation 2

We want to bound |(Fx,z(Ak)−Fx,z(Ck))|. Now (Fx,z(Ak)−Fx,z(Ck)) is given as∑
i∈[|Ak|] wi1i∑
i∈[|Ak|] wi

−
∑

i∈[|Ak|] w̃i1i∑
i∈[|Ak|] w̃i

≤
(1 + ϵ)

∑
i∈[|Ak|] wi1i −

∑
i∈[|Ak|] w̃i1i

(1− ϵ)
∑

i∈[|Ak|] wi

≤
ϵ
∑

i∈[|Ak|] wi + ϵ
∑

i∈[|Ak|] wi1i

(1− ϵ)
∑

i∈[|Ak|] wi

≤
2ϵ

∑
i∈[|Ak|] wi

(1− ϵ)
∑

i∈[|Ak|] wi

=
2ϵ

1− ϵ

This gives us the required result.

B.3 Proof of Theorem 4

Proof. As each pi satisfies pi ≥ r1∥ui∥22 with r1 ≥ log d
ϵ2 , by employing the result of Drineas et al. (2006) we can

show that, with high probability, the sampled set C and corresponding bc satisfy the following property for all
x ∈ Rd: ∑

i∈[|C|]

w̃i(c
T
i x− bi)

2 ∈ (1± ϵ)∥Ax− b∥22 (3)

Hence we have condition 1.

Now since we solve the fair regression over the coresetC, any feasible solution xc satisfies the following, ∀k, ∀z ∈ Z,

|(F (Ck)−F (C))| ≤ ζ ′k. (4)

Now using equation (4) in equation (1) we get for all (k, z ∈ Z),

|(F (Ak)−F (C))| ≤ 2ϵ

1− ϵ
+ ζ ′k.

Similarly using equation (2) in the above equation, we get, again for all (k, z),

|(F (Ak)−F (A))| ≤ 4ϵ

1− ϵ
+ ζ ′k.

Setting ζ ′k = ζk + 4ϵ
(1−ϵ) we get

|(F (Ak)−F (A))| ≤ 8ϵ

1− ϵ
+ ζk.

and hence gives the property 2. Also since each ζ ′k has an additional slack of 4ϵ
1−ϵ , all feasible solutions for

original problem are also feasible for the coreset giving property 3. Finally the expected size of the coreset is
r1

∑
i∈[n]

(∥ui∥22) + r2
∑

i∈[n]

ti. Putting r1 = O( log d
ϵ2 ) and r2 and ti values as in Lemma 3 and summing over all

groups, we get the result.
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B.4 Lower Bound for fair Regression with SP Constraints

There exists a dataset A ∈ Rn×(d+1) and having ℓ unique protected groups such that a coreset for fair regression
with SP constraints that preserves the statistical parity constraint for each of ℓ groups, within an ϵ additive
error must be of size at least (1− ϵ)ℓd. Below is the construction.

Let A be a dataset with n points in Rd+1 which are partitioned into ℓ groups. Let a group k has |Ak| = nk

points. Let the first index of every point identify the group, i.e., the first index value of every point in Ak is k.
Let Ak has d unique points, e.g., [k, 1, 0, 0, . . . , 0], [k, 0, 1, 0, . . . , 0],
. . . [k, 0, 0, 0, . . . , 1]. In Ak let there be nk

d copies of every unique point. Similarly for every other j ∈ [ℓ] we have
nj

d copies of every unique point [j, 1, 0, 0, . . . , 0], [j, 0, 1, 0, . . . , 0],
. . . [j, 0, 0, 0, . . . , 1] in Aj . For all k ∈ [ℓ] as Ak has only d linearly independent points, hence its rank is d. So the
rank of A is also d. Suppose we get a coreset with at most (1− ϵ)d unique points. Then we choose a unit vector
query x from the subspace spanned by ϵd unique points but orthogonal to (1− ϵ)d unique points in the coreset.
Let z = γ, such that ∀a ∈ A which is not perpendicular to ϵd unique points, we have aTx ≥ γ. Now let the
missing ϵd unique points be from Ak. Then notice that

∑
i∈[|Ak|] w̃i1i = 0 where as

∑
i∈[|Ak|] wi1i ≥ ϵdnk

d = ϵnk.

So for the group Ak we have |
∑

i∈[|Ak|] wi1i −
∑

i∈[|Ak|] w̃i1i| is at least ϵ · nk. So to bound the difference to be

at most ϵnk, the coreset must have at least (1− ϵ)d unique points. Now to ensure the same for all k ∈ [ℓ] group,
the size of the coreset must be at least (1− ϵ)ℓd

B.5 Proof of Corollary 5

Proof. From the proof of theorem 4, we know that xcopt satisfies property 2 in the above corollary. Now we use
proof similar to one provided by Bachem et al. (2017) to prove property 1. By definition of coreset we have
∥Cxcopt − bc∥22 ≤ (1 + ϵ)∥Axcopt − b∥22.

∥Axcopt − bc∥22 ≤ 1

(1− ϵ)
∥Cxcopt − bc∥22

(i)

≤ 1

(1− ϵ)
∥Cxopt − bc∥22

≤ 1 + ϵ

(1− ϵ)
∥Axopt − b∥22 ≤ (1 + 3ϵ)∥Axopt − b∥22

For (i), notice that due to property 3 in theorem 4, we ensure that the xopt is also a feasible solution for the
problem with the coreset. This in turn brings the additive error of O(ϵ) in the constraints in property 2.

Next we present the formal result that extends the results for fair ℓp - regression for p ̸= 2.

Corollary 12. Let Û be an (f, g, p) well-conditioned basis of [A,−b], and ∥ûi∥pp be the pth power of the p-norm

of ith row of Û. If we sample the points using pi = min (qi, 1) where qi = r1∥ûi∥pp + r2t, we can get a coreset
with properties similar to 4 for the ℓp-regression problem with statistical parity constraints with high probability.

The expected coreset size is Õ(dϵ−2((fg)p + ℓ)).

As an example, if we want to have a coreset for ℓ1 regression with SP constraint, we have fg = d1.5 (Dasgupta
et al., 2009) which gives us a coreset of size approximately Õ((d2.5 + ℓd)ϵ−2).

C PROOFS FOR INDIVIDUALLY FAIR CLUSTERING

Recall the generalized definition of fair radius. Let W̃ =
∑

i∈C w̃i. We denote rC
W̃/k

(x̃) as the maximum radius

of a ball around x̃ ∈ C which contains points from C whose total weight is at most W̃/k.

C.1 Proof of Lemma 8

Proof. For each x ∈ P, consider Xϵ as the set of ϵn/k points around x. Now for each xi ∈ Xϵ we define random
variable yi = 1 with probability pi and 0 otherwise. Y =

∑
i:xi∈Xϵ

yi. Now to prove the given property we need
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Y > 0 with high probability. Here E[Y ] =
∑

pi ≥
∑

t ≥ c log n. For δ = 1/2, Using Chernoff bound we get
Pr[Y ≤ (1− δ)E[Y ]] ≤ 1/nc Now taking a union bound over all x ∈ P, we get the property with probability at
most 1/nc−1. Hence with probability at least 1−1/n, for appropriate value of c, we get the Lemma statement.

C.2 Proof of Lemma 9

Proof. Consider any ball BP(x, r) for some x ∈ P and some radius r satisfying r ≥ rPϵn/k(x). Now the weight

of points of P in this ball is
∣∣BP(x, r)

∣∣. The weight of the points x̃’s of the coreset C inside the same ball is∑
x̃i∈BC(x,r) w̃i. Note that in expectation, the weight of points of coreset in the ball BC(x, r) is

∣∣BP(x, r)
∣∣.

Now notice that |w̃i| ≤ 1/t ≤ ϵ3n
ck logn . Also the variance of sum of weights of points of the coreset inside the

ball is given by Var[
∑

x̃i∈BC(x,r) w̃i] ≤
∑

Ew̃i
2 ≤ 1

t

∑
Ew̃i =

∣∣BP(x, r)
∣∣/t = ∣∣BP(x,r)

∣∣ϵ3n
kc logn . Now using Bernstein’s

inequality we get the following result for appropriate values of c.

Pr

∣∣∣∣∣∣
∑

i:x̃i∈BC(x,r)

w̃i − E

 ∑
i:x̃i∈BC(x,r)

w̃i

∣∣∣∣∣∣ ≥ ϵE

 ∑
i:x̃i∈BC(x)

w̃i

 ≤ 1/n3

Notice that, there are at most n2 possible distances between the points. If we can claim the above statement for
all these n2 distances, it follows for all r. Hence, taking a union bound over these n2 possible distances, we get
the required property with probability at least (1−O(1/n)).

C.3 Proof of Theorem 7

Proof. For the proof of the first property in definition 6 it is known (Langberg and Schulman, 2010; Feldman
and Langberg, 2011; Chhaya et al., 2020c) that by taking expected number of samples equal to

∑
i si times the

VC-dimension of the query space (in this case kd log k) we can get a coreset for the k-median problem without
the fairness constraints which is essentially the same as our first property. Here we can use any upper bound on
sensitivity scores. We use the bound given by Bachem et al. (2018b) which gives us the summation of sensitivity
scores as O(k). Using any other technique to bound sensitivities will give results accordingly.

For second property first let S̃ be the solution obtained by solving the problem on the coreset. For any point
x ∈ P for which d(x, S̃) ≤ rPϵn/k(x), we are already satisfying the fairness property, since rPϵn/k(x) ≤ αrP(1+ϵ)n/k(x).

For any other x ∈ P, such that d(x, S̃) ≥ rPϵn/k(x), by using Lemma 9, we have that
∣∣BP(x, d(x, S̃))

∣∣ ≤
1

1−ϵ |B
C(x, d(x, S̃))

∣∣. Now, ∣∣∣BC(x, d(x, S̃))
∣∣∣ ≤ ∣∣∣BC

(
x, d(x, rC

W̃/k
(x))

)∣∣∣
≤ W̃

k
≤ (1 + ϵ)n/k

It follows that rC
W̃/k

(x) ≤ rP(1+O(ϵ))n/k(x). Suppose using the coreset C we obtain a solution S̃ for the fair

clustering problem, then we have the following:

d(x, S̃) ≤ d(x, x̃) + d(x̃, S̃)

≤ rPϵn/k(x) + αrC
W̃/k

(x̃)

≤ rPϵn/k(x) + αrP(1+ϵ)n/k(x̃)

≤ rPϵn/k(x) + α
(
rPϵn/k(x) + rP(1+O(ϵ))n/k(x)

)
= (α+ 1)rPϵn/k(x) + αrP(1+O(ϵ))n/k(x)

≤ (α+ 1)rP(1+O(ϵ))n/k(x) + αrP(1+O(ϵ))n/k(x)

= (2α+ 1)rP(1+O(ϵ))n/k(x)

Here the first inequality is due to triangle inequality, second due to Lemma 8, and the third inequality is due to
Lemma 9.
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For the third property ∀x̃ ∈ C, we know that d(x̃,S) ≤ αrPn/k(x̃). This inequality is by definition. Now to prove
the third property it is enough to consider the weight of points in the coreset C that are contained within the

ball of radius rPn/k(x). The weight W̃/k is less than (1 + ϵ)n/k ≤ (1+ϵ)W̃
(1−ϵ)k ≤ (1 + 3ϵ)W̃/k

Finally, to get a bound on the number of samples we calculate r
∑

i∈[n] si = O(k)/ϵ2. Multiplying this by the

dimension and setting appropriate value of the failure probability i.e. 1/n we get the first part O(k2ϵ−2d log k+
k log n). Also summing over t, we get O(k log n/ϵ3).Hence our final expected coreset size is O(k2ϵ−2d log k +
(k log n)/ϵ3). Now the time taken to build the coreset depends on the method to get the upper bounds on the
sensitivity scores si’s. The upper bounds we have used in the proof using the technique given by Bachem et al.
(2018b) takes time Õ(nkd)

C.4 Proof of Corollary 10

Proof. Notice that the first part is satisfied by the definition of C. Here the important point to notice is that
Sopt is also feasible for the fair radius on the coreset rC∑

W̃
k

(x̃). This is because of Lemma 9. Now we can apply

the same technique as in the proof of corollary 5 and get the second part of the result.

Next we present formal version of the result that extends our results for individually fair clustering for other
ℓp-costs

Corollary 13. Replacing the si’s of Algorithm 2 for fair k-median clustering with the si’s of fair clustering
with other ℓp norm costs we can get coreset for fair individual clustering with any ℓp norm cost for p ≥ 1. The
expected coreset size is O(8pk2ϵ−2d log k + (k log n)/ϵ)

Proof. The fairness constraints for the α-fair k clustering with any ℓp norm remain the same. Hence the proof
for properties 2 and 3 of definition 6 remain the same. We only need to prove property 1. For property 1 we
only need a bound on the sum of si’s for ℓp-norm k-clustering. By Bachem et al. (2018b) we can bound the sum
of si’s for any p ≥ 1 as 8pk. the rest of the argument remains the same as that in the proof of Theorem 7.

D ADDITIONAL EXPERIMENTS

Here we present a bunch of additional experiments and some more details about the dataset. We will release the
code on acceptance of the paper.

D.1 Fair Regression with SP Constraints

More Details on Datasets:

1) Law School Admissions (Law-School): This is the dataset from Law School Admissions Council’s National
Longitudinal Bar Passage Study (Wightman, 1998) which has 20, 649 examples with 11 columns. ‘Race’ is the
protected attribute and the task here is to predict student’s GPA (normalized to [0, 1]).

2) Communities & Crime (Communities): This dataset contains 1, 994 examples and 122 features and
contains crime, socio-economic, law enforcement data about communities in the US (Redmond and Baveja,
2002). ‘Race’ is the protected attribute and the task is to predict the number of violent crimes per 100,000
population (normalized to [0, 1]). For the Law-School dataset the train-test split is set to 50-50 and for
Communities dataset it is set to 90-10 respectively.

In figure 1 in main paper, we had compared the performance of our coreset with uniform sampling on
both datasets. Next we check the accuracy achieved by FairRegCor model when trained with varying sized
coresets for different values of ζ. In Figure 5 we observe that as the size of the coreset increases the Rel. RMSE
Err. for the FairRegCor model approaches to zero. The Disparity Difference for different sizes of the coreset is
also very low, and thus we can say that the disparity incurred by the FairRegCor model when evaluated on the
train data is very close to that obtained by FullModel on the train data.
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Figure 5: Relative RMSE Error and Disparity Difference for the FairRegCor model on Train data with in-
creasing Coreset Size.

Table 2: Fair Regression Time(secs) on Law-School dataset for different sample sizes

ζ — size 200 400 600 800 1000 2000 4000 5000 7000 10000 15000 20000

0.01 29 79 129 187 235 351 836 994 672 1989 1914 2779
0.1 20 31 58 48 100 158 384 480 536 988 1439 1988
0.2 8 31 46 48 100 154 393 384 535 767 1436 1589
0.3 8 31 23 32 40 77 307 384 671 767 1482 1918
0.5 8 15 23 32 40 77 153 192 269 383 577 764
0.7 7 15 23 32 40 77 154 191 268 383 573 766

In Figure 6 the performance comparison of FairRegCor and Uniform algorithms on the train data for a fixed
coreset size while changing the allowed value of slack i.e. disparity ζ. It can be observed that for almost all the
values of ζ the RMSE error incurred by FairRegCor is low as compared to Uniform. In case where the RMSE
in Uniform is better or lower, the disparity difference is high in case of Uniform, except for a point or two. We
observe that as the slack ζ increases, the RMSE for the models decreases which is in line with the experiments
by Agarwal et al. (2019).

To signify the importance of coresets we perform another experiment that records the time taken by the fair
regression algorithm of Agarwal et al. (2019). Table 2 shows the time taken by the algorithm in seconds for
different values of ζ and different sample sizes for the Law-School dataset. Currently the code can handle weights
by making copies, however, it is clear from Table 2 and Figure 5 that if we have black box code for fair regression
that can handle weighted points we can achieve comparable accuracy to full data using our coresets with huge
speedup. Roughly speaking the speedup vs accuracy can be obtained by extrapolating from this table. For
instance, take the LawSchool data with ξ = 0.1. For a 1% coreset (size 200), we have close to 100X speedup (20
secs vs 1988 seconds) , while having relative RMSE error being less than 0.1

Results on Test data: In Figures 7, and 8 we present the results when the models FairRegCor and Uniform

are evaluated on the test data. Figure 7 shows the performance of FairRegCor model in terms of RMSE and
Disparity Difference for increasing coreset size and for different values of the slack ζ. Here as well, as similar
to that in case of the train data, the performance on the test data improves with the increase in the size of the
data used for training. The curves seen here are similar to that observed when these models are evaluated on
the train data.
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Figure 6: RMSE Error and Disparity Difference for the FairRegCor and Uniform models on Train data for
fixed coreset size (13% Communities & Crime, 0.5% Law-School).
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Figure 7: Relative RMSE Error and Disparity Difference for the FairRegCormodel on Test data with increasing
Coreset Size.
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Figure 8: RMSE Error and Disparity Difference for the FairRegCor and Uniform models on Test data for fixed
coreset size (13% Communities & Crime, 0.5% Law-School).

D.2 More Experiments and Details for Individually Fair Clustering

Additional Details about Datasets Following are details of the two datasets:

1. Diabetes: This dataset contains information of diabetes patients from hospitals across US4. The dataset
has 101,765 points and like Mahabadi and Vakilian (2020) we considered two features : ”age” and ”time in
hospitals”.

2. Census: The new version of this dataset also known as Adult5 contains 48,842 points and we have considered
the five numeric attributes: “age” ,“fnlwgt”, “education-num”, “capital-gain” and “hours-per-week”

Semisynthetic Datasets: To emphasize the effect of non-uniform sampling, we also create a semi-synthetic
data using the above real datasets. We first sample (2500) points uniformly at random and then use a power
law distribution over this set and make copies of sampled points to increase it to of size 10000. The power law
parameter (α) value was set to 1.5.

In figure 9 we show the performance of our coreset algorithm (IndFair) along with the Uniform coreset (Uni)
and k-median based coreset (KMedian) in terms of the percentage relative error in cost as compared to Mahabadi
and Vakilian (2020) algorithm. As expected for all the algorithms the relative error decreases with the increase
in the coreset size. We observe that for different values of k, performance of IndFair is comparable or at par
with other baseline algorithms.

To evaluate the fairness of IndFair we look at the difference in the average maximum fairness achieved by our
IndFair algorithm and the fairness achieved by Mahabadi and Vakilian (2020) algorithm. From the plot in figure
10 we observe that difference in the fairness values obtained by our IndFair algorithm and that by Mahabadi
and Vakilian (2020) algorithm is very small for different values of k.

4https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008 Last Accessed: 26th
September 2021

5https://archive.ics.uci.edu/ml/datasets/adult Last Accessed: 26th September 2021



On Coresets for Fair Regression and Individually Fair Clustering

2 5 7 10 15 200

50

%
 R

el
at

iv
e 

Er
ro

r Diabetes(k=20)

2 5 7 10 15 20
0

25

50

Census(k=20)

2 5 7 10 15 20
0

100

200

%
 R

el
at

iv
e 

Er
ro

r Diabetes(k=25)

2 5 7 10 15 20
0

50

100
Census(k=25)

2 5 7 10 15 20
% Coreset Size

0

50

100

%
 R

el
at

iv
e 

Er
ro

r Diabetes(k=30)

2 5 7 10 15 20
% Coreset Size

0

50

Census(k=30)

UniCor KMedianCor IndFairCor

Figure 9: Rel. Err. in Cost (wrt. to Mahabadi and Vakilian (2020) algo.) on Semi-synthetic datasets
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