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Abstract

Recent studies have empirically investigated
different methods to train stochastic neural
networks on a classification task by optimis-
ing a PAC-Bayesian bound via stochastic gra-
dient descent. Most of these procedures need
to replace the misclassification error with a
surrogate loss, leading to a mismatch be-
tween the optimisation objective and the ac-
tual generalisation bound. The present paper
proposes a novel training algorithm that op-
timises the PAC-Bayesian bound, without re-
lying on any surrogate loss. Empirical results
show that this approach outperforms cur-
rently available PAC-Bayesian training meth-
ods.

1 INTRODUCTION

Understanding generalisation for neural networks is
among the most challenging tasks for learning theo-
rists (Allen-Zhu et al., 2019; Kawaguchi et al., 2017;
Neyshabur et al., 2017; Poggio et al., 2020; Zhang
et al., 2021). Only a few of the theoretical tools devel-
oped in the literature can produce non-vacuous bounds
on the error rates of over-parametrised architectures,
and PAC-Bayesian bounds have proven to be among
the tightest in the context of supervised classification
(Ambroladze et al., 2007; Langford and Shawe-Taylor,
2003; McAllester, 2004). Several recent works have
focused on algorithms aiming to minimise a general-
isation bound for stochastic classifiers by optimising
a PAC-Bayesian objective via stochastic gradient de-
scent; see e.g. Alquier et al. (2016); Biggs and Guedj
(2021); Clerico et al. (2021); Dziugaite and Roy (2017);
Letarte et al. (2019); Pérez-Ortiz et al. (2021a,b); Zhou
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et al. (2019). Most of these studies use a surrogate loss
to avoid dealing with the zero-gradient of the misclas-
sification loss. However, there are exceptions, such
as Biggs and Guedj (2021) and Clerico et al. (2021),
which rely on the fact that an analytically tractable
output distribution allows for an estimate of the mis-
classification error with a non-zero gradient with re-
spect to the trainable parameters of the classifier.

Clerico et al. (2021) treat the case of a stochastic net-
work with a single hidden layer. They prove a Central
Limit Theorem (CLT) ensuring the convergence of the
output distribution to a multivariate Gaussian, whose
mean and covariance can be evaluated explicitly in
terms of the network deterministic hyper-parameters.
However, this result cannot be straightforwardly ex-
tended to the multilayer case, as the nodes of the
deeper layers are not independent and so the CLT
might not apply. Moreover, even assuming that the
output is Gaussian, the computational cost of this
method is prohibitive for deep architectures.

In Biggs and Guedj (2021), the focus is on a stochastic
binary classifier whose output is of the form sign(w ·a),
where w is a Gaussian vector and a is the output of
the last hidden layer. The explicit form of the con-
ditional expectation of the network’s output (condi-
tioned with respect to a) allows for a PAC-Bayesian
training method applicable to arbitrarily deep net-
works. Nevertheless, this approach is only suitable for
binary classification and cannot be easily extended to
the multiclass case.

In the present work, we conjugate the two above ideas:
in order to train the network with a method inspired
by the Gaussian PAC-Bayesian approach from Clerico
et al. (2021), we exploit the output’s Gaussianity that
can be obtained by conditioning on the previous layers,
as in Biggs and Guedj (2021). This training procedure
can be applied to a fairly general class of stochastic
classifiers, overcoming some of the main limitations of
the two aforementioned works, namely the single hid-
den layer and the binary classification setting. The
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main requirement for our method to be valid is that
the parameters of the last linear layer are indepen-
dent Gaussian random variables. Additionally, as we
are not relying on any CLT result to obtain the Gaus-
sianity, we do not need the network to be very wide
for the algorithm to work. Consequently, the approach
we propose can be computationally much cheaper than
the one from Clerico et al. (2021).

We empirically validate our training algorithm on
MNIST and CIFAR10 for a range of architectures,
testing both data-dependent and data-free PAC-
Bayesian priors. We compare our results to those
from Pérez-Ortiz et al. (2021a), as, to our knowl-
edge, these are currently the tightest empirical PAC-
Bayesian bounds available on these datasets. Our
novel approach outperforms their standard PAC-
Bayesian training methods in all our experiments.

2 BACKGROUND

2.1 PAC-Bayesian framework

In a standard classification problem, to each instance
x ∈ X ⊆ Rp corresponds a true label y = f(x) ∈
Y = {1, . . . , q}. A training set S = (Xk)k=1,...,m is
correctly labelled: for every Xk ∈ S we have access to
Yk = f(Xk). Each Xk is an independent draw from
a fixed probability measure PX on X , so that S ∼
PS = P⊗mX . We consider a neural network, namely a
parameterised function F θ : Rp → Rq. For each input
x, the network returns a prediction ŷ, defined as the
largest output’s node index:

ŷ = f̂θ(x) = argmaxi∈{1,...,q}F
θ
i (x) .

The goal is to train the net to make good predictions,
exploiting the information in S to tune the parameters.

Define the misclassification loss as

`(ŷ, y) =

{
0 if y = ŷ ;

1 otherwise.
(1)

For a given configuration θ of the network parame-
ters, we call empirical error the empirical mean of the
misclassification loss on the training sample: ES(θ) =
1
m

∑
x∈S `(f̂

θ(x), f(x)). This quantity can be explic-
itly evaluated, as we have access to the true labels
on S. Therefore, it can be seen as an estimate for the
true error EP(θ) = EX [`(f̂θ(X), f(X))] = PX(f̂θ(X) 6=
f(X)), which in general cannot be computed exactly.

The PAC-Bayesian bounds are upper bounds on the
true error, holding with high probability on the choice
of the training sample S; see e.g. Alquier (2021);
Catoni (2007); Guedj (2019); McAllester (1998, 1999).
A main feature of the PAC-Bayesian framework is that

it requires the network to be stochastic, that is we are
dealing with architectures whose parameters θ are ran-
dom variables.

Let us fix P, a probability measure for the parame-
ters θ. We assume that P is data-independent, in the
sense that it has to be selected without accessing the
information in the training sample S. In line with
most PAC-Bayesian literature, we will refer to P as
the prior distribution. For a stochastic network, the
training consists in efficiently modifying the distribu-
tion of θ. This leads to a new distribution Q on the
parameters, usually referred to as the posterior dis-
tribution. The main idea behind the PAC-Bayesian
theory is that if the posterior Q is not “too far” from
the prior P, then the network should not be prone to
overfitting. The essential tool to measure this “dis-
tance” between the prior and posterior distributions is
the Kullback–Leibler divergence, defined as

KL(Q‖P) =

{
Eθ∼Q

[
log dQ

dP (θ)
]

if Q � P ;

+∞ otherwise.

The PAC-Bayesian bounds are upper bounds on the
expected value of the true classification error EP with
respect to the posterior Q. Two main ingredients con-
stitute these bounds: the expected empirical error un-
der Q and a complexity term, involving the divergence
KL(Q‖P). For simplicity, we will introduce the nota-
tions EP(Q) = Eθ∼Q[EP(θ)] and ES(Q) = Eθ∼Q[ES(θ)].
The next proposition states some frequently used
PAC-Bayes bounds (Langford and Seeger, 2001; Mau-
rer, 2004; McAllester, 1999; Pérez-Ortiz et al., 2021a;
Thiemann et al., 2017).

Proposition 1. Fix δ ∈ (0, 1), a data-independent
prior P, and a training set S = (Xk)k=1,...,m drawn
according to PS. Define

Pen = 1
m

(
KL(Q‖P) + log 2

√
m
δ

)
; (2)

kl−1(u|c) = sup{v ∈ [0, 1] : kl(u‖v) ≤ c} , (3)

where kl(u‖v) denotes the KL divergence between two
Bernoulli distributions, with means u and v respec-
tively. Then, with probability at least 1 − δ on the
random draw of the training set, for any posterior Q
each of the following quantities upper bounds EP(Q):1

B1 = kl−1 (ES(Q)| Pen) ; (4a)

B2 = ES(Q) +
√
Pen /2 ; (4b)

B3 =
(√
ES(Q) + Pen /2 +

√
Pen /2

)2
; (4c)

B4 = inf
λ∈(0,1)

1
1−λ/2 (ES(Q) + Pen /λ) . (4d)

1For (4a) we additionally assume that S has size m ≥ 8.
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In the above proposition, the bound B1 is always the
tightest. Moreover, all the above bounds are still valid
if the empirical classification error ES is replaced by
the empirical average of any loss function ˜̀ in [0, 1].

So far, we have assumed the prior P to be data-
independent. However, empirical evidence shows that
using a data-dependent prior can lead to much tighter
generalisation bounds, see e.g. Ambroladze et al.
(2007); Dziugaite and Roy (2018); Dziugaite et al.
(2021); Parrado-Hernández et al. (2012); Pérez-Ortiz
et al. (2021b). Indeed, the actual requirement for the
bounds (4) to hold is that P is independent of the sam-
ple S used to evaluate ES(Q). Hence, one can split the
dataset S into two disjoint sets, S(1) and S(2), use S(1)

to train the prior, and obtain the data-dependent ver-
sions of the PAC-Bayesian bounds from Proposition

1, by redefining Pen = (KL(Q‖PS(1)) + log
2
√
m2

δ )/m2

and replacing ES(Q) with ES(2)(Q). For instance (4a)
becomes

EP(Q) ≤ kl−1

(
ES(2)(Q)

∣∣∣∣KL(Q‖PS(1)) + log
2
√
m2

δ

m2

)
,

(5)
where m2 ≥ 8 is the size of S(2).

2.2 PAC-Bayesian training

Ideally, one would like to implement the following pro-
cedure (McAllester, 1998):

• Fix the PAC parameter δ ∈ (0, 1) and a prior P
for the network stochastic parameters;

• Collect a sample S of m iid data points, according
to PS = P⊗mX , and label it correctly;

• Compute an optimal posterior Q minimising a
generalisation bound, such as (4a);

• Implement a stochastic network whose random
parameters have distribution Q.

Unfortunately, in most realistic non-trivial scenarios,
it can be extremely hard to compute and sample from
an optimal posterior Q (Guedj, 2019). A possible ap-
proach consists in using Markov chain Monte Carlo
(Alquier and Biau, 2013; Dalalyan and Tsybakov,
2012; Guedj and Alquier, 2013), sequential Monte
Carlo or variational methods (Alquier et al., 2016),
in order to approximately sample from the Gibbs pos-
terior, which can be shown to be the optimal Q when
the PAC-Bayesian bound is linear in the empirical loss
(Catoni, 2007). However, these methods can often be
inefficient, especially in the case of deep architectures
and large datasets.

An alternative approach relies on simplifying the prob-
lem by constraining P and Q to belong to some sim-
ple distribution class. A common choice is to focus on
the case of multivariate Gaussian distributions with

diagonal covariance (Dziugaite and Roy, 2017; Pérez-
Ortiz et al., 2021a): all the parameters are indepen-
dent normal random variables. Conveniently, in this
case the law of the random parameters can be easily
expressed in terms of their means and standard de-
viations. These are deterministic trainable quantities
that we will call hyper-parameters and denote by p.
Furthermore, with this choice of P and Q, the KL di-
vergence between prior and posterior takes a simple
closed-form. Denoting as m and s (resp. m̃ and s̃) the
means and standard deviations of the posterior (resp.
prior), we have

KL(Q‖P) =
1

2

∑
k

s2k − s̃2k
s̃2k

+
1

2

∑
k

(
mk − m̃k

s̃k

)2

+
∑
k

log
s̃k
sk
,

where the index k runs over all the stochastic param-
eters of the networks.

Now, the idea is to tune the hyper-parameters p =
(m, s) to minimise a PAC-Bayesian bound, such as
(4a). A natural way to proceed is to perform a numer-
ical optimisation via stochastic gradient descent, an
approach originally proposed by Germain et al. (2009)
and Dziugaite and Roy (2017), and referred to as PAC-
Bayes with BackProp by Pérez-Ortiz et al. (2021a).
First, we fix a PAC-Bayesian bound as our optimi-
sation objective. As previously mentioned, this will
be an expression involving a complexity term and the
empirical error (Pen and ES(Q) respectively). We will
hence denote it as B(ES(Q), Pen). Generally, an ex-
plicit form for ES(Q) is not available, but sampling
from Q easily provides an unbiased estimate ÊS(Q) of
this quantity. However, we cannot perform a gradient
descent step on B(ÊS(Q), Pen). Indeed, ÊS(Q) has a
null gradient almost everywhere, as it is the average
over a finite set of realisations of the misclassification
loss, which is constant almost everywhere (Pérez-Ortiz
et al., 2021a). In order to overcome this problem, it
is common to use a surrogate loss function (usually a
bounded version of the cross-entropy) instead of the
misclassification loss; see e.g. (Dziugaite and Roy,
2017) and (Pérez-Ortiz et al., 2021a,b). However, this
creates a mismatch between the optimisation objective
and the actual target bound.

It is worth noting that the zero-gradient problem is
due to the particular form of the estimate ÊS(Q) and in
general ES(Q) has a non-zero gradient (Clerico et al.,
2021). Indeed, as it will be shown in Section 3, a dif-
ferent choice of estimator for ES(Q) can allow training
the network without the use of any surrogate loss.
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2.3 Stochastic network and notations

Consider a stochastic classifier featuring several hidden
layers and a final linear layer. We denote H(x) the
output of the last hidden layer when the input is x, φ
the activation function (here applied component-wise),
and W and B the weight and bias of the linear output
layer. The output of the network will be

F (x) = Wφ(H(x)) +B , (6)

where we wrote F instead of F θ to simplify the nota-
tion. Since the network is stochastic, W , B, and H(x)
are random quantities. We denote FL the σ-algebra
generated by the last layer’s stochasticity, and FH the
one due to the hidden layers.

We will henceforth assume the following:

• FL ⊥⊥ FH, that is the two σ-algebras are inde-
pendent;

• W and B have independent normal components.

We can thus express the stochastic parameters of the
last layer in terms of a set of deterministic trainable
hyper-parameters m and s:

Wij = ζWij s
W
ij + mWij ; Bi = ζBi sBi + mBi ,

where the ζ are all independent standard normal ran-
dom variables N (0, 1).

For the hidden layers, we do not require any strong
assumption: essentially, we need to be able to sample
a realisation h(x) of H(x), to evaluate the KL diver-
gence between prior and posterior, and to differentiate
both KL and h(x) with respect to the trainable deter-
ministic hyper-parameters. However, for the sake of
simplicity, in the rest of this paper we will assume that
all the parameters of the hidden layers have indepen-
dent normal laws, as in Clerico et al. (2021); Dziugaite
and Roy (2017); Pérez-Ortiz et al. (2021a). All the ar-
chitectures used for our experiments are indeed in this
form. We refer to the supplementary material (Section
SM3) for the extension of our results on more general
architectures.

3 COND-GAUSS ALGORITHM

We present here a training procedure to optimise a
PAC-Bayesian generalisation bound without the need
for a surrogate loss. The two main ideas are the fol-
lowing:

• An unbiased estimate of ES(Q) and its gradient
can be evaluated if the output of the network is
Gaussian, as in Clerico et al. (2021);

• If the parameters of the last layer are Gaussian,
the output of the network is Gaussian as well

when conditioned on the nodes of the last hidden
layer, as pointed out by Biggs and Guedj (2021).

3.1 Gaussian output

Fix an input x and assume that the network’s output
F (x) follows a multivariate normal distribution, with
mean vector M(x) and covariance matrix Q(x). For
our purposes, we can suppose that Q(x) is diagonal,
meaning that the components of the output are mu-
tually independent (we refer to Section 4.1 in Clerico
et al. (2021) for the discussion of the general case). Let
us denote V (x) the diagonal of Q(x), consisting of the
output’s variances, so that

EQ[Fi(x)] = Mi(x) ; VQ[Fi(x)] = Vi(x) .

The stochastic prediction of our classifier is ŷ = f̂(x) =
argmaxi∈{1,...,q} Fi(x). In order to compute ES(Q), for

each input x ∈ S we shall evaluate EQ[`(f̂(x), f(x)].
As ` is the misclassification loss (1), this is simply the
probability of making a mistake for the input x. Let-
ting y = f(x) and ŷ = f̂(x), we have

EQ[`(ŷ, y)] = PQ(ŷ 6= y) = PQ
(
Fy(x) ≤ max

i 6=y
Fi(x)

)
.

(7)
In the case of binary classification, the above expres-
sion has a simple closed-form. Indeed, if we consider
for instance the case y = 1, we have

PQ(ŷ 6= 1) = PQ(F2(x)− F1(x) ≥ 0)

= P

(
ζ ≤ M2(x)−M1(x)√

V1(x) + V2(x)

)
,

where ζ ∼ N (0, 1). This can be expressed in terms
of the error function erf, as the cumulative distribu-
tion function of a standard normal is given by ψ(u) =
P(ζ ≤ u) = 1

2 (1 + erf(u/
√

2)). Notice that the above
expression no longer suffers from vanishing gradients,
as ψ′ 6= 0.

For multiple classes (q > 2), (7) does not have a simple
closed-form. However, we can easily find Monte Carlo
estimators that also bring unbiased estimates for the
gradient with respect to M and Q.

Proposition 2. Denote the cumulative distribution
function of a standard normal random variable as ψ :
u 7→ 1

2 (1 + erf(u/
√

2)). Fix x, let y be its true label,
and ŷ the network’s stochastic prediction. Define

L1 = ψ

(
max
i 6=y

Fi(x)−My(x)√
Vy(x)

)
;

L2 = 1−
∏
i6=y

ψ

(
Fy(x)−Mi(x)√

Vi(x)

)
,
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where F (x) ∼ N (M(x),diag(V (x))). Then

EQ[L1] = EQ[L2] = PQ(ŷ 6= y) ,

EQ[∇L1] = EQ[∇L2] = ∇PQ(ŷ 6= y) ,

where the gradient is with respect to all the components
of M(x) and V (x).
In particular, by sampling realisations of L1 or L2, we
can get unbiased Monte Carlo estimators of the mis-
classification loss and its gradient.

3.2 Conditional Gaussianity

In practice, the output of a stochastic network is gen-
erally not Gaussian. However, we can overcome this
issue by conditioning on the hidden layers, similarly to
what was done by Biggs and Guedj (2021).

Recall that the network’s output is given by (6):

F = Wφ(H) +B ,

where the explicit dependence of H on x is omitted
to make the notations lighter. Conditioned on the
stochasticity of the hidden layers FH, F follows a nor-
mal multivariate distribution, as

F = Wφ(H) +B ∼ N (M(H), Q(H)) .

We can easily evaluate M(H) and Q(H) in terms of m
and s. We have

Mi(H) = EQ[Fi|FH] =
∑
j

EQ[Wij ]φ(Hj) + EQ[Bi]

=
∑
j

mWij φ(Hj) + mBi

and Qij(H) = δijVi(H), with

Vi(H) = VQ[Fi|FH] =
∑
j

VQ[Wij ]φ(Hj)
2 + VQ[Bi]

=
∑
j

(sWij φ(Hj))
2 + (sBi )2 .

Finally, we note that by iterated expectations

EQ[`(f̂(x), f(x))] = EQ[EQ[`(f̂(x), f(x))|FH]] .

In particular, if we draw the hidden parameters and
get a realisation h of H, we obtain an unbiased esti-
mate 1

m

∑
x∈S E[`(f̂(x), f(x))|H(x) = h(x)] of ES(Q),

where each term E[`(f̂(x), f(x))|H(x) = h(x)] can be
estimated with the methods from Section 3.1, since
F (x) is a multivariate Gaussian when conditioned on
H(x) = h(x).

3.3 Training algorithm

We sketch here the Cond-Gauss training algorithm.
First, we fix a PAC-Bayesian bound B as the opti-
misation objective. Then, we initialise the determin-
istic hyper-parameters of our network, and we select
this configuration as the prior. Finally, we split our
dataset into batches S1, . . . , SK . To train the network,
we iterate over the batches and, similarly to what is
done in most PAC-Bayesian training methods based on
stochastic gradient descent, we sample the network’s
parameters at each batch iteration. However, we only
perform this sampling for the hidden layers and not
for the final linear layer. In this way, for each x in the
batch, we have a realisation h(x) of the last hidden
layer’s output. Conditioned on H = h, the output is

Algorithm 1 Cond-Gauss PAC-Bayesian training

Require:
p̃ = (p̃H, p̃L) . Initial hyper-parameters (defining the prior)
S . Training set of size #S
δ ∈ (0, 1) . PAC parameter
η, T . Learning rate and number of epochs

Ensure:
Optimal p parameterizing the posterior

1: procedure Cond-Gauss
2: pH ← p̃H

3: pL = (m, s)← p̃L

4: for t← 1 : T do
5: Sample θH ∼ QHpH . Sample the parameters of the hidden layers

6: h = h(S, θH) . Evaluate the last hidden layer’s output for all x ∈ S
7: M = M(h,m) = mWφ(h) + mB . Evaluate the conditional mean of the output
8: V = V (h, s) = (sWφ(h))2 + (sB)2 . Evaluate the conditional variance of the output

9: ÊS(Qp) = E(M,V ) . Evaluate ÊS(Qp) from M and V as in Section 3.1

10: B̂ = B(ÊS(Qp), Pen) . Evaluate the estimate B̂ of the PAC-Bayesian objective B
11: p← p− η∇pB̂ . Perform the gradient step

12: return p
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Gaussian and we can proceed as discussed earlier to
get an estimate ÊSk(Q, h) of ES(Q). After that, we

can obtain an estimate B̂ of the target bound B, by
replacing ES(Q) with ÊSk(Q, h). Finally, we compute

the gradient of B̂ with respect to the trainable hyper-
parameters, and we perform the gradient step.

If we want to use a data-dependent prior, we simply
split the dataset into two subsets S(1) and S(2), and
then use S(1) to learn P. For instance, we might train
the prior using ÊS(1)(Q) as optimisation objective or
tuning only the prior’s means by treating the network
as if it was deterministic, similarly to what was done in
Pérez-Ortiz et al. (2021a). Once the prior’s training
is complete, we perform the Cond-Gauss algorithm,
replacing S with S(2).

The training procedure is summarised in Algorithm 1,
where, for the sake of simplifying the notation, it is as-
sumed that the whole training set forms a single batch.
For convenience, we introduce the superscripts H and L

to refer to the hidden layers and the last layer, respec-
tively. Thus, we denote as θ = (θH, θL) the random
parameters of the network, where θH are the parame-
ters in the hidden layers, while θL = (W,B) are those
of the last layer. Similarly, pH are the deterministic
hyper-parameters relative to the hidden layers, whilst
pL = (m, s) are those of the last layer. We introduced
the subscript p for the posterior Q, to stress the fact
that it is determined by the hyper-parameters, and we
denoted by QH the marginal posterior distribution for
the hidden layers. Finally, the tilde notation repre-
sents the values at initialisation.

As a final remark, kl−1 is currently not implemented
in most of the standard deep learning libraries. Yet,
it can be easily computed numerically with few iter-
ations of Newton’s method, as in Dziugaite and Roy
(2017). Nevertheless, most of the empirical studies
on PAC-Bayesian gradient descent optimisation (see
e.g. Dziugaite and Roy (2017) and Pérez-Ortiz et al.
(2021a)), do not use as objective (4a), in order to avoid
computing ∇kl−1. However, since this gradient can be
expressed as a function of kl−1 itself, we were able to
optimise (4a) in our experiments (see Section SM4 in
the supplementary material for further details).

3.4 Unbiasedness of the estimates

One might wonder whether the estimates of B and its
gradient are actually unbiased. Notably, this is indeed
the case if the chosen PAC-Bayesian objective B is an
affine function of the empirical error, as (4b) and (4d).

Proposition 3. Assume that B is locally Lipschitz in
the hidden stochastic parameters θH, and that ∇θHB

Figure 1: Experimental evidence that the bound (4a) is

almost affine in the region where ÊS(Q) concentrates. The
network used was the one achieving the best generalisation
bound in our experiment on MNIST with data-dependent

priors. 10000 realisations of ÊS(Q) were sampled. Their
distribution is summarized by the histogram above the
zoomed portion of the plot. The black dot is the bound for

the average value found for ÊS(Q), while the green error
bar has a total width of 4 empirical standard deviations.

In the region where ÊS(Q) concentrates, the bound and its
linearised version almost coincide. Along the green error
bar, the bound’s slope has a relative variation of ±0.8%.

is polynomially bounded.2 If B(ES(Q), Pen) is affine
in ES(Q), then we have E[B̂] = B and E[∇B̂] = ∇B,
the gradient being with respect to the trainable hyper-
parameters p.

Although this unbiasedness property does not hold for
objectives not affine in ES(Q), if ÊS(Q) concentrates
enough around ES(Q) we can linearise B̂ as

B̂ ' B + (ÊS(Q)− ES(Q)) ∂EB .

Then, both B̂ and ∇B̂ are essentially almost unbiased
estimates. Considering the good performance of our
method in the experiments we ran, we conjecture that
this is indeed what happens in practice with (4a) and
(4c). Figure 1 gives some empirical support to this
hypothesis. We refer the reader to the supplementary
material (Section SM2) for additional discussion and
empirical evidence on this subject.

3.5 Final evaluation of the bound

In order to evaluate the final generalisation bound, we
need the exact value of ES(Q) once the training is com-
plete. As this cannot be computed, we use an empirical
upper bound, as done for instance in (Dziugaite and
Roy, 2017).

2These are mild technical assumptions, verified in all
the experimental settings considered in this paper.
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Let θ1, . . . , θN be N independent realisations of the
whole set of the network stochastic parameters, drawn
according to Q. An unbiased Monte Carlo estimator
of ES(Q) is simply given by

ẼS(Q) =
1

N

N∑
n=1

ES(θn) .

As shown by Langford and Caruana (2002), for fixed
δ′ ∈ (0, 1), with probability at least 1− δ′ we have,

ES(Q) ≤ kl−1
(
ẼS(Q)

∣∣ 1
N log 2

δ′

)
,

where kl−1 is defined in (3). We conclude from Propo-
sition 1 that, with probability higher than 1− (δ+ δ′),
we have

EP(Q)

≤ kl−1
(

kl−1
(
ẼS(Q)

∣∣ 1
N log 2

δ′

) ∣∣∣KL(Q‖P)+log 2
√
m
δ

m

)
,

(8)

as kl−1 is an increasing function of its first argument.

4 NUMERICAL RESULTS

We tested the Cond-Gauss algorithm empirically on
the MNIST and the CIFAR10 datasets (Deng, 2012;
Krizhevsky, 2009). In the literature, several works
benchmark various PAC-Bayesian algorithms on these
and other datasets (Biggs and Guedj, 2021; Clerico
et al., 2021; Dziugaite and Roy, 2017, 2018; Letarte
et al., 2019; Pérez-Ortiz et al., 2021a,b). To our knowl-
edge, in the case of over-parameterised deep neural
networks, the bounds from Pérez-Ortiz et al. (2021a)
are currently the tightest on both MNIST and CI-
FAR10. Thus, in order to assess our Cond-Gauss
method by comparing their results with ours, we de-
cided to mimic some of their multilayer convolutional
architectures3, although our training schedules, as well
as the prior’s training procedures and the choice of
initial variances, differed from theirs. All the gener-
alisation bounds obtained with our training algorithm
were tighter than those reported by Pérez-Ortiz et al.
(2021a).

We illustrate below some of our main empirical re-
sults. All the final generalisation bounds are obtained
from (8), or its natural variant based on (5) for data-
dependent priors. We always use δ = 0.025 and
δ′ = 0.01 as in Pérez-Ortiz et al. (2021a), so that

3The only difference between their architectures and
ours is that we sometimes swapped the order between the
application of the activation function and the max pooling.
This fact was merely accidental, but we believe that it did
not significantly affect our results.

the final generalisation bounds hold with probability
greater or equal to 0.965. For all the bounds but those
in Figure 2, we fixed N = 150000 as in Pérez-Ortiz
et al. (2021a).

We refer to Section SM5 in the supplementary ma-
terial for the full results and the missing experimen-
tal details. The PyTorch code developed for this pa-
per is available at https://github.com/eclerico/

CondGauss.

4.1 MNIST

For our experiments on MNIST, we only used the stan-
dard training dataset (60000 labelled examples) for
the training procedure. We tested a 4-layer ReLU
stochastic network, whose parameters were indepen-
dent Gaussians. The architecture was composed of
two convolutional layers followed by two linear layers.

We first experimented on data-free priors. We com-
pared the performance of the standard PAC-Bayes
with BackProp training algorithm (S), where the mis-
classification loss is replaced by a bounded version of
the cross-entropy loss as in Pérez-Ortiz et al. (2021a),
and the Cond-Gauss algorithm (G). We used the four
training objectives from (4):

invKL : kl−1(ES(Q)|Penκ) ;

McAll : ES(Q) +
√
Penκ/2 ;

quad : (
√
ES(Q) + Penκ/2 +

√
Penκ/2)2 ;

lbd : 1
1−λ/2 (ES(Q) + Penκ/λ) ,

where the KL penalty is defined as

Penκ =
κ

m

(
KL(Q‖P) + log

2
√
m

δ

)
. (9)

The factor κ in (9) can increase or reduce the weight
of the KL term during the training. For the last objec-
tive, lbd, the parameter λ takes values in (0, 1) and is
optimised during training, similarly to what was done
in Pérez-Ortiz et al. (2021a).4

The network was trained via SGD with momentum.
During training, at the end of each epoch, we kept
track of the bound (4a)’s empirical value to pick the
best epoch at the end of the training.

In Figure 2 we report the values of the bounds for
different training settings with data-free priors on
MNIST. As evaluating the true bound via (8) can be
extremely time-consuming when N = 150000, the val-
ues reported in the figure are obtained for N = 10000.

4In our experiments, we initialised λ at 0.5 and then
doubled the number of epochs, alternating one epoch of
λ’s optimisation with one of optimisation for m and s.

https://github.com/eclerico/CondGauss
https://github.com/eclerico/CondGauss
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Figure 2: Results for MNIST with random prior. Each
dot is the PAC-Bayesian bound obtained via (8) with
N = 10000. The marker shape represents the training
method (in the legend, ‘G’ stands for our method, ‘S’ for
the standard one), and the colour represents the training
objective. Different columns indicate different momentum
values, penalty factor κ, and initial variance for the prior.
The initial prior’s means were the same for all the different
training possibilities. The values higher than 0.285 are not
reported.

The Cond-Gauss algorithm always achieved the best
performance. Note that some of the bounds in the
figure are substantially tighter than the best value re-
ported in Pérez-Ortiz et al. (2021a), namely .2165.
Perhaps unexpectedly, this is sometimes the case even
for the standard PAC-Bayes with BackProp algorithm,
although it happened for training settings that were
not tried therein, namely with the invKL objective or
κ = 0.5.

In Table 1 we report the final generalisation bounds
with N = 150000, evaluated via (8). For each method,
we selected the training achieving the best bound in
Figure 2. The Cond-Gauss procedure achieved bet-
ter results than the standard algorithm with all the
objectives. Quite surprisingly, the tightest bound was
achieved by the lbd objective. The column ‘emp err’
reports the empirical error on the training dataset, ob-

Table 1: PAC-Bayesian bounds for MNIST - data-free
prior

method emp err test err Pen (2) bound

S McAll .0670 .0900±.0047 .0320 .1916
S lbd .0636 .0623±.0013 .0413 .1606
S quad .0622 .0577±.0031 .0420 .1594
S invKL .0438 .0407±.0022 .0560 .1495

G McAll .0472 .0435±.0024 .0477 .1446
G lbd .0279 .0272±.0016 .0669 .1348
G quad .0399 .0374±.0021 .0518 .1380
G invKL .0356 .0340±.0019 .0556 .1355

tained when computing the final bounds. The test er-
rors provided in the column ‘test err’ are evaluated on
the standard held-out test dataset of MNIST, by aver-
aging over 1000 realisations of the random network’s
parameter. We also report the empirical standard de-
viation of this estimate. Interestingly, the test error
on the held-out dataset often resulted smaller than
the empirical error on the training dataset. We do
not have an explaination for this fact, which might be
a mere coincidence and did not occur in most of the
experiments with data-dependent priors.

For the data-dependent priors, we used 50% of the
dataset to train P and the remaining 50% to train
Q. We always used the Cond-Gauss algorithm for
both prior and posterior. All the posteriors were
trained with the invKL objective and κ = 1, whilst
for the prior, we experimented with different objec-
tives, penalty factors κ, and dropout values. The final
best generalisation bound was .0144, about 7% better
than the tightest one from Pérez-Ortiz et al. (2021a)
for the same architecture, .0155. However, it is inter-
esting to note that the role of the posterior’s training
seems to be quite marginal, as, in our experiments,
the prior already achieved a quite low empirical er-
ror on the posterior’s dataset, .0108, which could be
improved only to .0104 by tuning the posterior. The
results of the whole experiment can be found in Table
SM1 in the supplementary material.

4.2 CIFAR10

As we had done for the MNIST dataset, for CIFAR10
we used only the standard training dataset (50000 la-
belled images) for the training procedure. We trained
a 9-layer architecture (6 convolutional + 3 linear lay-
ers) and a 15-layer architecture (12 convolutional + 3
linear layers). We experimented with data-dependent
priors only, training P with 50% of the data for the
9-layer classifier, and with both 50% and 70% of the
data in the case of the 15-layer one.

The results for the 9-layer architecture are reported
in Table 2. Note that the best bound that we ob-
tained in this setting was .2066, a result much tighter
than the one reported by Pérez-Ortiz et al. (2021a),
.2901. After some preliminary experiments, we chose
to train both priors and posteriors via the Cond-Gauss
algorithm with the invKL objective. We used a small
factor κ for the prior to avoid regularising too much,
whilst κ was 1 for the posterior. We tried different val-
ues for the dropout and the factor κ in the training of
the prior, as reported in Table 2. We trained via SGD
with momentum for both prior and posterior. For P,
we used a schedule much longer than the one usually
chosen for the prior in the literature. Essentially, this
is because we were not just training the means of the
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Table 2: CIFAR10 - 9 layers - Prior learnt on 50% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

G invKL 0 .01 .001 .0196 .2233 3.778 G invKL .0196 .2211 .2251±.0021 4.696 .2376
G invKL 0 .005 .001 .1127 .2797 3.778 G invKL .1126 .2782 .2814±.0019 4.319 .2953
G invKL .1 .01 .001 .0536 .1930 3.778 G invKL .0536 .1912 .1952±.0020 4.484 .2066
G invKL .1 .005 .001 .0266 .1930 3.778 G invKL .0266 .1913 .1933±.0019 4.520 .2067

a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g t: Test error±standard deviation (from 1000 realisations).
h p: KL penalty Pen (2) in 10−4 units.
i b: Final PAC-Bayesian bound.

random parameters, but the variances as well. How-
ever, in this way we could already obtain for the priors
competitive empirical errors on the posterior’s dataset.
Like with the MNIST dataset, the improvement due
to the posterior’s training was minimal.

For the 15-layer architecture, the full results and de-
tails are reported in Table SM2 in the supplementary
material. Quite interestingly, to train P, it was neces-
sary to introduce an initial pre-training for the prior’s
means, as the Cond-Gauss algorithm alone could not
significantly decrease the training objective. First,
we initialised the means with an orthogonal initiali-
sation, as suggested in Hu et al. (2020). Then we opti-
mised them by training a deterministic network (with
the same architecture) using the cross-entropy loss on
the prior’s dataset. Finally, via the Cond-Gauss algo-
rithm, we completed the prior’s training and proceeded
with the posterior’s tuning. The best final bounds ob-
tained were .1855, with the prior learnt on 50% of the
dataset, and .1595, when 70% of the dataset was used
to train P. Again, these values are tighter than those
from Pérez-Ortiz et al. (2021a).

4.3 Summary

To summarise our results, Table 3 compares our best
PAC-Bayesian generalisation bounds with those from
Pérez-Ortiz et al. (2021a). The column ‘C-G’ features
the best bounds we could obtain with the Cond-Gauss

Table 3: Comparison of our PAC-Bayesian bounds with
those from Pérez-Ortiz et al. (2021a)

dataset architecture prior C-G P-O

MNIST 4 layers data-free .1348 .2165
MNIST 4 layers 50% .0144 .0155

CIFAR10 9 layers 50% .2066 .2901
CIFAR10 15 layers 50% .1855 .1954
CIFAR10 15 layers 70% .1595 .1667

algorithm in our experiments. The figures in the col-
umn ‘P-O’ are the tightest bounds reported in Pérez-
Ortiz et al. (2021a) for the same architectures and
datasets. All the PAC-Bayesian generalisation bounds
in the table hold with probability at least 0.965 on the
choice of the training dataset.

5 CONCLUSION

We have introduced the Cond-Gauss training algo-
rithm, which allows the optimisation of PAC-Bayesian
bounds without relying on the use of a surrogate loss.
Taking an estimate of the actual target bound as the
optimisation objective is a natural choice. As con-
firmed by our experiments on the MNIST and the
CIFAR10 classification tasks, it also leads to tighter
bounds than the current state-of-the-art bounds ob-
tained via PAC-Bayes with BackProp.
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Supplementary material

SM1 PROOFS

Proposition 2. Denote the cumulative distribution function (CDF) of a standard normal as ψ : u 7→ 1
2 (1 +

erf(u/
√

2)). Fix a pair x, y and let

L1 =ψ

(
max
i6=y

Fi(x)−My(x)√
Vy(x)

)
,

L2 =1−
∏
i 6=y

ψ

(
Fy(x)−Mi(x)√

Vi(x)

)
,

where F (x) ∼ N (M(x),diag(V (x))). Then

E[L1] = E[L2] = P(ŷ 6= y) , (SM1)

E[∇L1] = E[∇L2] = ∇P(ŷ 6= y) , (SM2)

where the gradient is with respect to all the components of M(x) and V (x).

Proof. We start by showing that E[L1] = P(ŷ 6= y). We have

P(ŷ 6= y) = P
(
Fy(x) < max

i 6=y
Fi(x)

)
= E

[
P
(
Fy(x) < max

i 6=y
Fi(x)

∣∣∣∣{Fi(x)}i 6=y
)]

= E[L1] .

For L2 again we first use conditioning w.r.t. Fy(x)

P(ŷ 6= y) = E
[
P
(
Fy(x) < max

i6=y
Fi(x)

∣∣∣∣Fy(x)

)]
= 1− E

[
P
(
Fy(x) ≥ max

i6=y
Fi(x)

∣∣∣∣Fy(x)

)]
.

As the events {Fy(x) ≥ Fi(x)|Fy(x)}i 6=y are independent, we can write

P(ŷ 6= y) = 1− E

∏
i 6=y

P
(
Fi(x) ≤ Fy(x)

∣∣∣∣Fy(x)

) = E[L2] ,

and so (SM1) is proved.

Now, to show (SM2), we need to prove that it is possible to swap expectation and differentiation for both L1

and L2. For L2 everything is straightforward, as it is a smooth function of M and V (as all the components of
V are assumed to be strictly positive) and its gradient can be easily bounded (uniformly in some neighbourhood
of (Mi(x), Vi(x))i 6=y) by a function of Fy(x) with finite expectation. Hence we can apply Leibniz integral rule.

For L1, this is the case only for ∂My and ∂Vy , as maxi 6=y
Fi(x)−My(x)√

Vy(x)
=

max i 6=y{Fi(x)}−My(x)√
Vy(x)

is smooth in My and

Vy, and its gradient can be easily bounded (uniformly in some neighbourhood of (My(x), Vy(x))) by a function
of (Fi(x))i 6=y with finite expectation. However, for any j 6= y, the integrand is not everywhere differentiable wrt
Mj and Vj . Yet, we can still swap expectation and differentiation using Proposition SM1, detailed below.

The two results that follow are well known in the literature, and restated here for convenience. For completeness
we give a proof for both of them. Denote as ρm,s the density of a normal random variable with mean m and
standard deviation s. For convenience we let ρ = ρ0,1. All integrals

∫
are over R.

The next proposition is essentially a reformulation of Price’s theorem (Price, 1958).

Proposition SM1. Let Z ∼ N (0, 1) and X = sZ + m. Let g : R → R be a locally Lipschitz function with a
polynomially bounded derivative. Then

∇m,sEX∼N (m,s2)[g(X)] = EZ∼N (0,1)[∇m,sg(sZ +m)] .
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Proof. Recall that ∂mρm,s(x) = x−m
s ρm,s(x) and ∂sρm,s(x) = (x−m)2−s2

s3 ρm,s(x). Let z = sx + m, then
ρm,s(x)dx = ρ(z)dz. Note that by the local Lipschitzianity g′ is defined almost everywhere. Since it is polyno-
mially bounded, the expectation E[∇m,sg(sZ+m)] makes sense. Note moreover that g is polynomially bounded
as g′ is.

We start by proving the equality for the m-derivative. We have

∂mE[g(X)] = ∂m

∫
ρm,s(x)g(x)dx =

∫
(∂mρm,s(x))g(x)dx ,

by Leibniz integration rule, as ρm,s is smooth in its arguments and the continuity and polynomial boundedness
of g ensure that

∫
x→ ∂mρm,s(x))g(x) dx is well defined and finite. Now, we have∫

(∂mρm,s(x))g(x)dx =

∫
x−m
s2

ρm,s(x)g(x)dx =

∫
z

s
ρ(z)g(sz +m)dz .

From Lemma SM1 below, we get∫
z

s
ρ(z)g(sz +m)dz =

∫
1

s
ρ(z)sg′(sz +m)dz =

∫
ρ(z)g′(sz +m)dz .

Now, as g′(sz +m) = ∂mg(sz +m) we conclude that

∂mE[g(X)] = E[∂mg(sZ +m)] .

For the s-derivative, the proof is essentially analogous. Proceeding as above, we have

∂sE[g(X)] =

∫
(∂sρm,s(x))g(x)dx =

∫
(x−m)2 − s2

s3
ρm,s(x)g(x)dx =

∫
z2 − 1

s
ρ(z)g(sz +m)dz .

Again from Lemma SM1 we find that∫
z2 − 1

s
ρ(z)g(sz +m)dz =

∫
ρ(z)zg′(sz +m)dz .

We conclude that
∂sE[g(x)] = E[∂sg(sz +m)] ,

since ∂sg(sz +m) = zg′(sz +m).

The next lemma states Stein’s identity (Stein, 1981) and a straightforward corollary.

Lemma SM1. Let Z ∼ N (0, 1), and g : R → R a locally Lipschitz function with a polynomially bounded
derivative. Then

E[Zg(Z)] = E[g′(Z)] ,

E[(Z2 − 1)g(Z)] = E[Zg′(Z)] .

Proof. The first equality, known as Stein’s identity, is established using integration by parts:

0 =

∫
(ρ(z)g(z))′dz =

∫
ρ′(z)g(z)dz +

∫
ρ(z)g′(z)dz =−

∫
zρ(z)g(z) +

∫
ρ(z)g′(z)dz ,

where we used that g′ exists almost everywhere as g is locally Lipschitz, and that both g and g′ are polynomially
bounded, so all integral are finite and well defined. Now take h(z) = zg(z). Then we have h′(z) = zg′(z) + g(z)
and so

E[Z2g(Z)] = E[Zh(Z)] = E[h′(Z)] = E[Zg′(Z)] + E[g(Z)] ,

which is the second equality.

Proposition 3. Assume that B is locally Lipschitz in the hidden stochastic parameters θH, and that ∇θHB is
polynomially bounded. If B(ES(Q), Pen) is an affine function of ES(Q), then we have E[B̂] = B and E[∇B̂] = ∇B,
the gradient being with respect to the trainable hyper-parameters p.
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Proof. By linearity it is sufficient to show that E[ÊS(Q)] = ES(Q) and E[∇ÊS(Q)] = ∇ES(Q). Note that,
following the discussion of Section 3.1, we can write ÊS(Q) =

∑
x∈S Êx where

Êx = E(M(x, θH, pL), V (x, θH, pL), ξ) ,

for some suitable function E. If we are dealing with binary classification the variable ξ can be omitted, otherwise
it represents the random draws needed to obtain the estimate L1 or L2 (defined in Proposition 2).

Define Ex = E[Êx], the expectation being over ξ and θH. By Proposition 2 (if we are dealing with multiclass
classification, otherwise by definition) we get that ES(Q) =

∑
x∈S Ex. Consequently we have

ES(Q) =
∑
x∈S

E[Êx] = E[ÊS(Q)] .

Now, to show the unbiasedness of the gradient, it is enough to show that for all x ∈ S

∇pEx = E[∇pÊx] .

First, again by Proposition 2 we can write

E[∇pÊx] = E[∇pE[Êx|FH]] = E[∂(M,V )
∂p E[∇M,V Êx|FH]] = E[∂(M,V )

∂p ∇M,V E[Êx|FH]] = E[∇pE[Êx|FH]] .

Now, E[Êx|FH] is the probability that a component of a Gaussian vector with mean M and covariance diag(V )
is smaller than the maximum of the other components (cf. Section 3.1). This is a smooth function of M and V ,
which in turn are smooth functions of the last layer’s hyper-parameters pL. As a consequence we can write

∇pLEx = E[∇pLE[Êx|FH]] = E[∇pL Êx] .

As for the hidden hyper-parameters, since we are assuming that all the hidden stochastic parameters are inde-
pendent Gaussian random variables, we can apply Proposition SM1, which brings

∇pHEx = E[∇pHE[Êx|FH]] = E[∇pH Êx] ,

thus concluding our proof.

SM2 A NOTE ON UNBIASEDNESS

The previous results state that the gradient estimates used in the Cond-Gauss algorithm are unbiased, as long
as the bound is affine in the empirical error. Under suitable regularity conditions, this ensures that stochas-
tic gradient descent algorithms converge to a stationary point of the objective (Khaled and Richtárik, 2020).
However, among the four bounds (4) that we used in our experiments, only (4b) and (4d) are actually affine.
We argue here that in most cases of interest ÊS(Q) is concentrated enough that the bounds (4a) and (4c) are
approximately affine in the empirical error. In the following, we detail this heuristic idea and then give some
empirical evidence on MNIST in the case of (4a). This almost affine behaviour ensures that the gradient used
by our stochastic optimisation procedure is almost unbiased, and hence we can expect the algorithm to converge
to a point close to a stationary point of the objective (Tadić and Doucet, 2017).

Consider a generic bound B = B(ES(Q)), where B might be a non-affine function. Our estimate is of the form
B̂ = B(ÊS(Q)). We can now consider a linearised version B̄ of B, defined as

B̄(E) = B(ES(Q)) + (E − ES(Q))B′(ES(Q)) .

Clearly, in a sufficiently small neighborhood of ES(Q), we can expect B and B̄ to almost coincide. In particular,
if the law of ÊS(Q) concentrates around ES(Q), we can expect that with high probability

B(ÊS(Q)) ' B̄(ES(Q)) .

As B̄ is affine, we can apply Proposition 3 and get

E[B̂] = E[B(ÊS(Q))] ' E[B̄(ÊS(Q))] = B̄(ES(Q)) = B(ES(Q)) = B ,
E[∇pB̂] = E[∇pB(ÊS(Q))] ' E[∇pB̄(ÊS(Q))] = ∇pB̄(ES(Q)) = ∇pB(ES(Q)) = ∇pB .
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To empirically justify the above, we consider the bound (4a), which was used for most of our experiments. Figure
SM1 and Figure SM2 show that indeed ÊS(Q) is sufficiently concentrated around its mean to see the bound as an
affine function of the empirical error. Figure SM1 reports the data from the network achieving the best bound
in our experiments with data-dependent priors on MNIST. On the other hand, among the networks trained with
the invKL objectives on MNIST with data-free priors, the one achieving the tightest bound was used for Figure
SM2. In both figures, the histogram represents the distribution of 10000 realisations of ÊS(Q). It is clear that in
both cases the bound is essentially affine in the empirical loss, in the region where ÊS(Q) concentrates (zoomed
portion of the plot).

Similar observations hold when the objective is derived from (4c).

Figure SM1: (Same as Figure 1 from the main text.) Ex-
perimental evidence, from a network trained with a data-
dependent prior on MNIST, that the bound (4a) is almost

affine in the region where ÊS(Q) concentrates. The net-
work used was the one achieving the best generalisation
bound in our experiment on MNIST with data-dependent

priors. 10000 realisations of ÊS(Q) were sampled. Their
distribution is summarised by the histogram above the
zoomed portion of the plot. The black dot is the bound for

the average value found for ÊS(Q), while the green error
bar has a total width of 4 empirical standard deviations.

In the region where ÊS(Q) concentrates, the bound and its
linearised version almost coincide. Along the green error
bar, the bound’s slope has a relative variation of ±0.8%.

Figure SM2: Experimental evidence, from a network
trained with a data-free prior on MNIST, that the bound

(4a) is almost affine in the region where ÊS(Q) concen-
trates. Among the networks trained with the invKL objec-
tives on MNIST with data-free priors, the one achieving
the tightest bound was used in this experiment. 10000

realisations of ÊS(Q) were sampled. Their distribution is
summarised by the histogram above the zoomed portion
of the plot. The black dot is the bound for the average

value found for ÊS(Q), while the green error bar has a to-
tal width of 4 empirical standard deviations. In the region

where ÊS(Q) concentrates, the bound and its linearised
version almost coincide. Along the green error bar, the
bound’s slope has a relative variation of ±2%.

SM3 PAC-BAYESIAN TRAINING FOR GENERAL ARCHITECTURES

In the main text we focused on the case of a network whose stochastic parameters are all Gaussian. This is not
a necessary condition for the Cond-Gauss algorithm. What we need is actually to be able to express the KL
between prior and posterior as a differentiable expression of the hyper-parameters, and to evaluate the gradient
(wrt the hyper-parameters) of a single empirical loss’s realisation. We can satisfy this last requirement if we are
able to rewrite the stochastic parameters as a (differentiable) function Θ of the hyper-parameters p and of some
random variable τ (independent of p) such that Θ(p, τ) has the same law of θ, namely Qp. In short, for any
measurable function ϕ,

Eθ∼Qp
[ϕ(θ)] = Eτ [ϕ(Θ(p, τ))] .

In particular, to sample a realisation ϕ̂ of ϕ(θ) we can sample a realisation τ̂ of τ and then define

ϕ̂ = ϕ(Θ(p, τ̂)) .

As long as ϕ ◦Θ is differentiable in p, we can evaluate the gradient of ϕ̂ wrt p.
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For the Cond-Gauss algorithm to be implementable, we require that there exists a p-differentiable reparametri-
sation Θ for the hidden parameters θH. Clearly, this is the case if θH is a Gaussian vector with independent
components. Indeed, if we denote by mH and sH the vectors of means and standard deviations, we have

θH = mH + sH � τ ,

where τ is a vector with independent standard normal components and � denotes the component-wise product.
This is what was used for the networks in our experiments.

SM4 NUMERICAL EVALUATION OF kl−1 AND ITS GRADIENT

When the training objective is invKL, it is necessary to evaluate kl−1 and its gradient, in order to implement the
Cond-Gauss algorithm. Many of the most popular deep learning libraries, such as PyTorch and TensorFlow, do
not provide an implementation for kl−1. However, as pointed out by Dziugaite and Roy (2017), a fast numerical
evaluation can be done via a few iterations of Newton’s method. This is what we used in our code.

We show here that the gradient of kl−1 can be expressed as a function of kl−1, so that the implementation of
the latter allows the evaluation of the former. Recall that

kl(u‖v) = u log
u

v
+ (1− u) log

1− u
1− v

.

For u > 0, the mapping v 7→ kl(u‖v) is not injective. However if we restrict its domain to {(u, v) ∈ [0, 1]2 : v ≥ u},
then we find a bijective map, whose inverse coincides with c 7→ kl−1(u|c) (with the definition (3) for kl−1). It
follows immediately that

∂ckl−1(u|c) =
1

∂vkl(u‖v)

∣∣∣∣
v=kl−1(u|c)

=

(
1− u
1− v

− u

v

)−1 ∣∣∣∣
v=kl−1(u|c)

.

To find an expression for ∂ukl−1(u|c) we can proceed as follow. Let kl−1(u|c) = v and kl−1(u+ε|c) = v+ε′, with
ε′ = ε∂ukl−1(u|c) + o(ε). This means that kl(u + ε‖v + ε′) = kl(u‖v), so that ε∂ukl(u‖v) + ε′∂vkl(u‖v) = o(ε).
Taking ε→ 0 we find

∂ukl−1(u|c) = −∂ukl(u‖v)

∂vkl(u‖v)

∣∣∣∣
v=kl−1(u|c)

=

(
log

1− u
1− v

− log
u

v

)/(
1− u
1− v

− u

v

) ∣∣∣∣
v=kl−1(u|c)

.

SM5 ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

In this section we give additional details about our experiments. The PyTorch code written for this paper is
available at https://github.com/eclerico/CondGauss. In all our experiments we used the average of 100
independent estimates of L1 (defined in Proposition 2) to evaluate the empirical error. To keep the standard
deviations σ positive during the training, we trained the parametersρ defined by σ = |ρ|3/2. We found empirically
that this transformation allowed for a much faster training compared to the usual exponential choices (Dziugaite
and Roy, 2017; Pérez-Ortiz et al., 2021a).

SM5.1 MNIST

For our experiments on MNIST, we only used the standard training dataset, which consists of 60000 labelled
examples. We ran our experiments on a 4-layer ReLU stochastic network, whose parameters were independent
Gaussians with trainable means and variances. The architecture used was the following:

x 7→ y = L2 ◦ φ ◦ L1 ◦ φ ◦ f ◦ C2 ◦ φ ◦ C1(x) ,

with

• C1: convolutional layer; channels: IN 1, OUT 32; kernel: (3, 3); stride: (1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1);
• L1: linear layer; dimensions: IN 9216, OUT 128;

https://github.com/eclerico/CondGauss
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• L2: linear layer; dimensions: IN 128, OUT 10;
• f : max pool (kernel size = 2) & flatten;
• φ: ReLU activation component-wise.

All convolutional and linear layers were with bias.

SM5.1.1 Data-free priors

We first experimented on data-free priors, whose means were initialised via the Pytorch default initialisation.
We tried different values for the initial prior’s variances: .01, .001, and .0001. We compared the performances
of the standard PAC-Bayesian training algorithm (S), where the misclassification loss is replaced by a bounded
version of the cross-entropy loss as in Pérez-Ortiz et al. (2021a), and the Cond-Gauss algorithm (G). We used
the following four training objectives from (4):

invKL : kl−1(ES(Q)|Penκ) ;

McAll : ES(Q) +
√
Penκ/2 ;

quad : (
√
ES(Q) + Penκ/2 +

√
Penκ/2)2 ;

lbd : 1
1−λ/2 (ES(Q) + Penκ/λ) ,

where the KL penalty is defined as

Penκ =
κ

m

(
KL(Q‖P) + log

2
√
m

δ

)
. (9)

The factor κ in (9) can increase or reduce the weight of the KL term during the training. We experimented three
different values for this parameter: 0.5, 1, and 2. For the last objective, lbd, the parameter λ takes values in
(0, 1) and is optimised during training6.

For all the different training settings, the network was trained via SGD with momentum for 250 epochs with a
learning rate η = .005 followed by 50 epochs with η = .0001. We tried using different values for the momentum:
0.5, 0.7, and 0.9. During the training, at the end of each epoch, we kept track of the bound (4a)’s empirical
value in order to pick the best epoch at the end of the training.

Figure 2 and Table 1 in the main text report our results.

SM5.1.2 Data-dependent priors

For the data-dependent priors, we used 50% of the dataset to train P and the remaining 50% to train Q. We
always used the Cond-Gaussian algorithm for both prior and posterior. All the posteriors were trained with the
invKL objective and κ = 1, whilst for the prior, we experimented with both invKL (with κ = 0.1) and with direct
empirical risk minimisation (ERM), meaning that the objective was simply ES(Q). The initial prior’s variances
were set at 0.01, while the means were randomly initialised (via the default PyTorch initialisation for each layer).
We used different dropout values, as shown in Table SM1. The prior’s training consisted of 750 epochs with
η = .005, followed by 250 epochs with η = .0001, the posterior’s training of 750 epochs with η = 10−5, followed
by 250 epochs with η = 10−6. We used SGD with a momentum of 0.9 for both priors and posteriors. The results
of the experiment can be found in Table SM1.

SM5.2 CIFAR10

As we had done for the MNIST dataset, for CIFAR10 we used only the standard training dataset (50000 labelled
images). We trained a 9-layer architecture (6 convolutional + 3 linear layers) and a 15-layer architecture (12
convolutional + 3 linear layers). We experimented with data-dependent priors only, training P with 50% of the
data for the 9-layer classifier and both with 50% and 70% for the 15-layer one.

6In our experiments, we initialised λ at 0.5 and then doubled the number of epochs, alternating one epoch of λ’s
optimisation with one of optimisation for m and s.
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Table SM1: MNIST - Prior learnt on 50% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

G ERM 0 - .001 .0010 .0126 3.179 G invKL .0010 .0122 .0122±.0006 3.671 .0164
G invKL 0 .01 .001 .0008 .0125 3.179 G invKL .0008 .0119 .0115±.0007 3.882 .0162
G ERM .1 - .001 .0010 .0111 3.179 G invKL .0010 .0107 .0110±.0006 3.688 .0148
G invKL .1 .01 .001 .0006 .0113 3.179 G invKL .0006 .0107 .0109±.0006 3.944 .0149
G ERM .2 - .001 .0011 .0111 3.179 G invKL .0011 .0107 .0101±.0005 3.742 .0148
G invKL .2 .01 .001 .0010 .0108 3.179 G invKL .0010 .0104 .0101±.0006 3.801 .0144
a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g p: KL penalty Pen (2) in 10−4 units.
h t: Test error±standard deviation (from 1000 realisations).
i b: Final PAC-Bayesian bound.

SM5.2.1 9-layer architecture

The 9-layer architecture had the following structure:

x 7→ L3 ◦ φ ◦ L2 ◦ φ ◦ L1 ◦ φ ◦ f2 ◦ C6 ◦ φ ◦ C5 ◦ φ ◦ f1 ◦ C4 ◦ φ ◦ C3 ◦ φ ◦ f1 ◦ C2 ◦ φ ◦ C1(x) .

Here are detailed the different layers:

• C1: convolutional layer; channels: IN 3, OUT 32; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C3: convolutional layer; channels: IN 64, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C4: convolutional layer; channels: IN 128, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C5: convolutional layer; channels: IN 128, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C6: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• L1: linear layer; dimensions: IN 4096, OUT 1024;
• L2: linear layer; dimensions: IN 1024, OUT 512;
• L3: linear layer; dimensions: IN 512, OUT 10;
• f1: max pool (kernel size = 2, stride = 2);
• f2: max pool (kernel size = 2, stride = 2) & flatten;
• φ: ReLU activation component-wise.

All convolutional and linear layers are with bias.

The results for the 9-layer architecture are reported in Table 2 in the main text. After some preliminary
experiments, we chose to train both priors and posteriors via the Cond-Gauss algorithm with the invKL objective.
We used a small factor κ for the prior, to avoid regularising too much, whilst κ was 1 for the posterior. We tried
different values for the dropout and κ in the prior’s training (see Table 2). We used SGD with momentum 0.9
for both prior and posterior. For P the training consisted of 1500 epochs with η = .005 followed by 500 epochs
with η = .0001, whilst Q was trained for 1500 epochs with η = 10−5, plus 500 epochs with η = 10−6.

SM5.2.2 15-layer architecture

The 15-layer architecture had the following structure:

x 7→L3 ◦ φ ◦ L2 ◦ φ ◦ L1 ◦ φ ◦ f2 ◦ C12 ◦ φ ◦ C11 ◦ φ ◦ C10 ◦ φ ◦ C9 ◦ φ ◦ f1 ◦ C8 ◦ φ
◦ C7 ◦ φ ◦ f2 ◦ C6 ◦ φ ◦ C5 ◦ φ ◦ f1 ◦ C4 ◦ φ ◦ C3 ◦ φ ◦ f1 ◦ C2 ◦ φ ◦ C1(x) .

Here are detailed the different layers:

• C1: convolutional layer; channels: IN 3, OUT 32; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C2: convolutional layer; channels: IN 32, OUT 64; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C3: convolutional layer; channels: IN 64, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
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Table SM2: CIFAR10 - 15 layers - Prior learnt on 50% and 70% of the dataset

Prior Posterior

tma dob pfc ivd l1e l2f pg tma l1e l2f th pg bi

Prior trained on 50% of the dataset

P
re

-T
ra

in
d

o=
.1

G ERM 0 - .001 .0090 .1946 3.778 G invKL .0090 .1924 .1933±.0020 4.775 .2082
G invKL 0 .01 .001 .0085 .1937 3.778 G invKL .0084 .1909 .1922±.0022 4.913 .2068
G ERM .1 - .001 .0139 .1722 3.778 G invKL .0139 .1709 .1736±.0018 4.386 .1855
G invKL .1 .01 .001 .0222 .1746 3.778 G invKL .0222 .1725 .1760±.0020 4.703 .1875

P
re

-T
ra

in
d

o=
.2

G ERM 0 - .001 .0214 .1996 3.778 G invKL .0214 .1974 .1939±.0020 4.734 .2133
G invKL 0 .01 .001 .0169 .1963 3.778 G invKL .0169 .1941 .1930±.0022 4.859 .2100
G ERM .1 - .001 .0240 .1772 3.778 G invKL .0240 .1758 .1791±.0017 4.474 .1907
G invKL .1 .01 .001 .0394 .1764 3.778 G invKL .0393 .1747 .1734±.0019 4.606 .1897

Prior trained on 70% of the dataset

P
re

-T
ra

in
d

o=
.1

G ERM 0 - .001 .0057 .1616 6.127 G invKL .0057 .1602 .1643±.0020 6.882 .1774
G invKL 0 .01 .001 .0062 .1634 6.127 G invKL .0062 .1617 .1648±.0021 7.203 .1793
G ERM .1 - .001 .0098 .1443 6.127 G invKL .0098 .1430 .1470±.0017 7.006 .1595
G invKL .1 .01 .001 .0180 .1467 6.127 G invKL .0178 .1446 .1506±.0019 7.374 .1616

P
re

-T
ra

in
d

o=
.2

G ERM 0 - .001 .0151 .1639 6.127 G invKL .0151 .1622 .1696±.0018 7.161 .1797
G invKL 0 .01 .001 .0127 .1629 6.127 G invKL .0127 .1611 .1656±.0020 7.293 .1787
G ERM .1 - .001 .0175 .1484 6.127 G invKL .0175 .1471 .1506±.0016 7.043 .1638
G invKL .1 .01 .001 .0306 .1500 6.127 G invKL .0305 .1484 .1498±.0018 7.090 .1652

a tm: Training method.
b do: Dropout probability for the prior’s training.
c pf: Penalty factor κ for the prior’s training objective.
d iv: Initial value of the prior’s variances.
e l1: Empirical error estimate on the prior dataset.

f l2: Empirical error estimate on the posterior dataset.
g p: KL penalty Pen (2) in 10−4 units.
h t: Test error±standard deviation (from 1000 realisations).
i b: Final PAC-Bayesian bound.

• C4: convolutional layer; channels: IN 128, OUT 128; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C5: convolutional layer; channels: IN 128, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C6: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C7: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C8: convolutional layer; channels: IN 256, OUT 256; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C9: convolutional layer; channels: IN 256, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C10: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C11: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• C12: convolutional layer; channels: IN 512, OUT 512; kernel: (3, 3); stride: (1, 1); padding(1, 1);
• L1: linear layer; dimensions: IN 2048, OUT 1024;
• L2: linear layer; dimensions: IN 1024, OUT 512;
• L3: linear layer; dimensions: IN 512, OUT 10;
• f1: max pool (kernel size = 2, stride = 2);
• f2: max pool (kernel size = 2, stride = 2) & flatten;
• φ: ReLU activation component-wise.

All convolutional and linear layers are with bias.

For the 15-layer architecture, we experimented different prior trainings, with 50% and 70% of the training
dataset. In both cases, it was necessary to introduce an initial pre-training for the prior’s means, as otherwise
the Cond-Gauss algorithm alone could not significantly decrease the training objective. First, we initialised the
means with an orthogonal initialisation, as suggested in Hu et al. (2020). Then we optimised them by training
a deterministic network (with the same architecture) using the cross-entropy loss on the prior’s dataset, for 50
epochs with η = .005. Finally, via the Cond-Gauss algorithm, we completed the prior’s training and proceeded
with the posterior’s tuning following the same learning rate schedule as for the 9-layer case. We always used
SGD with momentum 0.9. Different objectives and dropout factors were used for training the prior, as detailed
in Table SM2, which also reports the results of our experiment.


