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Abstract

Survival models — particularly those able
to account for patient comorbidities via com-
peting risks analysis — offer valuable prog-
nostic information to clinicians making criti-
cal decisions and represent a growing area of
application for machine learning approaches.
However, current methods typically involve
restrictive parameterisations, discretisation
of time or the modelling of only one event
cause. In this paper, we highlight how gen-
eral cumulative distribution functions can be
naturally expressed via neural network-based
ordinary differential equations and how this
observation can be utilised in survival analy-
sis. In particular, we present DeSurv, a neural
derivative-based approach capable of avoid-
ing the aforementioned restrictions and flexi-
bly modelling competing-risk survival data in
continuous time. We apply DeSurv to both
single-risk and competing-risk synthetic and
real-world datasets and obtain results which
compare favourably with current state-of-the-
art models.

1 INTRODUCTION

1.1 Background

Survival analysis, also known as time-to-event anal-
ysis, is of fundamental importance to a wide variety
of applied fields. In finance it is used to estimate de-
fault risk over time (Green and Shoven, 1986; Baesens
et al., 2005; Dirick et al., 2017; Blumenstock et al.,
2020), whilst in manafacturing and operational set-
tings, estimating components’ time-to-failure allows for

Proceedings of the 25" International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Christopher Yau
University of Manchester
University of Oxford
Health Data Research UK

maintenance planning and yield prediction (Ma and
Krings, 2008; Susto et al., 2015; Ozturk et al., 2018).
However, perhaps the most prominent application of
survival analysis - and that which is the focus of this
paper - is prognosis prediction in healthcare settings.
In this context, the problem of interest is to predict
the personalised survival distribution of a patient given
their recorded covariates, in turn providing prognostic
value to clinicians (Figure 1). Although survival anal-
ysis has long been applied to medical data, increased
availability of healthcare data, in particular via per-
sonalised electronic health records (EHRs), has led to
growing interest from the machine learning community.

1.2 Motivation

In many real-world settings, patients often suffer from
a number of diseases simultaneously (comorbidities)
which all pose prognostic risk. To correctly capture
survival behaviours in this context, these competing
risks must be explicitly accounted for, however few
survival analysis models actively address this problem.
Furthermore, those that do tend to have undesirable as-
pects, e.g. misspecification issues (Austin et al., 2021),
discrete time (Lee et al., 2018) or restrictive parame-
terisations (Fine and Gray, 1999).

Many of these aspects are introduced into the mod-
els due to the challenge of continuously and generally
modelling the survival functions (or equivalently cumu-
lative distribution functions) involved. In this paper,
we provide a method suited to this challenge by using
the fact that the governing constraints on the func-
tions of interest are naturally expressed via deep neural
network-based ordinary differential equations. We then
show how this in turn provides an unrestricted approach
to competing risks survival analysis.

1.3 Contribution

Established approaches to survival analysis typically
either i) do not generalise to competing-risk settings,
ii) require the discretisation of time or iii) involve re-
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Figure 1: Competing Risks Survival Analysis
(CRSA). Given a patient’s covariates x(*), CRSA pro-
vides a personalised risk profile for each disease event,
for example death due to cancer, cardiovascular dis-
ease (CVD) or neurological disease (ND).

strictive parameterisations. In this paper, we use the
fact that survival analysis is an area in which flexible
models of cumulative distribution functions (CDFs) are
of critical importance in order to develop a new class
of deep survival analysis model capable of dealing with
competing risks in continuous time.

More specifically, our contributions are to: 1) Demon-
strate how general time-to-event CDFs can be intu-
itively modelled via neural networks (NNs) and ordi-
nary differential equations (ODEs) (DeCDF). (Sec-
tions 2.1-2.2). 2) Demonstrate an equivalence be-
tween DeCDF and certain normalising flow models.
(Section 2.3). 3) Show how DeCDF can be immedi-
ately applied to allow for continuous-time, single-risk,
deep learning-based survival analysis. (Section 3). 4)
Show how DeCDF can be extended to model cumu-
lative incidence functions (CIFs) and therefore per-
form competing-risk survival analysis (DeSurv). (Sec-
tion 4). 5) Demonstrate our models in the single- and
competing-risk settings using synthetic and real-world
examples, showing strong empirical performance whilst
allowing for both competing risks and continuous time
within the same framework. (Section 5).

1.4 Related Work

In recent years, healthcare-based survival analysis has
seen increased attention from numerous disciplines, in-
cluding machine learning. Such ML-based methods
have taken a variety of approaches to attempt to im-
prove classical methods. One common continuous-time
approach for single-risk data, instigated by Faraggi
and Simon (1995), is to build upon the Cox propor-
tional hazards (CPH) model (Cox, 1972). Faraggi and
Simon (1995) replaced the linear log-risk function of
the standard Cox model with a simple neural network
but found insignificant performance benefit. Katzman
et al. (2018) revisited this approach and found that by
employing improved modern deep learning machinery,
their similar model (DeepSurv) could outperform the
linear CPH model. Kvamme et al. (2019)’s Cox-Time
model retains the Cox formalism of DeepSurv (Katz-
man et al., 2018) but introduces non-proportionality
in the hazard function by involving time in the log-
risk function. Kvamme et al. (2019) also approximate
the standard Cox partial likelihood loss to allow for
greater compatibility with gradient descent-based learn-
ing. Yousefi et al. (2017) and Zhu et al. (2016, 2017)
apply NN-based Cox methodology to genomic and imag-
ing data respectively. Two recent works with links to
ours are Tang et al. (2021) and Ausset et al. (2021).
Tang et al. (2021)’s SODEN model uses ODEs, however
it uses them to parameterise the cumulative hazard
function, rather than the CDF as we do. It also uses
full ODE solves rather than quadrature and does not
consider the treatment of competing risks. Ausset et al.
(2021) consider how normalising flows can be applied
to single-risk survival analysis, again using full ODE
solves and not considering competing risks. Other
works to apply ML methods to continuous-time single-
risk survival data include piecewise-constant hazard
models (Friedman, 1982; Fornili et al., 2014; Kvamme
and Ornulf Borgan, 2019), Deep Exponential Family
models (Ranganath et al., 2016), and Random Forest
models (Breiman, 2001; Ishwaran et al., 2008; Mogensen
et al., 2012; Dietrich et al., 2016).

Many survival analysis approaches discretise time into
intervals, allowing the implementation convenient use
of fixed and finite model outputs to compute risk at
each designated time step. For example, the Logistic
Hazard (Brown, 1975), PLANN (Biganzoli et al., 1998)
and Nnet-Survival (Gensheimer and Narasimhan, 2019)
models parameterise the conditional hazard (the prob-
ability of an event in an interval given survival up to
that interval) at each time step in this manner. Mean-
while, the (N-)MTLR (Yu et al., 2011; Fotso, 2018) and
DeepHit (Lee et al., 2018) models target the probability
mass function (PMF) for event occurrence directly.

Apart from DeepHit (Lee et al., 2018), the aforemen-
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Figure 2: Modelling Distributions with DeCDF. DeCDF allows flexible modelling of general time-to-event
distributions. Left: Example CDFs and corresponding PDFs modelled by DeCDF. Right: An example of DeCDF
learning to model a rich distribution from data, in this case a Mixture of Gaussians (MoG) distribution.

tioned models do not consider competing risks. Fur-
thermore, proper treatment of competing risks is not
typical in the wider survival analysis literature, and it
has been noted that greater attention should be to this
aspect of survival data (Koller et al., 2012). Whilst
it is technically possible to apply single-risk methods
to competing-risk data by considering only one event
type a valid event and other event types as censor-
ing, notable bias is introduced (Austin et al., 2016).
One approach to perform competing risks analysis is
the Fine-Gray subdistribution hazard model (Fine and
Gray, 1999; Austin et al., 2016), however, similarly
to the standard Cox model, this involves restrictive
assumptions on the hazard’s functional form and its
covariant dependence. Furthermore, the model has
problematic aspects such as outputting potentially in-
valid overall time-to-failure CDFs capable of exceed-
ing 1 (Austin et al., 2021). Some recent works have
addressed competing risks from a modern ML point
of view. For example, DMGPSA (Alaa and van der
Schaar, 2017) expresses patient hitting times with re-
spect to each event type via Deep Multi-Task Gaussian
Processes (Damianou and Lawrence, 2013). Meanwhile,
DeepHit (Lee et al., 2018) addresses competing risks
by explicitly parameterising the joint PMF over failure
time and event type using a large softmax-based neural
network architecture.

The objective of our work (DeSurv) is to provide a natu-
ral, continuous time-based model that permits flexible
modelling of survival functions whilst also allowing
for both single- and competing-risk settings. It can
therefore be thought of as an extension of DeepHit to
incorporate continuous time, or as an extension of a
method such as DeepSurv to incorporate competing
risks.

2 NEURAL CDF MODELLING

In this section, we describe how a cumulative distribu-
tion function can be naturally represented in terms of
neural networks and ordinary differential equations.

2.1 Problem Setup
Let T be a random variable representing time to failure
with support R>¢ and denote its probability density
function (PDF) and cumulative distribution function
(CDF) by f(t) and F(t) respectively. F'(t) is a valid
CDF if it satisfies

1. F(0)=0

2. F(t+a) > F(t)

3. limy_ e F(t) = 1.

Ya > 0

Condition 1 can be considered an initial condition,
whilst condition 2 is a monotonicity condition. Both
are naturally expressed in the language of ordinary dif-
ferential equation (ODE) initial value problems (IVPs).
More specifically, specifying F(0) = 0 as an initial
condition and enforcing %—f > 0 in an IVP will en-
sure condition 1 and 2 are satisfied. The simultaneous
satisfaction of condition 3 is a matter of practitioner
choice.

2.2 DeCDF

Our approach, which we denote DeCDF, is to model
an underlying strictly monotonic function u(t) as an
integral, i.e. to express its derivative in terms of ¢ only,
and then apply a suitable transformation to u(t) to
obtain F'(t). Perhaps the most immediate ML-aware
example of this is to let g(t) be a neural network with
positive range and set F'(t) = H(u(t)), where

d

d—ltt =g(t); H(z) =tanhz and u(0)=0. (1)
Within this formalism, u(¢) can be computed using
Gauss-Legendre (GL) quadrature of order n (we use
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Table 1: Survival Datasets. Details of the datasets used to demonstrate model performance.

Event time Censoring time

Dataset Observed Censored Features
Mean Max Mean Max
METABRIC 1103 (58%) 801 (42%) 9 100 355 160 337
SUPPORT 6036 (68%) 2837 (32%) 14 6.85 64.8 35.3 67.6
C 1 5699 (19% 0.080 0.988
Synth ¢ (19%) 15000 (50%) 12 0.043 128
Cause 2 9301 (31%) 0.086 1.11
BC 116170 (19 57.8 311
SEER (19%) 442685 (74%) 23 112.1 311
CVD 39639 (7%) 95.4 311

l Input l l Model l l Output l
u (2, %)
DeCDF u® (t,x) Cumulative Incidence
Functions for all K events
: FO (¢x) = 7V tanh(u())
Survival w®) (t,x)
Time ) FO (t]x) = 7 tanh(u®)
Patient 1
Covariate G%\’ ml )(x)
FE) (t]x) = 75 tanh(u(X))
) (%)
Softmax NN
K
25 (x) 3oa =1
k=1

Figure 3: DeSurv Model Architecture. DeSurv
flexibly models the cumulative incidence function of
each event by performing elementwise multiplication
between the outputs of a DeCDF block and a softmax
neural network block. In the absence of competing
risks, only the DeCDF block is required.

n = 15 throughout) via

u(t) = ;iwig (50+D).

with wu;,w; the order n GL quadrature nodes and
weights respectively, computed via Legendre polynomi-
als (see e.g. Press et al. (2007) for details). This compu-
tation has defined computational complexity and can
be readily backpropagated and parallelised for efficient
implementation in a variety of frameworks. Example
outputs of DeCDF are shown in the left panel of Fig-
ure 2, whilst the right panel demonstrates DeCDF’s
ability to estimate a Mixture of Gaussians distribution
from the displayed histogram data. Further details of
this experiment can be found in Appendix A.

2.3 Normalising Flow Viewpoint

The form of (1) arises intuitively when considering how
to model a CDF in terms of its derivatives, however it
is natural to ask which functions could be used in place
of tanh and whether there are any shortcomings in the
generality of this specification. In fact, tanh can be
replaced with any strictly increasing CDF on R>q and
the method is able to model any well-behaved time-to-
event distribution. This can be seen by considering the
problem from the perspective of normalising flows.

Normalising flows (Rezende and Mohamed, 2016;
Kobyzev et al., 2020; Papamakarios et al., 2021) model
rich distributions of a random variable X by considering
X to be the result of applying a learnt transformation
T to an underlying random variable Z which follows a
simple distribution. This in turn defines the density of
X in terms of the density of Z and 7. When perform-
ing normalising flow analysis, one chooses to model T
(the generative direction) or 7! (the normalising direc-
tion). Modelling 7 allows for straightforward sampling
of X, whilst modelling 7! allows for straightforward
density evaluation of X. It has been shown (see e.g. Pa-
pamakarios et al. (2021)) that normalising flows are
capable of capturing arbitrarily complex X distribu-
tions using arbitrarily simple Z distributions.

To elucidate the link between normalising flows and
DeCDF, first note that (1) implies a density on T of
dF du
=— =H — =H .(2
" (w(®) 3, (u(t)g(®). (2)
Now let p.(z) denote the PDF of the random variable
Z with support R>q and let 71(t) = u(t), with u(t)
as in (1). Applying change of variables provides the
density on T as

pe(t)

du

pe(t) = p2(u(t)) 5 = p=(ult))g(t)- (3)

Comparing (2) and (3), we see that H'(u(t)), that is
the derivative of the transformation function in the
DeCDF context, can be seen as the base distribution
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Table 2: METABRIC Performance Metrics.

Method Cta IBS INBLL MAE RMSE
Cox 0.621 £ 0.035 0.176 £ 0.009 0.523 £0.021 75.60 +£4.86  87.76 + 4.86
Cox-CC 0.634 £0.012 0.177 £ 0.007 0.522 £0.017 74.15+£4.54  86.99+4.10
DeepSurv 0.634 £ 0.019 0.175 £ 0.006 0.519 £ 0.014 74.45+4.65  87.36 +4.98
Cox-Time 0.664 £ 0.019 0.175 £ 0.005 0.518 £0.016 66.59 £2.90  78.60 £ 3.07
DeepHit 0.673 £0.013  0.188 &+ 0.006 0.549 £ 0.013 88.3 £5.05 100.11 +4.90
DeSurv 0.660 £0.022 0.172+0.008 0.509+0.020 54.76 +£2.14 65.5+2.44

PDF in a normalising flow viewpoint. H(x) can there-
fore be taken to be any strictly increasing CDF function
on R and (1) remains valid. Meanwhile, the under-
lying monotonic function, u(t), which is transformed
by H in the DeCDF context can be seen as 7! in
normalising flow language. This means that u(¢) could
be modelled via established normalising flow invert-
ible functions to achieve similar functionality to our
approach. We return to this point in the discussion
as a recommendation for future work. Furthermore,
the above relationship demonstrates the general expres-
sivity of DeCDF and hence its suitability for flexible
time-to-event distribution modelling.

3 DeCDF FOR SINGLE-RISK
SURVIVAL ANALYSIS

3.1 Problem Setting

Survival analysis in the presence of a single risk
considers data which for N subjects takes the form
D = {50 xO) kO}N  where s() denotes time-to-
event, x() denotes subject covariates and k() denotes
event type. In the single-risk setting, ¥ € {@, 1},
with k() = 1 implying the event of focus (e.g. death)
occurred at s and k(¥ = @ implying right cen-
sorship, that is the subject being lost to follow up,
often for an unknown reason. Given training data
Dirain = {s(i), x(®) k(i)}fil, the goal is to learn a model
which is capable of providing accurate personalised
prognostic cumulative distribution functions of the sur-
vival time for test subjects. That is, given covariates
of a test subject, x, be able to provide an accurate
estimate of F(t|x) = P(T < t|x).

3.2 Applying DeCDF

Given DeCDF’s ability to model CDFs, we can directly
utilise its methodology for this modelling purpose by
simply adding x as an additional input to the model.
More specifically, we let g4(x,t) be a neural network
with parameters ¢ and positive output range (enforced
via softplus) and set F(t|x) = tanh(u(t|x)), where

du

i with  »(0) = 0.

9¢ (X’ t)

Note that, by the argument of Section 2.3, tanh could
be replaced by any valid CDF on Rxy.

The negative log-likelihood for
{0, x® EOIN and parameters ¢ is

data D

L=— i [11 (M - @) log (1 - ﬁ(s<i>|x<i>)) n
1 (k@ + @) log (F’(s@') \x(i))) ] .

We use this as our training loss and apply minibatch
gradient descent via Adam (Kingma and Ba, 2014) to
optimise the neural network parameters ¢.

4 EXTENDING TO COMPETING
RISKS: DeSurv

4.1 Problem Setting

In the competing risks setting, survival data again
takes the form D = {s(), x®) E@}IN but now k®) ¢
{2,1,2,..., K} for K event types of interest. Typi-
cally, these event types code for “death due to cause
k". For example, in a study of cancer patients, some
participants may suffer from comorbidities such as car-
diovascular disease (CVD) and may die due to these
competing risks rather than cancer itself.

Whilst the overall survival time CDF, F(t|x), is of
interest in the competing risks context, the quantity
of greatest interest is the cumulative incidence func-
tion (CIF), Fy(t|x), associated with each event type.
This is defined as Fj(t|x) = P(T < t,k|x), and there-
fore encodes the probability of experiencing event k
before time t accounting for the presence of competing
risks. Marginalising out the event type provides the
overall survival time CDF as F(t|x) = Zle Fr(t]x).

4.2 DeSurv

DeCDF can be adapted to the competing risks set-
ting by noting that each cumulative incidence func-
tion is a scaled CDF as Fy(t|x) = P(T < t,k|x) =
P(T < tlk,x)P(k|x) where the conditional CDF,
P(T < t|k,x), which we denote Fj(t[x), is a valid
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Table 3: SUPPORT Performance Metrics.

Method Cia IBS INBLL MAE RMSE
Cox 0.562 £ 0.005 0.211 £ 0.003 0.609 £0.006  8.05+0.17  10.86 +0.31
Cox-CC 0.600 £ 0.007 0.200 £ 0.004 0.588£0.013 8114+0.16 10.85+0.29
DeepSurv 0.603 = 0.006 0.199 + 0.004 0.585+0.013  8.09+0.17  10.85+0.29
Cox-Time 0.612 £ 0.008 0.200 £ 0.004 0.586 £ 0.010 7.94+0.21 10.84 £0.32
DeepHit 0.619 +0.010 0.216 £+ 0.002 0.622+0.004 20.37+£1.08 21.73+1.14
DeSurv 0.622 +0.010 0.199+0.003 0.583+0.010 7.86+0.17 10.75+0.22

CDF and P(k|x), which we denote mj(x), satisfies
Zle 7 (x) = 1. The CIF can therefore be captured
by simultaneously modelling {Fk}ff:l via a DeCDF
approach and {m(x)}5_, via a neural network with
softmax activation. We refer to this model as DeSurv.
The architecture for DeSurv is shown in Figure 3.

data D

The negative log-likelihood for
{0, x® EOIN - and parameters ¢ is

K
L=— Z l]l (k(i) = @) log (1 — Z Fk(s(i)x(i))> +
k=1

i=1
1 (k:(j’) # @) log (F,;m (s(i)|x(i))) ] .

As in the single risk case, we take this to be our loss
and optimise via Adam (Kingma and Ba, 2014) to learn
the parameters ¢ of the neural networks describing the
{F | and {m }X | mappings.

5 EXPERIMENTS

In this section, we demonstrate the behaviour of
DeSurv and other related approaches on real and syn-
thetic datasets from single-risk and competing-risk set-
tings. We utilise the same neural network architec-
tures for each method as far as possible and provide
hyperparameter settings in the supplementary mate-
rial. Train/Validation/Test splits are 64%/16%/20%
in all cases. Table entries are provided as mean + std
and are calculated by re-running experiments (includ-
ing data partitioning) in their entirety 10 times, each
time with a new random seed drawn from a seeded
RNG. The computational requirements of all involved
algorithms were relatively low, with all experiments
able to run within hours on a 2.7 GHz Quad-Core i7
processor. A complete PyTorch-based (Paszke et al.,
2019) implementation of DeSurv can be found at
https://github.com/djdanks/DeSurv.

5.1 Single-Risk Survival Analysis

We evaluate our model in the single-risk setting along-
side various single-risk benchmarks discussed in sec-

tion 1.4 on two anonymised real-world medical datasets:
METABRIC and SUPPORT.

5.1.1 Datasets

The METABRIC dataset contains gene expression
profiles and clinical covariates of breast cancer (BC)
patients for the purposes of BC subgroup identifi-
cation. We follow the practice of Katzman et al.
(2018), and utilise 9 features, namely 4 gene indica-
tors (MKI67, EGFR, PGR, and ERBB2) and 5 clinical
covariates (hormone treatment indicator, radiotherapy
indicator, chemotherapy indicator, ER-positive indica-
tor and age at diagnosis). SUPPORT (Knaus et al.,
1995) is a larger dataset derived from a prognostic
study of seriously ill patients and contains 14 covari-
ates. We prepare the dataset as in Katzman et al.
(2018). Further dataset details are provided in Table 1.

5.1.2 Metrics

We evaluate the models using the five metrics detailed
below. We evaluate the metrics using the pycox li-
brary (Kvamme et al., 2019).

Time-dependent Concordance Index (Antolini
et al., 2005): We define the Cause-specific Time-
dependent Concordance Index for event &k so that the
metric is immediately applicable to the competing risks
setting. Replacing CIF with CDF in what follows
provides the single-risk version. Consider two patients
1 and j. Suppose patient i experiences event k) at time
s() and that patient j outlives patient i so that s(*) <
s(). Then, the time-dependent concordance represents
the probability that the predicted CIF of patient ¢ for
event k(¥ exceeds the same event’s predicted CIF for
patient j. Intuitively, it argues that if the model is
good, the predicted cumulative risk at time s should
be greater for the patient who experiences an event at
that time than for the patient that remains alive beyond
s(0). The associated formal definition and empirical
computation of this metric is presented in Appendix
B.

Integrated Brier Score (IBS): The Brier score (BS)
is a metric which measures the ability of a classifier to
predict binary outcomes. Given N binary observations
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Table 4: Competing Risks Concordance Values.

SEER Synthetic
Method Cq B9 Ciq©VP) Cia™ Cia?

DeepHit 0.833 £0.002 0.873 +0.002 0.611 £0.007  0.571 £ 0.004
DeSurv 0.826 +£0.002 0.879 £+ 0.002 0.629 £ 0.009 0.587 +0.005
Table 5: Additional Competing Risks Metrics.

Dataset ~ Method RMSE™ RMSE® BCE Acc.
SEER DeepHit 97.86 £+ 6.28 103.65 £ 5.77 1.330+£0.004  75.01 £0.83
DeSurv 47.46 + 0.53 76.82+1.17 1.150+0.006 79.73+0.33
Synthetic DeepHit  0.0956 &+ 0.0030 0.1032 £+ 0.0013 1.396 +0.001 62.02+1.04
DeSurv  0.0944 +0.0022 0.1013 +0.0016 1.389+0.003 61.78 +0.91

y; € {0,1} and N predictions p; from a binary classifier
for p(y; = 1), the BSis 3, (y; — p;)?/N. In the survival
analysis setting, a Brier score, BS(¢) can be obtained
for N patients at time ¢ by considering the Brier score
of the binary variable U; which is 1 for patients who
live beyond ¢ and 0 for those that experience an event
before ¢ (see Appendix B for a full mathematical defi-
nition). Numerically integrating BS(¢) over the range
of test times and dividing by the interval provides the
Integrated Brier Score (IBS) we use. Smaller values
indicate better classification performance (Graf et al.,
1999).

Integrated Negative Binomial Log-
Likelihood (INBLL): Following on from the
above IBS discussion definition, we can define the
negative log-likelihood of the variable U = {U;}Y,
and integrate this over time (see Appendix B for a
full mathematical definition) to obtain the Integrated
Negative Binomial Log-Likelihood (INBLL), a metric
for which smaller values indicate better classification
performance (Kvamme et al., 2019).

Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE): These represent the MAE
and RMSE between the mean of a model’s patient-
specific time-to-event distribution and that patient’s
observed event time calculated across all (non-censored)
patients.

5.2 Competing Risks Survival Analysis

We evaluate DeSurv in the competing risks setting us-
ing the methodology of Section 4 on real and synthetic
data alongside the established deep learning-based com-
peting risks model DeepHit (Lee et al., 2018), which
provides discretised time output.

5.2.1 Datasets

The Surveillance, Epidemiology, and End Results Pro-
gram (SEER) dataset contains anonymised survival
data from cancer patients in the United States. We ex-
tract breast cancer (BC) patients from the database and
select those patients that either i) were right censored,
ii) died from BC or iii) died from cardiovascular dis-
ease (CVD) (see Appendix C for further details), yield-
ing data with censorship and two competing risks (see
Table 1).

We also generate a synthetic dataset of the style of that
in Lee et al. (2018) with N = 30,000 examples drawn
from the generative process

xgi), ng‘)’ Xgi) ~ U[0,1]

T,Ei) ~ Exp (( )2 ) = Exp </\§€i)) ,

for k = 1,2 with (v1,72,73) = (0.5,2,1) and applied
random censoring to 50% of examples (see Table 1).

(1)

T.(1) + X!

V3 X3

5.3 Results Discussion

Tables 2 & 3 show that DeSurv outperforms alternative
single-risk methods overall on both the METABRIC
and SUPPORT datasets. DeepHit does demonstrate
a higher concordance than DeSurv on METABRIC
and a comparable concordance on SUPPORT, how-
ever its performance is notably poorer with respect to
other metrics, suggesting limited calibration. Visual
inspection of the survival functions associated with
DeepHit relative to those associated with the perfor-
mant Cox-Time and DeSurv models confirms this (see
Figure 4). In particular, it can be seen that whilst the
models generally agree on the ranking of patient risk
(reflected in concordance values), the survival functions
associated with DeepHit exhibit a lack of patient-level
variation relative to those of DeSurv and Cox-Time.
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This highlights the importance of looking beyond solely
concordance values during model evaluation and com-
parison.

DeSurv also extends successfully to the competing-
risk setting, outperforming DeepHit on the synthetic
dataset and performing competitively with DeepHit
with respect to concordance on SEER. Visualisations
of SEER patient CIFs suggest that DeepHit’s tendency
to lack trajectory separation is also present in the com-
peting risk case, whereas DeSurv captures a variety of
risk patterns (Figure 5). Additional visual comparisons
of survival functions and CIFs across the models and
datasets are provided in Appendix D. Further insight
can be gained via the additional evaluation metrics
shown in Table 5, namely the RMSE for each of the
competing risks as well as the binary cross entropy
(BCE) and accuracy (Acc.) values associated with the
task of predicting which event type occurred for those
that experienced an event. DeSurv again demonstrates
a strong calibration performance relative to DeepHit,
particularly on SEER, despite demonstrating similar
concordance performance, again highlighting the im-
portance of considering a variety of metrics when eval-
uating overall survival model performance.

6 DISCUSSION

We have shown how general time-to-event CDFs can be
modelled naturally in the language of derivative-based
models, yielding a general model for such functions,
DeCDF. We have also demonstrated how DeCDF can
be applied immediately to single-risk survival anal-
ysis and developed a novel DeCDF-based survival
analysis method, DeSurv, capable of flexibly mod-
elling competing-risk survival data in continuous time.
DeSurv can be seen as an extension of DeepHit (Lee
et al., 2018) to continuous time or an extension of
work such as DeepSurv (Katzman et al., 2018) and
Cox-Time (Kvamme et al., 2019) to the competing-risk
setting.

Our work also highlights a link between DeCDF and
normalising flows, namely that the ODE solution and
transformation function in DeCDF can be thought of
as a normalisation direction transformation and base
CDF respectively in normalising flow language (see Sec-
tion 2.3). In this paper, we drew upon this equivalence
to reinforce the expressivity of DeCDF. A natural exten-
sion of our work would be to explore this link further,
for example by investigating the effect of flow-based
transformation parameterisation and base distribution
on performance. Another possible avenue for further
work would be to investigate alternative ODE-based
CDF parameterisations, an example of which is pro-
vided in Appendix E. It would also be of interest to
apply DeCDF to CDF-based problems in other appli-

DeepHit

—— Patient 1
Patient 2
Patient 3
Patient 4
Patient 5

0 50 100 150 200 250 300
t

Cox-Time

—— Patient 1
Patient 2
Patient 3
Patient 4
Patient 5

0.0

0 50 100 150 200 250 300
t

DeSurv (Ours)

—— Patient 1
Patient 2
Patient 3
Patient 4
Patient 5

0 50 100 150 200 250 300
t

Figure 4: METABRIC Survival Functions. 25-
year survival trajectories for five random test patients
according to three of the considered models. Note
that whilst the models agree on patient risk ranking,
DeepHit exhibits limited trajectory separation relative
to DeSurv and Cox-Time.

cation settings.

We also note that whilst we and others stress the im-
portance of predictive performance of survival analysis
models in prognostic settings, it is also of interest to
understand how the personalised survival functions
output by our model and others such as DeepHit (Lee
et al., 2018) depend on covariates and hence which
covariates are most associated with disease prognosis.
The required sensitivity analysis for this work can be
readily carried out on DeSurv and other deep learning
models via automatic differentiation and would also
represent a valuable contribution.

A key potential use case for deep survival analysis
models such as DeSurv is to provide prognostic infor-
mation to clinicians making critical decisions. Applying
poorly performing models in this context would clearly
adversely affect patient care and would represent a
particularly negative social consequence. Hence, sig-
nificant validation testing including human-computer
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BC, DeepHit

Patient 1
| Patient 2

—— Patient 3
—— Patient 4
7 — Patient 5

BC, DeSurv

Patient 1
Patient 2
—— Patient 3
0.4 — Patient 4
—— Patient 5

Figure 5: SEER CIFs. 25-year cumulative incidence
functions for five random test patients according to
DeepHit and DeSurv. As in the single-risk case (Fig-
ure 4), the models generally agree on patient risk rank-
ings, however DeepHit exhibits reduced trajectory sep-
aration relative to DeSurv.

interaction elements would have to be performed on
any model hoping to deploy in a clinical setting. Addi-
tionally, whilst a significant benefit of models such as
DeSurv is their ability to learn complex dependencies
between patient covariates and event risk profiles from
data, this can also act as a limitation. In particular, if
trained blindly on well-curated retrospective data, these
models will inherit any biases which may be present,
meaning they may not generalise well to the every-
day clinical setting. When training deployment-stage
models, training should be carried out in a bias-aware
way in order to avoid systemic algorithmic inequality
such as the racial bias recently shown to exist in a U.S.
healthcare management algorithm (Obermeyer et al.,
2019).
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Supplementary Material:
Derivative-Based Neural Modelling of Cumulative Distribution
Functions for Survival Analysis

A CDF AND PDF ESTIMATION FROM DATA VIA DeCDF

Figure 2 of the main paper visualises the ability of DeCDF to represent varied time-to-event distributions. Here
we present in more detail how the figure was obtained.

A.1 Distribution Estimation From Data
In the univariate case considered in Figure 2, DeCDF with a parameter setting ¢ takes in & and outputs a valid

CDF Fy(x). The density associated with this CDF is fy(z) = dd% which, assuming the setup in Section 2.2 of the

main text, can be calculated as f,(z) = (1 — F(z)?)gy(x), where g,(z) represents the underlying positive-output
NN (see Section 2.2 of the main text).

Given N independent and identically distributed samples D = {z;}}¥, from a continuous distribution P, the
negative log-likelihood under the DeCDF model is

N
L($;D) = — | D log (1 — Fy(w:)?) +log (g4 (1)) | - (4)

i=1
Minimising this with respect to ¢ provides an estimate for the distribution P.

A.2 Figure 2, Left Panel

To generate this figure, 1000 samples were drawn from each of 3 distributions, namely A) a Gaussian with
u=3,0=0.6, B) a Weibull with £k = 1.5, \ = 1, and C) a Weibull with ¥ = 1,\ = 1. The parameters of DeCDF
were trained using the loss above to begin to emulate these distributions. The aim of this procedure was not to
optimise for and test DeCDF’s ability to emulate distributions, but rather to show some example outputs which
can arise from the model.

A.3 Figure 2, Right Panel

To generate this figure, 1000 samples were drawn from the following (Mixture of Gaussians) generative process
z; ~ Bernoulli(p); z; ~ N (pz,,02,),

with p = 0.35, 40 = 2,41 = 4 and 01 = 09 = 0.4. The loss in (4) was then optimised for 1000 iterations using
Adam (Kingma and Ba, 2014) with a 102 learning rate to obtain the DeCDF model with the density shown in
the right panel of Figure 2. The displayed Gaussian Kernel Density Estimate (KDE) is obtained via the default
use of the scipy.stats.gaussian_kde function.

B EVALUATION METRIC DETAILS

In Section 5.1.2 of the main paper, we introduce the metrics we use for survival analysis model evaluation. Here
we provide the mathematical definitions of the metrics.
B.1 Time-Dependent Concordance Index

If patient ¢ experiences event k() at time s() and patient j outlives patient i so that s(V < s(9), the time-dependent
concordance represents the probability that the predicted CIF of patient i for event k() exceeds the same event’s
predicted CIF for patient j. The time-dependent concordance for event k, denoted Ct(g), is therefore formally

defined via
P (Fk (s<’> |x<”) S By (Sm | X(a)) | s® < @ kO = k) .
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Figure 6: METABRIC Survival Functions. 25-year survival trajectories for five random test patients
according to four of the considered models. (Appendix D)

In practice, it is empirically estimated via

sy A 1 (Fk (Sm |x(i>) > B (Sm |x(j)))
Zi;&j Ak,ig ’

(k)
Coy =~

where Ay ; ;=1 (k(i) =k,s0 < 5(j)) )

B.2 Integrated Brier Score (IBS)

At time ¢, let U; denote the random variable which takes value 1 if s(Y) < ¢, i.e. if patient ¢ has experienced an
event, and 0 if s() > ¢, i.e. if patient 7 is alive at t. The Brier Score (defined in the main paper) associated with
this variable over all patients ¢ = 1,..., N is

BSot) = -3 (17 () 1 (s < 00 =1} £ (11x0) 2 {s0 5 1}

In the presence of random censoring the terms are reweighted as

. 0\ 2 . .

s - L3 (1= F@1xO) 1 {0 <60 =1} p(y)x0)21 {50 > 1)
t) =~ 4 + i
DN G0) Gt)

)

where G is the Kaplan-Meier estimate of the censoring survival function P(C > t) (see Graf et al. (1999) for
details). The IBS is obtained via
to
/ BS(s)ds,

2 —1t1 Jy,

IBS =

with the calculation performed using pycox with 1000 time point evaluations.
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Figure 7. SUPPORT Survival Functions. Five-year survival trajectories for five random test patients
according to four of the considered models. (Appendix D)

B.3 Integrated Negative Binomial Log-Likelihood (INBLL)

The (1/N-scaled) negative log-likelihood for the random variable U = {U;}Y; (defined above during the IBS
definition) at time ¢ is

N
1 ~ ) . . ~ . .
NBLL(t) = — > [log {F (t | x(”ﬂ 1 {s(” <t k@ = 1} + log [1 - F (t | x(”ﬂ 1 {s“) > t}] .
i=1
Applying the same censoring weighting as previously provides

i o Lo [lE[F eI 1{0 <tk0 =1} log[1-F (¢ x)]1{s0 > 1}
"= _N; G (s0) + )

This can be integrated as in the IBS case as

INBLL =

to
/ NBLL(s) ds

2 —1t1 Jy,
to obtain the INBLL metric.

B.4 Mean Absolute Error (MAE)
We define the MAE to be
> |5(i) _ §(i)| = (k(i) - 1)
Zz‘ 1 (k’(i) = 1) ’
where 59 and §( denote the observed event time and mean of the predicted survival distribution respectively
for patient q.

MAE =
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B.5 Root Mean Square Error (RMSE)
We define the RMSE to be

3 (560 — 50)7 1 (k0 = 1)
RICCET

where s and §% denote the observed event time and mean of the predicted survival distribution respectively
for patient 3.

RMSE =
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Figure 8: Synthetic Cumulative Incidence Functions. Cumulative incidence functions for five random test
subjects according to DeepHit and DeSurv. (Appendix D)

C EXPERIMENTAL DETAILS

C.1 Dataset Preprocessing

As noted in the main paper, no additional preprocessing was performed on the METABRIC and SUPPORT
datasets beyond that described in Katzman et al. (2018).

C.1.1 SEER

We extract data from the SEER database corresponding to “Female malignant breast cancers". From this data,
we extract patients with time-to-event measurements who either i) are alive as of the last measurement, ii)
experienced death attributable to their cancer diagnosis, or iii) died due to “Diseases of heart", which we refer to
as cardiovascular disease (CVD). We utilise all present informative variables, providing 23 (as noted in other
works using (previous verions of) SEER, such as DeepHit (Lee et al., 2018)) variables including age, race, grade,
laterality, histology codes, treatment information and tumour size (see e.g. this SEER dictionary for example
SEER features). Missing values were mode imputed.

C.2 Model Hyperparameters

All neural networks had two 32-unit hidden layers with ReLU activations. The Adam optimiser (Kingma and Ba,
2014) was used with 87 = 0.9, 82 = 0.999, o € {1072,1073} and batch size was 32 in all cases. As a discrete-time
method, DeepHit requires a time discretisation scheme. In each case, we discretised the time frame into 300 equal
intervals, leading to the output layer of DeepHit having 300K output nodes for K competing risks. In the loss


https://seer.cancer.gov/data-software/documentation/seerstat/nov2019/TextData.FileDescription.pdf
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of DeepHit, we set a relative weight of 4:1 between the likelihood and ranking components respectively and set
o = 0.1 following Lee et al. (2018).

D EXAMPLE INFERRED SURVIVAL FUNCTIONS AND CIFS
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Figure 9: SEER Cumulative Incidence Functions. 25-year cumulative incidence functions for five random
test patients according to DeepHit and DeSurv. (Appendix D)

To gain insight into model behaviour, we visualise inferred survival functions and CIFs on each dataset.

Figures 6 and 7 show the survival functions of five random test patients in the METABRIC and SUPPORT
datasets respectively according to the trained Cox, Cox-Time, DeepHit and DeSurv models. Note in each case
that the models generally agree on the relative order of patient risk, however the trajectories are less separated by
DeepHit than other models. Note also the similarity between DeSurv’s trajectories and those found via Cox-Time,
arguably the prevailing modern continuous time single-risk survival analysis approach at the time of writing.

Figures 8 and 9 show the cumulative incidence functions (CIFs) for five random test patients in the synthetic and
SEER datasets respectively. As in the single-risk case, the models generally agree on the risk orderings of the
patients, but DeSurv demonstrates increased patient-dependent trajectory separation.

E AutoCDF

In Section 2.2 of the main paper, we present DeCDF as the natural way to employ derivative-based methodology
to CDF modelling. However, as stated in the discussion, there exist other derivative-based approaches which
could be investigated.

One immediate suggestion, which we refer to as AutoCDF due to the autonomous nature of the governing ODE,
is to let g(F') be a function with range R~( (e.g. a neural network with appropriate output activation) and let

% =(1-F)g(F) with F(0)=0. (5)

The main drawback of this approach compared to DeCDF is that the computation of F (¢t = t*) via (5) requires
a full ODE solve (not just {-domain quadrature) from ¢ = 0 to ¢ = ¢*. Whilst not infeasible, for g(F') a neural
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Table 6: Effect of Increased Number of Discretisation Points on Synthetic Data DeepHit Perfor-
mance.

Method Cia Ca®
DeepHit (n=300) 0.611 £0.009 0.570 £ 0.004
DeepHit (n—1000) 0.627+0.007  0.583 % 0.004
DeepHit (n=10000) 0.626 + 0.009 0.584 + 0.006
DeSurv (10000) 0.637 +=0.010 0.592 +0.006

network ODE solves can introduce implementational and computational complexity. Using adaptive ODE
solvers results in a forward operation with an a priori unknown computational complexity which is not readily
parallelisable. Furthermore, we will require gradients of this forward operation, and whilst these can be estimated
using the adjoint method reintroduced by Chen et al. (2018), this approach does not necessarily compute good
approximate gradients (Gholami et al., 2019). Moreover, popular open-source implementations do not typically
offer both robust neural network functionality and fully autodiff-aware ODE solvers able to reliably calculate
gradients in all settings (see e.g. Rackauckas et al. (2018) for method comparisons). The primary framework
at the time of writing which attempts this is Julia’s SciML initiative (Rackauckas and Nie, 2017) and is under
ongoing development. These issues must be considered if modelling via (5) is performed.

F ADDITIONAL SYNTHETIC DATA EXPERIMENT

In Section 5 and Table 4 of the main paper, DeepHit demonstrated limited discriminative performance on the
synthetic data. As the synthetic data contains many subjects with small hitting times, one may expect that
performance should improve as the number of discretisation points is increased. To investigate this, we repeat the
experiment associated with Table 4 with n = 1000 and n = 10000 discretisation points (Table 6). Here it can be
seen that increasing the number of discretisation points improves performance. However, performance appears
to saturate for large n, and with 10000 discretisation points DeepHit still exhibits a lower concordance than
DeSurv (for comparison we reevaluate DeSurv here using 10000 evaluation points when computing the CIFs for
concordance). Note that whilst DeSurv’s neural network output dimensions are always K (= 2 here), DeepHit’s
are nK, hence for n = 10000 in Table 6, 20000 output dimensions are required.



	INTRODUCTION
	Background
	Motivation
	Contribution
	Related Work

	NEURAL CDF MODELLING
	Problem Setup
	DeCDF
	Normalising Flow Viewpoint

	DeCDF FOR SINGLE-RISK SURVIVAL ANALYSIS
	Problem Setting
	Applying DeCDF

	EXTENDING TO COMPETING RISKS: DeSurv
	Problem Setting
	DeSurv

	EXPERIMENTS
	Single-Risk Survival Analysis
	Datasets
	Metrics

	Competing Risks Survival Analysis
	Datasets

	Results Discussion

	DISCUSSION
	CDF AND PDF ESTIMATION FROM DATA VIA DeCDF
	Distribution Estimation From Data
	Figure 2, Left Panel
	Figure 2, Right Panel

	EVALUATION METRIC DETAILS
	Time-Dependent Concordance Index
	Integrated Brier Score (IBS)
	Integrated Negative Binomial Log-Likelihood (INBLL)
	Mean Absolute Error (MAE)
	Root Mean Square Error (RMSE)

	EXPERIMENTAL DETAILS
	Dataset Preprocessing
	SEER

	Model Hyperparameters

	EXAMPLE INFERRED SURVIVAL FUNCTIONS AND CIFS
	AutoCDF
	ADDITIONAL SYNTHETIC DATA EXPERIMENT

