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Abstract

Correlation Clustering is an important clus-
tering problem with many applications. We
study the reconstruction version of this prob-
lem, in which one seeks to reconstruct a la-
tent clustering that has been corrupted by
random noise and adversarial modifications.
Concerning the latter, there is a standard
“post-adversarial” model in the literature, in
which adversarial modifications come after
the noise. Here, we introduce and analyse a
“pre-adversarial” model, in which adversarial
modifications come before the noise. Given
an input coming from such a semi-adversarial
generative model, the goal is to approxi-
mately reconstruct with high probability the
latent clustering. We focus on the case where
the hidden clusters have nearly equal size and
show the following. In the pre-adversarial
setting, spectral algorithms are optimal, in
the sense that they reconstruct all the way to
the information-theoretic threshold beyond
which no reconstruction is possible. This is
in contrast to the post-adversarial setting, in
which their ability to restore the hidden clus-
ters stops before the threshold, but the gap
is optimally filled by SDP-based algorithms.
These results highlight a heretofore unknown
robustness of spectral algorithms, showing
them less brittle than previously thought.

1 INTRODUCTION

The rigorous analysis of combinatorial algorithms is
most often carried out as a worst-case analysis over
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all possible inputs. In some cases, worst-case analysis
makes excessively pessimistic predictions of a given al-
gorithm’s running time or memory use, compared to
its performance on typical data. In order to achieve
more predictive rigorous analyses of algorithms, there
has been interest in developing data models that go
“beyond worst-case analysis,” combining adversarial
choices and random choices. A notable example is the
framework of smoothed analysis, introduced by Spiel-
man and Teng (2004), where a worst-case instance
is perturbed by random noise. In a complementary
way, several semi-random generative models have been
studied in which a random instance is perturbed by an
adversary. The monograph by Roughgarden (2020)
surveys this active research program.

In unsupervised machine learning, the goal is to dis-
cover structure in data that is presented in an un-
structured way. Since unsupervised machine learning
is postulated on the existence of a “ground truth” or
“latent structure” that we want to discover, the rig-
orous analysis of an unsupervised learning algorithm
must be carried out according to generative models
that produce both a data set and a ground truth about
the data set so that one can analyze whether the algo-
rithm is able to discover the latter from the former.

Previous work on the rigorous analysis of unsuper-
vised machine learning algorithms has typically been
done according to a fixed, purely probabilistic, gener-
ative model. This type of analysis can make exces-
sively optimistic predictions about the performance
of a given algorithm, particularly if the algorithm is
“overfit” to a particular generative model. In order
to study the robustness of algorithms to data coming
from sources whose distribution does not perfectly fit a
simple probabilistic generative model, there has been
interest in going “beyond average-case” in the analysis
of unsupervised learning algorithms, introducing semi-
adversarial models that combine probabilistic genera-
tion and adversarial choices. For example, in robust
statistics, one is interested in inferring the parame-
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ters of a distribution given a mix of samples from the
distribution and adversarially selected outliers. Sev-
eral semi-adversarial network generation models have
been studied for community detection and clustering
problems (see Sec. 2 for a review). Such models, as
our models, give a way to understand whether the
average-case analysis of the performance of an algo-
rithm is robust to deviations of the input distribution
from the assumed probabilistic generative model. The
adversary in a semi-random model is not meant to
model an actual natural process of data creation, but
to encompass all possible bounded variations from an
underlying probabilistic generative model.

There are similarities between some of the semi-
adversarial models developed for various computa-
tional problems and the semi-adversarial models for
unsupervised machine learning, but it is important
to remark on the different uses of such models in
the two settings. A computational problem usually
has well-defined solutions, and the goal of analysis
in semi-random models is to understand whether a
polynomial-time algorithm can find an exact or an ap-
proximate solution; in an unsupervised machine learn-
ing task, one wants to find a latent structure defined in
the generative model, and it is possible for the latent
structure to be information-theoretically impossible to
find if the noise and/or the adversarial model are too
strong. When we talk about approximation in the con-
text of solving optimization problems in semi-random
models, we refer to how close is the cost of the solution
found by the algorithm to the cost of an optimal so-
lution; in an unsupervised machine learning task, the
study of approximation refers to how close is the solu-
tion itself found by the algorithm to the ground truth.

1.1 Our Setting

We are interested in studying the correlation cluster-
ing problem in a semi-adversarial generative model,
as an unsupervised machine learning problem. This
is an important and well-studied problem about the
analysis of dense Boolean matrices. In the correla-
tion clustering problem, we have n data items, which
we identify with the integers {1, . . . , n}, and an un-
known partition C1, . . . , Ck of the items into clusters.
We are given a symmetric n × n matrix M̂ , where
M̂i,j ∈ {−1,+1} represents a belief about items i

and j being in the same cluster (M̂i,j = +1 repre-
sents a belief that they are in the same cluster and
M̂i,j = −1 the opposite). The goal is to reconstruct

the partition from M̂ . A standard probabilistic gener-
ative model for correlation clustering is to start from
a random equipartition C1, . . . , Ck of {1, . . . , n}, con-
sider the “zero-error” matrix M ∈ {+1,−1}n×n such
that that Mi,j = 1 if and only if i and j belong to

the same cluster, and obtain a matrix M̂ by applying
random noise to M . A simple noise model is obtained
by setting M̂i,j = Mi,j with probability 1/2 + ε, inde-
pendently for every unordered pair {i, j}, and equal to
−Mi,j with probability 1/2− ε, for a noise parameter
ε > 0. For constant k, this model exhibits a phase
transition at ε ≈ 1/

√
n. When ε = o(1/

√
n) it is

impossible to reconstruct the partition, even in an ap-
proximate way, and when ε = ω(1/

√
n) it is possible to

reconstruct the partition with at most o(n) items being
misclassified. In the regime in which reconstruction is
possible, we are interested in introducing adversarial
modifications in addition to random noise.

A possible semi-adversarial model, which was already
studied by Makarychev et al. (2016), is to allow an ad-
versary to modify a bounded number of entries of the
matrix sampled from the probabilistic model. We re-
fer to such a model as post-adversarial because the
adversary operates after random choices have been
made. For the correlation clustering problem, more-
over, it is also natural to consider a semi-adversarial
model that we call pre-adversarial, in which the ad-
versary is allowed to modify the zero-error matrix in
a bounded number of entries, and then random noise
is applied to the matrix after these adversarial mod-
ifications. This model is somewhat in the spirit of
smoothed analysis, in which noise is applied after an
adversarial choice1, but has never been studied before.
In the regime ε > ω(1/

√
n), it is easy to see that a

pre-adversary with a budget of modifying Ω(n2) en-
tries or a post-adversary with a budget of modifying
Ω(εn2) entries are able to force any algorithm to mis-
classify Ω(n) data points. Our goal is to understand
whether spectral approaches can reconstruct the par-
tition when the adversary has smaller budgets.

1.2 Our Contribution

All our results are asymptotic in n and assume a con-
stant k number of clusters. They are also summarized
in Table 1.

Optimal Pre-Adversarial Robustness of Spec-
tral Algorithms. We show that a spectral al-
gorithm can handle any pre-adversary making o(n2)
changes, in the noise regime ε > ω(1/

√
n), giving

polynomial-time reconstruction of the clustering with
o(n) misclassified items, with high probability.

Sub-Optimal and Yet Non-Trivial Post-
Adversarial Robustness of Spectral Algo-
rithms. In the post-adversarial setting, in the

1A notable difference is that our adversary has a limit
to how many entries of the matrix M it can modify, while
in smoothed analysis the first step is to select a completely
adversarial instance.
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Table 1: Reconstruction achieved by our Spectral Al-
gorithm in the two semi-adversarial settings, compared
to the Information-Theoretic Bounds.

Setting Inf.-Theor.
Bounds

Spectral
Algorithm

Pre-Adversary B = o(n2),
ε = ω(1/

√
n)

B = o(n2),
ε = ω(1/

√
n)

Post-Adversary B = o(εn2),
ε = ω(1/

√
n)

B = o(ε2n2),
ε = ω(1/

√
n)

noise regime ε > ω(1/
√
n), an analogous spectral

algorithm can handle adversaries making o(ε2n2)
changes, delivering, as before, with high probability a
reconstructed clustering with o(n) misclassified items.
This analysis is nearly tight, in that we can devise
post-adversarial strategies with a budget of O(ε2n2)
changes which, for a wide range of values for ε, cause
the spectral algorithm to misclassify Ω(n) items.

Optimal Post-Adversarial Robustness of SDP.
Makarychev et al. (2016) already formulated an al-
gorithm based on semidefinite programming (SDP)
and showed that, in the post-adversarial setting, in
the noise regime ε > ω(1/

√
n), the algorithm recon-

structs in polynomial-time the correct clustering up to
o(n) misclassifications, with high probability, for all
post-adversaries that have a budget of o(εn2) changes,
matching an information-theoretic lower bound. We
also provide an SDP-based algorithm with the same
theoretical guarantees, but it is significantly different
from the one in Makarychev et al. (2016).

In previous analyses of semi-adversarial settings, spec-
tral algorithms usually performed poorly in the pres-
ence of adversaries (with some exceptions (Stein-
hardt, 2017)), so it is interesting that our pre-
adversarial model provides an adversarial setting in
which a spectral algorithm performs well all the way
to information-theoretic limits. This is perhaps our
main conceptual contribution.

We comment on an additional piece of intuition that
comes out of our work. From previous work on semi-
adversarial models, there is well-established evidence
that spectral algorithms perform poorly on matrices
that are very sparse, for example on adjacency ma-
trices or Laplacian matrices of sparse random graphs
modified by an adversary. The reason is that it is pos-
sible to change a small number of entries of a sparse
matrix and create spurious large eigenvalues with lo-
calized eigenvectors, and doing so is a good adversarial
strategy to make a spectral algorithm fail. In correla-
tion clustering, the given matrix is dense, and so our
analysis in the pre-adversarial setting can be seen as
providing complementary intuition that spectral algo-

rithms can be robust on dense random matrices. But
where is the difference coming from between the op-
timal behaviour in the pre-adversarial setting and the
sub-optimal behavior in the post-adversarial setting?
We can think of the application of noise as the follow-
ing process: each entry is left unchanged with prob-
ability 2ε, and it is replaced with a fresh random bit
with probability 1− 2ε. According to the above point
of view, after the application of noise, there is only
a sparse subset of εn2 entries that give information
about the clustering, while all the other entries give
no information. So we can see that the pre-adversary
operates on a dense matrix of entries that give infor-
mation about the clustering, while the post-adversary
operates, effectively, on a sparser one, explaining the
sub-optimal robustness of spectral methods, and the
existence of adversarial strategies to create localized
eigenvectors with large eigenvalues.

1.3 Roadmap

In Section 2 we discuss relevant related work. In Sec-
tion 3 we define the problem precisely and introduce
the notation that we use. In Section 4, we present
our spectral algorithm with its theoretical guarantees.
We proceed by introducing our SDP-based algorithm
in Section 5. Section 6 presents our lower bounds for
reconstruction. Finally, in Section 7, we conclude by
discussing the limitations of spectral approaches.

2 Related Work

Semi-Adversarial Models. Semi-Random (or,
Semi-Adversarial) models have been the object of in-
tense study in the recent past – see Roughgarden
(2020) for a comprehensive introduction to the topic.
The original motivation to go beyond the worst-case
analysis of algorithms was to come up with fast al-
gorithms that, with high probability over the random
choice of the input, returned an (approximately) opti-
mal solution, to avoid dealing with input substructures
that make the problem hard but that might not be
often found in practice. In fully random models, how-
ever, an algorithm is only required to solve instances
coming from a given distribution. As a result, many
optimal solutions to fully-random models overfit to the
random model and are unlikely to behave well with
real-world instances.

Researchers then introduced several semi-random
models, Smoothed Analysis (Spielman and Teng, 2004)
being perhaps the most famous exemplar. Several
problems have been studied in this setting, e.g.,
planted clique (Feige and Krauthgamer, 2000) (whose
optimal algorithm so far is based on a spectral algo-
rithm), various of its generalizations, e.g., the Stochas-
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tic Block Model (Makarychev et al., 2016; Moitra
et al., 2016), as well as Densest Subgraph (Bhaskara
et al., 2010), Multi-Object Matching (Shi et al., 2020),
and Correlation Clustering (Mathieu and Schudy,
2010). We will later say more on some of the above
works, focusing on those most relevant to our work.

From a technical standpoint, the algorithmic strate-
gies required for these semi-random models deviate
significantly from the ones successfully applied to the
fully-random and the smoothed analysis settings. In
particular, purely spectral approaches (with no regu-
larization) work in these settings but often fail when
the adversary enters the picture (Makarychev et al.,
2016; Moitra et al., 2016). In this paper, we observe
similar behaviors of spectral and SDP-based methods.
But, as pointed out, we also observe a certain unex-
pected robustness of the former which is only partial
in the post-adversarial setting, but optimal in the pre-
adversarial one. Possibly, the foremost difference be-
tween our work and most of the previous semi-random
ones lies in its algorithmic goal: here, we are not trying
to optimize an objective function over a semi-random
instance – we are, rather, trying to reconstruct the
unknown parameters (the unknown base clustering) of
the semi-random model, given one (adversarially per-
turbed) sample from it. Our specific goal significantly
changes the techniques employed and the overall algo-
rithmic approach. In particular, in the context of rig-
orous machine learning, it has often been observed that
the max-likelihood problem, when not enough samples
are available, ends up with optimal solutions that are
far from the unknown model parameters (see, e.g., Ru-
binstein and Vardi (2017)). That is, optimizing the
max-likelihood objective does not, in general, return
the hidden parameters of the model.

Correlation Clustering. Correlation clustering is
a basic primitive in the machine learner’s toolkit
with applications ranging in several domains, includ-
ing NLP (Van Gael and Zhu, 2007), social network
analysis (Chen et al., 2012), and clustering aggrega-
tion (Gionis et al., 2007). Correlation Clustering was
introduced by Bansal et al. (2004), who also presented
several problems and approximation algorithms for it.
Interestingly, they also considered the purely-random
“seed reconstruction” version of the Correlation Clus-
tering problem.

Clustering Reconstruction. The fully-random
model closest to ours is the Stochastic Block Model.
Given a seed partition of the nodes of a graph into
clusters, the Stochastic Block Model samples a random
graph as follows: a biased coin is flipped independently
for each pair of nodes, using a different bias depending
on whether the two nodes are in the same cluster or

in different clusters. Any pair of nodes from the same
cluster have a probability p of being connected by an
edge; while any pair of nodes from different clusters
have a probability q < p of being joined by an edge2.
The problem of reconstructing the seed partition start-
ing from such a random graph has been studied exten-
sively, especially in the bounded degree setting, and
several spectral algorithms, as well as algorithms based
on semidefinite programming and Grothendieck’s in-
equality (Guédon and Vershynin, 2016), have been
proposed for solving it.

Several semi-adversarial variants of the Stochastic
Block Models have been studied by the community.
Building on the work by Feige and Kilian (2001),
Makarychev et al. (2016) (and, independently, Moitra
et al. (2016)) gave algorithms to reconstruct the seed
partition starting from a graph obtained by mono-
tone modifications (plus a limited amount of adver-
sarial ones) of a sample from the SBM. More pre-
cisely, in their semi-adversarial model, Nature first
samples an SBM graph; then, an adversary can mono-
tonically strengthen the random signal. Finally, the
adversary has a limited budget for modifying the re-
maining edges. This setting includes also our post-
adversarial setting. The algorithms to reconstruct the
seed partition, similarly to those of Guédon and Ver-
shynin (2016), are based on SDPs.

Mathieu and Schudy (2010) studied a different ver-
sion of the semi-adversarial correlation clustering re-
construction problem: in their model, as in ours, one
begins with a partition C∗1 , . . . , C

∗
k of the n nodes into

clusters. Then, each pair of nodes gets corrupted i.i.d.
with probability p: the adversary can then change the
±1 label of each corrupted pair however it likes. They
show that, if each original cluster has size Ω(

√
n), and

if p ≤ 1/3, then an SDP based algorithm (together
with a weighted version of the randomized rounding
procedure of Ailon et al. (2008)) reconstructs the hid-
den clusters. An important difference between the er-
ror model of Mathieu and Schudy (2010) and ours is
that the constraints that they put on their adversary
are such that exact reconstruction is possible, while in
both our pre-adversarial and post-adversarial settings
our adversary is able to erase all information about
a subset of vertices, and hence exact reconstruction
is information-theoretically impossible. In their work,
they also consider this semi-adversarial noise model

2One could see the correlation clustering distribution
obtained by applying random noise to the zero-error ma-
trix as an instance of the stochastic block model in which
q = 1/2 − ε and p = 1/2 + ε, and we interpret the pres-
ence/absence of an edge as a +1/−1. The stochastic block
model, however, is typically analyzed in settings in which
p and q are of the order of 1/n or logn/n, leading to very
sparse graphs.
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from the point of view of approximation algorithms
for the correlation clustering objective function.

Spectral Algorithms. Spectral algorithms have
been extensively used for cluster reconstruction (Ng
et al., 2001; Balakrishnan et al., 2011). Here, we re-
strict our discussion to works that apply spectral algo-
rithms applied to (semi-)random models. In particu-
lar, Boppana (1987) introduced the spectral method
for the fully-random graph bisection problem; Mc-
Sherry (2001) and Coja-Oghlan (2006) improved the
method to work for more general partitions, and to
work with tighter gaps between the intra-cluster, and
extra-cluster, probabilities.

Since spectral algorithms for clustering are often very
efficient in terms of running time, especially when com-
pared to more complex methods like the one based on
semidefinite programming (Olsson et al., 2007), there
has been interest in studying the robustness of spectral
algorithms in several random and semi-adversarial set-
tings (Ling, 2020; Stephan and Massoulié, 2019; Peche
and Perchet, 2020; Abbe et al., 2020).

3 PRELIMINARIES

We study Correlation Clustering Reconstruction, de-
fined as follows. We are given a complete graph of n
points {1, . . . , n} =: [n] divided into k clusters, each
of size n/k. For now, we assume n/k to be an integer.
However, we will show that all our results still apply
when the communities have size n/k + o(n). If i, j
belong to the same cluster the edge ij is labeled +1,
otherwise the label is −1. In matrix notation, we are
given a matrix M such that Mi,j := +1 if i, j are in the
same cluster and −1 otherwise. The matrix M , which
we call the zero-error matrix, is modified by random
noise and adversarially, according to the following two
processes. Let 0 ≤ ε ≤ 1/2 and 0 ≤ B ≤ n2. The
quantity B is an integer and referred to as the budget
of the adversary. We will assume that the adversarial
changes are symmetric and the resulting matrix diag-
onalizable, since it would suffice ≤ B extra changes to
achieve symmetry, and we are only interested in the
asymptotic value of B.

Pre-Adversary. M is modified as follows. First, an
adversary swaps the labels of B entries of M . The
resulting matrix M ′ is then modified by random noise:
every entry of M ′ is swapped with probability 1/2− ε.
The resulting matrix is denoted as M ′′.

Post-Adversary. Here, the process is inverted: first,
we inject random noise and then let the adversary op-
erate. First, every element of M is swapped with prob-
ability 1/2− ε. The resulting matrix is M ′ (same no-
tation, but the context will disambiguate). Second, an

adversary swaps the sign of B elements in the matrix,
giving rise to a matrix M ′′.

In both models, the Correlation Clustering Recon-
struction problem is:

Given M ′′, reconstruct M as accurately as possible in
polynomial-time.

This reconstruction goal is different from the usual
optimization point of view. It is, however, of funda-
mental concern from the machine learning perspective.
Notice that the post-adversarial setting is equivalent to
the model with outliers from Makarychev et al. (2016).
Observe that in the presence of such adversarial mod-
ifications it does not make sense to ask for Maximum
Likelihood Estimation recovery of the latent clusters.
Note also that asking for a high probability of per-
fect reconstruction is futile, for the adversary can swap
the clusters of two nodes with only B = 2n changes.
Therefore, we focus on approximate reconstruction.
Our goal is to find polynomial-time algorithms such
that, with probability 1− o(1), they correctly classify
n − o(n) vertices under the pre- and post-adversary.
More precisely, let P∗ be the k−partition of [n] cor-
responding to the ground-truth clustering. We are re-
quired to output a partition P of the [n] vertices into
k non-empty sets to maximize the number of correctly
classified vertices, which is defined as

max
ψ:P∗→P bijective

∑
S∈P∗

|S ∩ ψ(S)|.

Alternatively, we define the number of misclassified
vertices by P as n minus the number of correctly clas-
sified vertices. Our goal is to correctly classify n−o(n)
vertices with high probability 1− o(1).

3.1 The Technical Toolkit

We now describe our main technical toolkit, consisting
of definitions and known facts about matrix norms,
eigenvalues and eigenvectors, and concentration in-
equalities. The reader familiar with such background
can safely skip directly to the next section.

We define fi as the characteristic vector of the ith clus-
ter for a given zero-error matrix M : there are 1’s in
the positions corresponding to the elements of the ith
cluster, and 0 everywhere else. We also define 1 as the
vector having all coordinates equal to 1. Given a vec-
tor x ∈ Rn, the euclidean norms is defined as ‖x‖:=√∑n

i=1 x
2
i . We also define the scalar product between

two vectors x,y ∈ Rn as 〈x,y〉 = x · y :=
∑n
i=1 xiyi.

Given a square matrix M ∈ Rn,n, the Frobenius norm
is defined as ‖M‖2F :=

∑n
i,j=1M

2
i,j . The spectral, or Op-

erator, norm is defined as ‖M‖op:= max‖x‖=1 ‖Mx‖ =
max‖x‖=‖y‖=1 |xTAy|.
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Our analyses study how eigenvectors are affected by
perturbations of the matrix. The following result is
eminently useful in this regard.

Theorem 3.1 (Davis-Kahan-Wedin). Let M,N be
symmetric matrices in Rn,n such that M has eigen-
values λ1 ≥ . . . ≥ λn with corresponding orthogo-
nal eigenvectors v1, . . . ,vn, while N has eigenvalues
λ′1 ≥ . . . ≥ λ′n with corresponding orthogonal eigenvec-
tors v′1, . . . ,v

′
n. Let k ≤ n, and let VM ∈ Rn,k having

v1, . . . ,vk as columns, VN ∈ Rn,k having v′1, . . . ,v
′
k as

columns. Also, suppose δk := λk − λk+1 > 0. Then,

‖VMV TM − VNV TN ‖F≤
2
√
k·‖N−M‖op

δk
.

Let us now recall some concentration inequalities.

Theorem 3.2 (Chernoff–Hoeffding’s Inequality). Let
X1, . . . , Xn be a sequence of scalar random variables
with Xi ∈ [ai, bi] ∀ i ∈ [n]. Let X = 1

n

∑n
i=1Xi.

Then, for any λ > 0, Pr
(
|X − E[X]|≥ λ

)
≤ 2 ·

exp
(
− 2λ2n2∑n

i=1 (bi−ai)2

)
.

Theorem 3.3 (Azuma’s Inequality). Let X1, . . . , Xn

be a sequence of scalar random variables with |Xi|≤
ci > 0 almost surely. Assume also that we have the
martingale difference property E[Xi|X1, . . . , Xi−1] = 0
almost surely for all 1 ≤ i ≤ n. Let Sn =

∑n
i=1Xi

and γ :=
√∑n

i=1 c
2
i . Then, for any λ > 0, Sn

obeys the large deviation inequality Pr(|Sn|≥ λ) ≤
2 · exp(−2λ2/γ2).

We also make use of the well-known Power-Method
to compute eigenvectors and eigenvalues of symmetric
matrices (see, e.g., Golub and Van Loan (1996)). For
the sake of the exposition, we ignore the small errors of
these solutions since they are easily absorbed by other
types of errors we deal with in our derivations.

4 THE SPECTRAL ALGORITHM

Here we present a spectral algorithm, which will
be used both in the pre-adversarial and the post-
adversarial setting. We also explain our proof strategy
and state the theoretical guarantees, with full proofs
deferred to the Appendix.

4.1 Proof Strategy

Technically, the known average-case analyses of spec-
tral algorithms for clustering problems depend on
bounding the spectral norm of the difference between
the empirical matrix that we are given and the average
matrix, using concentration results for random matri-
ces; we are able to extend this analysis to the semi-
adversarial setting by bounding the spectral norm of
the difference of the matrix before and after the inter-
vention of the adversary, which is easy to do by using

Frobenius norm as an intermediate step.

More precisely, our spectral results are based on
bounding the spectral norm of the changes caused by
the adversary. An adversary that makes up to B
changes to a matrix that has ±1 entries can make
changes whose spectral norm is at most O(

√
B). If

such changes are made by a pre-adversary, the spec-
tral norm of the changes after the application of the
random noise is O(ε

√
B), and the spectral algorithm

works well provided that this is much smaller than
εn, which is true if B = o(n2). If the changes are
made by a post-adversary, then we need O(

√
B) to be

much smaller than εn, and so we need the condition
B = o(ε2n2). By Theorem 3.1, such a bound on the
operator norm of the difference between the zero-error
matrix M and our input matrix M ′′ reflects upon our
ability to approximately recover the main eigenvectors
of M , and so the whole clustering.

4.2 Properties Of The Zero-Error Matrix

The zero-error matrix M has rank k for k > 2, and
rank 1 for k = 2. We now describe its spectrum. First,
0 is an eigenvalue for M whose eigenspace, for k >
2, has dimension n − k by the Dimension Theorem
for vector spaces (it is described by a homogeneous
equation whose associated matrix, M , has rank k), and
has dimension n−1 for k = 2. Second, 2 ·n/k is also an
eigenvalue, and its eigenspace has dimension k − 1. A
basis for the eigenspace of 2 ·n/k is {fi−fi+1, i ∈ [k−
1]}. If k > 2, we also have another eigenvalue, which is
negative: (2/k−1)n, whose eigenspace has dimension 1
and is spanned by the eigenvector 1 with all identical
coordinates. There are no more eigenvalues, since the
vector space Rn is the direct sum of these eigenspaces.

We show that, to reconstruct the latent clustering, it
suffices to recover a good approximation of an orthog-
onal basis of eigenvectors for the largest eigenvalue of
M . This is what we do in our spectral algorithm.

4.3 Our Algorithm

In Algorithm Spectral, we first obtain the eigenvec-
tors of the k − 1 leading eigenvalues of the perturbed
matrix M ′′. We do not know the number of clusters
k, but we pick k as the smallest integer such that the
(k − 1)−th largest eigenvalue is larger than 2 times
the k−th largest eigenvalue in absolute value. After
that, we use the eigenvalues to retrieve the cluster
each element belongs to in procedure Get-Clusters:
for each i ∈ [n], this procedure computes a tentative
cluster Si for it, which contains all the indices whose
corresponding elements in every generated eigenvector
are close to the ith element. We show that most of
these tentative clusters are correct, meaning that they
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approximately reconstruct the cluster the element be-
longs to. Therefore, we can sample k − 1 distinct ap-
proximate clusters and build the kth cluster with the
remaining elements. With high probability, this pro-
cedure returns k almost correct clusters.

Algorithm 1 Spectral(M ′′, n, t). Input: perturbed
matrix M ′′, input size n, separating threshold t.

1: S ← ∅
2: U ← [n]
3: Let {v′′1 , . . . ,v′′k−1,v

′′
k} be the k eigenvectors of the

largest eigenvalues λ′′1 ≥ . . . ≥ λ′′k of M obtained
through Power-Method, where k is the smallest

integer such that
|λ′′k−1|
|λ′′k |

> 2.

4: {S1, ...,Sn} ← Get-Clusters({v′′1 , ...,v′′k−1}, t)
5: for ` = 1, . . . , k − 1 do
6: repeat
7: Sample i ∈ U U.A.R.
8: until |Si ∩ U|≥ n

2k
9: S ← S ∪ {Si ∩ U}

10: U ← U \ Si
11: S ← S ∪ {U}
12: return S

Algorithm 2 Get-Clusters({v′′1 , . . . ,v′′k−1}, t). In-
put: orthogonal unitary vectors {v′′1 , . . . ,v′′k−1} and
separating threshold t > 0.

1: for i = 1, . . . , n do
2: for j = 1, . . . , n do
3: Sij ← ∅
4: for h = 1, . . . , k − 1 do
5: if |(v′′h)i − (v′′h)j |> t then
6: Sij ← Sij ∪ {h}
7: Si ← {j ∈ [n] : Si,j = ∅}
8: return {S1, . . . ,Sn}

4.4 Algorithm Spectral Can Cope Optimally
With The Pre-adversary

Let
ε = ω(n−1/2) and B = o(n2). (1)

Recall that in this regime first the pre-adversary swaps
B entries of the original matrix M , giving rise to a
matrix M ′. Then, M ′ is modified by random noise by
swapping every entry with probability 1/2 − ε. The
resulting matrix is denoted as M ′′. As we show in
Section 6, if ε = o(n−1/2) or B = Ω(n2) information-
theoretic lower bounds kick in and no reconstruction
is possible.

We are able to show the following, which implies the
optimality of the Spectral Algorithm in the whole
feasible noise regime.

Theorem 4.1. With high probability 1 − o(1), Al-
gorithm Spectral(M ′′, n, t) with t = 1

2
√

2n
outputs

k clusters with o(n) misclassified vertices, where the

number of misclassified vertices is at most 2048k5

ε2 +
128k5B

n = o(n). Moreover, with high probability 1 −
o(1), the running time is Õ(n2).

The full proof is in the Appendix.

4.5 Sub-Optimal Robustness Of Algorithm
Spectral With The Post-adversary

Let
ε = ω(n−1/2) and B = o(ε2n2). (2)

Similar to the pre-adversarial setting, we can show
sub-optimal yet non-trivial robustness of Algorithm
Spectral for these parameters.

Theorem 4.2. With high probability 1 − o(1), Al-
gorithm Spectral(M ′′, n, t) with t = 1

2
√

2n
outputs

k clusters with o(n) misclassified vertices, where the

number of misclassified vertices is at most 2048k5

ε2 +
32k5B
ε2n = o(n). Moreover, with high probability 1−o(1),

the running time is Õ(n2).

The proof is in the Appendix. As we show in Sec-
tion 7, as far as B is concerned, this analysis is nearly
tight asymptotically for a wide range of values of ε.
Indeed, when ε = Ω((log(n)/n)1/3), by modifying B =
Θ(ε2n2) entries, the post-adversary can induce with
high-probability a principal eigenvector that gives no
information on the latent clustering. This makes spec-
tral algorithms like Algorithm Spectral fail and cre-
ates a gap between the information-theoretic thresh-
old, which is B = o(εn2) (see Section 6), and the reach
of spectral methods. We believe that the same tech-
niques can be used to prove that the same impossibil-
ity result holds for any ε = ω(n−1/2), but we have not
been able to prove it in this work.

4.6 Going Beyond Equinumerous Clusters

We also show that our spectral algorithm and its theo-
retical guarantees still hold when all the communities
have size n/k + o(n). In this setting, the clustering
differs from an equinumerous clustering only by o(n)
elements. Therefore, the zero-error matrix M has only
o(n2) different elements from a zero-error matrix as-
sociated to an equinumerous clustering, and can be
seen as a derivation of this last matrix under the ac-
tion of a pre-adversary changing o(n2) entries. We
have already shown that our spectral algorithm can
handle such a pre-adversary effectively, so it can deal
with nearly equinumerous clusters. More details can
be found in the Appendix.
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5 OPTIMAL ROBUSTNESS WITH
SDP

Consider the post-adversarial setting with parameters

ε = ω(n−1/2) and B = o(εn2). (3)

Makarychev et al. (2016) formulated a polynomial-
time algorithm based on semidefinite programming
(SDP) in their model with outliers, which is equiv-
alent to our post-adversary, and showed that, with
high probability, the algorithm reconstructs the cor-
rect clustering up to o(n) misclassified vertices, match-
ing the information-theoretic lower bound. We also
provide an SDP-based algorithm with the same guar-
antees, but it is significantly different from the one by
Makarychev et al. (2016).

5.1 Overview Of Our Algorithm

We present a novel optimal algorithm for correlation
clustering reconstruction in the post-adversarial set-
ting. Differently from what has been done for the spec-
tral algorithm, here we assume to have access to the
number of clusters k. The assumption of knowing the
number of clusters in advance, despite being an ad-
ditional assumption with respect to our spectral algo-
rithm, is also present in related works to ours, as in the
context of Angular Synchronization and Group Syn-
chronization (Bandeira et al., 2017; Shi et al., 2020).

At first, our algorithm transforms the input matrix
M ′′ into a new matrix Q that is close to a positive
semidefinite matrix. Moreover, by using Q, we can
move the vector 1 out of the equation because it is no
longer a leading eigenvector.

Our algorithm, named Recursive-Clust, iteratively
solves SDPs, with Q or one of its submatrices as the
coefficient matrix, to extract a good eigenvector from
the solution matrix, then uses the eigenvector to par-
tition the set of vertices in two, and is applied recur-
sively on each of the two subsets. The eigenvector is
picked by randomly sampling an eigenvector from an
orthogonal basis of eigenvectors for the solution ma-
trix of the SDP, where each eigenvector is picked with
probability proportional to its eigenvalue.

We show that, with high probability, this procedure
approximately retrieves a basis of the eigenspace of the
largest eigenvalue of the zero-error matrix M , allowing
to reconstruct the ground-truth clustering with o(n)
misclassified vertices. As for the running time, this is
dominated by the time needed to solve all the semidefi-
nite programs. Since there are at most k = O(1) SDPs
to solve, by using known algorithms to this end (Jiang
et al., 2020), we finally get the following result.

Theorem 5.1. With high probability 1 − o(1), our
SDP-based Algorithm outputs k clusters with o(n) mis-
classified vertices. Moreover, with high probability
1− o(1), the running time is Õ(n6).

5.2 Going Beyond Equinumerous Clusters

We also show that our SDP-based algorithm and its
theoretical guarantees still hold when all the commu-
nities have size n/k + o(n). This result can be directly
derived from the one for equinumerous clusters, since
the errors deriving from o(n) changes to an equinu-
merous clustering are absorbed by the post-adversarial
action. More details are in the Appendix.

5.3 Spectral Algorithms Versus SDP

It is well-known (Olsson et al., 2007) that SDP ap-
proaches have a high computational cost which scales
very poorly with size. By and large, this makes them
interesting only at a theoretical level (for now at least).
In contrast, spectral algorithms are much more effi-
cient, scalable, and extensively used in practice.

In this work, we have also quantified the discrep-
ancy in running time between our spectral algorithm
(Õ(n2)) and our SDP-based algorithm (Õ(n6)). Noth-
ing changes if we consider the optimal SDP-based al-
gorithm from Makarychev et al. (2016). This gives fur-
ther evidence about why understanding the strengths
and limitations of spectral approaches in a rigorous
way is so important, even when semidefinite program-
ming allows to gain more robustness.

6 INFORMATION-THEORETIC
LOWER BOUNDS

This section is dedicated to the analysis of the
information-theoretic lower bounds for our semi-
adversarial settings. We remark that we are not in-
terested in recovering the exact thresholds of efficient
solvability of the problems, but only in the asymptotic
ones.

In the special case B = 0, the pre-adversarial model
and the post-adversarial model are the same, and they
are equal to the well-known random model (see Abbe
(2017) for a comprehensive survey). By the results
of Mossel et al. (2014) approximate reconstruction is
not solvable information-theoretically for k = 2 clus-
ters if ε ≤ 1√

2n
. If k ≥ 2 is a constant, Banks

et al. (2016) showed that approximate reconstruction
is not possible in an information-theoretic setting if
ε ≤ c√

n
, where c is a constant eventually depending

on k. Therefore, we cannot hope to solve our prob-
lem if ε = o(n−1/2), or if ε ≤ c√

n
. Since we are not
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interested in recovering the exact thresholds of effi-
cient solvability of the problems, but only asymptotic
ones, we focus only on ε = ω(n−1/2). Now, we fo-
cus on the budget parameter B in the two different
semi-adversarial models.

Pre-Adversarial Model. We have seen that
ε = ω(n−1/2). We prove that if B ≥ Ω(n2), then the
adversary could change the clusters of a constant frac-
tion of all the nodes, therefore making it impossible
to approximately reconstruct the clusters. More pre-
cisely, for each constant δ > 0, we can take B ≤ δ · n2

and the adversary could completely randomize the ma-
trix entries for δ · n = Θ(n) vertices, making approx-
imate reconstruction impossible. For this reason, we
can only consider B = o(n2).

Post-Adversarial Model. We have seen that
ε = ω(n−1/2). Makarychev et al. (2016) proved that,
if B ≥ Ω(εn2), then the adversary could make it im-
possible to approximately reconstruct the clusters. It
follows directly from their reconstruction lower bound
(with a = n(1/2 + ε) and b = n(1/2 − ε)). The intu-
itive explanation is that the random perturbation is
equivalent to changing independently each element of
the zero-error matrix into random ∈ {±1} with prob-
ability 1 − 2ε, or leaving as it is with probability 2ε.
Therefore, by Lemma 3.2, this means that, with high
probability, only Θ(εn2) entries preserve the original
information. Therefore, for a post-adversary, it would
suffice to change those Θ(εn2) entries of M ′ into ran-
dom to disrupt the original information.

7 LIMITATIONS OF SPECTRAL
APPROACHES

We show that while spectral methods can withstand
pre-adversaries, they falter against post-adversaries.
Consider the setting with 2 equinumerous clusters, and
recall that M ′ is the resulting matrix after the random
noise is injected. Let ε = Ω(log(n)1/3n−1/3). We show
that if the post-adversary can modify B = Θ(ε2n2)
entries of M ′, it can create a spurious large eigen-
value whose corresponding eigenvector carries no in-
formation about the original clusters. Here is a post-
adversarial strategy that achieves this.

Take a set S of 4εn vertices with 2εn from each cluster
and consider the induced minor in M ′. Change all
elements in the 4εn× 4εn minor to 1. By Lemma 3.2,
with probability ≥ 1 − eΘ(ε2n) = 1 − o(1), these are
8ε2n2 ≤ B ≤ 16ε2n2 many changes. Consider now
the set of columns of the elements in S. This contains
n− 4εn sub-rows of elements outside S, each with 4εn
elements. By Lemma 3.3, the absolute value of the
sum of the elements in each one of this sub-rows is ≤

2
√
εn log(n) with probability ≥ 1− 2

n2 . Therefore, by
the union bound, with probability 1− 2

n = 1−o(1), for

each sub-row we can change ≤ 2
√
εn log(n) elements

in such a way as to ensure that the sum of the elements
is 0. If we do this for each sub-row, we just need
≤ 2n

√
εn log(n) additional changes. These adversarial

changes turn the matrix M ′ into the final matrix M ′′.
After these changes, consider the vector vS having 1√

εn

for indices of elements in S and 0 everywhere else.
Because of our changes, we have that

M ′′vS = 4εn · vS .

Thus, vS is an eigenvector for M ′′ with eigenvalue 4εn.
The total number of changes, with high probability,
has been

8ε2n2 ≤ B ≤ 16ε2n2 + 2ε
1/2n

3/2 log1/2(n) = O(ε2n2)

because, by hypothesis, ε = Ω(log(n)1/3n−1/3).
Therefore, with only B = Θ(ε2n2) post-adversarial
changes, we can create an eigenvector vS with eigen-
value Θ(εn). Now, by what we prove in the Ap-
pendix, ‖M ′′‖op= Θ(εn), so our new eigenvalues is
asymptotically of the same order of magnitude of the
largest eigenvalue of M ′′. This vector could become
the eigenvector of the largest eigenvalue of M ′′, even if
it does not tell anything about the original clustering,
making a simple spectral approach fail. Notice that
ε2n2 = o(εn2), so the number of changes is within the
information-theoretic feasibility range.

8 Conclusion

In this work, we have proposed a new semi-adversarial
framework for the analysis of algorithms and applied
it to the important case of spectral algorithms for cor-
relation clustering. In our opinion, the main takeaway
point is that the framework has allowed us to reveal
a certain robustness of spectral algorithms which was
unknown before. We hope that this result can spur
follow-up work in the same spirit, to elucidate the ro-
bustness properties of machine learning algorithms for
a variety of problems.
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Appendix

A EXTENDED PRELIMINARIES

Here we complement our preliminary section with the additional results needed for the remaining proofs.

Given a square matrix M ∈ Rn,n, the `∞-to-`1 operator norm, is defined as,

‖M‖∞→1:= max
x,y∈{±1}n

|xTMy|= max
‖x‖∞≤1,‖y‖∞≤1

xTMy = max
‖x‖∞=1

|xTMx| = max
‖x‖∞=1

‖Mx‖1.

Finally, the SDP-norm:

‖M‖SDP := max
x1,...,xn,y1,...,yn

‖xh‖=‖yk‖=1 ∀ h,k∈[n]

n∑
i,j=1

Mij〈xi,yj〉 = max
x1,...,xn,y1,...,yn

‖xh‖≤1,‖yk‖≤1 ∀ h,k∈[n]

n∑
i,j=1

Mij〈xi,yj〉.

Let us also recall some known relationships and inequalities about these norms. (see Belitskii et al. (2013) for
the proofs)

Lemma A.1. If M is an n× n real matrix with rank r, then ‖M‖2op≤ ‖M‖2F≤ r · ‖M‖2op

Like the operator norm, the `∞-to-`1 norm is monotone with respect to inclusion.

Lemma A.2. Let A ∈ Rn,n, and let B ⊆ A be a square sub-matrix of A. Then, ‖B‖∞→1≤ ‖A‖∞→1.

Lemma A.3. Let M ∈ Rn,n. Then, ‖M‖∞→1≤ n · ‖M‖op.
Theorem A.4 (Grothendieck’s Inequality). There exists a constant c ≤ 1.8 such that, for every matrix M ∈
Rn,n, it holds

‖M‖∞→1≤ ‖M‖SDP≤ c · ‖M‖∞→1.

From Krivine (1978), c ≤ π/2 ln(1+
√

2) ' 1.782. We also make use of the following known facts about eigenvalues.

Lemma A.5 (Weyl’s Inequality). Let M,N be symmetric matrices in Rn,n with eigenvalues respectively µ1 ≥
. . . ≥ µn and ν1 ≥ . . . ≥ νn. Let λ1 ≥ . . . ≥ λn be the eigenvalues of M +N . Then,

µk + νn ≤ λk ≤ µk + ν1 ∀ 1 ≤ k ≤ n.

Corollary A.5.1. Let M,E be symmetric matrices in Rn,n, where M has eigenvalues λ1 ≥ . . . ≥ λn and M +E
has eigenvalues λ′1 ≥ . . . ≥ λ′n. Then,

|λk − λ′k|≤ ‖E‖op ∀ 1 ≤ k ≤ n.

Let us now recall some concentration inequalities.

Theorem A.6 (Markov’s Inequality). Let X be a positive random variable with finite expectation. Then, for
any a > 0, it holds

Pr(X ≥ a) ≤ E[X]

a
.

Theorem A.7. Let M be a n× n real random matrix whose entries {Mi,j} are independent, have all expected
value 0 (E[Mi,j ] = 0 ∀ i, j) and are uniformly bounded in magnitude by 1 (|Mi,j |≤ 1 ∀ i, j). Then, for every
A ≥ 4,

Pr(‖M‖op≥ A
√
n) ≤ 2−An.
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A proof of this theorem can be found in Tao (2012).

Finally, let us recall some known facts about semidefinite programming (see Vandenberghe and Boyd (1996)
for a comprehensive introduction) and the computation of eigenvectors. Concerning the former, Nesterov and
Nemirovsky (1988); Nesterov and Nemirovskii (1990) showed that interior-point methods can efficiently solve
semidefinite programs (SDP’s), and several other methods have been developed. More precisely, there exists an
algorithm (referred to in this paper as SDP-Solver) that computes the optimal solution up to an exponentially
small error in the size of the input within polynomial time in the size of the input (Jiang et al., 2020). In what
follows, for clarity of the exposition, we sometimes assume the solution of SDP’s to be exact. This can be done
w.l.o.g. since the exponentially small errors of the SDP solution are absorbed by other types of error we control
in our derivations. Similarly, we make use of the well-known Power-Method to compute eigenvectors and
eigenvalues of symmetric matrices (see, e.g., Golub and Van Loan (1996)). Again, for the sake of the exposition,
we ignore the small errors of these solutions since they are easily absorbed by other types of errors we deal with
in our derivations. Recall that the running time of the Power-Method is polynomial in the size of the input
and the ratio between the largest eigenvalue and the spectral gap.

A.1 Properties of the Zero-Error Matrix

Here we provide more details about the claims on the zero-error matrix M . We will analyze its ranks, its
spectrum and provide an orthogonal basis of eigenvectors for it.

The zero-error matrix M has rank k for k > 2, and rank 1 for k = 2. Recall the definition of fi, the characteristic
vector of the ith cluster: there are 1’s in the positions corresponding to the elements of the cluster, and 0
everywhere else. For k > 2, the rows of M are spanned by the vectors {fi}1≤i≤k and are linearly independent,
as it can be shown by induction using the Gaussian elimination. For k = 2, the rows of M are spanned by the
vector f1 − f2. Let us now look at the spectrum of M .

First, 0 is an eigenvalue for M whose eigenspace has dimension n − k for k > 2 and n − 1 for k = 2 by the
Dimension Theorem for vector spaces (it is described by a homogeneous equation whose associated matrix, M ,
has rank k for k > 2 and rank 1 for k = 2). Second, 2 · n/k is also an eigenvalue whose eigenspace has dimension
k−1. A basis for it is {fi−fi+1, 1 ≤ i ≤ n−1}. If k > 2, we also have another eigenvalue: −(k−2)/k·n = (2/k−1)n,
whose eigenspace has dimension 1 and is spanned by the eigenvector with all identical coordinates. There are
no more eigenvectors, since the vector space Rn is the direct sum of these eigenspaces.

It is useful to find an orthogonal basis for the eigenspace of 2 · n/k. With the Grahm-Schmidt orthogonalization
procedure, we can get an orthogonal basis v1, . . . ,vk−1 where:

vi :=
1√
n/k

 1√
i2 + i

i∑
j=1

fj −
i√
i2 + i

fi+1

 ∀ i ∈ [k − 1]. (4)

Equation 4 can be shown by induction. These vectors are mutually orthogonal, have identical coordinates for
vertices in the same cluster and their coordinates sum to 0. For instance, for n = k = 3, we get,

v1 =
1√
2

(f1 − f2); v2 =
1√
6

(f1 + f2)− 2√
6
f3.

Notice that, for any k, any vector of the orthogonal basis detects at least one cluster. Moreover, any orthogonal
vector in this subspace detects a bisection into disjoint clusters. We exploit this to reconstruct the original
clusters iteratively.

Lemma A.8. Let vi be as in Equation 4, for i ∈ [k − 1]. And let x :=
∑k−1
i=1 λivi, where ‖x‖=

∑k−1
i=1 λ

2
i = 1.

Then, there exists i 6= j ∈ [k] such that, if xi is the coordinate of x along the vertices of the ith cluster, it holds

|xi − xj |> 1

k ·
√
n
.

Proof. Let yi :=
√

n
k · x

i for each i ∈ [k]. Assume by contradiction that our statement is false, so |yi− yj |≤ 1
k3/2

for each i 6= j ∈ [k]. First, we prove by induction that this implies

|λh|√
h2 + h

≤
(
1− 2−h

) 1

k3/2
∀ h ∈ [k − 1].



Spectral Robustness for Correlation Clustering Reconstruction in Semi-Adversarial Models

Base Case: h = 1. By our assumption, we have that |y1 − y2|≤ 1
k3/2

. However, |y1 − y2|= 2 |λ1|√
2

, thus
|λ1|√

2
≤ 1

2k3/2
= (1− 2−1) 1

k3/2
.

Inductive Step: (h − 1) → h. By our assumption, we have that |yh − yh+1|≤ 1
k3/2

. However, |yh − yh+1|=
|2 λh√

h2+h
− λh−1√

h(h−1)
| ≥ 2 |λh|√

h2+h
− |λh−1|√

h(h−1)
by the triangle inequality. Moreover, by the inductive hypothesis,

|λh−1|√
h(h−1)

≤ (1− 2−(h−1)) 1
k3/2

. Thus, |λh|√
h2+h

≤
(
1− 2−h

)
1

k3/2
.

As a consequence, we also get that

|λh|≤
√
h2 + h

k3/2
∀ h ∈ [k − 1].

However, by hypothesis,
∑k−1
h=1 |λh|2 = 1. Therefore,

1 =

k−1∑
h=1

|λh|2 ≤
1

k3

k−1∑
h=1

(h2 + h) ≤ 1

k3

k−1∑
h=1

k(k − 1) ≤ (k − 1)2k

k3
< 1,

which is a contradiction.

B THE ANALYSIS OF THE SPECTRAL ALGORITHM

Here we provide details and proofs of the theoretical guarantees for our Algorithm Spectral.

We are assuming that there are k = O(1) equinumerous clusters, each of size n/k. However, we also show that
all our results apply to the relaxed setting in which each cluster has size n/k + o(n).

B.1 Algorithm Spectral can cope optimally with the pre-adversary

Let
ε = ω(n−1/2) and B = o(n2).

We now proceed by detailing the proof of Theorem 4.1. We begin with some useful facts about the norms of the
zero-error matrix M , its adversarial modification M ′, and our input matrix M ′′, perturbed with random noise.

Lemma B.1. ‖M ′ −M‖op≤ 2
√
B = o(n).

Proof. Define E := M ′−M . By definition, E has B non-zero entries, each of which is either −2 or 2. Therefore,
‖E‖F=

√
4B = 2

√
B. By Lemma A.1, this implies that ‖E‖op≤ 2

√
B.

Lemma B.2. Pr(‖M ′′ − E[M ′′]‖op≥ 16
√
n) ≤ 2−4n.

Proof. First, notice that E[M ′′] =
(

1
2 + ε

)
M ′ +

(
1
2 − ε

)
(−M ′) = 2ε ·M ′, so

M ′′i,j − E[M ′′i,j ] :=

{
(1− 2ε)M ′i,j w. pr. 1

2 + ε;

−(1 + 2ε)M ′i,j w. pr. 1
2 − ε.

Thus 1
1+2ε (M

′′ − E[M ′′]) has all the elements bounded by 1 in absolute value. Moreover, we can write it as the

sum of its upper triangular part, name it N , and its lower triangular part, NT : 1
1+2ε (M

′′ − E[M ′′]) = N +NT .

The matrix N satisfies the hypothesis of Theorem A.7, so Pr(‖N‖op≥ 4 ·
√
n) ≤ 2−4n. By the triangle inequality

Pr(‖N + NT ‖op≥ 8 ·
√
n) ≤ Pr(‖N‖op+‖NT ‖op≥ 8 ·

√
n). However, ‖N‖op= ‖NT ‖op, so Pr(‖N + NT ‖op≥

8 ·
√
n) = Pr(‖N‖op≥ 4 ·

√
n) ≤ 2−4n. Finally, Pr(‖M ′′−E[M ′′]‖op≥ 16

√
n) = Pr((1+2ε)‖N+NT ‖op≥ 16

√
n) ≤

Pr(‖N +NT ‖op≥ 8 ·
√
n) ≤ 2−4n because ε ≤ 1/2.

Lemma B.3. With probability at least 1− 2−4n = 1− o(1), ‖M ′′ − 2ε ·M‖op≤ 16
√
n+ 4ε ·

√
B = o(εn).

Proof. By the triangle inequality, ‖M ′′−2ε ·M‖op≤ ‖M ′′−E[M ′′]‖op+‖E[M ′′]−2ε ·M‖op. First, by Lemma B.2,
with high probability ≥ 1− 2−4n = 1− o(1), it holds ‖M ′′ − E[M ′′]‖op≤ 16

√
n. Second, we have that E[M ′′] =

2ε ·M ′, so ‖E[M ′′] − 2ε ·M‖op= 2ε · ‖M ′ −M‖op. However, by Lemma B.1, it holds ‖M ′ −M‖op≤ 2
√
B. By
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putting everything together, we finally get that ‖M ′′ − 2ε ·M‖op≤ 16
√
n + 4ε ·

√
B. Finally, we notice that

16
√
n+ 4ε ·

√
B = o(εn) by Equation 1.

By Lemma B.3 and by Corollary A.5.1, it follows that the n eigenvalues of M ′′, in decreasing order, are

4

k
· εn+ o(εn), . . . ,

4

k
· εn+ o(εn), o(εn), . . . , o(εn), 2 ·

(
2

k
− 1

)
· εn,

where 4/k · εn+ o(εn) is repeated k− 1 times, o(εn) is repeated n− k times (n− 1 for k = 2), and 2 · (2/k − 1) · εn
is repeated only once (notice that this is equal to 0 for k = 2). Moreover,

|λ′′i−1|
|λ′′i |

= 1 + o(1) for every i ∈ [k − 1],

and
|λ′′k−1|
|λ′′k |

= ω(1), so k is exactly the smallest positive integer for which the condition of line 3 of Algorithm 1

holds. This shows a one-to-one correspondence between the k − 1 largest eigenvalues of the zero-error matrix
M and the k − 1 largest eigenvalues of the input matrix M ′′. As for the respective eigenvectors, we can use the
following results.

Lemma B.4. Let v′′1 , . . . ,v
′′
k−1 be unitary eigenvectors of the largest k−1 eigenvalues of M ′′, and let v1, . . . ,vk−1

be an orthogonal basis of the largest eigenvalue of M . Let V ∈ Rn,k−1 with v1, . . . ,vk−1 as columns, and
V ′′ ∈ Rn,k−1 with v′′1 , . . . ,v

′′
k−1 as columns. Then, with high probability ≥ 1− 2−4n = 1− o(1), it holds

‖V V T − V ′′(V ′′)T ‖F≤
8k
√
k

ε
√
n

+
2k
√
kB

n
= o(1).

Proof. By what previously observed, 2ε ·M is diagonalizable with eigenvalues 4/k · εn, which has multiplicity
k− 1, 0, which has multiplicity n− k (n− 1 for k = 2), and, for k > 2, 2(2/k− 1) · εn too, which has multiplicity
1. Thus, by Theorem 3.1, for any orthogonal basis of eigenvectors v1, . . . ,vk−1 of the largest eigenvalue of M , it
holds

‖V V T − V ′′(V ′′)T ‖F≤
2
√
k · ‖M ′′ − 2ε ·M‖op

4
k · εn

.

Now, by Theorem B.3, with high probability ≥ 1−2−4n = 1−o(1), it holds ‖M ′′−2ε ·M‖op≤ 16
√
n+4ε ·

√
B =

o(εn), so

‖V V T − V ′′(V ′′)T ‖F≤
2
√
k · (16

√
n+ 4ε ·

√
B)

4
k · εn

=
8k
√
k

ε
√
n

+
2k
√
kB

n
= o(1).

As before, we can use these results to show that the eigenspace of the obtained eigenvectors of M ′′ is “close” to
the one of the leading eigenvectors of M .

Lemma B.5. Let v′′1 , . . . ,v
′′
k−1 be the unitary eigenvectors of the largest k − 1 eigenvalues of M ′′, as returned

in line 3 of Algorithm 1, and let v1, . . . ,vk−1 be an orthogonal basis of the largest eigenvalue of M . Then, with
high probability ≥ 1− 2−4n, for each vh, h ∈ [k − 1], it holds

k−1∑
`=1

〈vh,v′′` 〉2 ≥ 1− 64k3

ε2n
− 4k3B

n2
= 1− o(1).

Analogously, for each v′′m,m ∈ [k − 1], it holds

k−1∑
h=1

〈vh,v′′m〉2 ≥ 1− 64k3

ε2n
− 4k3B

n2
= 1− o(1).

Proof. With high probability ≥ 1− 2−4n = 1− o(1), by Lemma B.4, it holds

‖V V T − V ′′(V ′′)T ‖F≤
8k
√
k

ε
√
n

+
2k
√
kB

n
.
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Now, we can notice that

‖V V T − V ′′(V ′′)T ‖2F=

n∑
i,j=1

(
k−1∑
h=1

((vh)i(vh)j − (v′′h)i(v
′′
h)j)

)2

= 2

(
k − 1−

k−1∑
h=1

k−1∑
`=1

〈vh,v′′` 〉2
)
.

Now fix a generic h ∈ [k− 1]. For each h′ ∈ [k− 1] \ {h}, it holds
∑k−1
`=1 〈vh′ ,v′′` 〉2 ≤ ‖vh′‖2= 1, because it is the

sum of the projections of orthogonal vectors onto vh′ . Therefore, ‖V V T −V ′′(V ′′)T ‖2F≥ 2
(

1−
∑k−1
`=1 〈vh,v′′` 〉2

)
.

Moreover, we have shown that with high probability

‖V V T − V ′′(V ′′)T ‖2F≤

(
8k
√
k

ε
√
n

+
2k
√
kB

n

)2

≤ 128k3

ε2n
+

8k3B

n2
= o(1)

by using (a+ b)2 ≤ 2(a2 + b2) ∀ a, b ∈ R. Therefore, we have that

k−1∑
`=1

〈vh,v′′` 〉2 ≥ 1− 64k3

ε2n
− 4k3B

n2
= 1− o(1).

Since everything is symmetric, the symmetric version of this inequality follows analogously.

Thanks to this result, we can analyze our spectral approach. By recovering the eigenvectors of the k − 1 largest
eigenvalues of M ′′, we get a very good approximation of a basis of the eigenspace of the leading eigenvector of
M , which can be used to set the clusters apart. We are ready to prove the main result, Theorem 4.1.

Proof of Theorem 4.1. We show that, with high probability 1−o(1), the Algorithm 1 is well-defined, so it always
succeeds in finding i ∈ U satisfying the condition of line 8, and that our solution consists in k clusters and is an
approximate reconstruction of the original clusters.

First, for each eigenvector v′′` , ` ∈ [k − 1], we can define ṽ` :=
∑k−1
h=1 〈vh,v′′` 〉vh, which is the projection of v′′`

onto the eigenspace spanned by {v1, . . . ,vk−1}. Now, for each cluster C, we can define λ`,C as the coordinate
of the vertices belonging to cluster C in vector ṽ`, which is well-defined by what said about the spectrum of
the input matrix. We can also define S`,Cbad := {i ∈ C : |(v′′` )i − λ`,C |> 1

4
√

2n
}, which is the set of indices

of C which have been moved far from λC in v′′` . By Lemma B.5, with high probability ≥ 1 − 2−4n it holds

‖v′′` − ṽ`‖2≤ 64k3

ε2n + 4k3B
n2 = o(1), thus

64k3

ε2n
+

4k3B

n2
≥ ‖v′′` − ṽ`‖2≥

∑
i∈S`,C

bad

|(v′′` )i − λ`,C |2 >
|S`,Cbad |
32n

,

which implies that |S`,Cbad |≤
2048k3

ε2 + 128k3B
n = o(n). Therefore, for each cluster, all but o(n) vertices have

coordinates close to λ`,C in v′′` .

Second, we show that, for each pair of different clusters C1, C2, there exists v′′` , ` ∈ [k−1], such that |λ`,C1−λ`,C2 |>
1√
2n

. Consider the orthogonal basis of the eigenspace of the main eigenvalue of M , as defined at the beginning

of this section. By its definition, for each v′′` , ` ∈ [k − 1], it holds |λ`,C1 − λ`,C2 |= |〈v1,v
′′
` 〉|·
√

2k
n , because the

coordinates of clusters C1, C2 only differ in vector v1, and by an amount of
√

2k
n (they are +

√
k
2n and −

√
k
2n ).

By Lemma B.5, it holds
∑k−1
`=1 〈v1,v

′′
` 〉2 ≥ 1− 64k3

ε2n −
4k3B
n2 = 1− o(1), so there exists v′′` , ` ∈ [k − 1], such that

〈v1,v
′′
` 〉2 > 1

k , implying that |λ`,C1
− λ`,C2

|= |〈v1,v
′′
` 〉|·
√

2k
n >

√
2
n >

1√
2n

.

Third, consider Sbad :=
⋃
`∈[k−1],C S

`,C
bad . By the union bound and by what just proven,

|Sbad|≤ k2 ·
(

2048k3

ε2
+

128k3B

n

)
=

2048k5

ε2
+

128k5B

n
= o(n).
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Moreover, for each i /∈ Sbad, we have that:

• if j /∈ Sbad belongs to the same cluster C1 of i, then for each v′′` , ` ∈ [k − 1] it holds |(v′′` )i − (v′′` )j |≤
|(v′′` )i − λ`,C1

|+|λ`,C1
− (v′′` )j |≤ 1

2
√

2n
by the triangle inequality;

• if j /∈ Sbad belongs to a different cluster C2 from i, then there exists v′′` , ` ∈ [k−1], such that |λ`,C1
−λ`,C2

|>
1√
2n

, implying that |(v′′` )i − (v′′` )j |≥ |λ`,C1
− λ`,C2

|−|λ`,C1
− (v′′` )i|−|(v′′` )j − λ`,C2

|> 1
2
√

2n
by the triangle

inequality.

We have shown that 1
2
√

2n
is an appropriate distance threshold to separate elements in different clusters that do

not belong to Sbad.

Finally, by summing up, since |Sbad|= o(n), at each time step with high probability ≥ 1− o(1) we select i /∈ Sbad
from line 7. In this case, Si has n

k + o(n) elements, which are the elements in its cluster plus/minus eventual
elements of Sbad. The elements of Sbad could be wrongly added to Si, or wrongly removed and associated to
a different set of those. Since k = O(1), with high probability ≥ 1 − o(1) this happens for k straight times.
Under all these assumptions, only the elements in Sbad can be classified incorrectly, but they are at most
2048k5

ε2 + 128k5B
n = o(n) by Eq. 1.

Polynomial Running Time. If we neglect the cost of the Power-Method and of procedure Get-
Clusters, Algorithm Spectral has a linear cost in n. Get-Clusters has cost O(n2) because k = O(1).
Finally, as shown in Golub and Van Loan (1996), the running time of the Power-Method on the matrix

M ′′ ∈ Rn,n with k largest eigenvalues λ′′1 ≥ . . . ≥ λ′′k , is O
(
kn2 · λ′′1

λ′′k−1−λ
′′
k
· log(1/γ)

)
, where γ is the `2 error

between the reconstructed eigenvectors and the original ones. By what we have shown on the spectrum of M ′′,

it holds
λ′′1

λ′′k−1−λ
′′
k

= 1 + o(1). Moreover, any error γ = 1/poly(n) gives a good enough result to our purpose.

Thus, the total running time is O(n2 log(n)) = Õ(n2).

B.2 Sub-Optimal Robustness of Algorithm Spectral with the post-adversary

Let
ε = ω(n−1/2) and B = o(ε2n2).

We now proceed by detailing the proof of Theorem 4.2. As before, we begin with some useful facts about the
norms of the zero-error matrix M , its random perturbation M ′, and our input matrix M ′′, modified by the
adversary. The proofs are only sketched since they are identical to the ones for the pre-adversarial setting.

Lemma B.6. Pr(‖M ′ − E[M ′]‖op≥ 16
√
n) ≤ 2−4n.

Proof. 1
2 (M ′−E[M ′]) has all the elements bounded by 1 in absolute value. Moreover, we can write it as the sum of

its upper triangular part, exactly as in Lemma B.2. Analogously, we get Pr(‖M ′−E[M ′]‖op≥ 16
√
n) ≤ 2−4n.

Lemma B.7. ‖M ′′ −M ′‖op≤ 2
√
B.

Proof. Define E := M ′′ −M ′. By definition, E has B non-zero entries, each of which has absolute value ≤ 2.
Therefore, ‖E‖F≤

√
4B = 2

√
B. By Lemma A.1, this implies that ‖E‖op≤ 2

√
B.

Now, we can bound the norm of the difference between the zero-error matrix and the input matrix M ′′.

Theorem B.8. With high probability ≥ 1− 2−4n = 1− o(1), it holds

‖M ′′ − 2ε ·M‖op≤ 16
√
n+ 2

√
B = o(εn).

Proof. First, by Lemma B.6, with high probability ≥ 1 − 2−4n = 1 − o(1), it holds ‖M ′ − E[M ′]‖op≤ 16
√
n.

Second, by Lemma B.7 it holds ‖M ′′ −M ′‖op≤ 2
√
B. However,

E[M ′] = 2ε ·M.
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Thus, by the triangle inequality, ‖M ′′ − 2ε ·M‖op≤ ‖M ′′ −M ′‖op+‖M ′ − E[M ′]‖op. By putting everything

together, we get that ‖M ′′ − 2ε ·M‖op≤ 16
√
n+ 2

√
B. Finally, this is o(εn) by Eq. 2.

We can now proceed by showing that the eigenspace of the k − 1 leading eigenvalues of M ′′ is very close to the
one of M .

Lemma B.9. Let v′′1 , . . . ,v
′′
k−1 be unitary eigenvectors of the largest k−1 eigenvalues of M ′′, and let v1, . . . ,vk−1

be an orthogonal basis of the largest eigenvalue of M . Let V ∈ Rn,k−1 with v1, . . . ,vk−1 as columns, and
V ′′ ∈ Rn,k−1 with v′′1 , . . . ,v

′′
k−1 as columns. Then, with high probability ≥ 1− 2−4n = 1− o(1), it holds

‖V V T − V ′′(V ′′)T ‖F≤
8k
√
k

ε
√
n

+
k
√
kB

εn
= o(1).

Proof. Exactly as in Lemma B.4, by Theorem 3.1, for any orthogonal basis of eigenvectors v1, . . . ,vk−1 of the
largest eigenvalue of M , it holds

‖V V T − V ′′(V ′′)T ‖F≤
2
√
k · ‖M ′′ − 2ε ·M‖op

4
k · εn

.

Now, by Theorem B.8, with high probability≥ 1−2−4n = 1−o(1), it holds ‖M ′′−2ε·M‖op≤ 16
√
n+2
√
B = o(εn),

so

‖V V T − V ′′(V ′′)T ‖F≤
2
√
k · (16

√
n+ 2

√
B)

4
k · εn

=
8k
√
k

ε
√
n

+
k
√
kB

εn
= o(1).

As before, we can use these results to show that the eigenspace of the obtained eigenvectors of M ′′ is “close” to
the one of the leading eigenvectors of M .

Lemma B.10. Let v′′1 , . . . ,v
′′
k−1 be the unitary eigenvectors of the largest k − 1 eigenvalues of M ′′, as returned

in line 3 of Algorithm Spectral, and let v1, . . . ,vk−1 be an orthogonal basis of the largest eigenvalue of M .
Then, with high probability ≥ 1− 2−4n, for each vh, h ∈ [k − 1], it holds

k−1∑
`=1

〈vh,v′′` 〉2 ≥ 1− 64k3

ε2n
− k3B

ε2n2
= 1− o(1).

Analogously, for each v′′m,m ∈ [k − 1], it holds

k−1∑
h=1

〈vh,v′′m〉2 ≥ 1− 64k3

ε2n
− k3B

ε2n2
= 1− o(1).

Proof. The proof is identical to the one of Lemma B.5, and relies on Lemma B.9.

We have all the necessary bounds to prove Theorem 4.2.

Proof of Theorem 4.2. The proof is analogous to the one of Theorem 4.1.

We get that |Sbad|, defined exactly in the same way, is bounded by

|Sbad|≤
2048k5

ε2
+

32k5B

ε2n
= o(n).

We derive that 1
2
√

2n
is an appropriate distance threshold to separate elements in different clusters that do not

belong to Sbad.

Since |Sbad|= o(n), at each time step with high probability ≥ 1 − o(1) we select i /∈ Sbad from line 7. In this
case, Si has n

k + o(n) elements, which are the elements in its cluster plus/minus eventual elements of Sbad. The
elements of Sbad could be wrongly added to Si, or wrongly removed and associated to a different set of those.
Since k = O(1), with high probability ≥ 1− o(1) this happens for k straight times. Under all these assumptions,

only the elements in Sbad can be classified incorrectly, but they are at most 2048k5

ε2 + 32k5B
ε2n = o(n) by Eq. 2.
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Polynomial Running Time. Exactly as in the pre-adversarial setting, the total running time is still
O(n2 log(n)) = Õ(n2) with high probability.

B.3 The Spectral Algorithm beyond Equinumerous Clusters

We show that our spectral algorithm and its theoretical guarantees still hold when all the communities have size
n/k + o(n).

Recall that the parameters of the pre-adversarial setting satisfy B = o(n2), ε = ω(1/
√
n) (Eq. 1). Given a

ground-truth k−clustering with all the clusters having size n/k + o(n), we can move o(n) points to a different
cluster for each of the k clusters, and obtain an equinumerous k−clustering. This is equivalent to changing
B′ = o(n2) entries in the zero-error matrix M associated to the ground-truth clustering, to obtain a new matrix

M̂ representing a close equinumerous clustering3. It now suffices to reconstruct the clustering associated to M̂
with o(n) misclassified vertices, since at most other o(n) errors are made when considering M̂ instead of M .

We notice that the B′ = o(n2) changes to entries of M are equivalent to the action of a pre-adversary with a

budget of B′ = o(n2) changes over the matrix M̂ . As a consequence, the perturbation of M in the pre-adversarial

setting with parameters B, ε following Eq. 1, is equivalent to a pre-adversarial perturbation of M̂ with parameters
B +B′, ε. Since B +B′ = o(n2), Theorem 4.1 still holds and we can reconstruct the clustering for M̂ with o(n)
misclassified vertices with high probability. Instead, a perturbation of M in the post-adversarial setting with
parameters ε, B following Eq. 2, is equivalent to a pre-adversarial perturbation of M̂ with parameters B′, 1/2,
followed by a post-adversarial perturbation with parameters ε, B. Notice that the pre-adversarial perturbation
only consists of the B′ adversarial changes to the zero-error matrix M . Therefore, since B′ = o(n2), our spectral

algorithm can handle both such semi-adversarial setting, and Theorem 4.2 still holds for M̂ .

C THE ANALYSIS OF THE SDP-BASED ALGORITHM

Here we provide details and proofs of the theoretical guarantees for our Algorithm based on semidefinite pro-
gramming, which is used to achieve optimal reconstruction in the post-adversarial setting.

We are assuming that there are k = O(1) equinumerous clusters, each of size n/k. However, we also show that
all our results apply to the relaxed setting in which each cluster has size n/k + o(n).

C.1 A Positive Semidefinite Zero-Error Matrix

We have seen that the original matrix M has a negative eigenvalue −k−2/k · n for k > 2, with corresponding
unitary eigenvector z whose coordinates are all equal to 1/

√
n. This does not carry any information about the

clusters. By removing it from the spectral decomposition, we can consider a different zero-error,

P :=
k

2(k − 1)
·
(
M + n

(
1− 2

k

)
zzT

)
,

whose entries are:

Pi,j :=

{
1 if i, j are in the same cluster;

− 1
k−1 otherwise.

This matrix has rank k− 1 and k distinct rows, the last of which is the opposite of the sum of the previous k− 1
ones. Its spectrum consists of:

• the positive eigenvalue n/k−1, whose eigenspace has dimension k−1, with a basis given by {fi−fi+1}i∈[k−1].
Notice that this is also the subspace of vectors having all the same coordinates for vertices in the same cluster
and having sum of coordinates equal to 0;

• 0, whose eigenspace has dimension n − k + 1 and is the complementary to the previous eigenspace. This
subspace is described by the equation Px = 0.

3This is not possible if n/k is not an integer. However, if this is the case, we could add just other ≤ k− 1 = O(1) extra
vertices to the matrix to make it true. This would involve just extra ≤ 2k · n = Θ(n) = o(n2) changes to the zero-error
matrix, so it has a neglectable effect.
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An orthogonal basis for the eigenspace of n/k−1 has already been found in Equation 4. It is also useful to find
the value of some norms for the matrix P .

Lemma C.1. We have that ‖P‖F= n/
√
k−1, ‖P‖op= n/k−1, and ‖P‖SDP= n2

/k−1. Moreover, when k is even
‖P‖∞→1= n2

/k−1, while when k is odd, ‖P‖∞→1= n2(k + 1)/k2.

Proof. The first two equations follow by what we have just said on the spectrum of P . As for the third one, it
is easy to observe that the ±1 values in the corresponding norm should be symmetric. Let α be the number of
+1 and β = k − α be the number of −1 in the optimal solution for the case n = k (when k < n, it just suffices

to multiply everything by n2

k2 ). We have that

‖P‖∞→1= 1 · k +
1

k − 1
· [α · (β − α+ 1) + β · (α− β + 1)] = k +

α+ β − (α− β)2

k − 1
.

Now, since α+ β = k, we get k + 1 + 1
k−1 −

(2α−k)2

k−1 , which is maximized when α is as close as possible to k/2,

yielding different values for k even/odd, respectively k + 1 + 1
k−1 = k2

k−1 and k + 1. The SDP norm of P is the
maximum of its Frobenius scalar product with a set of positive semidefinite matrices which contains P itself, so
it is

‖P‖SDP= P • P = k +
k2 − k

(k − 1)2
= k + 1 +

1

k − 1
=

k2

k − 1
.

We finally need to assess how P changes after a random perturbation as the one described in the random model
for the original matrix M . We define

P ′i,j :=

{
M ′i,j if M ′i,j > 0;
M ′i,j
k−1 otherwise.

Equivalently, we can write

P ′i,j =

{
Pi,j w. pr. 1

2 + ε;

−Pi,j + (1− 1
k−1 ) w. pr. 1

2 − ε.

We can see that this turns 1 into − 1
k−1 w. pr. 1

2 − ε and vice versa. Observe that:

E[P ′] =

(
1

2
− ε
)(

1− 1

k − 1

)
· 1 + 2ε · P, (5)

where 1 is the n× n matrix with all entries equal to 1. We can now define Q := P ′ −
(

1
2 − ε

) (
1− 1

k−1

)
· 1. By

what we have said, this gives E[Q] = 2ε · P , so Q can be used as a random perturbation of the matrix 2ε · P .

C.2 A Novel Optimal Algorithm with Recursive Semidefinite Programming

In this algorithm, we use the positive semidefinite matrix P instead of M , with its random perturbation P ′ and
its post-adversarial perturbation P ′′, which can be obtained from M ′′ by turning its negative entries to − 1

k−1 .
We also recall that

E[P ′] = 2ε · P +

(
1

2
− ε
)(

1− 1

k − 1

)
· 1.

We can define

Q := P ′′ −
(

1

2
− ε
)(

1− 1

k − 1

)
· 1 =

k

2(k − 1)
·M ′′ + ε

(
1− 1

k − 1

)
· 1.

By doing so, Q can be seen as a perturbation of 2ε · P , which is a positive semidefinite matrix. Thus, it can be
effectively used as the input matrix for an SDP that aims to reconstruct the clusters. Notice that this definition
of Q is different from the one in the main paper and requires the knowledge of the parameter ε. For now, we
use this last definition of Q and assume to have access to the parameter ε to avoid overcomplicating the proofs.
However, at the end of this section, we will argue on how to do without this assumption.
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C.2.1 General Properties

Here we prove some norm inequalities involving the matrices P, P ′, P ′′, and Q.

Lemma C.2.
Pr(‖P ′ − E[P ′]‖∞→1≥ 16n

√
n) ≤ 2−4n.

Proof. First, it holds

P ′i,j − E[P ′i,j ] :=

(1− 2ε)Pi,j −
(

1
2 − ε

) (
1− 1

k−1

)
w. pr. 1

2 + ε;

−(1 + 2ε)Pi,j +
(

1
2 + ε

) (
1− 1

k−1

)
w. pr. 1

2 − ε.

Thus 1
1+2ε (P

′ − E[P ′]) has all the elements bounded by 1 in absolute value. By Lemma B.2, it follows that

Pr(‖P ′ − E[P ′]‖op≥ 16
√
n) ≤ 2−4n. Now, by Lemma A.3, it holds ‖P ′ − E[P ′]‖op≥ 1

n · ‖P
′ − E[P ′]‖∞→1, so

Pr(‖P ′ − E[P ′]‖∞→1≥ 16n
√
n) ≤ Pr(‖P ′ − E[P ′]‖op≥ 16

√
n) ≤ 2−4n.

We can also bound the norm displacement after the post-adversary intervention.

Lemma C.3.
‖P ′′ − P ′‖∞→1≤ 2B = o(εn2).

Proof. Let P ′′ = P ′ + E, where E, the matrix of adversarial changes, has B = o(εn2) non-zero entries, all with
absolute value 1 + 1/k−1 ≤ 2. Therefore, ‖E‖∞→1≤ 2B.

Consider the auxiliary matrix Q, defined as:

Q = P ′′ −
(

1

2
− ε
)(

1− 1

k − 1

)
· 1.

Lemma C.4. With high probability ≥ 1− 2−4n = 1− o(1), it holds

‖Q− 2ε · P‖∞→1≤ 16n
√
n+ 2B = o(εn2).

Proof. By definition of Q and P ′, we get that

Q− 2ε · P = (P ′′ − P ′) + (P ′ − E[P ′]).

By Lemma C.2, with probability ≥ 1 − 2−4n it holds ‖P ′ − E[P ′]‖∞→1≤ 16n
√
n; by Lemma C.3, it holds

‖P ′′ − P ′‖∞→1≤ 2B. By putting everything together and using the triangle inequality, we finally get that with
high probability (≥ 1− 2−4n)

‖Q− 2ε · P‖∞→1≤ 16n
√
n+ 2B = o(εn2).

C.2.2 A Recursive SDP-Based Approach

Consider the following SDP:

maximize

n∑
j=1

Qij〈xi,yj〉

subject to ‖xi‖= 1,xi ∈ Rn i = 1, . . . , n
‖yi‖= 1,yi ∈ Rn i = 1, . . . , n

(6)

The maximum of this SDP is equal to ‖Q‖SDP . Given the optimal solution {x∗i }i∈[n], {y∗i }i∈[n], consider the
matrix X where Xij := 〈x∗i ,y∗j 〉 ∀ i, j ∈ [n]. Then, ‖Q‖SDP= Q•X, where • represents the Kronecker (element-
wise) product. Since Q is symmetric, by a well-known characteristic of SDPs, X is symmetric too. The following
lemma holds.
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Lemma C.5. With high probability (≥ 1− 2−4n), it holds

‖Q‖SDP= Q •X ≥ 2

k − 1
· εn2 − 29n

√
n− 4B =

2

k − 1
· εn2 − o(εn2).

Proof. By the triangle inequality, we have that

‖Q‖SDP≥ 2ε · ‖P‖SDP−‖Q− 2ε · P‖SDP .

Now, by Lemma C.4, with high probability ≥ 1−2−4n = 1−o(1), it holds ‖Q−2ε·P‖∞→1≤ 16n
√
n+2B = o(εn2)

so, by Theorem A.4, we get that

‖Q− 2ε · P‖SDP≤ 1.8 · (16n
√
n+ 2B) ≤ 29n

√
n+ 4B = o(εn2).

Moreover, by Lemma C.1, we get that ‖P‖SDP= n2

k−1 . By substituting these above, and exploiting Eq. 3, we
finally get that

‖Q‖SDP≥
2

k − 1
· εn2 − 29n

√
n− 4B =

2

k − 1
· εn2 − o(εn2).

Since X is symmetric, we can consider its spectral decomposition into orthogonal eigenvectors:

X =

n∑
i=1

λiu
i(ui)T .

Now, consider u∗ picked randomly in {ui, i ∈ [n]}, where ui is picked with probability proportional to λi. We
will show that, with high probability, u∗ gives a separation of the vertices into two sets, each containing at least
one original cluster, and putting almost always together vertices belonging to the same cluster.

Lemma C.6. Consider Q ∈ Rn,n such that ‖Q − 2ε · P‖∞→1≤ f(n,B, ε) = o(εn2). Let X be the (symmetric
positive semidefinite) solution matrix of SDP 6 w.r.t. Q, let {ui}i∈[n] an orthogonal basis of eigenvectors for X
with eigenvalues respectively {λi}i∈[n]. Pick u∗ ∈ {ui}i∈[n] randomly, where each ui is chosen with probability

λi

n . Then, with high probability ≥ 1 − 2k ·
√

f(n,B,ε)
εn2 − 2−4n = 1 − o(1), there exists v eigenvector of P with

eigenvalue n
k−1 such that

‖u∗ − v‖2≤ 4k ·
√
f(n,B, ε)

εn2
= o(1).

Proof. First, by definition of X it holds ‖Q‖SDP= Q•X. Now, by the triangle inequality, |‖Q‖SDP−2ε·‖P‖SDP |≤
‖Q−2ε·P‖SDP . However, by Theorem A.4, ‖Q−2ε·P‖SDP≤ 1.8·‖Q−2ε·P‖∞→1≤ 1.8·f(n,B, ε) = o(εn2). Thus,
by Lemma C.1, we get that ‖Q‖SDP≥ 2ε‖P‖SDP−‖Q−2ε·P‖SDP≥ 2

k−1 ·εn
2−1.8·f(n,B, ε) = 2

k−1 ·εn
2−o(εn2).

Now, recall that ‖Q−2ε ·P‖SDP≤ 1.8 ·f(n,B, ε), so |(Q−2ε ·P )•X|≤ ‖Q−2ε ·P‖SDP≤ 1.8 ·f(n,B, ε) = o(εn2).
So, by the triangle inequality, we also get that (2εP )•X ≥ Q•X−|(Q−2ε ·P )•X|≥ ‖Q‖SDP−‖Q−2ε ·P‖SDP ,
implying that (2εP ) •X ≥ 2

k−1 · εn
2 − 3.6 · f(n,B, ε) = 2

k−1 · εn
2 − o(εn2), i.e. that

P •X ≥ n2

k − 1
− 1.8

ε
· f(n,B, ε) ≥ n2

k − 1
− 2

ε
· f(n,B, ε) =

n2

k − 1
− o(n2). (7)

Now, we can use the spectral decomposition X =
∑n
i=1 λiu

i(ui)T is positive semidefinite, and
∑n
i=1 λi = tr(X) =∑n

i=1 ‖xi‖2 = n. Therefore, {λi/n}i can be seen as a probability distribution. So it holds

P •X = n

n∑
i=1

λi
n

(ui)TPui.

However, P = n
k−1

∑k−1
j=1 vjv

T
j and it is positive semidefinite, so |(ui)TPui|= n

k−1

∑k−1
j=1 〈vj ,ui〉2 for each vector

ui, implying that

n∑
i=1

λi
n

k−1∑
j=1

〈vj ,ui〉2 =
k − 1

n2
· P •X ≥ 1− 2(k − 1)

εn2
· f(n,B, ε) ≥ 1− 2k

εn2
· f(n,B, ε).
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We can notice that the LHS is exactly E
[∑k−1

j=1 〈vj ,u∗〉2
]
. So, we have shown that

E

k−1∑
j=1

〈vj ,u∗〉2
 =

n∑
i=1

λi
n

k−1∑
j=1

〈vj ,ui〉2 ≥ 1− 2k

εn2
· f(n,B, ε) = 1− o(1). (8)

Moreover, for each vector u, the quantity
∑k−1
j=1 〈vj ,u〉2 is the squared norm of its projection onto the eigenspace

of the eigenvalue n
k−1 of P , so it is always a quantity in [0, 1]. Therefore, we can define the positive random

variable χ := 1−
∑k−1
j=1 〈vj ,u∗〉2. We have that χ ≥ 0 and E[χ] ≤ 2k

εn2 · f(n,B, ε) = o(1). Thus, by Theorem A.6,

we have that with high probability ≥ 1 −
√

2k
εn2 · f(n,B, ε) ≥ 1 − 2k

√
f(n,B,ε)
εn2 , it holds χ ≤

√
2k
εn2 · f(n,B, ε),

implying that
k−1∑
j=1

〈vj ,u∗〉2 ≥ 1−
√

2k

εn2
· f(n,B, ε) = 1− o(1).

Now, let

v′ :=

k−1∑
j=1

〈vj ,u∗〉vj ; v :=
v′

‖v′‖

be the normalized projection of u∗ onto the eigenspace of the eigenvalue n
k−1 of P . It holds (using that

√
1− x ≥

1− x ∀ x ∈ [0, 1])

‖v − u∗‖2= 〈v − u∗,v − u∗〉 = 2− 2〈v,u∗〉 = 2− 2

‖v′‖
〈v′,u∗〉 = 2− 2‖v′‖≤

2− 2

√
1−

√
4k

εn2
· f(n,B, ε) ≤ 2

√
2k

εn2
· f(n,B, ε) ≤ 4k ·

√
f(n,B, ε)

εn2
= o(1).

As a consequence of Lemma C.6, Lemma C.4 and Lemma A.8, we can use u∗ to separate [n] into two smaller
sets with minimal separation of vertices in the same cluster and with at least one cluster on each side. We see
how through Algorithm Recursive-Clust([n], k, f, 1) where f = f(n,B, ε) = 16n

√
n + 2B = o(εn2). Before

that, we need a formal definition.

Definition C.1. Let P ∈ Rn,n matrix and let S1,S2 ⊆ [n]. We define PS1,S2 ∈ R|S1|,|S2| be the sub-matrix of P
restricted only to the rows in S1 and to the columns in S2.

In Algorithm 3, we recursively solve semidefinite programs.

First, we need to sample an appropriate threshold value for the eigenvector to separate the vertices (line 9),
because we are getting an approximate eigenvector of the eigenspace of the leading vector of P , but we do
not know exactly which approximate eigenvector we are getting. This is done by procedure Get-Threshold.
The threshold could be at any point in between the maximum and the minimum value of an eigenvector of
P . However, since we only get an approximate eigenvector, we need to consider more robust order statistics to
establish the feasible range for thresholds.

Second, we need to fix the cardinality of the bisection (line 14) because we want the size of each partition to be
an integer multiple of n/k.

Third, we need to carry the information about the number of clusters in each partition: this will be used to
scale the negative elements of the input matrix Q of SDP 6 (line 5), so that this input matrix is always positive
semidefinite.

We also need to carry an estimate f ′ of the distance in norm `∞-to-`1 between the scaled matrix Q and the
scaled original matrix 2ε · P , whose negative entries are scaled like the ones of Q.

We show that Algorithm 3, with high probability, always splits the solution into two “smaller” solutions that we
can solve recursively, i.e. that the bisection of the input set S satisfies the condition of line 12. Moreover, we also
show that the produced solutions only mislabel o(n) vertices at each step. Before that, we prove an auxiliary
lemma.
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Algorithm 3 Recursive-Clust(S, k′, f, γ): input S set of indices, k′ number of clusters in S, f = f(n,B, ε) =
o(εn2) such that ‖QS,S − 2ε · PS,S‖∞→1≤ f (after having their negative entries multiplied by γ), γ rescaling
factor for the negative entries of Q. Global variables n, k, Q, ε.

1: δ ← 4k ·
√

f
εn2

2: n′ ← |S|
3: if n′ = n/k then
4: return {S}
5: Let Qk′ be the matrix obtained from QS,S by multiplying its negative coordinates by γ
6: Let X be the solution matrix of SDP 6 for Qk′ obtained through SDP-Solver
7: Let {u1, . . . ,un} be an orthogonal basis of eigenvectors of X with eigenvalues respectively {λi, i ∈ [n′]}

obtained through Power-Method
8: Sample u∗ ∈ {ui, i ∈ [n′]} with probability distribution {λi

n′ , i ∈ [n′]}
9: t← Get-Threshold(u∗, n′, δ) is the separating threshold according to vector u∗

10: Let S1 := {i ∈ S : u∗i < t}
11: k′′ := b |S1|n/k e (closest integer function b·e)
12: if k′′ ∈ {0, k′} then
13: abort (the algorithm failed)
14: S ′ ← {i ∈ [n′] : u∗i is among the k′′ · nk smallest coordinates of u∗i (ties broken arbitrarily)}
15: f ′ ← k · f + 4kδ1/3 · ε(n′)2 = o(εn2)

16: γ′ ← k′−1
k′′−1 scaling factor for S ′ because it now contains k′′ clusters instead of k′

17: γ′′ ← k′−1
k′−k′′−1 scaling factor for S \ S ′ because it contains the remaining k′ − k′′ clusters

18: C1 ← Recursive-Clust(S ′, k′′, f ′, γ′)
19: C2 ← Recursive-Clust(S \ S ′, k′ − k′′, f ′, γ′′)
20: return C1 ∪ C2

Algorithm 4 Get-Threshold

1: Procedure Get-Threshold(u, n′, δ)
2: Let π be the ordering permutation of vector u, i.e. the permutation on [n′] s.t. uπ(i) ≤ uπ(j) ∀ 1 ≤ i ≤ j ≤ n′

3: tmin ← uπ(dδ1/3·n′e)
4: tmax ← uπ(n′−dδ1/3·n′e)
5: Pick t ∈ [tmin, tmax] Uniformly At Random as the separating threshold for vector u
6: return t
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Lemma C.7. Let u,v ∈ Rn s.t. ‖u−v‖2≤ δ. Suppose that the coordinates of v can be partitioned into k groups
P1, . . . , Pk of n

k elements each, such that all the coordinates in the same group Pi are equal. Then, for each group

Pi, there cannot be ≥ δ1/3 · n elements j ∈ Pi such that |uj − vj |> δ1/3√
n
.

Proof. Assume there is P ′i ⊆ Pi such that |P ′i |≥ δ1/3 · n and |uj − vj |> δ1/3√
n
∀ j ∈ P ′i . Then,

δ ≥ ‖v − u‖2≥
∑
j∈P ′i

(uj − vj)
2 > (δ1/3 · n) ·

(
δ1/3

√
n

)2

≥ δ,

which is a contradiction.

In other words, in u, all but ≤ δ1/3 · n elements of a group are within a distance ≤ δ1/3√
n

from their coordinate

in v. The previous lemma is used to show that almost all the coordinates of approximate eigenvectors of P are
very close to the coordinates of the actual eigenvector of P . In order to get closer to the proof of the effectiveness
of Algorithm 3, we state precise guarantees on what happens in the first round. To extend this to the recursive
sub-problems, we need to make some adjustments to take into account the previous classification errors too.

Lemma C.8. Consider the invocation of Recursive-Clust([n], k, f, 1) where f = f(n,B, ε) = 16n
√
n+ 2B =

o(εn2), and let δ := 4k ·
√

f
εn2 = 4k ·

√
16
ε
√
n

+ 2B
εn2 = o(1). With high probability ≥ 1−2−4n−6k2 · δ1/3 = 1−o(1),

the first sampled threshold t does not satisfies the condition of line 12 in Algorithm 3, so the algorithm does not
fail. Moreover:

• for each cluster, either S ′ or S \ S ′ contains ≤ 2δ1/3 · n = o(n) of its vertices, meaning that there are
≤ 2kδ1/3 · n = o(n) misplaced vertices overall in the first recursive step;

• let A be one of the sub-sets on which the algorithm is applied recursively (the same holds for the other
subset), and let A∗ be the union of the kA clusters having ≥ n

k − 2δ1/3 · n elements in A. Let QkA be the

matrix obtained from Q by multiplying the negative entries by kA−1
k−1 and let PkA be the analogous matrix

obtained from P . Then,

‖QA
∗,A∗

kA
− 2ε · PA,AkA

‖∞→1≤ f ′ := k · f(n,B, ε) + 4kδ1/3 · εn2 = o(εn2).

Proof. By Lemma C.4, with high probability ≥ 1− 2−4n it holds ‖Q− 2ε ·P‖∞→1≤ f(n,B, ε) = 16n
√
n+ 2B =

o(εn2), and we consider this to be true from now on (by the union bound, the small probability of this to be
false will sum up with the other encountered small probabilities). Therefore, by Lemma A.2, for each set of
indices S ⊆ [n], it also holds ‖QS,S − 2ε · PS,S‖∞→1≤ 16n

√
n + 2B = o(εn2). Now, by Lemma C.6, with

high probability ≥ 1 − δ/2 = 1 − o(1), there exists an eigenvector v of the leading eigenvalue n
k−1 of P such

that ‖v − u∗‖2≤ δ = o(1). Now, let vmax := maxi∈[n] vi and vmin := mini∈[n] vi. By Lemma A.8, it holds

|vmax−vmin|> 1
k
√
n

. By Lemma C.7, it follows that |tmax−vmax|≤ δ1/3√
n

and |tmin−vmin|≤ δ1/3√
n

. As a consequence,

we have that

Pr

(
t ∈
[
vmin +

δ1/3

√
n
, vmax −

δ1/3

√
n

])
≥
|vmax − vmin|−2 δ

1/3
√
n

|vmax − vmin|+2 δ
1/3√
n

≥

1−
4 δ

1/3
√
n

1
k
√
n

+ 2 δ
1/3√
n

≥ 1− 4k · δ1/3 = 1− o(1).

However, if t ∈
[
vmin + δ1/3√

n
, vmax − δ1/3√

n

]
, by Lemma C.7, we separate almost exactly the clusters corresponding

to the largest and the smallest coordinate of v: ≥ n
k −δ

1/3 ·n elements of each cluster are split correctly according
to the threshold, which makes the condition of line 12 not satisfied and the algorithm does not fail. Now, we
need to show that the bisection misplaces o(n) vertices for each cluster. First, notice that, with high probability
≥ 1− δ/2 = 1− o(1), by Lemma C.7, for each cluster C with coordinate vC in v, all but δ1/3 ·n = o(n) elements
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of C have coordinates of u∗ in the interval
[
vC − δ1/3√

n
, vC + δ1/3√

n

]
. Therefore, by the union bound over all the

clusters,

Pr

(
@ C : t ∈

[
vC −

δ1/3

√
n
, vC +

δ1/3

√
n

])
≥
tmax − tmin − 2k · δ

1/3
√
n

tmax − tmin
≥ 1− 2k2δ1/3.

Thus, with probability ≥ 1 − 2k2δ1/3 = 1 − o(1), we are outside each of those cluster intervals, meaning that,
for each cluster, we can misplace ≤ δ1/3 · n vertices, for a total of kδ1/3 · n total misplaced vertices according to
the threshold bisection at t. Finally, the process of line 14, can bring other kδ1/3 · n mistakes (extra δ1/3 · n for
each clusters), for a total of 2kδ1/3 · n = o(n) misplaced vertices. By the union bound, everything holds with
probability ≥ 1− 2−4n − δ/2− 2k(k + 2) · δ1/3 ≥ 1− 2−4n − 6k2 · δ1/3 (for sufficiently small δ).

We now focus on the correctness of the estimate f ′ of the `∞-to-`1 norm of the generated subsets. First, we
notice that |A|= |A∗|= kA · nk . Now, by what just proved, we can assume that A∆A∗ ≤ 2kδ1/3 · n = o(n). By
the triangle inequality

‖2ε · PA,AkA
−QA

∗,A∗
kA

‖∞→1≤ ‖2ε · PA,AkA
− 2ε · PA

∗,A∗
kA

‖∞→1+‖2ε · PA
∗,A∗

kA
−QA

∗,A∗
kA

‖∞→1.

By Lemma C.4 we have that, under the previously mentioned events holding with high probability, ‖Q − 2ε ·
P‖∞→1≤ 16n

√
n+ 2B = o(εn2). Therefore, by Lemma A.2, it follows that

‖2ε · PA
∗,A∗

kA
−QA

∗,A∗
kA

‖∞→1≤
k − 1

kA − 1
· ‖2ε · PA

∗,A∗ −QA
∗,A∗‖∞→1≤ 16k · n

√
n+ 2k ·B = o(εn2).

Moreover,

‖2ε · PA,AkA
− 2ε · PA

∗,A∗
kA

‖∞→1= 2ε · ‖PA,AkA
− PA

∗,A∗
kA

‖∞→1.

Since A∆A∗ ≤ 2kδ1/3 · n = o(n) and the entries of PkA are bounded in absolute value by 1, we get that

‖PA,AkA
− PA

∗,A∗
kA

‖∞→1≤ (2kδ1/3 · n) · (2n) = 4kδ1/3n2 = o(n2). By putting everything together, we finally get
that

‖QA
∗,A∗

kA
− 2ε · PA,AkA

‖∞→1≤ k · f + 4kδ1/3n2 ≤ 16k · n
√
n+ 2k ·B + 4kδ1/3n2 · εn2 = o(εn2).

We are now ready to extend the previous lemma to any recursive invocation of Recursive-Clust.

Theorem C.9. Consider a generic invocation of Recursive-Clust(S, k′, f, γ) originated from the first invo-

cation of Recursive-Clust([n], k, 16n
√
n+ 2B, 1), and let δ := 4k ·

√
f
εn2 . With high probability ≥ 1− o(1):

• for each cluster C, either |C ∩ S|≤ o(n) or |C ∩ S|≥ n
k − o(n), and there are exactly k′ clusters satisfying

the second condition;

• let S∗ be the union of the k′ clusters having ≥ n
2k elements in S, let Qk′ be the matrix obtained from Q by

multiplying the negative entries by γ, and let Pk′ be the analogous matrix obtained from P . Then,

‖QS,Sk′ − 2ε · PS
∗,S∗

k′ ‖∞→1≤ f = o(εn2).

• if k′ > 1, the first sampled threshold t does not satisfies the condition of line 12 in Algorithm 3, so the
algorithm does not fail.

Proof. We show the Theorem by induction on the number of recursive calls each invocation of Recursive-Clust
comes from.

Base Case. We start with the first invocation, i.e. Recursive-Clust([n], k, 16n
√
n + 2B, 1). First, each

one of the k clusters has n
k elements in common with [n]. Second, by Lemma C.4, it holds ‖Q − 2ε · P‖∞→1≤

16n
√
n+2B = o(εn2), as desired. Finally, by Lemma C.8, with high probability 1−o(1) the algorithm samples an

appropriate threshold t and it does not fail. Thus, everything holds in the first invocation of Recursive-Clust.

Inductive Step: from (S, k′, f, γ) to (S ′, k′′, f ′, γ′). This follows the exact same steps of the proof of
Lemma C.8, which can also be seen as a special case, proving the inductive step from the first invocation of
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Recursive-Clust to its direct calls. We quickly go through these steps. Let n′ := |S|. We start from the
fact that Qk′ , thanks to the scaling by γ′, becomes positive semidefinite. Moreover, let S∗ be defined as in the

statement of the lemma. By inductive hypothesis we get that, with high probability, ‖QS,Sk′ − 2ε ·PS
∗,S∗

k′ ‖∞→1≤
f = o(εn2). This is the only necessary ingredient to show that, by Lemma C.6, with high probability there exists
v eigenvector of the leading eigenvalue of Pk′ such that

‖u∗ − v‖2≤ 4k′ ·

√
f

ε(n′)2
= o(1).

We now notice that Pk′ is the positive semidefinite “correlation matrix” of a set of k′ clusters with size n
k .

Apart from a normalization factor that depends on k, k′, it has the same eigenvectors and eigenvalues of the
positive semidefinite “correlation matrix” P ′ of a set of k′ clusters with size n

k′ , so we can proceed as before,
ignoring these Θ(k) = Θ(1) normalization factors. From now on, we can proceed exactly as in the proof of
Lemma C.8: first, we can use u∗ to effectively proceed with the recursive calls to the sub-problems. Let
(S ′, k′′, f ′, γ′) be the input of one of these sub-problems. In the exact same way of Lemma C.8, we get that

‖QS
′,S′

k′′ − 2ε · P (S′)∗,(S′)∗
k′′ ‖∞→1≤ f ′ = o(εn2), where we have used a coherent notation on the sub-problem.

The remaining properties follow exactly as in the proof of Lemma C.8. Notice that each recursive call comes
from at most k chained invocations of Recursive-Clust, so all the estimates about the norms and the small
probabilities (e.g., of failure of the algorithm) can be affected by a factor of poly(k) = Θ(1), which does not
affect the asymptotic estimates.

We can conclude that with high probability ≥ 1 − o(1) all the recursive calls are successful and that the total
number of misplaced nodes is o(n), achieving the desired result.

Theorem C.10. With probability 1 − o(1), Algorithm 3 outputs k clusters and correctly classifies n − o(n)
vertices.

Running Time. Let us analyse the running time of Algorithm 3. First, by Theorem C.10, there are
≤ k = O(1) recursive executions of procedure Recursive-Clust. Each execution of procedure Recursive-
Clust takes time Õ(n2) if we neglect the time needed to solve the respective semidefinite program, and this
follows analogously to the Spectral Algorithm. Solving SDP through SDP-Solver up to negligible error takes
polynomial time. More precisely, since we are using the interior point method from Jiang et al. (2020) as
SDP-Solver, it takes running time O(n6 log(n)) with 1/poly(n) error. The resulting running time is, therefore,
dominated by the time needed to solve O(k) = O(1) SDPs, which is O(n6 log(n)) = Õ(n6).

How to do without knowing ε. Here, we argue how we can do without the assumption of knowing the
parameter ε. This parameter is only used to define Q (at the beginning of this section) and get rid of the
eigenvector with all equal coordinates. However, we can also define Q in an alternative way as Q̃:

Q̃ := Q− ε
(

1− 1

k − 1

)
· 1 = P ′′ − 1

2

(
1− 1

k − 1

)
· 1 =

k

2(k − 1)
·M ′′.

Then, we can get rid of the eigenvector 1 by adding an additional constraint to SDP 6, which is the following:

n∑
i,j=1

〈xi,yj〉 = 0. (9)

By doing so, we obtain a new SDP.

maximize

n∑
j=1

Q̃ij〈xi,yj〉

subject to

n∑
i,j=1

〈xi,yj〉 = 0

‖xi‖= 1,xi ∈ Rn i = 1, . . . , n
‖yi‖= 1,yi ∈ Rn i = 1, . . . , n

(10)



Spectral Robustness for Correlation Clustering Reconstruction in Semi-Adversarial Models

Now, consider an optimal solution matrix of SDP 10, and name it X̃ (X̃i,j := 〈xi,yj〉). Eq. 9 is equivalent to

X̃ • 1 = 0, so it constrains X̃ to be orthogonal to the matrix 1 = 11T or, equivalently, X̃1 = 0. We show that
an optimal solution X̃ of SDP 10 also satisfies Lemma C.5.

Lemma C.11. With high probability (≥ 1− 2−4n), it holds

Q • X̃ ≥ 2

k − 1
· εn2 − 58n

√
n− 8B =

2

k − 1
· εn2 − o(εn2).

Proof. First, since Q̃ = Q− ε
(

1− 1
k−1

)
· 1 and X̃ • 1 = 0, we have that

Q̃ • X̃ = Q • X̃. (11)

Now, pick X ′ as an optimal solution for SDP 6. Then, X̃ ′ := 1
1− 1

n (X′•1)

(
X ′ − 1

n (X ′ • 1)1
)

is a feasible solution

for SDP 10. By optimality of X̃, this implies that Q̃ • X̃ ′ ≤ Q̃ • X̃ but, from Eq. 11, we can derive the following

Q • X̃ = Q̃ • X̃ ≥ Q̃ • X̃ ′ = Q • X̃ ′. (12)

However, by definition of X̃ ′,

Q • X̃ ′ =
Q •X ′

1− 1
n (X ′ • 1)

−
(Q • 1) · 1

n (X ′ • 1)

1− 1
n (X ′ • 1)

.

We now need to provide a lower bound to the RHS of this last equation. Since ‖Q−2ε ·P‖SDP≤ 29n
√
n+ 4B =

o(εn2) (Lemma C.5), P • 1 = 0, and 1 is a feasible solution to SDP 6, it holds

Q • 1 = (Q− 2ε · P ) • 1 ≤ ‖Q− 2ε · P‖SDP≤ 29n
√
n+ 4B = o(εn2). (13)

Moreover, by Lemma C.5 and by optimality of X ′, we have that

Q •X ′ ≥ 2

k − 1
· εn2 − 29n

√
n− 4B =

2

k − 1
· εn2 − o(εn2). (14)

Finally, 1
n (X ′•1) ≤ o(1) by Lemma C.6, because almost all the eigenvectors of X ′, weighted by their eigenvalues,

are nearly orthogonal to the vector 1. Therefore, we can say that, for sufficiently large n,

1

n
(X ′ • 1) ≤ 1

2
. (15)

By substituting Eq. 12, 13, 14 and 15 into Eq. 11, we finally get that

Q • X̃ ≥ Q • X̃ ′ ≥ Q •X ′ − (Q • 1) ≥ 2

k − 1
· εn2 − 58n

√
n− 8B =

2

k − 1
· εn2 − o(εn2).

By the previous lemma, the proofs for the SDP-based algorithm follow analogously. This shows that our approach
still holds without assuming the knowledge of the parameter ε.

C.3 Going Beyond Equinumerous Clusters for Algorithm Recursive-Clust

We show that our SDP-based algorithm and its theoretical guarantees still hold when all the communities have
size n/k + o(n).

In detail, recall that the parameters of the post-adversarial setting satisfy ε = ω(1/
√
n), B = o(εn2). Given a

ground-truth k−clustering with all the clusters having size n/k + o(n), we can move o(n) points to a different
cluster for each of the k clusters, and obtain an equinumerous k−clustering. This is equivalent to changing
B′ = o(n2) entries in the zero-error matrix M associated to the ground-truth clustering, to obtain a new matrix

M̂ representing a close equinumerous clustering. It now suffices to reconstruct the clustering associated to M̂
with o(n) misclassified vertices, since at most other o(n) errors are made when considering M̂ instead of M .
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Now, recall that the random perturbation is equivalent to leaving each entry of the matrix unchanged with
probability 2ε, and replacing it with a fresh random bit with probability 1−2ε. Hence, the random perturbation
turns into random bits a 1−Θ(ε) fraction of the newly modified elements with high probability by Theorem 3.2.
Thus, only B′ = o(εn2) entries of the perturbed matrix M ′ follow a different distribution from the ones of the

matrix M̂ ′, which is obtained from M̂ in the same way as M ′ from M . As a consequence, the perturbation
of M in the post-adversarial setting with parameters ε, B following Eq. 3, is equivalent to a post-adversarial
perturbation of M̂ with parameters ε, B+B′. Since B+B′ = o(εn2), Theorem C.10 still holds for M̂ . Thus, we
can reconstruct the corresponding clustering with o(n) misclassified vertices with high probability.
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